
HAL Id: tel-04582144
https://ut3-toulouseinp.hal.science/tel-04582144v1

Submitted on 21 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A general framework integrating techniques for
scheduling under uncertainty

Julien Bidot

To cite this version:
Julien Bidot. A general framework integrating techniques for scheduling under uncertainty. Modeling
and Simulation. Institut National Polytechnique (Toulouse), 2005. English. �NNT : 2005INPT040H�.
�tel-04582144�

https://ut3-toulouseinp.hal.science/tel-04582144v1
https://hal.archives-ouvertes.fr

Serial Number: 2297

A General Framework Integrating
Techniques for Scheduling under Uncertainty

by

Julien Bidot
Automated-production engineer, Ecole Nationale d’Ingénieurs de Tarbes

A dissertation presented at Ecole Nationale d’Ingénieurs de Tarbes
in conformity with the requirements

for the degree of Doctor of Philosophy
of Institut National Polytechnique de Toulouse, France

Specialty: Industrial Systems

28 November 2005

Submitted to the following committee members:

Chairman: Gérard Verfaillie ONERA, France
Reviewer: Amedeo Cesta I.S.T.C.–C.N.R., Italy
Reviewer: Erik L. Demeulemeester Katholieke Universiteit Leuven, Belgium
Reviewer and invited member: Eric Sanlaville LIMOS–Université Blaise Pascal, France
Advisor: Bernard Grabot L.G.P.–ENIT, France
Academical mentor: Thierry Vidal L.G.P.–ENIT, France
Industrial mentor: Philippe Laborie ILOG S.A., France
Invited member: J. Christopher Beck University of Toronto, Canada

Acknowledgments

Many people have helped me directly or indirectly to achieve this dissertation, making it
better than it otherwise would have been.

Thanks to Philippe Laborie for his guidance, insight, kindness, and availability. It has
been very pleasant to work with him at ILOG. In particular, he has been of great help
to implement algorithms.

Thanks to Thierry Vidal for his constant support, helpful suggestions, and kindness.
He has always trusted me and I have been quite free to organize as I have wanted. I have
appreciated this even if freedom has sometimes meant complex decisions to make.

Thanks to Chris Beck for guiding me and giving me advices all along my Ph.D. thesis
even if he has not always been physically close to me. He has been a precious mentor
during my first six months at ILOG and during my visit at Cork Constraint Computation
Centre (4C).

Thanks to Jérôme Rogerie for his participation in the achievement of this research
work, in particular, during our investigation of potential industrial applications.

I thank Amedeo Cesta, Erik Demeulemeester, and Eric Sanlaville for reviewing my
dissertation given a short-time period. I also thank Gérard Verfaillie for taking part of
my jury.

Thanks to my advisor, Bernard Grabot, for his sustained encouragement. I also thank
the members of the research group “Production Automatisée” for helping me during the
different time periods I have been working in Laboratoire Génie de Production (L.G.P.).

Thanks to Daniel Noyes and the administrative staff of L.G.P. for having hosted me
several times during my Ph.D. thesis.

Thanks to Eugene Freuder and all the members of 4C. They have been hosting me
for three months providing me a stimulating environment contributing to the outcome of
my dissertation.

Thanks to Jeremy Frank, my mentor at the CP’03 doctoral program who made relevant
remarks about my work. Thanks also to Jim Blythe who was my mentor at the ICAPS’03
doctoral consortium.

Thanks to Hassan Aït-Kaci, Emilie Danna, Bruno De Backer, Vincent Furnon, Daniel
Godard, Emmanuel Guéré, Pascal Massimino, Claude Le Pape, Pierre Lopez, Wim Nui-
jten, Laurent Perron, Jean-Charles Régin, Francis Sourd, the members of the French re-
search group “flexibilité” of GOThA (Groupe de recherche sur l’Ordonnancement Théorique
et Appliqué), and many others for their help and wealthy ideas.

Special thanks go to the members of my family for their financial, intellectual, and
emotional support throughout this long and challenging process. Last and not least, I
thank my girlfriend, Hélène, for her love, patience, and encouragement.

Encore une dernière fois, merci à toutes et à tous.

iii

Contents

Acknowledgments iii

List of Tables ix

List of Figures xi

Introduction 1

1 State of the Art 5
1.1 What We Do Not Review . 5
1.2 Deterministic Domains . 5

1.2.1 Task Planning . 6
1.2.2 Scheduling . 7
1.2.3 Bridging the Gap Between Task Planning and Scheduling 8
1.2.4 Models . 9
1.2.5 Optimization . 11

1.3 Non-deterministic Domains . 11
1.3.1 Uncertainty Sources . 11
1.3.2 Definitions . 12
1.3.3 Uncertainty Models . 15
1.3.4 Temporal Extensions of CSPs . 24
1.3.5 Task Planning under Uncertainty 25
1.3.6 Scheduling under Uncertainty . 27

1.4 Summary and General Comments . 35

2 General Framework 37
2.1 Definitions and Discussion . 37
2.2 Revision Techniques . 40

2.2.1 Generalities . 40
2.2.2 Examples of Revision Techniques in Task Planning and Scheduling 42
2.2.3 Discussion . 42

2.3 Proactive Techniques . 42
2.3.1 Generalities . 43
2.3.2 Examples of Proactive Techniques in Task Planning and Scheduling 44
2.3.3 Discussion . 46

2.4 Progressive Techniques . 46
2.4.1 Generalities . 46
2.4.2 Examples of Progressive Techniques in Task Planning and Scheduling 48

v

vi CONTENTS

2.4.3 Discussion . 49
2.5 Mixed Techniques . 49

2.5.1 Generalities . 49
2.5.2 Examples of Mixed Techniques in Task Planning and Scheduling . . 52

2.6 Summary and General Comments . 53

3 Application Domain 55
3.1 Project Management and Project Scheduling 55
3.2 Construction of Dams . 56

3.2.1 General Description . 56
3.2.2 Uncertainty Sources . 57
3.2.3 An Illustrative Example . 57

3.3 General Comments . 57

4 Theoretical Model 61
4.1 Model Expressivity . 61
4.2 Definitions . 64

4.2.1 Scheduling Problem and Schedule Model 64
4.2.2 Generation and Execution Model 69

4.3 Schedule Generation and Execution . 72
4.4 A Toy Example . 75
4.5 Summary and General Comments . 79

5 Experimental System 81
5.1 Scheduling Problem . 81

5.1.1 Costs . 82
5.2 Architecture . 83

5.2.1 Solver . 83
5.2.2 Controller . 84
5.2.3 World Simulator . 85
5.2.4 Resolution Techniques . 85
5.2.5 Experimental Parameters and Indicators 89

5.3 Revision-Proactive Approach . 91
5.3.1 Revision Approach . 91
5.3.2 Proactive Approach . 92
5.3.3 Experimental Studies . 92

5.4 Progressive-Proactive Approach . 99
5.4.1 When to Try Extending the Current Partial Flexible Schedule? . . 100
5.4.2 How to Select the Subset of Operations to Be Allocated and Ordered?101
5.4.3 How to Allocate and Order the Subset of Operations? 105

5.5 Discussion . 106
5.6 Summary and General Comments . 107

6 Future Work 109
6.1 Prototype . 109

6.1.1 Experimental Studies . 109
6.1.2 Extensions . 110

6.2 Theoretical Model . 111

CONTENTS vii

Conclusions 113

Bibliography 115

Index 129

List of Tables

1.1 Off-line/On-line reasoning. 14

2.1 The basic parameters of a progressive approach. 48
2.2 The properties of each family of solution-generation techniques. 52

ix

List of Figures

1.1 A toy example of a task-planning problem. 7
1.2 A toy example of a job-shop scheduling problem. 8
1.3 A toy example of an optimal job-shop scheduling solution. 8
1.4 Generation and execution in the ideal world. 15
1.5 (a) A Bayesian network and (b) a conditional probability matrix charac-

terizing the causal relation. 17
1.6 A possibility function of the concept “young.” 19
1.7 A possibility function for a number of produced workpieces. 19
1.8 An illustrative example of the graphical view of an MDP. 20

2.1 Generation-execution loop with a revision technique. 41
2.2 Generation-execution loop with a proactive technique. 45
2.3 Generation-execution loop with a progressive technique. 47
2.4 A global view of the general framework. 50
2.5 Generation-execution loop with a mixed technique. 51

3.1 An illustrative example of a concrete dam wall. 58
3.2 Simple temporal representation of a dam-construction project. 60

4.1 Temporal representation of a dam-construction project. 63
4.2 An execution context with two active generation transitions. 72
4.3 Temporal representation of a small dam-construction project. 76
4.4 Execution context generated before starting execution. 77
4.5 Execution context generated during the execution of road1. 77
4.6 Execution context generated when road1 ends. 78
4.7 Execution context generated during the execution of house1. 78
4.8 Execution context generated during the execution of house2. 79

5.1 The general schema of our software prototype. 83
5.2 The solver module of our resolution prototype. 84
5.3 Two truncated and normalized normal laws. 88
5.4 Mean effective makespan for la11 with a low uncertainty. 95
5.5 Mean relative error with a low uncertainty. 97
5.6 Mean relative error with a medium uncertainty. 97
5.7 Mean relative error with a high uncertainty. 98
5.8 Mean relative error for different uncertainty levels. 98
5.9 Example of a schedule progressively generated. 101
5.10 Example of the assessment order of eligible operations. 102

xi

xii LIST OF FIGURES

5.11 Example of simulation of a selected operation. 103

Introduction

Planning can be defined as follows: “making a detailed proposal for doing or achieving
something.”1 Making a detailed proposal consists in deciding what actions to per-

form, what resources to use to perform these actions, and when to perform these actions.

For example, if I wanted to plan a trip in China, I would have to determine the flights,
the time period of the trip, the set of Chinese cities to visit, etc. In this example, the
resources to use will be my money, airplanes, a car to go from one Chinese city to an-
other, etc.

Planning and scheduling are the research domains that aim at solving such problems,
which are known to be NP-complete problems; i.e., they are difficult to solve. Planning,
as it is defined in Artificial Intelligence (AI), aims at reasoning on actions and causality
to build a course of action that will reach a given goal. Scheduling consists in organizing
those actions with respect to time and available resources, and as such it might some-
times be considered as a sub-part of planning. In this thesis, we are interested in tackling
problems that lie somewhere between planning and scheduling: we will mostly focus on
scheduling issues, but our model and prototype will integrate techniques and modeling
issues that arise in the AI planning community.

The standard approaches for planning or scheduling assume the execution of the de-
tailed proposal takes place in a deterministic environment. However, this assumption is
not always true since there exist different sources of uncertainty in a lot of application
domains such as manufacturing, robotics, or aeronautics. When we travel with an air-
plane, it is possible we arrive later than expected at the destination airport because of
bad weather conditions for example.

The most part of this Ph.D. thesis was carried out at ILOG, a public company that
sells software components that are used to model and solve combinatorial problems such
as vehicle routing, timetabling, bin packing, scheduling, etc. These resolution engines are
designed to tackle deterministic problems. One of the main objectives of the thesis was
to design and implement a software prototype that uses ILOG components and integrates
techniques to tackle problems under uncertainty.

A great deal of research has recently been conducted to study how to generate a sched-
ule that is going to execute in a real-world, non-deterministic context. There are three
main approaches to handling uncertainty when planning or scheduling. When planning

1This definition is given in the Concise Oxford English Dictionary, eleventh edition.

1

2 INTRODUCTION

the Chinese travel, I can be optimistic with respect to weather conditions and the sched-
ule will have to be revised at some point because it will no longer be executable; e.g.,
during my stay in China instead of visiting a natural park as planned I visit a museum
because it is raining. I can also prepare my trip in a pessimistic way by taking into ac-
count events that could occur and perturb my schedule; e.g., I choose my flights such that
there is at least one hour between two consecutive flights to avoid missing a connection.
This is also possible to limit the need of revising my schedule by planning only a part
of my stay in advance; e.g., before starting my travel I plan a part of my schedule for
the first week and wait to be in China and get more information to plan the rest of my stay.

To cope with uncertainty, it is necessary to produce a robust schedule; i.e., a schedule
whose quality is maintained during execution. I want to plan my Chinese trip such that
I am sure to see the Great Wall of China whatever happens during my stay. In addi-
tion, the generation procedure must respect the physical constraints such as search time
limit and memory consumption limit. I have only two days to prepare my trip. This
dissertation addresses the question of how to produce robust schedules in a real-time,
non-deterministic environment with limited computational resources.

The thesis of this dissertation is that interleaving generation and execution while using
uncertainty knowledge to generate and maintain partial and/or flexible schedules of high
quality turns out to be useful when execution takes place in a real-time, non-deterministic
environment. We avoid wasting computational power and limit our commitment by gene-
rating partial solutions; i.e., solutions in a gliding-time horizon. These partial schedules
can be quickly produced since we only make decisions in a short-term horizon and the
decisions made are expected to not change since they concern the operations with a low
uncertainty level. With flexible schedules, we are able to provide a fast answer to external
and/or internal changes because only a subset of decisions remain to be made and we
can make them by using fast algorithms. A flexible solution implicitly contains a set of
solutions that are able to match different execution scenarios. It is however necessary
to endow the decision-making system with a fast revision capability in case the problem
changes, a constraint is violated, or the expected solution quality deviates too much since
unexpected events occur during execution.

Our main objective is to provide a framework for understanding the space of tech-
niques for solving scheduling and planning problems under uncertainty and to create a
software library that integrates these resolution techniques.

The dissertation is split into six chapters as follows.

• The first chapter is a review of the current state of the art of task planning and
scheduling under uncertainty. Among other things, we recall definitions, existing
uncertainty models, and terminology to qualify a generation and execution tech-
nique.

• Chapter 2 is dedicated to presenting a terminology for classifying scheduling and
planning techniques for handling uncertainty. The current literature, reviewed in the
first chapter, is very large and confusing because a lot of terms exist that overlap
or have sometimes different definitions depending on scientific communities. We

INTRODUCTION 3

are thus interested in having a global view of the current spectrum of techniques
and their relationships. This classification is decision-oriented; i.e., a scheduling or
planning method is classified according to how decisions are made: when do we make
decisions? Are decisions made on a partial or a complete horizon? Are they made
by taking into account information about uncertainty? Are they changed during
execution?

• In the third chapter, we present our application domain, project management with
the construction of dams. We explain why we need to combine revision, proactive,
and progressive techniques to plan such a project.

• In the fourth chapter, we then go on with proposing a general model for generating
and executing schedules in a non-deterministic environment. This model is based on
the classification presented in the second chapter and proposes a way of interleaving
generation and execution of schedules. The objective is to integrate the techniques
presented in the second chapter. We illustrate this generation-execution model with
an example of dam-construction project.

• In Chapter 5, we discuss some experimental work. We present a software prototype
that can tackle new scheduling problems with probabilistic data. This prototype is
an instantiation of the general framework presented in the previous chapter. The
different parameters and indicators of the prototype are presented and some exper-
imental results are reported.

• We give a few future directions in Chapter 6 with respect to the theoretical and
experimental works presented in this document.

Chapter 1

State of the Art

In this chapter, we review the current state of the art of scheduling and task planning
under uncertainty. We start by presenting deterministic task planning and scheduling.

We then recall definitions, existing uncertainty models and terminology used to describe
generation and execution techniques for task planning or scheduling under uncertainty.
Task planning and scheduling concern very different application domains such as crew ros-
tering, information technology, manufacturing, etc. The objective of this chapter is to offer
the reader a guided tour of task planning and scheduling under uncertainty and to show
him/her the large diversity of existing models, techniques, terminologies, and systems
studied by the Artificial Intelligence and Operations Research communities. However, in
the rest of the document, our problem of interest is scheduling and the scheduling aspects
of planning; we do not study any causal reasoning with respect to operations.

1.1 What We Do Not Review

Some aspects of task planning and scheduling are intentionally left out of this chapter. Dis-
tributed decision-making via multi-agent approaches is out of the scope of this study [37].
Hierarchical Task Network used in task planning will not be reviewed as well [180]. We
do not focus on learning techniques used for scheduling [80] and planning. In addition, we
do not discuss multi-criteria optimization problems and satisfiability problems [46]. We
assume full observability of world states; i.e., the physical system is equipped with reliable
sensors that send information of the actual situation during execution. In task planning,
Boutilier et al. reviewed representations such as Partially Observable Markov Decision
Process when feedback is limited [32]. This state-of-the-art review does not tackle risk
management issues [38] and belief functions [147].

1.2 Deterministic Domains

In this section, we present fundamental aspects of task planning and scheduling when data
are deterministic; i.e., when all information is known before execution. In other words,
we assume that no unexpected event can occur during execution, we know precisely when
events occur and problems are static; i.e., these problems do not change on line.

5

6 CHAPTER 1. STATE OF THE ART

1.2.1 Task Planning

In Artificial Intelligence (AI), the classical task-planning problem1 consists in a set of op-
erators, one initial state, and one goal state (note that there are sometimes several goals).
A state is a set of propositions and their values. The instance of an operator is called
an action. The world state can evolve; e.g., it evolves when an action is performed, since
every performed action has usually an effect on the current world state. The objective
is to select and organize actions in time that will allow one to attain the goal state by
starting from the initial state. Actions can be performed only if some preconditions hold;
e.g., an operation can be executed if and only if the resource it requires is in a given state.

It is a complex problem to solve because it is highly combinatorial: a large number
of possible actions to choose from and a huge number of conflicts that appear between
actions. This problem may be much more difficult to solve if we want to optimize a
criterion such as minimizing the number of actions to perform. There are some limitations
to classical task planning since there is often no representation of time or resource usage.
For more details, please refer to Weld, who published a survey of task planning [175].
Also, a book dedicated to automated task planning appeared recently [75].

