Comparison of machine learning models for early depression detection from users’ posts - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Chapitre D'ouvrage Année : 2022

Comparison of machine learning models for early depression detection from users’ posts

Résumé

With around 300 millions people worldwide suffering from depression, the detection of this disorder is crucial and a challenge for individual and public health. As with many diseases, early detection means better medical management; the use of social media messages as potential clues to depression is an opportunity to assist in this early detection by automatic means. This chapter is based on the participation of the CNRS IRIT laboratory in the early detection of depressive people (eRisk) task at the CLEF evaluation forum. Early depression detection differs from depression detection in that it considers temporality; the system must make its decision about a user’s possible depression with as little data as possible. In this chapter we re-evaluate the models we have developed for our participation at eRisk over the years on the different collections, to obtain a more robust comparison. We also add new models. We use well-established classification methods, such as Logistic regression, Random forest, and Support Vector Machine (SVM). The users’ data from which the system should detect if they are depressed, are represented as vectors composed of (a) various task-oriented features including depression related lexicons and (b) word and document embeddings, extracted from the users’ posts. We perform an ablation study to analyze the most important features for our models. We also use BERT deep learning architecture for comparison purposes, both for depression detection and early depression detection. According to our results, well-established machine learning models are still better than more modern models for -early- detection of depression.
Fichier principal
Vignette du fichier
Mothe_2022_SCI.pdf (523.86 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03854902 , version 1 (16-11-2022)
hal-03854902 , version 2 (16-11-2022)

Identifiants

Citer

Josiane Mothe, Faneva Ramiandrisoa, Md Zia Ullah. Comparison of machine learning models for early depression detection from users’ posts. Early Detection of Mental Health Disorders by Social Media Monitoring: The First Five Years of the eRisk Project, 1018, Springer International Publishing, pp.111-139, 2022, Studies in Computational Intelligence book series (SCI), 978-3-031-04430-4. ⟨10.1007/978-3-031-04431-1_5⟩. ⟨hal-03854902v2⟩
75 Consultations
188 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More