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Abstract 

Self-Adaptive Multi-Agent Systems (AMAS) transform machine learning problems into problems of 

local cooperation between agents. We present smapy, an ensemble based AMAS implementation for 

mobility prediction, whose agents are provided with machine learning models in addition to their 

cooperation rules. With a detailed methodology, we show that it is possible to use linear models for 

nonlinear classification on a benchmark transport mode detection dataset, if they are integrated in a 

cooperative multi-agent structure. The results obtained show a significant improvement of the 

performance of linear models in non-linear contexts thanks to the multi-agent approach. 
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1. Introduction 

Most of modern classification problems are set in a non-linear environment, i.e., in which the boundaries 

between classes are not hyperplanes. Because of this non-linearity, their resolution requires more 

complex models often called "black boxes" because of their low explicability. 

In our research project, we aim to design a method to predict mobility information such as users' 

transport mode in real time from heterogeneous data (e.g., mobile phone data, smartphone sensors, etc.). 

This method must adapt quickly in a dynamic system where new transport modes and perturbations (e.g., 

changes in speed limits, COVID-19, etc.) may appear. Bringing up ever larger data streams requires the 

adoption of online learning techniques in which the model is updated with each new labeled point. 

Machine learning on dynamic systems (i.e., in which the behavior of individuals, the available sensors 

and the classes can evolve continuously) is one of the main motivations behind the design of Multi-

Agent Systems (MAS). Recent approaches propose to transform a machine learning problem into a 

problem of cooperation between agents in order to reduce its complexity and to allow the system to 

adapt to the evolutions of the individuals (Capera et al., 2003). 

In this paper, we propose to use this collaborative approach to design an algorithm capable of solving 

supervised classification problems, some of which are non-linear, using linear classification models 

embedded in a multi-agent structure. The idea behind the use of linear models is to show that our 

contribution transforms a non-linear machine learning problem into a less complex collaborative 
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problem (because solvable by linear models). Our algorithm must meet the following objectives: 

• Guarantee good performance on nonlinear problems 

• Be compatible with online learning 

In the section 2, we position our approach in relation to the fields of adaptive Multi-Agent Systems 

(AMAS) and ensemble learning. We also present the linear models used in our experiment. We detail in 

section 3 the functioning of our smapy algorithm used in the experiment on a benchmark mobility dataset, 

described in section 4. Finally, we present the results obtained in the section 5 before discussing them 

in the section 6 and concluding. 

 

2. Related work 

In this section, we present the positioning of our contribution (c.f. section 3), as well as the linear models 

tested in this study (see section 4). 

 

2.1. Linear models 

Linear models are the simplest approaches in machine learning. The objective function is expressed as 

a linear combination of the input variables. When the target variable is qualitative, it is like looking for 

hyperplanes separating point clouds with different labels. 

 

Logistic regression. Generalized Linear Models (GLM) (Nelder & Wedderburn, 1972) extend the 

domain of linear models to supervised classification problems (i.e., with a qualitative target variable) by 

introducing a link function in the resolution of the least squares problem. This allows to obtain 

probabilities of belonging to different classes. The GLM theory includes logistic regression when the 

link function is sigmoid. 

Logistic regression is initially used to predict the probability of occurrence of an event among two 

modalities (binary classification). However, it is possible to generalize logistic regression to a qualitative 

label with 𝑚 modalities by performing 𝑚 regression successively between one class and all the others 

to obtain 𝑚 output membership probabilities. 

The addition to the least squares cost function of a penalty by the ℓ2 norm (ridge (Hoerl & Kennard, 

1970)) or ℓ1 norm (LASSO (Tibshirani, 1996)) of the weights vector allows to improve respectively 

their sparsity or the generalization of the model. These two terms are combined in the Elastic Net 

approach (Zou & Hastie, 2005). 

 

Support Vector Machines. Support Vector Machines (SVM) (Cristianini et al., 2000) are a supervised 

classification technique in which the initial problem is transformed into a search for hyperplanes 

separating two classes via a kernel defining an intermediate space. In this new space, the problem to 

solve is assumed to be linear. When the kernel used is not linear, the hyperplanes of the intermediate 

space thus define nonlinear boundaries in the initial space, although the algorithmic resolution is that of 

a linear problem. However, when the kernel is linear, the resulting model is also linear. 
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Among all possible boundaries, SVMs search for the hyperplane maximizing the confidence (i.e., the 

distance to the boundary) on each side. Moreover, in the case where the classes are not linearly separable 

in the intermediate space, it is possible to accept the separation errors for the points close to the generated 

frontier via a balancing parameter for the sake of generalization. 

The transition from 𝑚-class SVMs can be done according to several strategies: one versus all which 

consists of solving 𝑚 binary problems (the class of interest against all others), one versus one which 

consists of training 
𝑚(𝑚−1)

2
 SVMs (one per pair of classes) and then proceeding by voting for prediction, 

and Crammer-Singer strategy (Crammer & Singer, 2003) which is a reformulation of the multi-class 

SVM minimization problem for a quadratic computational cost. 

 

Passive Aggressive Algorithms. Passive Aggressive (PA) algorithms (Crammer et al., 2006) are a family 

of linear online learning models that behave differently depending on whether the prediction of a new 

labeled point is correct or not. 

In the former case, the internal model does not change (passive behavior). In the latter case, the weights 

are incremented so that the model predicts correctly and with a unit margin a new point identical to the 

last observed point (aggressive behavior). The aggressiveness of these algorithms is controlled by a 

coefficient in front of the weight increment at each iteration. 

There are two main variants of these algorithms: PA-I when the increment is linear for the new point 

(Hinge cost function) and PA-II when it is quadratic (squared Hinge cost function). 

 

Criticism of linear models. Linear models have the advantage of giving results that are easily interpreted 

by the user because the boundaries between classes are linear and the coefficients of the linear 

combination in the objective function give information about the importance of each input variable in 

the overall modeling. 

However, when the system is non-linear (i.e., the point clouds of the different classes are not separable 

by hyperplanes), linear models perform poorly. Generating a hyperplane in a space where the classes 

are not linearly separable leads to misclassifications on both sides of the boundary. Algorithms such as 

non-linear kernel SVMs propose to transpose the initial problem to an intermediate space in which the 

data become linearly separable, but the coefficients associated with the variables in this space are no 

longer interpretable by the user. 

 

2.2. Ensemble learning 

Among the classification algorithms adapted to nonlinear problems, ensemble methods build 

classification models from a set of simple learning models, usually decision trees (CARTs). We 

distinguish two main types of approaches in ensemble learning: the bagging (bootstrap aggregating) and 

the boosting. 
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Bagging. Bagging is a learning technique combining the use of bootstraps and the aggregation of 

prediction models. The assumption of bagging, inspired by the law of large numbers, is that averaging 

the predictions of several independent models reduces the variance and thus the error of the global 

prediction. 𝐵 independent models must be trained on 𝐵 independent data sets, which is generally not 

possible in practice. To overcome this problem, 𝐵  bootstraps are generated, i.e., 𝐵  samples of the 

same size as the initial dataset, drawn randomly (independently) and with replacement. An instance of 

a learning model is trained on each bootstrap, and the global model makes its predictions by averaging 

the intermediate models.  

The Random Forest algorithm (Breiman, 2001) uses binary decision trees by adding a random draw of 

the input variables to be considered for each intermediate model, in order to make them even more 

independent. Although the geometric interpretability of the decision trees is lost, Random Forest has 

two importance metrics of the input variables (Mean Decrease Accuracy and Mean Decrease Gini). 

 

Boosting. Unlike bagging, boosting algorithms build a model sequentially from so-called weak models. 

At each step, the bad points predicted by the previous model are given a higher weight when training 

the current model. Adaptive Boosting (AdaBoost) (Schapire et al., 1995) uses binary decision trees with 

a single node and a single input variable. In Gradient Boosting (Friedman, 2001), the weights of the 

points are no longer incremented but a cost function minimized by gradient descent allows to aggregate 

intermediate models to the global model. An improved version, eXtreme Gradient Boosting (XGBoost) 

(Chen & Guestrin, 2016), allows the user to parallelize the creation of decision trees and to optimize the 

prohibitive computation time of Gradient Boosting. 

 

Criticism of ensemble learning. The ensemble approach allows to build a model that is efficient, not 

very sensitive to overfitting and generally performs better than its best internal model, especially on 

non-linear problems. 