Figure 1.1 shows a toy example of a classic planning problem in the blocks world; on
the left-hand side is the initial state and on the right-hand side is the goal state. In the
initial state, the two blocks are placed on a table (C and B) and block A is piled up on
block B; we have to move them one after the other in such a way as to reach the goal state
(A on the table, C on A, and B on C). We assume there is only one hand to move blocks
and this hand can only hold one block at a time. In addition, there are some rules, called
preconditions, that have to be verified to change the current world state; e.g., we cannot
move a block X on Y if there is another block piled up on X or on Y . The operator in
this planning problem can be expressed as follows in the STRIPS language [65]:
Move(?X, ?Z, ?Y):
Preconditions: Free(?Y), Free(?X), On(?X, ?Z)
Effects: On(?X, ?Y), ¬ Free(?Y), Free(?Z)
Operator Move requires three parameters: ?X represents the block we want to move, ?Y
represents the block/table on which we want to place ?X, and ?Z represents the block/table
on which ?X is placed before moving it.

A solution of a planning problem is a plan; i.e., a solution is a set of actions that are
partially or fully ordered. In other words, we have to find a path through the state space
to go from the initial state to the goal state. A solution of the blocks world problem above
is a set of three totally ordered actions: place A on the table, pile up C on A, and pile
up B on C. In the STRIPS language, the solution is expressed as follows: Move(A, B,
table), Move(C, table, A), Move(B, table, C).

Classical task planning assumes there is no uncertainty; e.g., the effects of actions are
known. This implies that outputs and inputs of the execution system are independent,
this is called an open-loop execution.

1Task planning is different from production planning since operations to execute are known in pro-
duction planning and production planning focuses on the question of when to produce goods and what
resources to use given production orders and due dates.

1.2. DETERMINISTIC DOMAINS 7

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����

�����
�����
�����

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����

�����
�����
�����

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����

�����
�����
�����

Free(A)

Free(C)

¬Free(B)

On(A, B)

Free(B)

¬Free(C)

¬Free(A)

On(B, C)

On(C, A)

A

B C

B

C

A

Figure 1.1: A toy example of a task-planning problem.

1.2.2 Scheduling

A classical scheduling problem comprises a set of operations and a set of resources. Each
operation has a processing time and each resource has a limited capacity. The objective is
to assign resources and times to operations given temporal and resource constraints; e.g.,
an operation cannot start before the end of another operation. The difference between task
planning and scheduling is that we know what operations to perform when scheduling. In
general, scheduling problems are optimization problems and typical optimization criteria
are makespan, tardiness, number of tardy operations, and allocation costs. There are
different structures for classifying scheduling problems; the main ones are open shop, job
shop, and flow shop in manufacturing. Open-, job-, and flow-shop scheduling problems
are composed of jobs, a job is a set of operations to execute, and the number of operations
per job is constant. Each operation requires only one unary resource and the operations
of a job require different unary resources. For open-shop scheduling problems there is no
precedence constraint between the operations of a job. For job-shop scheduling problems
each job is a different sequence of operations while for flow-shop scheduling problems
each job defines the same sequence of operations. In project scheduling, there are all the
variants of the resource-constrained project scheduling problem (RCPSP). An RCPSP is
composed of a set of operations, a set of precedence constraints, a set of discrete resources
(a resource may have a capacity greater than one), and a set of resource constraints. The
structure of a scheduling problem depends on its temporal constraints, the number and
types of resources, and how resources are allocated [109].

For a more detailed description of scheduling the reader can refer to Pinedo [125].

8 CHAPTER 1. STATE OF THE ART

Figure 1.2 represents a small job-shop scheduling problem with three jobs. Operations
are not preemptive; i.e., they cannot be interrupted once they have started to execute.
Allocations have already been done and each resource; e.g., a workshop machine, can
only perform one operation at a time. We assume we want to minimize the makespan
of the solution, where the makespan is the duration between the start time of the first
operation and the end time of the last operation of the schedule. The optimal solution of
this problem is represented on Figure 1.3.

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

Resource 3
Duration 28

Resource 3
Duration 54

Resource 3
Duration 26

Resource 1
Duration 33

Resource 1
Duration 68

Duration 52
Resource 1

Resource 2
Duration 46

Res. 2
Dur. 20

Resource 2
Duration 26

Job 3

Job 2

Job 1

Figure 1.2: A toy example of a job-shop scheduling problem.

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

makespan 179

Resource 1
Duration 33 Duration 68

Resource 1
Duration 52
Resource 1

Res. 2
Dur. 20

Resource 2
Duration 46

Resource 3
Duration 28 Duration 26

Resource 3
Duration 54
Resource 3

Resource 2
Duration 26

Figure 1.3: A toy example of an optimal job-shop scheduling solution.

1.2.3 Bridging the Gap Between Task Planning and Scheduling

Many real-life problems involve both task planning and scheduling because they contain
resource requirements, as well as causal and temporal relationships. In this sense, a
classical planning problem is a relaxed real-world problem because it does not take into
account resources and time. A scheduling problem is an overconstrained real-life problem

1.2. DETERMINISTIC DOMAINS 9

because all operations are known before scheduling and we cannot change them; no causal
reasoning is done and scheduling can be seen as a sub-part of task planning that is usually
not taken into account by task planning. Task planning and scheduling are complementary
because each of them considers different aspects of a real-life combinatorial problem.

Smith, Frank, and Jónsson demonstrated how many difficult practical problems lie
somewhere between task planning and scheduling, and that neither area has the right set
of tools for solving these problems [149].

Temporal planning permits one to represent time explicitly and to take a step towards
scheduling. Actions have start and end times and there are delays between actions. An
effect may begin at any time before or after the end of an action. Events occurring at
known times can be taken into account.

Planning with resources is being developed and allows to bridge the gap between plan-
ning and scheduling by taking into account resource requirements [96, 92]. Laborie worked
on integrating both plan generation and resource management in a planning system [95].
At NASA Ames, a system that is based on a framework aiming at unifying planning and
scheduling was developed [114].

Some researchers are working on extended scheduling problems by considering there
are alternative process plans for example. A process plan is a subset of operations that
are totally ordered. A subset of operations to schedule have to be chosen [90, 19].

Both classical task planning and scheduling are limited because they assume the en-
vironment is deterministic. In task planning, actions are deterministic; i.e., we know
the effects that are produced when actions are performed. In scheduling, operation du-
rations are precisely known and resources do not break down. Section 1.3 focuses on
non-deterministic task planning and scheduling.

1.2.4 Models

In this section, we present some models that are used to represent static task planning
and scheduling problems when execution is assumed to be deterministic. Each model is
associated with a set of search algorithms to solve instances of these problems.

Constraint-Satisfaction Problem

A classical Constraint-Satisfaction Problem is a tuple 〈V, D, C〉, where V is a finite set
of variables, D is the set of corresponding domains, and C = c1, . . . , cm is a finite set of
constraints. A constraint is a logical and/or mathematical relationship in which at least
one variable is expressed. A solution is a complete consistent value assignment that is
such that the assignment of values for the variables in V satisfies all the constraints in
C. For rigorous definitions of the basic concepts, we refer the reader to Dechter [48] and
Tsang [159].

Although its definition does not require it, the CSP as defined above is classically
formulated for variables with discrete domains, typically a finite set of symbols or an
integer interval. The CSP has also been formulated for variables with continuous domains,
typically a real interval [104], when it is called a numerical CSP.

Propagation algorithms , also called filtering algorithms, are used to remove values from
variable domains and determine if the CSP is not consistent; i.e., a CSP is not consistent
if a variable domain becomes empty after propagation. There can be different algorithms

10 CHAPTER 1. STATE OF THE ART

with different complexities and different inference powers for a given constraint; e.g., the
alldiff constraint can be implemented in different ways [131]. Propagation is initially
done before starting search and then it might be incrementally done during search; i.e.,
whenever a variable domain is changed, a propagation is done to update variable domains
with respect to constraints.

A scheduling problem can be represented by a constraint network such that operation
start times, operation durations, operation end times, resource capacities, and optimiza-
tion criteria are variables. There are particular propagation algorithms such as temporal
propagation for temporal constraints, timetables [100], edge-finder [119, 18], the balance
constraint for resource capacity constraints [96], etc.

A temporal task-planning problem can also be represented by a constraint network.
Constraint-Based Interval (CBI) planning makes use of an underlying constraint network
to keep track of the actions and the constraints in a plan [64]. For each interval in the plan,
two variables are introduced into the constraint network, corresponding to the beginning
and ending points of the interval. Constraints on the intervals then translate into simple
equality and inequality constraints between end points. Interval durations translate into
constraints in the distances between start and end points. Inference and consistency
checking in the temporal network can often be accomplished using fast variations of arc-
consistency, such as Simple Temporal Propagation [51]. Vidal and Geffner have recently
proposed constraint propagation rules for solving canonical task-planning problems [168].
Canonical task planning is halfway between full temporal task planning and scheduling:
while in scheduling, typically every action (operation) is done exactly once, in canonical
task planning, it is done at most once, in full temporal task planning, it may be done an
arbitrary number of times.

Laborie has developed filtering algorithms for making search of minimal critical sets
more efficient when planning or scheduling with resources [95, 97].

Mathematical Programming

Mathematical Programming is an alternative to CSP to model and solve optimization
problems when all constraints can be expressed by linear relationships. There are mainly
two ways of modeling such a problem: Mixed Integer Program (MIP) or Linear Pro-
gram (LP). In a MIP some variables are integers whereas there are only real variables in
an LP. In general, there are more variables in a mathematical program than in a CSP
but their domains are smaller. An LP is solved by the simplex method. The simplex
method is very easy to use and can find optimal solutions. Branch-and-cut can efficiently
solve a MIP whose continuous relaxation is a good approximation of the convex hull of
integer solutions and/or around the optimal solution, or for which this relaxation can
be reinforced by adding cuts. The continuous relaxation consists in removing integrality
constraints and cuts are linear relationships. Lagrange multipliers, duality, and convexity
can also be used to solve these programs. Compared to the CSP approach it is less easy
to formalize a mathematical program and obtain a model that can be efficiently solved
without exponentially increasing the number of integer variables or the number of con-
straints. In addition, even if some non-linear expressions can be linearized, for example
the disjunctions, or the logical constraints more generally, their formulations often result
in weak linear relaxations and thus in an inefficient solving. Queyranne and Schulz pro-
pose a review of some mixed integer programs with a polyhedral study [130]. For a recent

1.3. NON-DETERMINISTIC DOMAINS 11

state-of-the-art review in integer programming the reader can refer to Wolsey [178].
Several planners have been constructed that attempt to check the consistency of sets

of metric constraints even before all variables are known. In general, this can involve
arbitrarily difficult mathematical reasoning, so these systems typically limit their analysis
to the subset of metric constraints consisting of linear equalities and inequalities. Several
recent planners have used LP techniques to manage these constraints [123, 124, 157, 177].

The operations research community has been interested in solving scheduling problems
by using MIP since its beginnings. In particular, some works have been done on the
Resource-Constrained Project Scheduling Problem [11, 17, 66, 121, 156, 154]. In this
problem, resource constraints are hard to model with linear inequalities because it is
necessary to keep track of the set of operations during execution at any time. Most
researchers who use MIP for modeling RCPSPs work around this problem by discretizing
time, but many additional variables have to be used depending on time horizon.

1.2.5 Optimization

The solutions are not equal in every combinatorial problem. In scheduling, for instance,
the user might deem schedules with shorter makespans to be preferable to those with
longer makespans. Indeed, optimization is a discrimination between solutions by nature.

In a constraint optimization problem (COP), solutions are ordered partially or totally
according to optimization criteria [108]. An optimization criterion is an arithmetic ex-
pression over a subset of variables of the problem; e.g., tardiness depends directly on when
operations finish with respect to due dates but is not directly dependent on what resources
are used. Without loss of generality, solutions are sought that satisfy all constraints and
minimize an objective function; e.g., we want to find a schedule that does not violate
precedence and resource constraints and minimizes makespan. When using a constraint-
based approach branch-and-bound can be applied to make search more efficient; e.g., a
first solution is found heuristically and gives a first value of the objective function, then
the problem is incrementally strengthened by posting an additional constraint bound by
the best optimization value.

When using a linear program to model an optimization problem with linear constraints,
the simplex or interior point methods can be used to find the optimal solution if one exists.

1.3 Non-deterministic Domains

In this section, we review the literature about task planning and scheduling when we
assume solutions are executed in a non-deterministic environment because unexpected
events occur during execution; e.g., new goals to attain and/or new operations to perform.
In some cases, we do not know precisely when some expected events occur; e.g., resource
breakdown end times. In other words, the environment is imprecisely and/or partially
known and its evolution is described by distributions.

1.3.1 Uncertainty Sources

Uncertainty is a general term but we can distinguish uncertainty from imprecision. An
uncertain event means that we do not know if this event will occur or not whereas an

12 CHAPTER 1. STATE OF THE ART

imprecise event means that we do not exactly know when this event is going to occur
but we know for sure it is going to occur. A risk can be associated with the occurrence
of an event and means the occurrence of the event impacts the solution quality. Given
the occurrence of an event we are given a set of decisions to make. Each decision has a
consequence. Decision theory is a research domain in which the desirability of a decision
is quantified by associating a utility (or desirability) measure with each outcome. In the
rest of this dissertation we shall not be concerned with risk.

In this section, we list a number of uncertainty sources in task planning and scheduling
without being exhaustive.

In task planning, we may have to address the following problems:

• some actions have imprecise effects; e.g., after having moved, the position of a robot
is not precisely known;

• world states are partially observable or not observable; e.g., the position of the robot
is unknown because it is not equipped with sensors;

• world states are uncertain independently of actions and need information gathering;
e.g., a robot can reach an area by taking one of two alternative paths depending on
ground composition, that is to say, the robot has to analyze a ground sample before
moving;

• new subgoals are added during execution.

In scheduling, we may have to deal with the following problems:

• some operation processing times/durations or some earliest operation start times
are not precisely known a priori ;

• some resource capacities or states are imprecise a priori ; e.g., the mean time between
failures of a resource can be used, we do not the exact start time of a breakdown;

• some resource quantities required by some operations are imprecise and/or uncertain
(no resource may be required) a priori ; e.g., we do not know precisely how many
workers are needed to lay the foundations of a dam because of uncertain/partial
knowledge of the geological conditions before starting to work;

• uncertain and/or imprecise production orders;

• new operations to be scheduled and executed may only be known during execution;
e.g., we have to inject some cement into the foundations because we observe they
are not enough strong via specific sensors.

1.3.2 Definitions

In this section, we give some general definitions for a better understanding of the literature.
The first three definitions explain some characteristics of a problem to solve such that
its solution will be executed. The problem is composed of variables, such as operation
durations, operation start times, or the state of a resource.

1.3. NON-DETERMINISTIC DOMAINS 13

Definition 1.3.1 (effectiveness). An effective plan/schedule is a plan/schedule obtained
after execution. An effective plan/schedule is fully set; i.e., all variables have been instan-
tiated.

After a variable is effectively instantiated, we can no longer change it.

Definition 1.3.2 (event). An event is a piece of information about the world state.

For example, the end time of an operation with an imprecise processing time is an
event since we do not know precisely when this operation ends before observing it is
finished. In other words, we do not know its effective end time date before it occurs.

A dynamic problem is a problem that changes during execution, whereas a static
problem does not change during execution. For example a scheduling problem is dynamic
because operations are added or removed during execution, distributions associated with
its random variables are changed during execution, etc. Notice that a static problem can
be defined by imprecise data.

For example a scheduling problem with breakable resources can be considered as a
dynamic problem if the exact number of resource breakdowns is not known before execu-
tion. However, a scheduling problem with imprecise processing times is a static problem
since we know the set of events in advance; i.e., we know the set of operation start and
end times in advance.

A deterministic problem is a static problem by nature since all events are known in
advance but a non-deterministic problem; i.e., a problem with random variables can be
either static or dynamic.

The following definitions concern the generation process that is the procedure used to
find a solution of a problem.

Definition 1.3.3 (predictive decision-making process). Predictive planning/scheduling
consists in making all decisions before execution starts.

In the literature, some authors use the term baseline schedule instead of predictive
schedule.

Definition 1.3.4 (reactive decision-making process). Reactive planning/scheduling con-
sists in making all decisions as late as possible; i.e., decisions are taken and executed
without anticipation during execution.

Predictive and reactive planning/scheduling are two extremes because in the former
all decisions are made before execution with anticipation and in the latter no decision is
made in advance.

Definition 1.3.5 (off-line reasoning). Off-line reasoning consists in taking decisions be-
fore execution starts.

When reasoning off line a predictive schedule/plan is typically generated off line and
passed on to the execution manager. This reasoning is usually static; i.e., the predictive
schedule/plan is completely generated and all decisions are taken at the same time. Such
a reasoning is deliberative; i.e., we take decisions in advance of their executions and we
have time to reason.

14 CHAPTER 1. STATE OF THE ART

Definition 1.3.6 (on-line reasoning). On-line reasoning is concurrent with the physical
process execution.

On-line reasoning is dynamic by nature because the generation of a schedule/plan
is incremental ; i.e., the schedule/plan is completed as long as execution goes on. This
reasoning usually needs to meet real-time requirements ; i.e., decisions have to be made
given a time limit. Such a reasoning can be deliberative and/or reactive to events. It is
also possible to change decisions during execution.

Table 1.1 summarizes the characteristics of the generation and execution processes
under uncertainty and/or change.

When a solution is executed, some elements of its execution environment may change;
e.g., the state of a resource changes. In general, there are real-time requirements when
executing a solution; i.e., if some basic decisions have still to be made the time for com-
putation is limited; e.g., operation start times have to be quickly decided. Execution
decisions are decisions to adapt the flexible solution with respect to what happens during
execution. The decision-making system might be able to react in response to occurring
events; i.e., it can make execution decisions when some events occur. For example, when
the state of a resource changes, we may have to decide what alternative operations to
execute.

