Games of Incomplete Information: a Framework Based on Belief Functions - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Article Dans Une Revue International Journal of Approximate Reasoning Année : 2022

Games of Incomplete Information: a Framework Based on Belief Functions

Résumé

This paper proposes a model for incomplete games where the knowledge of the players is represented by a Dempster-Shafer belief function. Beyond an extension of the classical definitions, it shows such a game can be transformed into an equivalent hypergraphical complete game (without uncertainty), thus generalizing Howson and Rosenthal's theorem to the framework of belief functions and to any number of players. The complexity of this transformation is finally studied and shown to be polynomial in the degree of k-additivity of the mass function.
Fichier principal
Vignette du fichier
v3.pdf (536.28 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03658700 , version 1 (04-05-2022)
hal-03658700 , version 2 (21-09-2022)

Identifiants

Citer

Pierre Pomeret-Coquot, Hélène Fargier, Érik Martin-Dorel. Games of Incomplete Information: a Framework Based on Belief Functions. International Journal of Approximate Reasoning, 2022, 151, pp.182-204. ⟨10.1016/j.ijar.2022.09.010⟩. ⟨hal-03658700v2⟩
435 Consultations
143 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More