On the other hand, the model obtained is no longer geometrically interpretable by the user because it 

results from a combination of several internal models. Some algorithms, such as random forests, 

however, make it possible to preserve an importance score for the input variables. Moreover, ensemble 

methods are not suitable for online learning or dynamic systems. 

 

2.3. Multi-Agent Systems 

The Multi-Agent Systems (MAS) paradigm has demonstrated its ability to model and solve problems in 

complex, non-linear systems in which observed behaviors evolve in time and space. MAS implement 

autonomous entities (agents) capable of interacting with each other to solve a given problem. The key 

point of this theory is that each agent is generally unable to solve or even understand the problem as a 

whole. It is their interactions that give rise to a form of intelligence greater than the sum of their 

individual capacities (emergence phenomenon). 
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Adaptive Multi-Agent Systems. The theory of adaptive Multi-Agent Systems (AMAS) (Capera et al., 

2003) proposes a cooperative approach to interactions between agents. The design criteria presented for 

these interactions guarantee a satisfactory, but not necessarily optimal, result in the resolution of the 

problem at hand (functional adequacy theorem). 

 

 

Figure 1 - Cooperative operation of a SACL architecture in exploration phase 

Context Learning. Context Learning (CL) consists in exploring the space defined by the input variables 

of the model using cooperating agents. The AMAS for Context Learning (AMAS4CL) approach is based 

on the AMAS theory and more particularly on the Self-Adaptive Context Learning (SACL) (Boes et al., 

2015) paradigm to define the rules of cooperation between agents and proposes a structure composed of 

several types of agents to explore the space of the problem variables. 

Algorithms based on the SACL approach are used to solve various problems such as learning by 

demonstration (Verstaevel et al., 2015) or Inverse Kinematics (Dato, 2021) in robotics and optimization 

of the operation of a heat pump (Boes et al., 2015). 

SACL architectures are typically composed of three types of agents: 

• Context agents that define hypercubes of the input variable space. When a new point belongs to 

one of these zones, the corresponding Context agent is said to be activated and proposes a 

system decision according to its own knowledge 

• The Percept agents which retrieve the values of the input variables (sensors) at each iteration 

and transmit them to the Context agents 

• The Head agent which receives the proposals of the activated Context agents and sends them 

feedbacks 

A context learning MAS has two modes of operation: exploration (learning) which consists in 

instantiating and arranging the Context agents thanks to the feedback from the Head agent, and 

exploitation (prediction) which consists in taking a decision without updating the system. The 

functioning of this architecture is presented in Figure 1 for the cooperative case in the exploration phase 

(i.e., the optimal functioning case). When the behavior of the system is not optimal with respect to the 

user's objectives, the situation is said to be non-cooperative (NCS). The system must adapt to maximize 

the cooperation between agents to return to the cooperative state. In Context Learning, this cooperation 

is expressed in the sizes (i.e., the dimensions of the hypercubes), positions and knowledge of the Context 

agents. 
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The ELLSA architecture (Dato, 2021) is based on SACL and introduces cooperation rules to explore the 

space of input variables. Context agents implement linear regressions to approximate the underlying 

function of the problem to be solved, assumed to be locally linear on their activation zones. These 

internal linear regression models can also be used to solve supervised classification problems in which 

each Context agent is associated to a class. 

 

Criticism of Multi-Agent Systems. The SACL approach has three advantages: 

• The generated model is dynamic (i.e., it adapts to changes in the distribution over time of the 

data to be modeled) and supports online learning 

• The position and the size of the agents in the space of the input variables give additional 

information on the studied phenomenon and a geometrical interpretation 

By embedding linear regression models in the Context agents, it is possible to use the SACL architecture 

in supervised classification problems, but each agent is only able to predict one class. In areas of the 

input variable space where point clouds of different classes are overlapped, performance is severely 

degraded unless low-volume Context agents are generated at the risk of overfitting. 

We propose to solve this problem by taking inspiration from ELLSA's cooperation rules and 

providing each Context agent with an arbitrary machine learning model, in the fashion of ensemble 

approaches. This allows the agents to predict several classes based on their own experience. 

 

3. Smapy 

In our contribution, we provide each Context agent with an internal machine learning model, linear or 

not, with the only requirement to support online learning. Each internal model is trained on the points 

that have activated the corresponding Context agent and thus constitutes a local modeling (in the sense 

of the space of input variables) of the underlying function of the problem to solve. This context learning 

MAS, smapy, has been implemented in python for the industrial needs of the research project.  

