Study of the behaviour of Nesterov Accelerated Gradient in a non convex setting: the strongly quasar convex case - Université Toulouse III - Paul Sabatier - Toulouse INP
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2024

Study of the behaviour of Nesterov Accelerated Gradient in a non convex setting: the strongly quasar convex case

Résumé

We study the convergence of Nesterov Accelerated Gradient (NAG) minimization algorithm applied to a class of non convex functions called strongly quasar convex functions, which can exhibit highly non convex behaviour. We show that in the case of strongly quasar convex functions, NAG can achieve an accelerated convergence speed at the cost of a lower curvature assumption. We provide a continuous analysis through high resolution ODEs, in which negative friction may appear. Finally, we investigate connections with a weaker class of non convex functions (smooth Polyak-\L ojasiewicz functions) by characterizing the gap between this class and the one of smooth strongly quasar convex functions.
Fichier principal
Vignette du fichier
HalArxiv Study_of_the_limit_and_behaviour_of_Nesterov_Accelerated_Gradient_in_non_convex_setting__quasar_convex_-3.pdf (842.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04589853 , version 1 (29-05-2024)

Identifiants

  • HAL Id : hal-04589853 , version 1

Citer

Julien Hermant, Jean-François Aujol, Charles Dossal, Aude Rondepierre. Study of the behaviour of Nesterov Accelerated Gradient in a non convex setting: the strongly quasar convex case. 2024. ⟨hal-04589853⟩
102 Consultations
73 Téléchargements

Partager

More