The generation of a solution can be made off and/or on line. When a solution is gen-
erated off line we usually have time to make decisions whereas we have a limited time for
making decisions during execution due to the dynamics of the underlying physical system
and its execution environment. Generation decisions are decisions made to anticipate
what is going to happen during execution. Sometimes the system must be able to change
decisions on line when the solution is no longer executable; e.g., a resource breaks down
and we have to reallocate some operations that have to be executed in the near future.

Execution Generation
Process: solution Off-line On-line
being executed scheduling/ scheduling/

on line planning planning
Dynamic=changes Yes Usually not Yes
over time: states. . .

Real time=time- Yes, but only No Yes
bounded computation basic decision-making
Reactive=in response Might be No Might be

to events

Table 1.1: Off-line/On-line reasoning.

In the ideal world, there is no unexpected event that can occur and affect the sched-
ule/plan quality or make the schedule/plan unexecutable during execution, so the pre-
dictive plan/schedule is generated off line and then executed. Figure 1.4 represents the
generation-execution loop in the ideal world. A plan/schedule is generated off line and
sent to the execution controller. The latter drives the underlying physical system by send-
ing orders (actions) to actuators. The sensors of the physical system send information
(events) to the execution controller that updates the plan/schedule accordingly; i.e., it
indicates what events have been executed and updates clock. The execution controller

1.3. NON-DETERMINISTIC DOMAINS 15

plays the role of an interface between the solution generator and the physical system.
Note however that in the case of the ideal world we do not need to observe events since
there is no unexpected event and the occurrences of events are precisely known.

Planning/
Scheduling

Plan/
Schedule

off line

on line

real world

Actions

Events

solution execution

update

Execution controlling

Figure 1.4: Generation and execution in the ideal world.

However, the predictive schedule/plan will not always fit the situation at hand because
there are uncertainty and change; i.e., data is imprecise and/or uncertain. In such a
situation, we have to decide what to do to cope with uncertainty and change: we could
adapt the schedule/plan on line, we could make the initial schedule/plan less sensitive
to execution environment, and/or we could find a compromise between both options;
Sections 1.3.5 and 1.3.6 present some techniques to handle uncertainty and change. The
next section is dedicated to reviewing uncertainty sources in task planning and scheduling.

1.3.3 Uncertainty Models

A number of different models have been proposed and used to represent uncertainty in
scheduling and task planning. In this section, we present these uncertainty models and
give their main properties. Moreover, we discuss Bayesian approach since it is a promising
way for dealing with uncertainty in scheduling and planning.

16 CHAPTER 1. STATE OF THE ART

Probability Theory

The probability theory is based on the notion of sets; it uses unions and intersections of sets.
In the probability theory a random variable X can be instantiated to value v belonging
to a discrete or continuous domain D; i.e., it is a probability distribution Pr(X = v).

The formal definition is the following: ∀v ∈ D, 0 ≤ Pr(X = v) ≤ 1 and if we com-
pletely know the probability distribution:

∑
v∈D Pr(X = v) = 1.

It is possible to express dependence between variables. A conditional probability such
as the occurrence of event A knowing the occurrence of event B is expressed as follows:

Pr(A|B) =
Pr(A, B)

Pr(B)
,

where Pr(A, B) is the probability that both A and B occur at the same time and is called
the joint probability. This is then possible to compute the marginal probability of A:
Pr(A) =

∑
v∈D(Pr(A|X = v) × Pr(X = v)). If A and B are independent events then:

Pr(A, B) = Pr(A)× Pr(B).
Probabilities can be used to model imprecise operation processing times [21] or action

effects in task planning [32] but they require statistical data that do not systematically
exist. In addition, probabilities are easy to interpret but cannot represent full or partial
ignorance.

Bayesian Networks Bayesian networks are acyclic directed graphs [122]. Each node
is associated with a finite domain variable, each variable domain is associated with a
probability distribution, and each arc represents a causal relation between two variables.
Each pair of dependent variables is associated with a table of conditional probabilities.
For example if the duration of an operation depends on the outside temperature and
humidity this yields the Bayesian network of Figure 1.5a, where Figure 1.5b depicts the
link matrix necessary for full characterization of the causal relation. According to this
matrix we know that the probability that the operation duration is 15 minutes if the
outside humidity is less than 40 per cent and the outside temperature is less than 20◦

Celsius equals 0.1.
A Bayesian network contains the information needed to answer all probabilistic queries.

A Bayesian network can be used for induction, deduction, or abduction. Induction con-
sists in determining rules by learning from cases, just like neural nets. Deduction is a
logic procedure in which we reason with rules and input facts to determine output facts.
Abduction is a way of reasoning such that output facts are symptoms that are observed
whereas decisions must be taken as which input facts produced the observed symptoms.

A Bayesian network is a static representation (no anteriority); it can not represent
time but is able to model incomplete knowledge.

Bayesian networks have some limitations. Inference in a multi-connected Bayesian net-
work is NP-hard. Variables are discrete, and the number of arcs is limited for performance
reasons. In addition, Bayesian inference can only be done with a complete probabilistic
model. However, when dealing with discrete probability distributions associated with
some input facts it is possible to compute approximate probability distributions of output
facts by using Monte-Carlo simulation. The only issue when generating a realization is to
pick up first the random values of the independent variables. Bayesian networks have the

1.3. NON-DETERMINISTIC DOMAINS 17

(b)

outside
temperature

outside

duration

operation

humidity

(a)

outside humidity

outside temperature

< 40%

< 20◦ Celsius

between 40% and 60%

< 20◦ Celsius

> 60%

< 20◦ Celsius

< 40%

between 40% and 60%

between 20◦ and 30◦ Celsius

between 20◦ and 30◦ Celsius

< 40%

> 30◦ Celsius

between 40% and 60%

> 30◦ Celsius

> 60%

> 60%

> 30◦ Celsius

duration

operation

between 20◦ and 30◦ Celsius

0.75

0.15

0.05

25 minutes15 minutes

0.9

0.2

0.3

0.8

0.6

0.85

0.65

0.1

0.7

0.4

0.35

0.25

0.95

0.45 0.55

Figure 1.5: (a) A Bayesian network and (b) a conditional probability matrix characterizing
the causal relation.

same advantages and drawbacks as probabilities: it requires statistical data and cannot
represent ignorance.

Recently some work has been done to combine CSPs with Bayesian Networks [128].

Influence diagrams [86] extend Bayesian networks by adding random utility variables
and non random decision variables to the usual random variables. A non random decision
variable is instantiated by a decision-maker, and random utility variables are used to
represent the objective (or utility) to be maximized.

Dynamic Bayesian Networks [47] (DBNs) are another extension to Bayesian networks
that can model dynamic stochastic processes. A DBN can model changes in a world state
over time. DBNs fail to model quantitative temporal constraints between actions in a
computationally tractable way and suffer from the problem of unwarranted probability
drift; i.e., probabilities associated with facts depend upon how many changes in the world
state have occurred since the last time probabilities were computed.

Hybrid or mixed networks [49, 50] allow the deterministic part of a Bayesian network
to be represented and manipulated more efficiently as constraints.

18 CHAPTER 1. STATE OF THE ART

Theory of Fuzzy Sets and Possibility Theory

Zadeh has introduced the theory of fuzzy sets that is based on the generalization of the
notion of set [181].

The characteristic function of a subset A of a universal set Ω associates the value 1 to
any element of Ω if this element is in A and the value 0 if this element is not in A. On
the contrary, for a fuzzy subset it is possible to define intermediate membership degrees
between these two extremes.

More formally, a fuzzy subset is defined as follows. A fuzzy subset A of a universal set
Ω is defined by a membership function µ : Ω → [0, 1]. For any element ω in Ω the value
µA(ω) is interpreted as the membership degree of ω to A.

The possibility theory is a convenient means to express uncertainty [182]. With this
theory it is possible to explicitly take into account uncertainty associated with the occur-
rences of events. In such a model uncertainty associated with an event e is described by a
possibility degree that e occurs and a possibility degree that the opposite event e occurs.

In general, a possibility distribution over a universal set Ω (the set of possible events)
is a function π : Ω → [0, 1] defined such that there exists at least one ω ∈ Ω such that
π(ω) = 1.

From a possibility distribution over Ω it is possible to define a possibility measure Π
and a necessity measure N of a part A of Ω as follows:

Π(A) = sup
ω∈A

π(ω) and N(A) = inf
ω∈CA

Ω

(1− π(ω)),

where CA
Ω is the complementary part of A in Ω. Notice that for any part A of Ω, the

possibility measure and the necessity measure are related by the following formulas:

N(A) = 1− Π(CA
Ω) and Π(A) ≥ N(A).

In practice, different interpretations of these functions π can be made.

• It is possible to represent an occurrence possibility with π(X = v); i.e., the possi-
bility that variable X is instantiated with value v.

• We can express similarity with π(E is cpt) that represents the degree to which
element E is similar to concept cpt (represented by a function); e.g., Figure 1.6
represents a similarity function with respect to the concept “young.”

• It is also possible to express preferences with π(X = v) that represents the satisfac-
tion degree when variable X is equal to value v.

With a possibility function, it is possible to represent both imprecision and uncer-
tainty. For example we can represent the fact that we do not know precisely and with
total certainty how many workpieces are produced in a workshop; we can only express
a possible and imprecise number between 200 and 400, the possible fact that no work-
piece are produced at all, and it is not fully possible but we may produce 600 workpieces;
Figure 1.7 represents such a possibility function. Such a function can also represent the
fuzzy processing time of an operation for example, see Section 1.3.6.

The classical concept of set is limited for representing vague knowledge, and probability
theory is not able to represent subjective uncertainty and ignorance, however, fuzzy logic
and the theory of possibility overcome these difficulties. The main drawback of the fuzzy
representation is the subjective way for interpreting results.

1.3. NON-DETERMINISTIC DOMAINS 19

0 10 20 30 40 50 60 70 80 90 100
Age (years)

0

0.2

0.4

0.6

0.8

1

Figure 1.6: A possibility function of the concept “young.”

0 100 200 300 400 500 600 700
Number of produced workpieces

0

0.5

1

Figure 1.7: A possibility function for a number of produced workpieces.

20 CHAPTER 1. STATE OF THE ART

����
����
����
����
����

����
����
����
����
����

robot in
room 4

robot in
room 3

robot in
room 7

R(room7) = 6

R(room5) = 5
R(room6) = −1

robot in
room 6

R(room3) = −4

R(room4) = 3

T (room4, moveright, t1) = 0.7

robot in
room 5

T (room5, moveforward, t1) = 0.4

T (room4, moveforward, t1) = 0.8

T (room4, moveforward, t1) = 0.2

T (room3, moveright, t1) = 0.7

T (room4, moveright, t1) = 0.3

T (room6, moveleft, t1) = 0.9 T (room5, moveforward, t1) = 0.6

T (room6, moveleft, t1) = 0.1

Figure 1.8: An illustrative example of the graphical view of an MDP.

Markov Decision Processes

A Markov Decision Process can be seen as a timed automaton such that each transition
from one state to another state is associated with a probability of being fired. More
formally an MDP can be defined as follows: an MDP has four components, S, A, R, T . S
(|S| = n) is a (finite) state set. A (|A| = m) is a (finite) action set. T (s, a, t) is a transition
function that depends on time t, and each T (s, a,−) is a probability distribution over S
represented by a set of n× n stochastic matrices.2 R(s) is a bounded, real-valued reward
function represented by an n-vector. R(s) can be generalized to include action costs:
R(s, a). R(s) can be stochastic (but replaceable by expectation).

MDPs can model transition and/or stochastic systems; i.e., it is possible to model how
a process evolves during execution (the state of a system can change over time depending
on what actions are performed) [70, 129]. MDPs are related to decision-theoretic plan-
ning [33] and used to model state-spaces in the task-planning context. General objective
functions (rewards) can be expressed. Policies are general solution concepts that consist
in choosing what action to perform in each visited state to maximize the total reward.
MDPs provide a nice conceptual model: classical representations and solution methods

2Note that Sabbadin [135] proposed to use possibilistic MDPs.

1.3. NON-DETERMINISTIC DOMAINS 21

tend to rely on state-space enumeration whereas MDPs are able to easily represent this
space. Figure 1.8 is a graphical view of MDP that represents the state space of a small
task-planning problem in which a robot must go from room 3 to room 7. There are three
operators: move right, move left, and move forward. This MDP is valid at time t1 when
the robot is in room 4. In the current state, only one of two actions can be performed:
move either right or forward. If action moveforward is activated, the probability that the
robot does not move is equal to 0.2 and the probability that it actually goes from room
4 to room 6 equals 0.8. Each state s represents the possible position of the robot; i.e., s
indicates the room it is in. The probabilities that are not represented equal zero.

MDP is a model easily generalizable to countable or continuous state and action spaces.
The main drawback of MDP is the need to enumerate and represent all possible states;
i.e., it is time and memory consuming.

Partially Observable MDPs [106] take into account the fact that each state of the
dynamic process is generally indirectly observable via potentially erroneous observations.
In task planning, an observation consists in general in performing an action to gather new
information.

Dynamic programming [23, 24] is used to solve MDPs. The main issue of MDPs is
the number of states to develop; so some work has been done for finding a more compact
representation; for example, Factored MDPs [34] extend MDP concepts and methods to
a variable-based representation of states and decisions.

Sensitivity Analysis

Sensitivity analysis consists in defining how much we can perturb a problem without
degrading the quality of the solution of the initial problem. In other words, sensitivity
analysis, combined with parametric optimization, is a way of checking if the solution of
a deterministic linear program is reliable, even if some of the parameters are not fully
known but are instead replaced by estimated values. When doing a sensitivity analysis,
we are interested in knowing the robustness of a solution; i.e., to what extent this solution
is insensitive to changes of the initial problem with respect to its quality, in particular,
what are the limits to a parameter change (or several changes) such that the solution
remains optimal? However, sensitivity analysis has some limitations since it is based on
deterministic models and is thus useful only as far as variation of controllable parameters
is concerned [171].

Application of sensitivity analysis has been done in scheduling [78, 153].

Stochastic Programming

Stochastic programming [29] is a mathematical programming paradigm, see Section 1.2.4,
which explicitly incorporates uncertainty in the form of probability distributions of some
parameters. There are decision variables and observations; i.e., observations are values of
the random parameters. In a recourse problem, decisions alternate with observations in an
m-stage process; i.e., at each stage, decisions are made, and observations are done between
stages; there are initial decisions made before any observation and recourse decisions
made after observations. The number of stages gives a so-called finite horizon to the
process. A decision made in stage s should take into account all future realizations of
the random parameters and such decision only affects the remaining decisions in stages
s+1, s+2 . . . m. In Stochastic Programming, this concept is known as non-anticipativity.

22 CHAPTER 1. STATE OF THE ART

The convex optimization function depends on decisions and observations. The goal is to
optimize the expected value of the optimization function such that random parameters are
not necessarily independent of each other; they are however independent of decisions. One
approach to solving this problem is to use an expected value model that is constructed
by replacing the random parameters by their expected values. Another solving process
consists in generating n scenarios such that each scenario; i.e., any possible set of values for
the parameters represents a deterministic mathematical program that is then solved [55].
Once the n programs have been solved, decisions that are common to the most solutions
are made for solving the stochastic program. One of the issues of this approach is the
number of scenarios that are necessary to solve the problem and the related efficiency
issue.

Extensions of the Constraint-Satisfaction Problem

We review the main constraint-satisfaction problem frameworks that can deal with un-
certainty and change. For a more detailed review, the reader can refer to the recent
paper of Verfaillie and Jussien [162]. These frameworks are extensions of the Constraint-
Satisfaction Problem framework presented in Section 1.2.4.

Dynamic CSP A Dynamic Constraint-Satisfaction Problem (DCSP) consists in a se-
ries of CSPs that change permanently or intermittently over time, by loss or gain of values,
variables or constraints. The objective is to find stable solutions to these problems; i.e.,
solutions that remain valid when changes occur. Wallace and Freuder tackled these prob-
lems [169]. The basic strategy they use is to track changes (value losses or constraint
additions) in a problem and incorporate this information to guide search to stable solu-
tions. The objective for them is to find a trade-off between solution stability and search
efficiency. A probabilistic approach is used: each constraint C is associated with a value
that gives the probability that C is part of the problem. Probabilities of change are not
known a priori.

Elkhyari et al. study scheduling problems that change during execution and use DCSPs
to model and solve them [56]. In particular, they study Resource-Constrained Project
Scheduling Problems. They use explanations by determining conflict sets, also known as
nogoods, to solve these problems.

Conditional CSP The Conditional Constraint-Satisfaction Problem [137] framework
(CCSP) was first named Dynamic Constraint-Satisfaction Problem [111]. CCSPs have
been studied by a number of researchers [35, 136, 152, 71, 138]. The basic objective of the
CCSP framework is to model problems whose solutions do not all have the same structure;
i.e., do not all involve the same set of variables and constraints. Such a situation occurs
when dealing with product configuration or design problems, because the physical systems
that can meet a set of user requirements do not all involve the same components. More
generally, it occurs when dealing with any synthesis problem, such as design, configuration,
task planning, scheduling with alternatives, etc. In a CCSP, the set of variables is divided
into two parts: a subset of mandatory variables and a subset of optional ones. The set
of constraints is also divided into two parts: a subset of compatibility constraints and a
subset of activity constraints. Compatibility constraints are classical constraints. Activity
constraints define the conditions of activation of the optional variables as functions of the

1.3. NON-DETERMINISTIC DOMAINS 23

current assignment of other mandatory or optional variables. Constraints are activated if
their respective variables are activated too. When solving a CCSP its structure (activated
variables and constraints) may change because it depends on the current assignment.
Thus, a CCSP can be considered as a particular case of DCSP where all the possible
changes are defined by the activity constraints.

Open CSP The Open Constraint-Satisfaction Problem [60] framework (OCSP) was
first named Interactive Satisfaction Problem [98]. In an OCSP, the allowed values in
domains, as well as the allowed tuples in relations, may not be all known when starting
search for a solution. They may be acquired on line when no solution has been found
with the currently known values and tuples. Such a situation occurs when the acquisition
of information about domains and relations is a costly process that needs either heavy
computation or requests to distant sites. An OCSP can thus be considered as a particular
case of DCSP where all the possible changes result in extensions of the domains and
relations.

