Experimental permeability measurement of different reinforcement types for virtual permeability determination validation
Résumé
Permeability measurement of engineering textiles is a key step in preparing composites manufacturing processes. A radial flow experimental set-up is used in this work to characterize the unsaturated and saturated in-plane permeabilities of different types of textiles. In order to identify fabrics in which the dual-scale flow effect is stronger, comparisons are made between the measured saturating and saturated permeabilities. In parallel, the delayed tow saturation during the oil injection stage of the saturating measurement is observed visually. In addition, virtual permeability of porous media is studied using the numerical implementation of Darcy-Brinkman equation in a finite volume method (FVM) open-source software (OpenFOAM). A numerical method is proposed to determine the permeability of a given geometry at mesoscale. The method is used to determine the permeability of a realistic geometry acquired using an X-ray micro tomography (μCT) scanner and the results are compared to experimental values obtained with the proposed experimental set-up on the same plain weave textile.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |