Article Dans Une Revue Journal of Fluids and Structures Année : 2019

Fabrication and characterization of folded foils supporting streamwise traveling waves

Résumé

A body of work has grown around the use of small amplitude traveling waves on aerodynamic and hydrodynamic surfaces for boundary layer control. In particular, when the traveling wave speed exceeds the free stream velocity, significant drag reductions have been shown in simulation. Building viable prototypes to test these hypotheses, however, has proven challenging. In this paper, we describe a candidate system for constructing structural airfoils and hydrofoils with embedded electromagnetic actuators for driving high velocity traveling waves. Our approach relies on the fabrication of planar substrates which are populated with electromagnetic components and then folded into a prescribed three dimensional structure with actuators embedded. We first specify performance characteristics based on hydrodynamic requirements. We then describe the fabrication of fiber-reinforced polymer composite substrates with prescribed folding patterns to dictate three dimensional shape. We detail the development of a miniaturized single-phase linear motor which is compatible with this approach. Finally, we compare the predicted and measured force produced by these linear motors and plot trajectories for a 200 Hz driving frequency.

Domaines

Plasmas

Dates et versions

hal-04790742 , version 1 (19-11-2024)

Identifiants

Citer

Sam Calisch, Neil Gershenfeld, Dixia Fan, Gurvan Jodin, Michael Triantafyllou. Fabrication and characterization of folded foils supporting streamwise traveling waves. Journal of Fluids and Structures, 2019, 91, pp.102563. ⟨10.1016/j.jfluidstructs.2019.01.004⟩. ⟨hal-04790742⟩
8 Consultations
0 Téléchargements

Altmetric

Partager

More