Mixed CSP The Mixed Constraint-Satisfaction Problem [63] framework (MCSP) mod-
els decision problems under uncertainty about the actual state of the real world. In an
MCSP, variables are either controllable (decision variables) or uncontrollable (state vari-
ables). Decision variables are under the control of the decision agent whereas state vari-
ables are not under its control. In this framework, a basic request may be to build a
decision (an assignment of the decision variables) that is consistent whatever the state of
the world (the assignment of the state variables) is. An MCSP can not model problem
changes but imprecision, therefore MCSP and DCSP are complementary.

Probabilistic CSP The Probabilistic Constraint-Satisfaction Problem framework (PCSP)
models decision problems under uncertainty about the presence of constraints [61]. In a
PCSP, a probability of presence in the real world is associated with each constraint. In
such a framework, a basic request may be to produce an assignment that maximizes its
probability of consistency in the real world. A PCSP is a particular case of the Valued
Constraint-Satisfaction Problem framework (VCSP) [144, 30].

Fuzzy CSP The Fuzzy Constraint-Satisfaction Problem framework (FCSP) models de-
cision problems where possibility distributions are associated with variable domains [134].
In such a framework, we are interested in finding a solution that satisfies constraints and
maximizes the satisfaction degree whatever the effective instantiations of variables turn
out to be. The satisfaction degree of a solution is the combination of the possibility degrees
corresponding to the assigned values. This framework is subsumed by the semiring-based
CSP framework [30].

Stochastic CSP The Stochastic Constraint-Satisfaction Problem [172] framework (SCSP)
models decision problems under uncertainty about the actual state of the real world, the
same way as the MCSP framework. The SCSP framework is inspired by the Stochas-
tic Satisfiability Problem framework (SSAT) [105]. As in an MCSP, variables are, in
an SCSP, either controllable (decision variables) or uncontrollable (state variables). The

24 CHAPTER 1. STATE OF THE ART

main difference between an MCSP and an SCSP is that decision variables have not neces-
sarily to be instantiated before state variables in an SCSP. In such a framework, a basic
request may be, as in a PCSP, to build a decision (an assignment of the decision vari-
ables) that maximizes its probability of consistency in the real world. A recent proposal,
the Scenario-based Constraint-Satisfaction Problem [107] framework, is an extension of
SCSP along a number of dimensions: multiple chance constraints and new objectives. It
is inspired by Stochastic Programming, see Section 1.3.3. In this framework, there are two
kinds of constraints: hard constraints that must always be satisfied and chance constraints
which may only be satisfied in some of the possible worlds. Each chance constraint has
a threshold, θ and the constraint must be satisfied in at least a fraction θ of the worlds.
Stochastic constraint programs are closely related to MDPs 1.3.3. Stochastic constraint
programs can, however, model problems which lack the Markov property that the next
state and reward depend only on the previous state and action taken. The current de-
cision in a stochastic constraint program will often depend on all earlier decisions. To
model this as an MDP, we would need an exponential number of states.

1.3.4 Temporal Extensions of CSPs

In this section, we describe some extensions of the CSP framework that can deal with
time. Therefore, these frameworks are particularly suited to temporal task planning,
scheduling, and other temporal application domains.

Temporal Conditional CSPs

Conditional CSPs have been adapted to temporal problems to be able to represent alter-
natives. An alternative is a subset of temporal constraints. By nature, each alternative
belongs to a set whose elements are mutually exclusive. Tsamardinos, Vidal, and Pol-
lack [158] have proposed a new constraint-based formalism with temporal constraints.
In this paper, they present a procedure that is able to check whether such a constraint
network is consistent whatever alternatives are chosen.

Temporal CSPs with Uncertainty

The Temporal CSP with Uncertainty framework is directly inspired by MCSPs and ap-
plied in the temporal context. A usual strategy to deal with uncertainty, referred to as
least commitment strategy, consists in deciding about some crucial choices (for example
the selection and sequencing of operations) and letting another process (for example exe-
cution control) make the remaining decisions (for example the start times of the selected
and sequenced operations) according to information coming from actual execution. In
such a situation, the problem is to be sure that the remaining decisions will be consis-
tent whatever the actual situation. In the Simple Temporal Problem with Uncertainty
framework [166], an extension of the Simple Temporal Problem framework [51] to deal
with uncertain durations, notions of controllability [166, 112], sequentiability [164, 87],
dispatchability [170] and associated algorithms have been defined to offer such a guaran-
tee.

Temporal constraint-based models are often used, based on intervals or time points.
For example, a team of robots that have to move containers from one place to another
one [167]. The problem consists in allocating tasks (actions) to robots in such a way that

1.3. NON-DETERMINISTIC DOMAINS 25

we minimize makespan. Each robot can move in different directions, pick up a container,
or put down a container. In addition, there are imprecise time windows for pickup and
put-down actions. This is a typical scheduling problem with uncertainty and allocation.
Execution and decision-making are interleaved because decisions are easy to take in the
short term, but in a longer term uncertainty increases and makes the choice less obvious,
so the solution is to wait until execution gives occurrence times of events that decrease
uncertainty and make the next choice possible.

Temporal CSPs with Uncertainty and Preferences

Rossi, Venable, and Yorke-Smith have recently proposed a framework that integrates both
Simple Temporal Problems with Uncertainty (STPU) and Simple Temporal Problems
with Preferences (STPP) [132]. The notions of controllability are extended to STPPU,
and methods are described to determine whether these properties hold.

1.3.5 Task Planning under Uncertainty

In this section, we review the main task-planning approaches for handling uncertainty.
When planning tasks in a non-deterministic environment, effects of some actions are

not deterministic. This makes us do observations during execution to get information
about the actual state in order to guide the choice of the next action to execute. This
means outputs of the execution system have consequences that become inputs of the
execution system, this is called a closed-loop execution.

Probabilistic Planning

In probabilistic planning , we assume the initial state is not known completely, effects of
actions are non-deterministic, and a probability distribution over states is known and
updated each time an action is performed. Adopting a probabilistic model complicates
the search for a solution plan. Instead of terminating when the standard planner builds a
plan that provably achieves the goal, the probabilistic planner terminates when it builds a
plan that is sufficiently likely to succeed; i.e., its algorithm produces a plan such that the
probability of the plan achieving the goal exceeds a user-supplied probability threshold,
if such a plan exists.

Kushmerick et al. developed BURIDAN, a probabilistic planner [93].
Partially Observable MDPs [32] can be used to tackle such problems, see Section 1.3.3.

Possibilistic Planning

Possibilistic planning is similar to probabilistic planning except that we assume the knowl-
edge of a possibility distribution over states instead of a probability distribution.

Da Costa Pereira developed a possibilistic planner, POSPLAN [41]. Contrary to most
planning systems that define actions with preconditions, POSPLAN relies on a formalism
where actions are modeled by the exhaustive set of possible conditions.

26 CHAPTER 1. STATE OF THE ART

Conformant Planning

Conformant planning consists in developing non-conditional plans that do not rely on
sensory information, but still succeed no matter which of the allowed states the world is
actually in; i.e., we assume there is no possible observation of the states. In such a case,
we need a plan that will reach the goal whatever the actual situation is.

Smith and Weld developed and tested a conformant planner, CGP [150]. This planner
generates sound (non-contingent) plans when faced with uncertainty in the initial condi-
tions and in the outcome of actions. The basic idea is to develop separate plan graphs;
i.e., there is one plan graph for each possible world. This requires some subtle changes to
both the graph expansion and solution extraction phases of Graphplan [31]. In particu-
lar, the solution extraction phase must consider the unexpected side effects of actions in
other possible worlds, and must confront any undesirable effects, such as induced mutually
exclusive (mutex) relationships.

Under the semantics of BURIDAN [93], it is assumed that it is not possible to observe
the effects of actions, and the agent executes the same sequence of actions regardless of
the effects of previous actions.

Conditional Planning

Conditional planning consists in defining alternatives; e.g., subsets of actions that are
partially ordered. State-based planning is an extreme case where all alternatives are
developed such as an MDP, see Section 1.3.3. The problem consists in generating a
contingent plan that is executable [126]. The plan comprises a set of alternatives but only
a subset of alternatives will effectively be executed with respect to observations made
during execution. This approach can also be applied to scheduling.

Sensory Graphplan (SGP) is an extension of CGP developed by Weld, Anderson,
and Smith [176]. A plan graph is developed for each possible initial state. Observation
actions are introduced between plan graphs. As soon as an observation action can be
performed, propositions are added to distinguish one graph from another one. SGP uses
CSP techniques to visit efficiently the nodes of plan graphs.

Continuous Planning

Continuous planning consists in updating/extending/changing the current plan by adding
new tasks during execution.

Paolucci et al. proposed a multi-agent system [120] that plans continuously. Their
agents behave deliberatively; i.e., these agents cooperate during execution because each
of them knows only partially the world state and produces local plans. The execution
world is dynamic since new sub-goals are known on line and plans have to be completed
accordingly.

When continuously planning replanning can be used to change decisions when the
current plan is no longer executable; i.e., it cannot reach the goal state any more.

Sapena and Onaindia presented SimPlanner, an integrated planning and execution-
monitoring system [143]. SimPlanner is a planning simulator specially designed for re-
planning in STRIPS-like domains. A state of the world is expressed as a set of literals.
The proposed algorithm repairs the plan as a whole and finds the optimal solution; i.e.,
the plan with the minimal number of actions necessary to reach the current goal. This

1.3. NON-DETERMINISTIC DOMAINS 27

modification tries to retain as much of the original plan as possible without compromising
the optimal solution when some literal changes. Literals can be removed from or added
in the world during execution via a graphical user interface. A number of different small
planning problems were experimented, such as mobile robots bringing letters from offices
to other offices.

Chien et al., in a space exploration context [40], applied continuous planning. Planning
is done on board to speed the replanning process when a failure occurs or a science
opportunity is observed. Science requests are up-linked and results are down-linked. At
each time, the system updates the current plan, goals, state, and next predicted states
by using a telescoping-time horizon approach. When a plan failure happens, an iterative
repair procedure, which is a greedy search algorithm, is applied in the short-term horizon
to change allocations, move, renew, or remove actions. An extension of the system was
proposed by Estlin et al. to manage a team of robots [59]. This is a centralized-distributed
approach. Goals are dispatched and an abstract plan is maintained in a centralized way.
Rovers share a unary resource, a lander, that gathers data and up-links them to an
orbiter. However, more detailed planning and replanning are distributed; i.e., each rover
continuously updates its own plan. The main advantage is the redundancy of the system
because when a rover fails to achieve goals they might be reassigned to another rover.

Washington et al. used a continuous planning technique for controlling a planetary
rover with limited capacity resources and uncertainty [173]. A nominal flexible and con-
ditional plan, which contains contingent plans that are chosen synchronously after ob-
servation and alternate plans that are asynchronously triggered when some conditions
become true, is up-linked. During execution, an executive is in charge of managing re-
sources and identifying conflicts. If a conflict is detected, various recoveries are possible;
i.e., a contingent plan matches the situation, an alternate plan is started possibly with
anticipation, actions are performed to put the system back in a stable state, and replan-
ning is done, or the conflict is ignored because it is too far in the future. Upon failure,
short-term recovery plans can be computed by the state identification module and the re-
source manager provides on-board rescheduling capabilities; e.g., reallocation if a resource
is broken down.

Lemai and Ingrand proposed a general control architecture that is able to interleave
planning and execution of an autonomous system in an uncertain world [101, 102]. This
approach integrates deliberative planning, plan repair, and execution control. Partially
ordered and partially instantiated plans are generated and allow the insertion of new
actions and/or new goals during execution. The generated plans are based on Simple
Temporal Networks, see Section 1.3.4.

1.3.6 Scheduling under Uncertainty

In this section, we present some existing approaches to model and solve scheduling prob-
lems under uncertainty. There exist recent surveys dedicated to this issue [83, 43, 27].

Dispatching Rules

One of the possibilities to hedge against uncertainty and change when scheduling is to
schedule operations by using priority rules ; e.g., an operation is allocated to and sequenced
first on a machine because its processing time is the smallest [125]. Dispatching rules can

28 CHAPTER 1. STATE OF THE ART

be either local, when a sub-problem is considered, or global, when decisions are made
after considering the whole problem. The main advantage to using priority rules is the
low computational cost. Such a rule can be applied on line without violating real-time
constraints. It is thus possible to build a schedule incrementally during execution in a
non-deterministic, indeed chaotic environment; i.e., it is possible to make a scheduling
decision at the last time after having observed unexpected events. The main drawback
of dispatching rules is the suboptimal quality of the solution because of their greedy
behaviors (there is no backtrack mechanism).

Redundancy-based Scheduling

Redundancy-based scheduling consists in generating schedules with temporal slacks; i.e.,
we are looking for schedules with the minimal number of critical paths. In other words,
the objective is to produce fault-tolerant predictive solutions by using knowledge about
uncertainty.

Davenport, Gefflot, and Beck proposed a redundancy-based scheduling approach in
which they add slack to critical operations; i.e., operations that are allocated with possi-
bly breakable resources [45]. This work extended the Master’s thesis of Gao [68]. The new
temporally protected problem can then be tackled with techniques usually used to solve
deterministic scheduling problems; e.g., constraint propagation algorithms can be used to
make tree search easier, see Section 1.2.4. More precisely, operation durations are set to
be longer than the original ones to generate a predictive schedule that can face possible
machine breakdowns. The operation durations used are based on breakdown statistics;
e.g., the so-called mean time between failures or mean time to repair may be used.
Experiments on job-shop problems show that this technique reduces significantly the gap
between the predicted quality and the effective quality but it results in an increase of
tardiness.
However, the temporal protection given to an operation o1, which should allow the fol-
lowing operation o2 allocated to the same resource to start earlier if no breakdown occurs,
can be “lost” if a constraint prevents o2 from starting earlier. This observation is at the
outset of two methods, time-window slack and focused time-windows slack, presented by
Davenport et al. who proposed to post additional constraints such that each operation
has a minimum temporal slack. Simulation results show that these two methods are able
to generate schedules whose tardiness is smaller than the tardiness of the schedules de-
termined by the temporal protection technique. It is also shown that effective quality is
predicted more accurately; i.e., quality predicted a priori (before execution) is closer to
the effective quality, observed a posteriori (after execution).
Although this approach is not based on real theoretical foundations it is simple and prag-
matic such that it can be readily applied to a real scheduling problem.

Leus and Herroelen use redundancy-based techniques to minimize the expected weighted
deviations of the operation start times when operation durations are imprecise [103, 84].
They tackle resource-constrained project scheduling problems. Only a subset of operation
durations are random. A probabilistic model of the disruptions is used and permits them
to use Monte-Carlo simulation for selecting solutions. Their study assumes a multi-project
environment and thus operations cannot be started before their foreseen starting times in
the predicted schedule. Some operation start times may need to be better protected than
others; for instance, because of varying difficulties to release the required resources at later

1.3. NON-DETERMINISTIC DOMAINS 29

times, or for reasons of coordination with external parties, or simply because of the value
to the customer of the projected dates being met. Actual probability distributions that
apply during project execution are not known beforehand, and the discrete input scenarios
form the best approximation available. Leus and Herroelen introduce some redundancy
by adding slack times between operations, they trade off makespan against protection of
operation start times.

Daniels and Carillo worked on a scheduling problem in which the goal is to find the
schedule that minimizes the probability of performance less than a threshold [42]. It is a
one-machine problem with uncertain operation durations. The idea is to use the uncer-
tainty statistics; i.e., means and variances, to find such a schedule called the “β-robust
schedule.” It is an NP-hard problem [69].
Solution techniques consist in a branch-and-bound where sequence is assigned chronolog-
ically, dominance rules are used and bounds are based on partial sequence. Dominance
rules are heuristics. An approximation technique is used as follows: we repeatedly and
reactively generate schedules by applying the Shortest Processing Time priority rule for
“well-chosen” scenarios and we evaluate the probability that the tardiness of the schedule
is less than T .
The concept is similar to probabilistic customer service in inventory management. Prob-
abilistic customer service allocates inventory so that there are probabilistic guarantees on
achieving full customer service. For example, a 95% customer service level means that
95% of the time all customer orders will be met from the stored inventory.

Redundancy-based scheduling is better than dispatching since it does not make de-
cisions myopically. However, performances of redundancy-based scheduling rely on how
much distributions are reliable.

Contingent Scheduling

The contingent scheduling approach consists in generating a set of predictive schedules
off and/or on line such that they perform optimally when anticipated disruptions occur.
In case a disruptive event occurs during execution, it is possible to switch to the opti-
mal schedule that matches best the situation at hand. Notice that the set of predictive
schedules can be explicitly enumerated.

Drummond et al. proposed a contingent scheduling method, called Just-In-Case (JIC)
scheduling, applied to a real-world telescope observation scheduling problem where obser-
vation durations are uncertain [53]. The solution consists in building a contingent schedule
that takes into account likely failures of the telescope. The objective is to increase the
percentage of the schedule that can be executed without breakage by assuming there is a
scheduling algorithm for solving the deterministic problem, and probability distributions
of the observation durations are known; i.e., the mean values and the standard deviations
are known.
The JIC scheduling proceeds as follows. Before execution we identify the most likely break-
age, split the schedule accordingly, and then find a new schedule assuming the breakage.
There are of course several likely breakages, so the procedure is applied several times.
During execution, if there is no breakage, we keep executing the same schedule, other-
wise, if the situation is covered by the contingent schedule, we switch to a new schedule.
This is a successful, real-world solution. The on-line portion is trivial since we only have
to switch to schedules. However, this method is applied to a one-machine scheduling

30 CHAPTER 1. STATE OF THE ART

problem and the combinatorial complexity seems to hinder its generalization to multiple
machine problems. To reduce the complexity due to explicit enumeration, other works
focus on partial-order schedules, see the next section.

