NO PATTERN FORMATION IN A QUASILINEAR CHEMOTAXIS MODEL WITH LOCAL SENSING - EDPs2
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2024

NO PATTERN FORMATION IN A QUASILINEAR CHEMOTAXIS MODEL WITH LOCAL SENSING

Résumé

Convergence to spatially homogeneous steady states is shown for a chemotaxis model with local sensing and possibly nonlinear diffusion when the intrinsic diffusion rate $\phi$ dominates the inverse of the chemotactic motility function $\gamma$, in the sense that $(\phi\gamma)'\ge 0$. This result encompasses and complies with the analysis and numerical simulations performed in Choi & Kim (2023). The proof involves two steps: first, a Liapunov functional is constructed when $\phi\gamma$ is non-decreasing. The convergence proof relies on a detailed study of the dissipation of the Liapunov functional and requires additional technical assumptions on $\phi$ and $\gamma$.
Fichier principal
Vignette du fichier
KoreanAirline_20240417_submit.pdf (232.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04549444 , version 1 (17-04-2024)

Identifiants

Citer

Philippe Laurençot, Ariane Trescases. NO PATTERN FORMATION IN A QUASILINEAR CHEMOTAXIS MODEL WITH LOCAL SENSING. SIAM Journal on Mathematical Analysis, 2024, 56 (5), pp.6861--6884. ⟨10.1137/24M1654907⟩. ⟨hal-04549444⟩
85 Consultations
46 Téléchargements

Altmetric

Partager

More