An ensemble Multi-Agent System for non-linear classification - Université Toulouse III - Paul Sabatier - Toulouse INP
Communication Dans Un Congrès Année : 2022

An ensemble Multi-Agent System for non-linear classification

Un système multi-agents ensembliste pour la classification non linéaire

Résumé

Self-Adaptive Multi-Agent Systems (AMAS) transform machine learning problems into problems of local cooperation between agents. We present smapy, an ensemble based AMAS implementation for mobility prediction, whose agents are provided with machine learning models in addition to their cooperation rules. With a detailed methodology, we show that it is possible to use linear models for nonlinear classification on a benchmark transport mode detection dataset, if they are integrated in a cooperative multi-agent structure. The results obtained show a significant improvement of the performance of linear models in non-linear contexts thanks to the multi-agent approach.
Fichier principal
Vignette du fichier
Article_ITS_Toulouse_2022.pdf (521.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03776269 , version 1 (13-09-2022)

Identifiants

  • HAL Id : hal-03776269 , version 1

Citer

Thibault Fourez, Nicolas Verstaevel, Frédéric Migeon, Frédéric Schettini, Frédéric Amblard. An ensemble Multi-Agent System for non-linear classification. 14th ITS European Congress (ITS EU 2022), May 2022, Toulouse, France. pp.1-12. ⟨hal-03776269⟩
73 Consultations
93 Téléchargements

Partager

More