Contingent scheduling is more optimal than redundancy-based scheduling since it gen-
erates a family of schedules that better fit to the actual situation. However, the generation
and the storage of solutions are costly and increase with the size of the faced problem.

Partial-Order Scheduling

A number of researchers have used partial-order schedules (POSs) to handle uncertainty.
Some people use the concept of “group of operations;” i.e., a group of operations is a
subset of operations allocated to the same resource that can be totally permuted without
violating problem requirements [26, 15, 58, 16]. This approach assumes unary resources.
The main idea is to build a POS before execution such that a sequence of groups is de-
termined for each resource. One of the advantages of such an approach is the possibility
to quickly compute the worst performances of the POS with respect to optimization cri-
teria. It is also possible to reduce the number of possible permutations in a group to
guarantee minimal performances [12]. The POS is then used on line as follows: ordering
of the operations of a same group are made either manually by a decision-maker based on
performance indicators, or automatically by applying dispatching rules, see Section 1.3.6.
More recently, La proposed another off-line generation method based on partial-order
scheduling [94]. He uses the notion of interval structure, and of dominant or sufficient
conditions regarding the admissibility or optimality of scheduling solutions. These partial
orders allow the determination of the best and the worst performances of the charac-
terized solution set, in terms of lateness, in polynomial time. La tackles a one-machine
problem and demonstrates that it is possible to find a dominant set of solutions whose
performances are insensitive to a number of scenarios if effective release dates and/or
operation processing times and/or due dates are imprecise; i.e., possible realizations are
modeled with intervals, and for each operation the two intervals associated with release
and due dates have not to overlap.

Policella et al. also considered the problem of generating POSs for problems with
discrete resources [127]. They actually tackle resource-constrained project scheduling
problems with using filtering algorithms and propose two orthogonal procedures for con-
structing a POS. The first, which is called the resource envelope based approach, uses
computed bounds on cumulative resource usage; i.e., a resource envelope, to identify po-
tential resource conflicts, and progressively reduces the total set of temporally feasible
solutions into a smaller set of resource feasible solutions by resolving detected conflicts.3
The second, referred to as the earliest start time approach, instead uses conflict analysis
of a specific; i.e., earliest start time, solution to generate an initial fixed-time schedule,
and then expands this solution to a set of resource feasible solutions in a post-processing
step. As might be expected, the second approach, by virtue of its more focused analysis,
is found to be a more efficient POS generator based on experimental results.

Wu et al. proposed another way of producing partial-order schedules [179]. They
identify a critical subset of decisions that, to a large extent, dictate global schedule per-
formance. These critical decisions are made off line and the rest of the decisions are done
during execution. Before execution, they solve an Order Assignment Problem (OAP) opti-

3Earlier, Muscettola proposed such an approach [115].

1.3. NON-DETERMINISTIC DOMAINS 31

mally; i.e., operations are partitioned into groups such that original precedence constraints
are respected and increase in tardiness is minimized, and introduce a set of precedence
constraints to the problem between groups. After solving the OAP, we get a job-shop
scheduling problem that can be solved to evaluate the partition (the solution of the OAP).

Partial-order scheduling produces solutions of lower quality than contingent scheduling
does because it only covers a subset of situations. However, partial-order scheduling
fits better when memory consumption is an issue and/or when the combinatorics of the
problem is large.

Stochastic Scheduling

Stochastic scheduling views the problem of scheduling as a multistage decision process; i.e.,
at each stage decisions are made and random variables are instantiated, see Section 1.3.3
about stochastic programming. In general, the processing time of each operation is im-
precise and follows a given probability distribution. There are resource constraints and
operation processing times are independent of each other. The objective is to find a pol-
icy; i.e., a dynamic decision process that defines which operations are started at certain
decision times t, based on the observed past up to t and the a priori knowledge about
the probability distributions of the operation processing times, to optimize the expected
criterion such as minimizing the expected weighted completion times of operations. A
basic problem tackled by the Operations Research community is the stochastic resource-
constrained project scheduling problem [116, 117, 155]. To find such a policy it is possible
to find minimal forbidden sets with respect to resource constraints and add precedence
constraints (waiting conditions) to the stochastic project network that is equivalent to a
PERT-network. Standard simulation methods are also used to find the optimal policy.

Valls et al. [160] studied the problem of scheduling resource-constrained project op-
erations that are either deterministic: they have each a known duration and cannot be
interrupted, or stochastic: they may be interrupted for an imprecise amount of time and
resumed later. A scenario-based approach has been developed to solve this problem; i.e.,
a two-stage decision model is used, see Section 1.3.3.

Neumann [118] reviewed project scheduling problems with stochastic evolution struc-
ture and feedback. Such problems are modeled with GERT networks . A GERT network
is an activity-on-the-arc network with exactly one source node and one sink node. Each
arc is assigned a weight vector, that is, a conditional probability distribution of execution
depending on the occurrence of an event e and a conditional probability distribution of
duration. These probability distributions are independent of the number of times that e
has occurred and the operation has been executed before, respectively. The network may
contain cycles, allowing for the multiple execution of activities during the execution of
the project. The heavy computational burden of analytic treatment prohibits practical
application and forces one to rely on simulation as the vehicle of analysis.

Stochastic scheduling is limited to small problems with simple uncertainty models
compared with dispatching, partial-order scheduling, or contingent scheduling. However,
for small problem instances with imprecise operation durations stochastic scheduling is
able to find optimal solutions.

32 CHAPTER 1. STATE OF THE ART

Rescheduling

Rescheduling consists in changing scheduling decisions periodically or when the current
solution becomes inconsistent; i.e., it is no longer executable. Rescheduling is also nec-
essary when the current solution quality changes too much with respect to what was
predicted.

Sabuncuoglu and Bayiz reviewed rescheduling techniques applied to job-shop schedul-
ing [139]. They classify approaches with respect to how much we change the predictive
schedule: a full rescheduling consists in changing scheduling decisions of all the pending
operations; i.e., operations that have not already been executed; a partial rescheduling
changes only the decisions of a subset of pending operations; a local rescheduling, also
called scheduling repair, changes decisions of one pending operation.

Sadeh, Otsuka, and Schnelbach [140] worked on a production scheduling problem
where machines break down. Large Neighborhood Search is used when partially reschedul-
ing; i.e., we identify a set of operations to unschedule (“conflict propagation”) by using
recovery rules and use original scheduling algorithm to reschedule the unscheduled oper-
ations.
Simple rules are used for identifying the neighborhood and for conflict propagation:

• Right Shift Rule: operations are moved later in time while preserving sequence;

• Right Shift and Jump Rule: operations are moved later in time, jumping over ones
that do not need to be moved.

The idea is to use a simple rule to quickly repair the schedule.
When fully rescheduling Micro-Boss is used. Micro-Boss does micro-opportunistic schedul-
ing; i.e., it focuses on resource conflicts on limited time period.
Opportunistic scheduling has the ability to detect the emergence of new bottlenecks dur-
ing the construction of the schedule and change the current scheduling strategy.
Macro-opportunistic scheduling is such that an entire bottleneck is scheduled (or at least
a large chunk of it); i.e., it considers resource conflicts over the complete time horizon.
Resource contention is always monitored during the construction of a schedule, and the
problem solving effort is constantly redirected towards the most serious bottleneck re-
source.
During execution dispatching rules are used to adapt schedule:

• Weighted Shortest Processing Time (WSPT);

• Slack per Remaining Processing Time (SRPT);

• Weighted Cost OVER Time (WCOVERT);

• Apparent Tardiness Cost (ATC).

Micro-opportunistic scheduling heuristics are well suited to solving problems in which
some operations have to be performed within non-relaxable time windows as well as
repairing schedules in the face of contingencies.
Using Micro-Boss is a reasonable, pragmatic approach where there is no explicit reasoning
about time to find a solution. There is no reasoning about perturbation but the number
of operations to reschedule is important.

1.3. NON-DETERMINISTIC DOMAINS 33

Another work of interest about partial rescheduling was done by Smith [151]. OPIS is
a full scheduling system based on repeatedly reacting to events. It is a more sophisticated
reasoning mechanism for analysis of conflicts than Micro-Boss on the basis of constraint
propagation. This approach to incremental modification management of schedules is based
on a view of scheduling as an iterative, constraint-based process.

El Sakkout and Wallace used a different approach to fully reschedule [141]. Their
approach consists in a minimal perturbation rescheduling. Given a predictive schedule
and a reduction in resource capacity, we have to find a schedule which minimizes the sum
of absolute deviations from operation start times in the predictive schedule.
The main idea is to use a hybrid Linear Programming / Constraint Programming branch-
and-bound technique because a hybrid approach is better than pure CP and pure MIP.
The cost function for measuring change involves some kind of earliness/tardiness which is
usually well solved by a MIP approach. One represents temporal constraints and the cost
function in an LP and temporal constraints and resource capacity constraints in CP. One
uses the relaxed optimal start times from the LP to drive the CP branching heuristic; i.e.,
we add new linear constraints in the linear program when we branch in the decision tree
(CP model) and propagate these decisions. This technique is named “Probe Backtrack
Search.”
Experiment consists in one (non-unary) resource with a given schedule; when an event
reduces resource capacity over some time interval we reschedule.
This method is only practical in situations where the time-to-solve is irrelevant. The
optimization criterion of the original schedule is ignored.

Branke and Mattfeld tackled dynamic job-shop scheduling problems by making deci-
sions on a rolling-time horizon [36]. Operation durations are deterministic but jobs arrive
non-deterministically over time. Each job is associated with a due date and the goal is
to minimize the summed tardiness. An evolutionary algorithm is implemented to find
schedules with short makespans and low early idle times. The generation-execution pro-
cess proceeds as follows. An initial schedule is created with the set of known jobs and
the execution of this schedule begins. At some point a new job arrives. All the already
executed and in process operations are removed from the scheduling problem, the new job
is added and a new solution is found by changing some decisions. When the final activity
in a job executes, the contribution to the summed tardiness is calculated.

Shafaei and Brunn published an empirical study of a number of dispatching rules on
the basis of a rolling-time horizon approach for a dynamic job-shop environment [145].
Operation processing times are imprecise and randomly picked with equiprobability in
ranges. Job arrival rate follows a Poisson distribution and shop load is either heavy or
moderate. A release and a due date are associated with each job. The performance
measure considered is an economic objective. The objective is then to minimize the cost
of starting jobs too early and the cost of work in progress inventory and tardiness. The
first purpose of the study is to find the best dispatching rule and the second to investigate
the effects of the rescheduling interval on performance and examine whether there is a
policy that can always improve performance. In general, under tight due-date conditions,
the rescheduling interval has a much more significant effect on performance than under
loose due-date conditions: the smaller the interval, the lower the cost.

In another report, Shafaei and Brunn investigate how reliable these dispatching rules
are in a dynamic and non-deterministic shop environment [146]. The number of opera-
tions per job is uniformly sampled, job routes are randomly selected, operation processing

34 CHAPTER 1. STATE OF THE ART

times are imprecise, and machines can break down: machine breakdown intervals and
repair times follow exponential probability distributions. The simulation results, under
various conditions in a balanced and unbalanced shop, are presented and the effects of the
rescheduling interval and operational factors including shop load conditions and a bottle-
neck on the schedule quality are studied. They conclude that more frequent rescheduling
generally improves performance in an uncertain situation.

Rescheduling is useful when execution environment is very uncertain and/or the initial
problem is changed during execution. However, rescheduling is costly and produces sub-
optimal solutions if time for reasoning is short.

Fuzzy Scheduling

The advocates of the fuzzy operation duration approach argue that probability durations
for the operation durations are unknown due to the lack of historical data [79]. As
operation durations have to be estimated by human experts, often in a non-repetitive or
even unique setting, schedule management is often confronted with judgmental statements
that are vague and imprecise. In those situations, the fuzzy set scheduling literature
recommends the use of fuzzy numbers for modeling operation durations, rather than
probabilistic variables, see Section 1.3.3.

Fuzzy PERT-network was presented by Galvagnon [67]. The main problem is to coor-
dinate different projects whose decision centers are independent of each other and there
is uncertain and imprecise information because each project is unique and no historical
data exists. A criticality degree is proposed to express that the possibility of a path to
be critical. Unary resources are shared by projects and allocations can be changed if it is
necessary. Operations are not preemptive and we have to decide when to start operations.
The external parameters are negotiable; e.g., arrival dates of material are negotiated. The
objective is to give explanations when a problem has no solution; i.e., what part of the
problem has to be modified to find a solution.

Geneste and Grabot applied fuzzy logic and possibility theory for modeling imprecise
expert knowledge for managing the part flow; e.g., they focused on releasing or dispatching
lots [72], or they studied the way of forecasting a production plan within a negotiation
process when orders are uncertain and imprecise [74, 73].

Dubois, Fargier, and Prade applied fuzzy theory to scheduling [54]. They tackle
scheduling problems with fuzzy operation durations and try to find a schedule that min-
imizes the possibility of performance less than a threshold. Standard search techniques
are used but the constraint-satisfaction requirement is replaced by “reasonably sure that
no constraint will be violated.” This is a realistic approach that lies between accepting
only schedules that are sure to work and accepting a schedule without taking into account
possible deviations.

The main advantage of fuzzy scheduling over other approaches is its ability to model
total ignorance and vague expert knowledge. However, the counterpart is that selection of
solutions is trickier since possibility distributions can be interpreted differently depending
on subjective criteria.

1.4. SUMMARY AND GENERAL COMMENTS 35

1.4 Summary and General Comments
In this chapter, we reviewed the literature in task planning and scheduling. A section was
dedicated to uncertainty models and the research works that tackle task-planning and
scheduling problems with uncertainty. We described a number of different algorithms,
systems, and resolution techniques of the current literature. We observe it is difficult
to compare this large range of techniques and systems with each other with the existing
typologies. However, we have found common characteristics and identified three main
families of techniques. The next chapter details these three families with respect to
papers presented in this chapter.

As described in this chapter, there are a number of different resolution techniques that
correspond to different models. The execution-generation loop is implemented in different
ways. In addition, the different techniques are not equivalent in terms of memory con-
sumption and CPU usage. However, we would like to be able to answer questions such as:
what technique to apply when tackling this problem with these particular requirements?
We would like to find a classification to clearly distinguish techniques with respect to
general criteria. We propose such a taxonomy in the next chapter that depends on how
decisions are made.

Chapter 2

General Framework

In this chapter, we propose a classification of techniques for task planning and/or
scheduling under uncertainty1 that extends the existing typologies proposed in lit-

erature [44, 28, 161, 85, 94]. The existing classifications are not satisfactory since they
are ambiguous and/or incomplete; furthermore, they usually focus either on AI or OR
terminology. Our main motivation for developing such a taxonomy was to structure the
current state of the art in a consistent way and allow one to easily classify any algorithm
or system. The general framework we present is independent of any specific representa-
tion model or reasoning technique. This general classification is focused on decisions; i.e.,
a method is classified with respect to how decisions are made. For each family of this
classification, we give examples reviewed in the preceding chapter. We start this chapter
with discussing some general definitions to avoid ambiguity of terms commonly used in
different communities. In the second, third, and fourth sections, we introduce revision,
proactive, and progressive techniques, and give their definitions. The main idea is that
there exists a continuum between the purely reactive techniques, where no decision is
made in advance, and the purely predictive ones, where all decisions are made off line; the
techniques that can change all the decisions on line and those that are reluctant to do so;
the techniques that take into account uncertainty when making decisions and the tech-
niques that do not take uncertainty into account when making decisions, see Section 1.3.
We think this continuum can be explored by mixing the three families. The fifth section
presents approaches that combine two or more techniques. The last section summarizes
the chapter and contains general remarks about the framework.

2.1 Definitions and Discussion

In task planning/scheduling under uncertainty, we classically define two ways of generating
solutions: reactive generation and predictive generation. We generate a solution reactively
when decisions are made without anticipation on line whereas a predictive solution is
generated before execution by making all decisions. For example, in scheduling, it is
common to use simple dispatching rules to make decisions reactively, see Section 1.3.6; it
is possible to use the same priority rules for finding a predictive schedule. Notice, however,

1This chapter develops and revisits the work presented in the ICAPS’03 Tutorial on Practical Ap-
proaches to Handling Uncertainty in Planning and Scheduling, prepared and presented by Beck and
Vidal.

37

38 CHAPTER 2. GENERAL FRAMEWORK

that it would be desirable to generate not fully instantiated solutions that are less sensible
to unexpected events and that allow to be less myopic as well.

The first definition concerns a characteristic of a solution.

Definition 2.1.1 (flexibility). A flexible plan/schedule is plan/schedule that is not fully
set; i.e., a subset of decisions DES have still to be made. A plan/schedule s1 is more
flexible than another s2 if the number of possible choices for DESs1 is greater than the
number of possible choices for DESs2.

There exist different types of flexibility in scheduling that depend on the type of
decision that still needs to be taken on line [142]. Temporal flexibility lets us decide on
line when operations start, sequencing flexibility lets us decide on line how operations
allocated to a resource are sequenced, and allocation flexibility lets us choose on line the
resource with which an operation will be executed. Notice that in the recent papers the
execution controller commonly decides when to start each operation when allocation and
sequencing decisions are made off line. In some cases, there is another type of flexibility
that is offered; i.e., a subset of operations are chosen on line among a set of alternative
subsets of operations, see contingent scheduling in Section 1.3.6 and conditional CSPs in
Section 1.3.5.

Definition 2.1.2 (conditional solution). A conditional plan/schedule, also called contin-
gent plan/schedule, is a flexible plan/schedule where alternatives are modeled and only a
subset of disjunctions is executed.

There are two kinds of flexibility: either some decision variables of the problem are not
instantiated, all possible instantiations are implicitly expressed, or a number of possible
instantiations are explicitly expressed. The former flexibility is represented by a partially
instantiated solution and the latter flexibility is represented by a set of solutions; i.e., this
solution is conditional.