 

3.1. General principle 

Like other SACL type architectures, smapy has two modes of operation:  

• The exploration during which the mapping of the space of the input variables is modified 

according to new available labelled observations 

• The operation during which the system uses its coverage of the space of input variables to 

classify a new point 

In both cases, the operation of the system is iterative, and each cycle starts with a new observation. 

During the exploration, the activated Context agents update their internal model with the last observation 

after they have proposed an output class to the Head agent and received feedback (positive or not). The 

feedback received by a Context agent allows it to update its perception of itself within the collective 

through a performance metric explained in the section 3.3. It also allows him to know if he has a non-

cooperative behavior with respect to the objective of the system and, if necessary, to act on itself or its 

neighbors to return to a cooperative state (c.f. section 3.4). 
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3.2. Agents 

In this section, we present the three types of agents involved in our SACL architecture, whose 

relationships have been described in Figure 1. 

 

Percept. The 𝑝 Percept agents collect the values of the 𝑝 input variables of each new observation and 

pass them to the Context agents. They also store the observed extrema for each variable. 

 

Context. A Context agent 𝑙 defines a hypercube in the 𝑝-dimensional space of input variables. For each 

dimension 𝑗 , it has two parameters 𝑟𝑙,𝑗,0
𝑡   and 𝑟𝑙,𝑗,1

𝑡   that define the lower and upper bounds of an 

activation interval at iteration 𝑡. The agent can compute at any time 𝑣𝑙(𝑇), the volume of its activation 

hypercube at iteration 𝑇, according to the following formula: 𝑣𝑙(𝑇) = ∏ (𝑟𝑙,𝑗,1
𝑡 − 𝑟𝑙,𝑗,0

𝑡 )
𝑝
𝑗=1  

The Context agent also has a confidence level 𝑐𝑙(𝑇) at iteration𝑇, depending on its history ℋ𝑙
𝑇 (set 

of its activation cycles since its creation), its class proposals �̂�𝑙
𝑡 for observations 𝑦𝑡 on this history, 

and two external parameters 𝐹+ and 𝐹− that respectively weight the positive and negative feedbacks 

of the agent Head: 

𝑐𝑙(𝑇) = ∑ (𝐹+ ∗ 1�̂�𝑙
𝑡=𝑦𝑡 − 𝐹− ∗ 1�̂�𝑙

𝑡≠𝑦𝑡)

𝑡∈ℋ𝑙
𝑇

 

From its two terms, we define the score 𝑠𝑙(𝑇) of a Context agent at iteration 𝑇 using a normalization 

function 𝑁𝑐 which is an external parameter of smapy: 

𝑠𝑙(𝑇) = 𝑁𝑐 ∘ 𝑐𝑙(𝑇) 

Finally, the Context agent has an internal classification model learned from the observations that 

activated it. The python implementation of smapy makes it possible to use models in the scikit-learn 

fashion if they support online learning to adapt the agent to new observations. For the rest of this paper, 

we define several properties of Context agents: 

Definition 1 (Expansion/Retraction). A Context agent expands (resp. retracts) by a factor 𝛼 when it 

increases (resp. decreases) its boundaries to multiply its volume by 1 + 𝛼 (resp. 1 − 𝛼). 

Definition 2 (Push). A Context agent 𝑙1  pushes a Context agent 𝑙2  when 𝑙2  retracts so that the 

previous intersection of 𝑙1 and 𝑙2 is completely outside 𝑙2 (and thus contained only within 𝑙1). 

Definition 3 (Absorption). A context agent 𝑙1  absorbs a context agent 𝑙2  when 𝑙1  expands to 

completely contain the area covered by 𝑙2 and the agent 𝑙2 is destroyed. 

Definition 4 (Point Exclusion). A Context agent 𝑙1 excludes an observation 𝑦 when 𝑙1 retracts so 

that 𝑦 ends up outside 𝑙1. Point exclusion is controlled by an external Boolean parameter 𝐸. 

