A Study on the Impact of Class Distribution on Deep Learning - The Case of Histological Images and Cancer Detection - Université Toulouse III - Paul Sabatier - Toulouse INP
Communication Dans Un Congrès Année : 2022

A Study on the Impact of Class Distribution on Deep Learning - The Case of Histological Images and Cancer Detection

Résumé

Studies on deep learning tuning mostly focus on the neural network architectures and algorithms hyperparameters. Another core factor for accurate training is the class distribution of the training dataset. This paper contributes to understanding the optimal class distribution on the case for histological images used in cancer diagnosis. We formulate several hypotheses, which are then tested considering experiments with hundreds of trials. We considered both segmentation and classification tasks considering the U-net and group equivariant CNN (G-CNN). This paper is an extended abstract of another paper published by the authors 1 .
CIRCLE_2022_paper_26.pdf (1.33 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03853768 , version 1 (15-11-2022)

Licence

Identifiants

  • HAL Id : hal-03853768 , version 1

Citer

Ismat Ara Reshma, Josiane Mothe, Sylvain Cussat-Blanc, Hervé Luga, Camille Franchet, et al.. A Study on the Impact of Class Distribution on Deep Learning - The Case of Histological Images and Cancer Detection. 2nd Joint Conference of the Information Retrieval Communities in Europe (CIRCLE 2022), Jul 2022, Samatan, Gers, France. pp.1-5. ⟨hal-03853768⟩
79 Consultations
18 Téléchargements

Partager

More