Reactive task planning/scheduling generates fully flexible solutions because all deci-
sions are made without anticipation, see Section 1.3.6 for reactive scheduling. Predictive
task planning/scheduling produces completely instantiated solutions that are not flexible.
We can introduce more or less flexibility in the generation process in order to cope with
uncertainty and change: there is a trade-off to find between completely flexible solutions
and rigid solutions. A rigid solution can be preferable when it is used by other agents for
making decisions; e.g., a timetable is used by the teacher and students for planning other
activities than lectures.

The following definitions concern two properties of a solution with respect to uncer-
tainty and change.

Definition 2.1.3 (robustness). A robust plan/schedule is a plan/schedule with a quality
that does not degrade during execution with respect to known on-line perturbations.

We usually introduce some flexibility in plans/schedules when we want to increase
their robustness. However, a plan/schedule s1 that is more flexible than or as flexible as
another s2 is not necessarily more robust than s2. For example, s1 may be more flexible
than s2 with respect to deciding operation start times but s1 may have two critical paths
whereas s2 may have only one critical path; in this case it is probable that s1 would be

2.1. DEFINITIONS AND DISCUSSION 39

more brittle than s2, if they were executed in a non-deterministic environment. Notice
that a plan/schedule with a null standard deviation of its optimization criterion (thus
that cannot degrade during execution) but of very bad quality is a robust plan/schedule;
e.g., a schedule where all operations are scheduled very far apart is robust.

Robustness is a general term and means different things depending on application
context: it is important to define robustness with respect to a criterion [142] and pertur-
bations. Robustness is rather a relative solution property that is usually used to compare
two or more solutions.

Definition 2.1.4 (stability). A stable plan/schedule is a plan/schedule whose decisions
do not change during execution. We assume decisions are made with anticipation. A
plan/schedule s1 is more stable than another s2 if s1 changes less than s2 during execution
in terms of decisions.

A plan/schedule that is reactively generated is not stable because decisions are not
made in advance, and it is difficult to give guarantees for such a solution with respect
to robustness since the optimization criterion is usually computed when a lot decisions
are made and can only be roughly estimated in this case. As defined above, stability
and robustness are antagonistic optimization criteria; e.g., it is usual to minimize the
makespan in scheduling and this is more difficult to do if we also want to minimize
the number of changes whenever we decide to find a new solution during execution to
maintain a high quality. Stability and robustness are always measured after execution.
Quality and stability are related in the sense that guaranteeing a very high quality at the
end of execution implies maintaining a very high estimated quality during execution, that
is, the baseline solution will be often changed; on the contrary, if we do not care about
quality but stability is very important, we can generate a solution taking into account
the worst scenario that may happen during execution and guarantee that these decisions
do not change (this is a fully predictive schedule). The stability may be defined by the
distance between two schedules; i.e., it depends on the number of different decisions taken
to generate these two schedules. There are a number of different metrics for assessing
robustness and stability of a schedule in literature [14, 142].

Currently researchers propose predictive-reactive techniques to tackle problems under
uncertainty and change; i.e., these techniques generate a first predictive solution and then
a new predictive solution is reactively produced whenever the current predictive solution
violates a constraint. From the research literature, we have identified three possibilities
to generate solutions when the execution environment is non-deterministic: we take into
account uncertainty when making decisions, we change decisions when it is necessary, or
we make decisions on a more or less short gliding horizon. This is a new way of classify-
ing task-planning and scheduling techniques and systems that deal with uncertainty and
change, and these three families of techniques are more or less reactive (thus more or less
predictive), to respond to perturbations that occur at execution time.

Some terms are often mentioned, but not yet standard, so we propose the additional
following definitions.

Definition 2.1.5 (executable plan/schedule). An executable plan/schedule is a plan/sche-
dule that does not violate any constraint. Executability of a plan/schedule is a property
that is checked at a given time instant t.

40 CHAPTER 2. GENERAL FRAMEWORK

A stable solution is always executable because all possible execution scenarios have
been taken into account during its production, so no constraint will be violated during
execution.

Definition 2.1.6 (adaptive generation-execution system). An adaptive generation-exe-
cution system is a generation-execution system that is able to generate a new executable
solution whenever the current executed solution is no longer executable.

The temporal behavior of uncertain events needs to be further defined to help us
characterizing a decision-making method.

We know in advance when a synchronous event will occur in relation with other events;
i.e., we know in advance it will occur at a precise stage of the plan/schedule. However,
we do not know in advance and precisely when an asynchronous event will occur. An
asynchronous event can occur at any time during execution and its occurrence is not
synchronized with other events. For example, observing the outside temperature when an
operation ends is a synchronous event since it occurs synchronously with the end time of
an operation, even if the operation duration is imprecise. Observing the outside pressure
at 10:00 P.M. is a synchronous event since we know exactly when it occurs. However,
a machine breakdown start time is usually considered as an asynchronous event because
we do not know in advance the precise plan/schedule stage of its occurrence or its exact
occurrence time.

2.2 Revision Techniques
In this section, we discuss some general aspects of revision techniques and how they are
applied in scheduling and task planning with examples.

2.2.1 Generalities

Revision techniques consist in changing decisions during execution when it is necessary;
e.g., we change decisions when the current predictive solution becomes inconsistent, when
estimated quality deviates too much from the predicted one, or when a positive event
occurs (for example, an operation finishes very early, or after taking a photo of a landscape,
it is decided to move an autonomous robot towards a specific area to do additional scientific
experiments, so we change the current predictive plan by inserting some actions) and we
take advantage of this to optimize.

Definition 2.2.1 (revision decision-making process). A revision technique is able to
change decisions of a solution during execution.

Figure 2.1 represents the generation-execution loop when using a revision technique.
The execution controller is in charge of activating actions with respect to the solution it
gets and deciding if the current solution must be adapted or changed completely when it
observes a failure or an opportunity event. In addition, the execution controller updates
the clock.

The on-line revision can be limited or not; i.e., the predictive solution is partially or
completely changed, respectively. In task planning and scheduling, we are used to the
so-called replanning and rescheduling, respectively, when completely changing decisions.

2.2. REVISION TECHNIQUES 41

Plan/
Schedule

(Re)planning/

(Re)scheduling

Adapt

off line

on line

real world

Actions

solution execution

Events

Execution controlling

update

failure or opportunity
detection

modify

Figure 2.1: Generation-execution loop with a revision technique.

A predictive schedule or plan executes while nothing unexpected happens; otherwise
it is revised.

In general, reasoning is costly and solutions are usually sub-optimal due to real-time
constraints that forbid complete optimal replanning/rescheduling search. Revision tech-
niques are thus generally implemented by greedy or local search algorithms with ad hoc
heuristics to quickly find a solution. Such algorithms are often anytime; i.e., they are able
to exhibit a solution whenever search is stopped, and solution quality is improved as long
as search continues. For example, local search (repair-based) replanning can be used to
find a predictive plan as close as possible to the previous predictive plan.

One of the issues with such an approach is that it is not always clear when to change the
current predictive solution, and it is not always desirable to revise the current predictive
solution frequently. There is thus an issue when solution stability is important. This is
the reason why, in some cases, it is important to design a system for monitoring execution
and indicating when to change decisions.

42 CHAPTER 2. GENERAL FRAMEWORK

2.2.2 Examples of Revision Techniques in Task Planning and
Scheduling

In task planning, we classically face two types of failures when executing a plan in a non-
deterministic environment. “Low-level” failures with resource usage or slight delays require
basically partial rescheduling; i.e., local changes are done when partially rescheduling.
When harder failures are observed, we need deeper replanning and a straightforward
approach is often used:

1. put the physical process, such as an autonomous robot, in a “safe state;”

2. call the deliberative planner for a new plan;

3. wait for the new plan;

4. restart execution.

There are different approaches to replan, see Section 1.3.5 devoted to continuous plan-
ning. We can resolve quickly and myopically by using rules, partially resolve with Large
Neighborhood Search or specialized heuristics, or fully resolve. Time pressure and solu-
tion quality requirements largely determine the approach applied: rule-based methods for
finding quickly sub-optimal solutions, or minimal perturbation techniques when you have
enough time.

In scheduling, the revision method consists in executing one predictive schedule, and
during execution if something goes wrong; e.g., a machine breaks down, then repairing
the predictive schedule so execution can continue. Such a revision procedure is called
rescheduling. In some applications, revision is done periodically.

Notice that the revision method is usually called predictive-reactive in literature [139,
94].

A preceding section 1.3.6, dedicated to rescheduling, has presented some relevant
papers about revision scheduling [139, 140, 151, 141].

2.2.3 Discussion

Revision techniques are always useful in strongly non-deterministic environments in which
asynchronous events and/or low probability events can happen.

Not much memory is needed to store a solution but the search process might need larger
space in addition. However, if we use a case-based reasoning technique this requires to
store information about past experiences but the search process is not expensive in terms
of memory consumption since we only have to find the past solution that matches best
the current situation.

2.3 Proactive Techniques

In this section, we discuss some general aspects of proactive techniques and how they are
applied in scheduling and task planning. This section is devoted to techniques that take
into account uncertainty to produce robust solutions that are more or less flexible, and try

2.3. PROACTIVE TECHNIQUES 43

to reduce the brittleness of the solutions produced by purely revision generation-execution
processes. A pure proactive technique generates a solution that will not be revised during
execution since it is not sensitive to perturbations.

2.3.1 Generalities

A proactive technique takes into account uncertainty to produce solutions that are less
sensitive to perturbations that occur on line. The generation procedure takes into account
uncertainty if information about uncertainty is present; e.g., uncertainty is modeled with
distributions. However, information about uncertainty is not always available even if
we know that unexpected events can occur during execution. For example, Hebrard,
Hnich, and Walsh presented recently some work on constraint-satisfaction problems, see
Section 1.2.4, in which they propose proactive search algorithms that find super solu-
tions [82]. Super solutions are solutions that can be easily repaired if they are perturbed
to some extent; i.e., if a limited number of assignments are changed simultaneously in a
supersolution we can find a new solution by changing a limited number of other assign-
ments.

One possible method, the rigid proactive approach, for making a solution insensitive
to on-line perturbations is to produce a predictive, robust solution, such that all its
decisions are made off line by taking into account the worst scenario that can happen
during execution.

We propose a new term when planning tasks or scheduling with a proactive technique:
maximal coverage consists in assessing the level of feasibility or optimality of the plan
knowing the probability, possibility, or plausibility of deviations Pdev. We try to find the
plan that minimizes Pdev; i.e., we try to provide one and only one plan that is expected
to work or to have a quality greater than a given threshold “most of the time,” for a
satisfaction problem and for an optimization problem respectively. Maximal coverage can
be combined with a revision technique; i.e., a robust plan is proactively generated and
repaired when it is not any more executable or optimal.

Fargier et al. proposed a constraint-satisfaction framework for making decisions under
uncertainty with a fuzzy, maximal coverage approach [62]. Similarly, when dealing with
Probabilistic CSPs, we are looking for the solutions such that the probability that each of
them is consistent with the actual set of constraints is maximized or greater than a given
threshold, see Section 1.3.3.

Another approach, the flexible proactive approach, consists in introducing some flex-
ibility in the solution produced off line; i.e., some decisions are not made off line but
reactively on line and they are not taken too early; this is a kind of least commitment
approach with respect to decision-making since we only make decisions when information
is more complete, more precise, and/or more certain. During the execution of such a flex-
ible solution, a synchronous event occurs; e.g., the execution of an operation finishes or an
information gathering is done, and there are two possible ways of making the remaining
decisions depending on the kind of flexibility used. We distinguish continuous flexibility
from discrete flexibility in the remaining of the document and define them as follows:

• continuous flexibility: we can make new decisions to complete the current flexible
plan/schedule2 given an execution policy; i.e., we make the flexible solution more

2Continuous flexibility can be obtained by introducing temporal flexibility, allocation flexibility, and/or

44 CHAPTER 2. GENERAL FRAMEWORK

rigid;

• discrete flexibility: we observe conditions and match observations to next opera-
tions/actions; i.e., a subset of operations is thrown away while others are kept and
possibly executed3.

A flexible proactive method generates a flexible solution without enumerating all pos-
sible predictive solutions it contains whereas a discrete proactive technique explicitly
produces a number of predictive solutions.

Definition 2.3.1 (proactive decision-making process). A proactive technique is able to
produce solutions that are as insensitive to on-line disruptions as possible.

Figure 2.2 represents the generation-execution loop when using a proactive technique.
The execution controller is responsible for updating the clock, making the remaining
decisions when the solution is flexible, and activating actions.

When information about unexpected events is available we use for example a proba-
bilistic or fuzzy representation of uncertainty to generate a plan/schedule that will cover
all cases; e.g., the plan/schedule will run without any problem in 100% of cases even if it
is still a predictive plan/schedule. Notice that, in general, the solution of such a proactive
generation process is completely stable, it is a robust solution but sub-optimal.

An extreme proactive generation system consists in finding the predictive optimal so-
lution of each deterministic problem corresponding to a possible realization of the random
variables. This is impossible to apply such a method to a practical problem because of
the huge time and memory space that would be used. For example, we consider Markov
Decision Processes, see Section 1.3.3, as a proactive technique because all possible states
of a process are represented, however, optimal decisions are not made because the decision
made at a given time only depends on data about past and the reward associated with
being in the next state, and does not take into account the whole combinatorial problem,
in particular, information about future.

An algorithm that checks controllability is a proactive technique that filters control-
lable decisions that can lead to a non-executable solution, see Section 1.3.4.

Without any knowledge about perturbations we can not generate solutions proactively.

2.3.2 Examples of Proactive Techniques in Task Planning and
Scheduling

Proactive planning generates robust plans; i.e., robust plans are the plans that maximize
the chance of reaching the goal state given knowledge about uncertainty. This can be
done assuming a closed loop execution if generated flexible plans are contingent ; i.e.,
decisions on what actions to execute next are based on observations. Contingent planning,
also called conditional planning or state-based planning, is a way to plan proactively,
see Section 1.3.5. Partial observability is sometimes imposed and we have to deal with
uncertain observations; probabilistic planning is a convenient approach in these cases, see
Section 1.3.5.

sequencing flexibility in the solution, see [27].
3Discrete flexibility can be obtained by introducing mode flexibility in the solution, see [27] and

conditional planning in Section 1.3.5.

2.3. PROACTIVE TECHNIQUES 45

Planning/
Scheduling

off line

on line

real world

Actions

update

solution execution

schedule
plan/

Flexible

Events

Execution controlling

Figure 2.2: Generation-execution loop with a proactive technique.

At one extreme, there are cases where observation is not possible at all and we have
to use conformant plans; i.e., predictive plans that guarantee to attain the goal state
whatever happens during execution, see Section 1.3.5. Note that conformant planning
implies that we have a closed loop execution.

• The research work of Dubois, Fargier, and Prade is a good example of proactive
scheduling with using fuzzy logic [54], see Section 1.3.6.

• Just-In-Case scheduling is a proactive technique par excellence, see Section 1.3.6.

• Redundancy-based scheduling is also considered as a proactive technique, see Sec-
tion 1.3.6.

• Generating partial-order schedules (POSs) is a proactive scheduling technique since
a subset of sequencing decisions are made off line and the remainder being made on

46 CHAPTER 2. GENERAL FRAMEWORK

line with using a dispatching rule, see Sections 1.3.6 about POSs and 1.3.6 about
dispatching rules.

2.3.3 Discussion

A revision technique is usually combined with a proactive approach to cover situations
that occur rarely and that are not taken into account by the proactive approach; e.g.,
a river flooding is usually a low probability event, see Section 2.5 dedicated to mixed
techniques.

2.4 Progressive Techniques

In this section, we discuss some general aspects of progressive techniques and how they
are applied in scheduling and task planning with examples.

2.4.1 Generalities

The idea behind progressive techniques is to interleave planning/scheduling and execu-
tion, by solving the whole problem piece by piece. Reasoning is done off line and as a
background task on line; i.e., we can afford more time to search, we incrementally commit
to scheduling/planning decisions periodically or when new information arrives, and no
decision is changed.

Definition 2.4.1 (progressive decision-making process). A progressive technique is able
to incrementally make decisions off and on line.

Figure 2.3 represents the generation-execution loop when using a progressive tech-
nique. The execution controller has the responsibility to update the clock, activate ac-
tions, and decide when it is useful or necessary to make new decisions.

One way of proceeding when using a progressive approach is to select and plan/schedule
new actions/operations to possibly extend the current executing solution when an event
occurs. This event brings information that is integrated and propagated in the current
plan/schedule. Whereas revision and proactive techniques possibly change/make all de-
cisions of the problem at the same time and by reasoning on the whole problem, we focus
on sub-parts of the problem when progressively generating a solution. When using a
progressive approach, the solution is produced piece by piece: we have to select a subset
of decision variables, on which we make decisions. In addition, we have to select a subset
of data from which we reason because it is senseless, indeed dangerous to make decisions
when the data from which we reason are too uncertain.

A solution produced by a progressive technique is sub-optimal since decisions are taken
only with a more or less short-term/aggregated view; i.e., they are made locally or with
a rough estimation of the whole problem. A decision is made when uncertainty level
of the used information is not too high and/or time before execution of this decision
is too short; this assumes there is an execution monitoring system able to react and
indicate when and what type of decisions to make. However, such a technique can also
be used periodically without having to monitor execution. One of the advantages to
using progressive techniques is that not much memory is needed for storing a progressive

2.4. PROGRESSIVE TECHNIQUES 47

Planning/
Scheduling

schedule
plan/

Short-term

real world

Actions

Events

solution execution

Execution controlling

update

on line

Figure 2.3: Generation-execution loop with a progressive technique.

object. However, it is important to guarantee responsiveness of the system by anticipating
what occurs during execution. Planning/scheduling are reactivated because of incoming
data arriving asynchronously; e.g., effective times, new goals, deviations of optimization
criteria are observed or added asynchronously.