Definition 5 (Overlapping Index). The overlapping index 𝑜𝑙1,𝑙2  is the ratio of the volume of the 

intersection of two agents Context 𝑙1 and 𝑙2 to the minimum of the volumes of these agents:  

𝑜𝑙1,𝑙2 = 𝑜𝑙2,𝑙1 =
𝑣𝑙1∩𝑙2

min(𝑣𝑙1 , 𝑣𝑙2)
 

Head. The Head agent supervises the cooperation of the Context agents. At each iteration, it selects the 

class proposed by the activated Context agent with the highest score (and proceeds by vote in case of a 
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tie) and sends feedbacks to all the agents activated during the exploration phase (c.f. section 3.3). The 

Head agent can also create new Context agents in case of system incompetence (c.f. section 3.4). 

 

3.3. Feedback 

When the Context agents are activated, they propose a prediction to the Head agent. The latter selects 

the prediction of the agent with the highest score. During the exploration phase (learning), the Head 

agent sends feedbacks to the Context agents which have proposed a prediction: 

• If the prediction is good (with respect to the label of the new point), then the confidence of the 

context agent increases by 𝐹+ and it expands by a factor 𝛼 (external parameter) 

• If the prediction is bad, then the confidence of the context agent decreases by 𝐹−.  If point 

exclusion is allowed (i.e., 𝐸 is true), then the context agent excludes the new point. Otherwise, 

the Context agent's local model is fine-tuned with the new point (in the sense of online learning), 

and it retracts by a factor 𝛼 

 

3.4. Non-cooperative situations 

 

Figure 2 - Schematic of NCS (top row) and their resolution (bottom row) for Context agents 𝒍𝟏, 𝒍𝟐 and 𝒍𝟑 

predicting classes 𝑨 and 𝑩 

The objective of AMAS is to transform the initial problem into a problem of cooperation between agents. 

Non-cooperative situations (NCS) are states during which the behavior of the system must evolve to 

reach the goal set by the user. In context learning, this results in the rearrangement of the Context agents 

to improve the tiling of the input variable space. In this section, we present and schematize in Figure 2 

the three types of NCS that can occur during the operation of smapy and their resolution. 

Incompetence. Incompetence occurs when no Context agent has been activated: 

• Exploration: a new Context agent is created around the new point and any NCS generated are 

resolved. The initial radius of the new agent is controlled by an external parameter 𝑅 

• Exploitation: the closest Context agent to the new point (in the sense of the Euclidean distance 

between the point and the agent's boundary) proposes its prediction 
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Competition. Competition occurs during the exploration phase when two activated Context agents 

propose the same prediction (in this case, the same class): 

• If an overlapping threshold is defined through the external parameter 𝑂, and if the overlapping 

index of the two agents is greater than this threshold, the agent with the higher score absorbs 

the other 

• Otherwise, the Context agent with the higher score pushes the other agent 

Conflict. A conflict occurs during the exploration phase when two activated Context agents propose 

different predictions. The agent with the higher score then pushes the other agent. 

 

4. Comparison of linear models alone with context learning 

In this section, we present the experiment of comparing the linear models presented in section 2 (logistic 

regression, linear SVM, PA-I and PA-II) and instances of smapy with these same models inside Context 

agents, in a transport mode classification problem. 

 

4.1. Objectives of the experiment 

The motivation of this experiment is to verify if the transformation of a classification problem into a 

multi-agent cooperation problem without changing the machine learning techniques allows to improve 

the performances of the latter. 

 

4.2. Input data 

The experiment is conducted on the benchmark HTC transport mode detection (TMD) dataset (Yu et al., 

2014) which contains smartphone sensor measurements collected during the trips of 13 users using an 

application developed by the authors. Five modes of transport are distinguished: Still, Walk, Run, Bike 

and Vehicle (including all motorized vehicles). Data cleaning and feature extraction were performed by 

the authors on each trip. To visualize the behavior of the Context agents in a two-dimensional space, we 

choose for our experiment to keep two features: 

• acc std: standard deviation of the magnitude of accelerometer. 

• acc FFT (peak): the index of the highest FFT value, which indicates the dominated frequency 

of the corresponding mode. 

