Mycotoxins co-contamination
Résumé
Mycotoxins are secondary fungal metabolites produced mainly by Aspergillus, Penicillium and Fusarium. As evidenced by large-scale surveys, humans and animals are simultaneously exposed to several mycotoxins. Simultaneous exposure could result in synergistic, additive or antagonistic effects. However, most toxicity studies addressed the effects of mycotoxins separately. We present the experimental designs and we discuss the conclusions drawn from in vitro experiments exploring toxicological interactions of mycotoxins. We report more than 80 publications related to mycotoxin interactions. The studies explored combinations involving the regulated groups of mycotoxins, especially aflatoxins, ochratoxins, fumonisins, zearalenone and trichothecenes, but also the "emerging" mycotoxins beauvericin and enniatins. Over 50 publications are based on the arithmetic model of additivity. Few studies used the factorial designs or the theoretical biology-based models of additivity. The latter approaches are gaining increased attention. These analyses allow determination of the type of interaction and, optionally, its magnitude. The type of interaction reported for mycotoxin combinations depended on several factors, in particular cell models and the tested dose ranges. However, synergy among Fusarium toxins was highlighted in several studies. This review indicates that well-addressed in vitro studies remain valuable tools for the screening of interactive potential in mycotoxin mixtures.
Origine | Fichiers produits par l'(les) auteur(s) |
---|