Note that a reactive technique is a particular progressive technique because there is
no anticipation when executing a decision and each sub-problem comprises one opera-
tion/action. At the opposite side, a predictive technique is also a particular progressive
technique since all decisions are made off line; i.e., the whole problem is solved off line.

There exists a continuum between these two extremes that can be explored by tuning
the different parameters of the progressive technique. There are two types of parameters:
the first set of parameters that allows to select the data from which we reason and the
second set of parameters that permits one to select the objects on which we make decisions.

When scheduling with a progressive approach, we can use the following parameters to
interleave the generation and execution of schedules. The anticipation horizon is used to
know when to start decision-making. The reasoning horizon is used to select a horizon
to select the data from which we reason. The uncertainty levels permit one to know
when to start and stop decision-making, and select the data from which we reason. The

48 CHAPTER 2. GENERAL FRAMEWORK

commitment horizon is used to know when to stop decision-making. The anticipation
horizon is the time period between the current time and the next time we will have to
make and execute new decisions without anticipation; i.e., when the anticipation horizon
becomes too small, we have to make new decisions to keep the lead of decision-making over
execution. The reasoning horizon is the gliding-time period on which we select the data
from which we reason. The uncertainty levels are reference thresholds indicating when
we can make new decisions, what sub-problem to tackle with respect to the uncertainty
levels of its operations/actions, and what data to use when reasoning for making new
decisions. The commitment horizon defines the gliding-time period in which decisions are
made. This is greater than the anticipation horizon; e.g., we make decisions for the next
two days (commitment) and make new decisions every day (anticipation). The reasoning
horizon is equal to or greater than the commitment horizon; e.g., we reason from the data
of one week but make only decisions for the next two days. Table 2.1 summarizes the
roles of these parameters.

Start Stop Select the data
decision- decision- from which
making? making? we reason?

Anticipation horizon Yes No No
Reasoning horizon No No Yes
Uncertainty levels Yes Yes Yes

Commitment horizon No Yes No

Table 2.1: The basic parameters of a progressive approach.

2.4.2 Examples of Progressive Techniques in Task Planning and
Scheduling

Progressive planning consists in updating and completing the current plan by adding new
actions.

Continuous planning is a progressive approach par excellence when no replanning
occurs [120], see Section 1.3.5 for more details. The plan is built piece by piece during
execution.

There is another approach, called telescoping-time horizon, that consists in generating
a global plan, but it is more detailed in the short range than in the long range, see some
works done at NASA Jet Propulsion Laboratory [40, 59]. The idea is to maintain an
incomplete or abstract plan in the longer range. The plan is thus further detailed as
execution progresses.

There is less work dealing with progressive approach in scheduling than in planning.
Usually, schedules are periodically completed; e.g., we make new decisions every two days.
A short-term schedule on which decisions are made is sometimes called an “overlapping
plan” in manufacturing. Some works use a progressive approach combined with a revision
method [36, 145, 146], see Section 2.5.2.

Vidal, Ghallab, and Alami worked on a scheduling problem by using a progressive ap-
proach because of imprecise temporal requirements [167], this is detailed in Section 1.3.4.

2.5. MIXED TECHNIQUES 49

2.4.3 Discussion

It should be noted that a progressive technique is a compromise between purely reactive
and purely predictive techniques. Purely reactive techniques are dispatching techniques;
i.e., we use a reactive approach when we only schedule the next operation that has not
yet executed on each resource. Purely predictive techniques make all decisions off line:
they make decisions in the long term. The larger the horizon, the more predictive; the
smaller the horizon, the more reactive.

A progressive approach is useful when the uncertainty level is high and/or memory
consumption is limited. A partial solution requires less space than a complete solution
of the same problem and the search space associated with a partial problem is smaller
than the search space associated with the corresponding whole problem. A progressive
approach is particularly suitable for dynamic problems.

2.5 Mixed Techniques

In this section, we discuss some general aspects of mixed techniques; i.e., mixed methods
are the methods that combine two or more pure solution-generation methods: revision,
proactive, and progressive techniques. We explain how they are applied in scheduling and
task planning with examples.

2.5.1 Generalities

There is not a lot of work presenting mixed techniques but this is becoming more at-
tractive. Mixed techniques try to respond to various needs such as: limit the memory
blow-up induced by some proactive techniques that explicitly store a lot of alternative pre-
dictive solutions, handle unavoidable failures and handle them better. About the latter
point proactive and progressive techniques restrict the need to revise, hence more effort
is dedicated to unforeseen events that are called risks.

Figure 2.4 gives a global view of the general framework. The revision, proactive,
and progressive techniques permit the exploration of the continuum that exists between
pure reactive and pure predictive techniques. The proactive method can generate robust
solutions because it takes into account uncertainty information, the revision approach
can change some of the non-effective decisions of the current solution when it is no longer
executable, and the progressive technique can generate solutions piece by piece during
execution. With a pure rigid proactive approach, we can generate predictive solutions.

With a pure progressive approach, we can set the commitment horizon to obtain an
approach that is more or less predictive (more or less reactive): when the commitment
horizon is very short, the approach is reactive, and, when the commitment horizon is very
long, the approach is predictive.

This is also possible to generate predictive solutions and modify them when they are
no longer executable with a revision approach. In case we use a flexible proactive solution,
we have to adapt the flexible solution with respect to what is observed during execution.

The number of possible combinations of these three families of techniques is huge and
allows the creation of any generation-execution technique.

We actually need to put together all pure solution-generation methods since they are
complementary. The revision techniques are unavoidable because we are not omniscient

50 CHAPTER 2. GENERAL FRAMEWORK

generate and adapt
proactive

revision
generate and modify

progressive
generate and complete

reactive predictive

Figure 2.4: A global view of the general framework.

and an unexpected event can always occur on line. The proactive techniques limit the
frequency of on-line reasoning and offer guarantees on the quality of solutions.

The main interest of progressive techniques is twofold: we ensure a certain stability
(when compared with revision techniques) and they are computationally cheaper than
the approaches that reason with the complete problem over the complete horizon. The
revision-progressive techniques limit the memory blow-up of conditional solutions. This
is one of the motivations for the theoretical model proposed in Chapter 4. Figure 2.5
represents the generation-execution loop when using a mixed technique. The execution
controller is in charge of updating the clock, choosing and/or activating actions given an
execution policy, deciding when to adapt, change or complete the current partial solution
by observing events.

Table 2.2 is a synthesis of the different properties of each family of solution-generation
techniques used to handle uncertainty and/or change.

A revision method requires a high computational effort on line since decisions are
changed by reasoning but the memory consumption is medium since we only store one
solution and require memory if we use a search tree when looking for a solution. A revision
technique is useful when unexpected events can occur; e.g., when a machine breaks down
we usually need to use a revision technique to change allocations. A revision technique
does not generate high-quality solutions since there are usually real-time requirements.

A pure proactive method aims at generating solutions whose decisions are not changed

2.5. MIXED TECHNIQUES 51

Adapt

(Re)planning/
(Re)scheduling

Execution controlling

off line

on line

modify

detection
failure or opportunity

update

real worldsolution execution

Events

Actions

Short-term and/

plan/schedule
or flexible

Figure 2.5: Generation-execution loop with a mixed technique.

during execution. The more accurate the uncertainty knowledge, the more efficient the
proactive technique. A flexible proactive technique does not require a lot of memory on line
since only one flexible solution is recorded and used. The computational effort required
on line is low because most of decisions have been made off line and the rest is only basic
decision-making, such as deciding when to start operations. The solutions generated by
a flexible proactive generation process are of high quality since the most critical decisions
have been made off line when there are not real-time constraints. A discrete proactive
method requires a lot of memory since a large number of fully instantiated solutions are
recorded for coping with any possible situation. However, the CPU usage is very low since
the execution controller only needs to change solutions if the current solution is no more
executable or not satisfactorily on line; i.e., only solution matching is done. Theoretically,
a pure proactive approach can generate optimal solutions since all possible situations are
covered by recorded solutions generated off line without real-time requirements.

One of the objectives when using a progressive technique is to build a solution incre-
mentally without changing decisions. The required memory on line is very limited since

52 CHAPTER 2. GENERAL FRAMEWORK

only a partial solution is stored and the search tree is of reasonable size. However, the
on-line CPU usage is medium since sub-problems are solved for completing the current
partial solution. A progressive approach is not optimal since only a sub-problem is tackled
and an estimation of the remaining part is used to make decisions.

On-line On-line Quality Stability
memory CPU (optimization

need need criterion)
Revision Average High Very high Low
Proactive
continuous Low Low High Average
Proactive
discrete Very high Very low High Average

Progressive Very low Average Average Very high

Table 2.2: The properties of each family of solution-generation techniques.

2.5.2 Examples of Mixed Techniques in Task Planning and Sche-
duling

The literature about mixed scheduling is virtually void.
Branke and Mattfeld tackled dynamic job-shop scheduling problems by making deci-

sions on a rolling-time horizon (progressive) and by changing some decisions (revision) [36],
see Section 1.3.6. Note, however, that the progressive approach is not chosen by the au-
thors but required to solve such a dynamic problem; i.e., no monitoring of execution is
used to decide when to select and schedule operations.

Shafaei and Brunn published an empirical study of a number of dispatching rules on
the basis of a rolling-time horizon approach for a dynamic job-shop environment (progres-
sive) [145], see Section 1.3.6 for more details. The first purpose of the study is to find the
best dispatching rule and the second to investigate the effects of the rescheduling interval
(revision) on performance and examine whether there is a policy that can always improve
performance. In another report, they investigate the robustness of these dispatching rules
in a dynamic and non-deterministic shop environment [146], see Section 1.3.6 for more
details. The effects of the rescheduling interval and operational factors including shop
load conditions and a bottleneck on the robustness of the schedule are studied.

Continuous planning mixes progressive and revision techniques and has been exper-
imented by Chien et al. in a space exploration context [40]. Planning is done on board
to speed the replanning process (revision) when a failure occurs or a science opportunity
is observed. At each time, the system updates the current plan, goals, state, and next
predicted states by using a telescoping-time horizon approach (progressive). When a new
goal is up-linked, the current plan is updated. When a plan failure happens, an iterative
repair procedure that uses a greedy search algorithm, is applied in the short-term horizon
to change allocations, move, renew, or remove actions. An extension of the system was
proposed by Estlin et al. to manage a team of robots [59], see Section 1.3.5 for more
details.

Washington et al. used a proactive-revision planning technique for controlling a plan-
etary rover with limited capacity resources and uncertainty [173]. A nominal flexible

2.6. SUMMARY AND GENERAL COMMENTS 53

and conditional plan (proactive) is up-linked. Upon failure, short-term recovery plans
(revision) can be computed by the state identification module and the resource manager
provides on-board rescheduling capabilities, see Section 1.3.5 for more details.

Lemai and Ingrand proposed a general control architecture that is able to interleave
planning, replanning (revision) and execution of an autonomous system in an uncertain
world [101, 102], see Section 1.3.5. Partially ordered and partially instantiated plans
are generated and allow the insertion of new actions and/or new goals during execution
(progressive).

We present an experimental study in Chapter 5 where mixed techniques are used to
solve dynamic scheduling problems with uncertainty.

2.6 Summary and General Comments
In this chapter, we presented an original typology that can classify research on task plan-
ning or scheduling under uncertainty. Three main families of techniques were proposed:
a revision approach is able to change decisions on line, a proactive approach makes deci-
sions by taking into account uncertainty knowledge, and a progressive approach generates
a solution piece by piece. Each family fits to particular application domains; e.g., if
the domain is critical, then a revision approach can be desirable to guarantee that an
executable solution can always be generated whatever happens at execution time. We
argued these techniques can be combined to tackle complex real-world task-planning or
scheduling problems.

When designing a decision-making system, it is important to analyze the uncertainty
sources of the application in order to know whether we can do with or without a revision,
proactive, or progressive technique. As explained earlier in this chapter, this choice de-
pends on what can happen during execution, what the physical constraints are in terms
of memory and time, and what the requirements are in terms of quality.

The next chapter presents our application domain and shows how these families of
techniques are useful for tackling related problems.

Chapter 3

Application Domain

In this chapter, we present our application domain that is project management. In
particular, we are interested in the construction of dams.
The first section presents concepts of project management and project scheduling.

The second section describes how the construction of a dam is carried out and its sources
of uncertainty. An example of project scheduling problem is detailed in Section 3.2.3.

3.1 Project Management and Project Scheduling
Project management is a management discipline that is receiving a continuously growing
amount of attention [89, 110]. There are a number of industrial and service domains where
organization and work are based on projects; e.g., software engineering, civil engineering,
research-and-development are organized on the basis of projects. A project is similar to
a scheduling problem since it comprises a set of activities that have to be executed using
resources with limited capacities and given precedence relationships. Project management
consists in selecting, organizing in time, and controlling the activities and resources of the
project. Project scheduling , as part of project management, has the objective of (i) setting
the activity start times and (ii) allocating resources to activities. There are a lot of projects
that fail because they are not finished on time, do not respect specifications, and/or they
exceed their budgets.

Budget is exceeded when management deliberately decides to speed up the project
execution; e.g., additional resources are bought and/or overtime is done. Costs can also
increase due to unforeseen event; e.g., some activity durations are longer than expected
such that resources are required longer than initially planned, new resources are required
since the current resources are not sufficient to meet project needs. Such risks are either
completely unpredictable and a revision technique is strongly desirable to handle them,
see Section 2.2, or they are foreseeable and can be taken into account by a proactive
technique to limit their negative effects on budget, time, and/or quality, see Section 2.3.

Project management can be seen as a continuous planning-monitoring-controlling pro-
cess, where some data are gathered and used to compare the observed progress to the
initial plan and some repair actions are performed in case of deviation [110]. This mo-
tivates the design and use of an execution-generation system that monitors execution,
completes and/or revises the current plan to maintain and optimize its cost (budget), its
time (schedule), and its performance (specifications). The main difficulty when designing
such a system is to precisely choose which specific characteristics of cost, time, and per-

55

56 CHAPTER 3. APPLICATION DOMAIN

formance should be monitored and controlled, and within which bounds they should be
maintained.

Notice that a project can be partitioned into several sub-projects that are executed
one after another given intermediate milestones. A progressive approach can then be
applied to quickly generate a plan piece by piece (a piece is the solution of a sub-project)
and avoid too frequent revisions (stability).

The above presentation of project management and project scheduling confirms our
idea that we need to monitor and control execution by mixing different scheduling tech-
niques to cope with uncertainty when managing a project, see Section 2.5. In the next
section, we will illustrate this idea with an example of the construction of a dam wall.

3.2 Construction of Dams

In this section, we describe how the project for constructing a dam unfolds. The main
sources of uncertainty are given and a small example that illustrates a scheduling problem
under uncertainty is proposed at the end.

3.2.1 General Description

During the Ph.D. thesis, we have been in contact with a Moroccan civil engineering
company, Société Générale des Travaux du Maroc (SGTM), who is in charge of designing
and building dams.

In a typical project, SGTM receives a contract specifying the budget, the construction
site, the main tasks to perform, about twenty intermediate milestones, and the final
due date. Usually, such a project lasts about three years and some tasks are due at
intermediate milestones, otherwise SGTM must pay penalty costs that depend on how
late tasks are completed. The project for constructing a dam usually takes place as
follows:

1. roads are constructed to go easily from one place to another in the building site;

2. prefabricated houses for workers are built;

3. a tunnel for diverting water is dug, this tunnel has to be operational before a due
date determined by the hydrological flow of the river;

4. the dam foundations are prepared for supporting the dam wall, it is probable that
they need to be later consolidated by injecting cement in particular places but we
do not know when and where before observing the dam-wall conditions;

5. the wadi, that is, the river bed, is drained at the place where the dam wall is built;

6. a canal is dug and used to drain mud lying above the dam;

7. the dam wall is constructed, a tunnel is dug under it and used to observe the dam-
wall conditions, and upstream and downstream reinforcements are constructed;

8. the diversion tunnel is blocked.

3.3. GENERAL COMMENTS 57

The civil engineering company can agree or disagree to build the dam under the
contractual constraints.

If an agreement is reached, then a plan has to be generated and maintained by SGTM.
The main objectives of the plan are the following: managing risks and having early
warnings the plan may go wrong. For these reasons, SGTM is interested in using software
capable of automatically producing plans that respect the contractual constraints and
that are not sensitive to risks.

3.2.2 Uncertainty Sources

When constructing a dam, we usually have to cope with different sources of uncertainty:

• the water flow of a river changes a lot depending on seasonality. However, some
historical statistics are available to forecast what the water flow is at given moment;

• vehicles and machines used to construct the dam are not fully reliable and can break
down. It is possible to use technical data, such as mean time between failures, to
guess when a machine will probably be out of service;

• the geological conditions of the place where the dam will be built are not known
with accuracy before starting the project and can affect the project duration;

• the civil engineering company must interact with another company, specialized in
hydromechanics engineering, in charge of installing sheetings at some places in the
dam wall. These sheetings are metal frames that will be equipped with floodgates
and hydraulic engines. SGTM cannot continue the construction of the dam wall
above sheetings while they are not installed: there are temporal constraints to re-
spect and the installation of sheetings may be finished later or earlier than expected;

• climate is also a source of uncertainty, in particular the outside temperature and
humidity. Workers cannot perform tasks if the outside temperature is too high and
task durations depend on the outside humidity.

3.2.3 An Illustrative Example

There are alternative rough materials for constructing a dam wall. In case a dam wall is
made of concrete, its construction consists in piling up concrete blocks successively. Such
a dam wall is usually composed of about 150 blocks. Blocks are produced by coffering,
i.e., some quantity of concrete is poured into a coffer. It is not possible to pile a new
block just to one side or on top of a fresh piled block. Time to dry a block depends on
the outside humidity. In addition, concrete has to be produced at about 20◦ Celsius and
has to be poured when the outside temperature is less than 30◦ Celsius.