Table 1 - List of value grids for the search of 

optimal combinations of parameters of the studied 

linear models (scikit-learn implementation) 
 

Parameter Grid of values   

LOGISTIC REGRESSION & LINEAR SVM 

alpha 0.0001 0.001 0.01 

penalty ℓ1 ℓ2 Elastic Net 

PA-I & PA-II 

C 0.5 1.0 2.0 

Table 2 - List of value grids for finding the 

optimal combinations smapy parameters 

Parameter Grid of values 

R 0.1 0.2 0.5 

O 0.2 0.5  

E False True  

𝑁𝑐 Sigmoid   

𝛼 0.0 0.1 0.2 

𝐹+ 1.0   

𝐹− 0.5 1.0 2.0 
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We obtain four instances of smapy and four instances of corresponding linear models, all whose 

parameters have been optimized by cross-validation. We then compare the optimized smapy instances 

with the linear models using two evaluation metrics: 

• Classification accuracy (multi-class) averaged over the five iterations of cross-validation (step 

1 for linear models, step 2 for smapy) 

• Decision frontiers of the models (linear or smapy) trained with the best parameter combinations 

obtained by cross-validation 

 

5. Results 

In this section, we present comparative results between linear models alone and smapy instances 

according to the two metrics introduced previously (c.f. section 4). 

Table 3 - Comparison of the classification accuracies obtained with each model alone or in smapy 

 Model alone Model + MAS 

Logistic regression 0.65 0.74 

Linear SVM 0.65 0.72 

PA-I 0.58 0.72 

PA-II 0.52 0.72 

 

Figure 3 - Decision boundaries for each linear model alone or in a smapy instance (classes are colored) 

5.1. Classification accuracy 

The table 3 gathers the obtained classification accuracies. For each linear model tested, the MAS 

approach shows a significant improvement in classification accuracy. 

 

5.2. Decision boundaries 

We plot the decision boundaries obtained for each model (best case of cross-validations) in Figure 3. 

We note that the linear models alone give linear boundaries although the point clouds in the problem are 

not linearly separable. The MAS approach generates nonlinear boundaries that better separate the point 

clouds of different classes in all four cases. 

 

6. Discussion 

Using an MAS approach, the initial classification problem is solved locally at the Context agent level. 

Thus, even if the agents have internal models that can only generate linear boundaries, they have 

positioned and sized each other in such a way as to locally approximate a nonlinear boundary thanks to 

the various cooperation mechanisms presented in the section 3. 
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However, we can ask ourselves if the Context agents have not over-specialized locally by observing 

homogeneous groups of individuals (in the sense of the class). The existence of the point exclusion 

mechanism, although often selected by cross validation, tends to reinforce this over-specialization of 

agents by excluding new class points from their activation zones. 

Nevertheless, the ideal behavior sought for smapy is to build Context agents that cover homogeneous 

areas of the explored input variable space, notably for reasons of explicability. There is therefore a trade-

off between the geometric interpretability of the layout of the Context agents and the generalization of 

the system to dynamic problems in which new classes may appear. 

 

7. Conclusion 

Our contribution lies at the intersection of self-adaptive context learning (SACL) Multi-Agent Systems 

and ensemble learning methods. The proposed implementation provides each Context agent with an 

internal supervised classification model, as well as rules for cooperation with other agents. By choosing 

linear models for the Context agents, we show that it is possible to simplify a nonlinear classification 

problem by transforming it into a local cooperation problem within a context learning MAS. Our 

experimental methodology allows us to observe a significant improvement of the classification accuracy 

on the HTC transport mode detection dataset. 

The next step is the use of smapy for dynamic real-world problems in which new classes may appear or 

disappear, with the guarantee of an interpretable prediction compared to other state-of-the-art algorithms. 

The hypotheses of dynamism and explicability are indeed particularly important in the field of urban 

planning and smart city management. The thesis project in which this paper is part of deals with mobility 

analysis, and experiments on automatic detection of the transport mode in an urban environment are 

underway. 

Our main research direction on smapy is the possibility to use several different algorithms in the internal 

models of the Context agents, depending on the area of the input variables space. The idea is to exploit 

the strengths and weaknesses of different known algorithms to optimize prediction quality at specific 

locations in the space where certain models perform best. These models can be linear or non-linear, 

although this paper shows that internal linear models can be sufficient to obtain satisfactory results on 

non-linear problems. 

Finally, improvements in the operating rules of smapy are needed to avoid over-specialization of the 

Context agents while maintaining the explicability and stability of the system. For this purpose, the 

"severity" of the NCS correction mechanisms can evolve according to the convergence of the agents' 

layout towards a supposedly optimal layout. 
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