Figure 3.1 represents a picture from the side of a small concrete dam wall. The 48
concrete blocks are numbered.

3.3 General Comments
When managing the construction of a dam, we have to cope with uncertainty as explained
in this chapter. There are actually several stages when constructing a dam that are

58 CHAPTER 3. APPLICATION DOMAIN

48 47 46 45 44 43 42 41

33 34 35 36 37 38 39 40

32 31 30 29 28 27 26 25

19 20 21 22 23 24

131415161718

7 8 9 10 11 12

6 5 4 3

21

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

������
������
������
������
������

������
������
������
������
������

wadi

sheeting

Figure 3.1: An illustrative example of a concrete dam wall.

dependent on weather and/or geological conditions; e.g., the hydrological flow of the
river and outside temperature are not controllable and imprecisely known and play an
important role when making decisions all along the project. In such a context, we need
a revision technique since there are unexpected events that may occur; e.g., a truck may
break down and we have to use another one. When generating a schedule for such a
project, we can take into account statistical data to make it more robust with respect
to possible perturbations; e.g., if the outside temperature is forecast to be greater than
30◦ Celsius for a week, we can decide in advance to postpone some activities that must
be performed when the outside temperature is less than 20◦ Celsius. In addition, it is
senseless to schedule activities three years in advance since a lot of unexpected events
may occur in the meantime: we need to schedule with a progressive technique that is able
to complete the current schedule on the basis of the uncertainty level; e.g., a schedule is
generated for a horizon of four weeks and is updated every week. This periodicity can
change depending on what construction stage is currently done; e.g., the period is short
if the uncertainty level associated with the current construction stage is high.

When generating a schedule in such a context, we have to take into account alternative
processes; i.e., there are sometimes different possibilities to perform a stage. For example,
the diversion tunnel can be built in two different ways depending on geological and weather
conditions observed during the construction of roads, so required machines are different
and the duration necessary for building the diversion tunnel depends on what machines
are used. It is also desirable to provide the decision-maker with a flexible schedule in which

3.3. GENERAL COMMENTS 59

alternatives are implicitly and explicitly represented, that is, decisions are not made too
early because we do not want to make the solution too brittle, some alternatives are
decided based on observations during execution, and some decisions are made based on
expert knowledge that is difficult to represent and process automatically; e.g., operation
start times are not set in advance or operations to execute are not chosen in advance. Such
a flexible solution can be useful to decide when to make decisions to anticipate execution.

Figure 3.2 is a model representing a part of a dam-construction project. Each operation
is represented by an arc such that the source of the arc represents its start time and the
target of the arc represents its end time. There are temporal constraints, represented by
arcs, between operations; e.g., we cannot drain the wadi, modeled by o11, before preparing
the foundations, modeled by o9. Some operations are executed in parallel with others;
e.g., we build houses, modeled by o5 and o6, while constructing some roads, modeled by
o4. Alternatives are also represented; e.g., the construction of the draining canal can
be performed in five ways, modeled by operations of S2. We decide what operations to
execute based on what weather and geological conditions are observed when starting to
drain the wadi, modeled by o11, and when the observation tunnel is finished, modeled by
o10. This example is presented in detail in the next chapter.

Herroelen and Leus argue that we need a baseline schedule when dealing with multi-
project scheduling problems since a baseline schedule is stable and desirable to coordinate
several projects that are interdependent [103, 84]. They are looking for a schedule that
is able to suppress the propagation of disruptions. In particular, they want to minimize
expected deviations in starting times. It is very important for them to find a stable
schedule since a perturbation may impact the schedules of all projects otherwise.

However, in the context of dam construction, stability is of interest but not the pri-
ority because there is only one project and few interactions between SGTM and other
companies. We are searching for schedules that minimize the probability or the possibil-
ity that the expected cost is greater than the initial budget, in other words, we want to
guarantee a service level. We are looking for trade-off solutions with maximal robustness
with respect to costs and with minimal expected costs.

In the next chapter, we detail our theoretical model that can be used to design a
generation-execution model for tackling scheduling problems with uncertainty, such as
dam-construction projects.

60 CHAPTER 3. APPLICATION DOMAIN

S2

S3

o11 o9

o10

o6o5

o4

Figure 3.2: Simple temporal representation of a dam-construction project.

Chapter 4

Theoretical Model

This chapter presents the first steps towards a generic theoretical model that allows one
to describe the generation and execution of schedules in a non-deterministic envi-

ronment. This model is directly related to the general framework presented in Chapter 2
because it integrates revision, proactive, and progressive techniques. When making deci-
sions in a non-deterministic environment, it is crucial to know when to make decisions,
what information to use to make decisions, and what decisions to make. This schedule
generation and execution model is intended to help answer these questions when dealing
with a dynamic scheduling problem with uncertainty. Some preliminary research work
has already been published in French [165, 163].

The first section of the chapter describes the model expressivity with a list of problem
characteristics that can be addressed. The second section is dedicated to defining formally
the main components of our generation-execution global model, starting from a generic
model of the schedule patterns that we wish to build and monitor. The third section
shows how the generation-execution model is developed on line. The last section presents
a toy example to illustrate our theoretical model.

4.1 Model Expressivity

The proposed theoretical model is designed for application to deterministic and non-
deterministic problems. This model can process a large range of scheduling problems.
The problem characteristics that we can address with this model are as follows:

• an operation can require one or more resources with different quantities, an operation
can also require that a resource is in a given state to execute;

• a resource can be discrete, and/or characterized by a state function and/or an
efficiency function (the processing times of the operations depend on resource effi-
ciencies);

• there can be delays and/or precedence relationships between operations;

• it is possible we do not know precisely the processing time of an operation in advance;
this processing time is a random variable associated with a distribution over its
domain, this can be either a probability distribution or a possibility distribution;

61

62 CHAPTER 4. THEORETICAL MODEL

• resource capacities, states, and efficiencies can change over time and can be associ-
ated with distributions;

• there can be operations that are mutually exclusive; i.e., only a subset of the oper-
ations that are mutually exclusive will be executed, that is related to a particular
condition that will be met during execution; such a condition may be associated
with a probability or possibility distribution; for example, we execute a subset of
operations because the outside temperature at 9:00 A.M. is lower than 30◦ Cel-
sius; we would execute another subset of operations if the outside temperature was
strictly higher than 30◦ Celsius and lower than 40◦ Celsius at 9:00 A.M.; if the tem-
perature was strictly higher than 40◦ Celsius at 9:00 A.M. we would not execute any
operation: one can clearly note that this feature of our model is directly inspired by
conditional planning techniques, and related to the discrete proactive approaches,
see Section 2.3.1.

• there can be an optimization criterion;

• the problem can change over time: new operations can be added or removed, dis-
tributions can change, resource capacities, states and efficiencies can change, and
temporal and resource requirements can change.

Figure 4.1 represents the temporal part of a problem that can be handled by our
model. Operations are represented by arcs labeled with their processing time domains;
e.g., operation o7 has a processing time domain [pmin

7 , pmax
7]. Temporal requirements are

represented by arcs; e.g., there are temporal requirements between the end time of op-
eration o1, end1, and the start time of operation o2, start2. The figure represents an
AND/OR directed graph because some nodes separate mutually exclusive subsets of op-
erations. Conjunctions are represented by arcs connected with small arcs of a circle; e.g.,
operations o4 and o5 might be executed in any order or in parallel. Disjunctions are
represented by arcs that are not connected with arcs of a circle; e.g., operations o12 and
o13 are mutually exclusive. Disjunctions can represent the different ways of attaining a
goal; e.g., the different possible ways of producing a workpiece given the machines of a
workshop. When solving such a problem, our objective is to find a course of action that
is consistent with resource, temporal, and quality requirements.

We believe the basic model is readily applicable to a much wider range of characteristics
with little modification. For example, it would be interesting to handle resources that can
be continuously consumed or produced by operations. Another way of extending the
model would be to address metric requirements; e.g., an operation processing time and
the amount of energy it consumes are related by a mathematical relation. Such extensions
are good areas for future work.

With respect to this model, we assume full observability. That means we can observe
all occurring events; e.g., when an operation with an uncontrollable processing time is
executed we can observe its end time.

In the following, we explain the model with probabilities but this is a particular case
and possibilities could also be used.

4.1. MODEL EXPRESSIVITY 63

[dmin
4,7 , dmax

4,7][dmin
3,4 , dmax

3,4]

[dmin
5,6 , dmax

5,6]

[dmin
3,5 , dmax

3,5] [dmin
6,7 , dmax

6,7]

[dmin
9,10, dmax

9,10]

[dmin
11,1, dmax

11,1]

[dmin
9,11, dmax

9,11] [dmin
ap1,9, dmax

ap1,9][dmin
11,bnd2

, dmax
11,bnd2

]

[dmin
5,bnd1

, dmax
5,bnd1

]

[0, +∞[

[dmin
18,19, dmax

18,19]

[dmin
15,bnd3

, dmax
15,bnd3

]
[0, +∞[

[dmin
1,2 , dmax

1,2]

[dmin
16,17, dmax

16,17]

start4

[pmin
4 , pmax

4]

end4start3

[pmin
3 , pmax

3]

[pmin
6 , pmax

6]

end6start6

[pmin
5 , pmax

5]

start5 end5

start7 end7

[pmin
7 , pmax

7]

end12start12

bc1,1; Pr1,1

S1

bc1,1; Pr1,1

[pmin
12 , pmax

12]

[0, +∞[

bc1,2 = bc1,1; Pr1,2
bc1,1; Pr1,2

[0, +∞[

bc1,1; Pr1,1

start15

S2

[0, +∞[

start10

[pmin
10 , pmax

10]

bc2,1; Pr2,1

end13start13

bc1,1; Pr1,2

[0, +∞[

[pmin
13 , pmax

13]

[pmin
9 , pmax

9]

end9end11

[0, +∞[

bc2,2; Pr2,2

[pmin
11 , pmax

11]

bnd2

bnd1
cnd1

end15

[pmin
15 , pmax

15]

bc2,1; Pr2,1

start14 end14

[pmin
14 , pmax

14]

S3

bc3,2; Pr3,2

start20 end20

bc3,2; Pr3,2

[0, +∞[

[pmin
20 , pmax

20]

bc3,1; Pr3,1

end18start18

[0, +∞

start19

bc3,1; Pr3,1

end19

bc3,1; Pr3,1

cnd2,1; Pr2,1

bc2,2; Pr2,2

end10

[0, +∞[

bc3,3; Pr3,3

bc3,1

Pr3,1

start1

[pmin
1 , pmax

1]

end1 end2

[pmin
2 , pmax

2]

start2

bnd3

rcp2,3

[pmin
17 , pmax

17]
bc2,3; Pr2,3

end16start16

[pmin
16 , pmax

16]

[0, +∞[
end17start17

bc2,3; Pr2,3bc2,3; Pr2,3 bc2,3; Pr2,3

[pmin
19 , pmax

19]

end3 = obs(S1)

start9 = obs(S3)start11 = obs(S2)

Figure 4.1: Temporal representation of a dam-construction project.

64 CHAPTER 4. THEORETICAL MODEL

4.2 Definitions
In this section, we give a description of the type of knowledge about which a schedule
generation and execution system should reason, focusing on the formal representation of
the type of schedule that will be generated and monitored, and then introducing a more
global model allowing one to interleave such generation and execution capabilities.

4.2.1 Scheduling Problem and Schedule Model

The problems of interest with respect to our theoretical model are extensions of scheduling
problems. A typical scheduling problem is composed of operations, available resources
that might be used by the operations, precedence constraints that must be satisfied be-
tween operations (e.g., entailed by a job-shop initial problem, or produced by a planning
engine that had to satisfy causal relationships between effects and preconditions), re-
source constraints that restrict possible allocations. An optional optimization criterion is
usually also provided, but that is out of the scope of this section which focuses on the
representation of the schedule, not on the techniques actually used for producing this
schedule.

At the roots of our model, we need both variables and attributes, the former being
inspired by the constraint paradigm, see Section 1.2.4, the latter by more general Artificial
Intelligence knowledge representation models, especially models that are used in task
planning.

Definition 4.2.1 (variable). A variable is associated with a domain of values or symbols
and is instantiated before or at execution time with one and only one of the elements of
this domain. Its domain does not depend on time.

Definition 4.2.2 (constraint). A constraint is a function relating one (unary constraint),
two (binary constraint) or more (k-ary constraint) variables that restrict the values that
these variables can take.

Definition 4.2.3 (attribute). An attribute is associated with a function that describes
its domain of values or symbols over time: the value of an attribute is hence subject to
change during execution. Note that the function itself that describes the possible values
may be updated during execution.

During execution, a variable will appear at a specific point of the schedule, for instance,
the start time of a specific operation, or between the start time and the end time of a
specific operation that uses a resource. On the contrary, an attribute typically allows the
representation of the environment in which the schedule will be executed: for instance the
outside temperature, the position of a crane, or the number of cranes that are available
on a building site.

Please note that constraints only apply to variables.
As in the Mixed Constraint-Satisfaction Problem framework, see Section 1.3.3, we

distinguish two types of variables in the problem: the controllable variables and the un-
controllable variables.1 Each variable is instantiated by an agent. We basically distinguish

1Controllable variables correspond to decision variables and uncontrollable variables to state variables
in the MCSP framework. Uncontrollable variables are also called contingent variables in the TCSPU
framework.

4.2. DEFINITIONS 65

the two following agents: Nature and the decision agent. The decision agent makes a de-
cision after reasoning about or applying rules on the data of the problem at hand whereas
Nature instantiates the uncontrollable variables. The decision agent can be either a hu-
man being or a computer program depending on problems and applications [133]. For
example, the decision agent can decide when to start pouring some concrete into a cof-
fer but it/he/she cannot decide when the block will be dried. Pouring and drying are
modeled by two consecutive operations as follows: the start time, the duration, and the
end time of pouring are associated with controllable variables, the start time of drying is
associated with a controllable variable, whereas the duration and the end time of drying
are associated with uncontrollable variables.

Definition 4.2.4 (controllable variable). A controllable variable is a variable instantiated
by a decision agent.

One of the issues that depends on application domains is to decide when to instantiate
controllable variables. For example, operation start times are chosen on line only when
previous operation end times are observed because operation durations are imprecise.

Definition 4.2.5 (uncontrollable variable). An uncontrollable variable is a variable in-
stantiated by Nature.

A controllable variable is effectively instantiated when its instantiation is sent by
the execution controller to the actuators of the physical system, see Definition 1.3.1.
Conversely, the execution controller gets the instantiation of an uncontrollable variable
via the sensors of the physical system.

We can similarly define controllable and uncontrollable attributes: during execution
the decision agent can change the current value of a controllable attribute at any time
while the value of an uncontrollable attribute evolves can only be issued by Nature. For
example, the outside temperature is represented by an uncontrollable attribute since we
cannot control the outside temperature and it changes over time. The execution controller
gets the current outside temperature at each tick of the clock but it does not know the
exact temperature in advance.

Moreover, to uncontrollable attributes may be attached distributions of possible values
that give an imprecise knowledge of their values with respect to future. Similarly, to
uncontrollable variables may be attached distributions of the possible values that they
will take. Such distributions may be updated during execution if more information is
gathered (e.g., weather forecast).

We can now define the basic objects of a scheduling problem, namely resources and
operations.

Definition 4.2.6 (resource). A resource r is associated with one or more variables and/or
attributes, that represent its capacity, efficiency, and/or state. Its capacity is the max-
imal amount that it can contain or accommodate at the same time and can vary over
time. Its efficiency describes how fast or how much it can do with respect to its avail-
able capacity. Its state describes its physical condition and can change over time. These
variables/attributes are either controllable or uncontrollable. r is also associated with a
global resource constraint ctr involving its variables and the variables of the operations
that require it. The scheduling problem comprises a finite set of resources noted R.

66 CHAPTER 4. THEORETICAL MODEL

For example, the capacity of a car in terms of passengers is four because it can basically
carry a maximal number of four passengers at the same time. A resource constraint
usually limits the maximal number of operations that execute in parallel because of the
finite capacity or the state of the resource. For example, the efficiency of a car is its speed
if we assume its speed depends on the number of passengers it carries. The efficiency of
a resource is modeled by an attribute. For example, the state of a car is the place where
it is.

A crane can be modeled by a unary resource; i.e., its capacity equals one since it
cannot move more than one concrete block at a time. A concrete mixer can be modeled
by a discrete resource whose efficiency changes over time; i.e., its production of concrete
per hour depends on how many workers can prepare concrete. The capacity of a resource
can vary over time; e.g., a crane is not available for two days every three months for
maintenance reasons.

One should notice that another less usual possibility is to model the state of the world
as a set of state resources; e.g., the outside temperature is modeled by a resource that
can be in only one of three states depending on time, the three states are hot, mild, and
cool. The budget of a project can be modeled by a resource whose the capacity decreases
when we make particular decisions; e.g., we decide to buy an electrical concrete mixer
instead of a petrol-powered concrete mixer. This resource is either continuous or discrete;
i.e., the capacity of this resource decreases either continuously during execution or not
continuously each time an operation finishes. We assume resources are discrete in the
following.

Definition 4.2.7 (operation). An operation o = 〈starto, po, endo, CT o〉 is defined by three
variables: a start time variable starto, a processing time variable po, and an end time
variable endo. po and endo are either controllable or uncontrollable. o is also associated
with a set of resource constraints CT o that involve the variables of the resources it requires.

In a constraint-based model, we usually post the following constraint for each opera-
tion: endo − starto ≥ po because we propagate the bounds of the variable domains. Of
course, constraints of any type between variables can be posted on our scheduling problem
(allocation constraints, sequencing constraints): describing them in detail is out of the
scope of this section.

So, our scheduling problem will basically be composed of resources, operations, and
constraints relating them, with possibly additional attributes describing the state of the
world.

From the basic definitions in the previous section, a schedule generation algorithm,
whatever it is, is expected to issue a schedule, which will in turn be executed in the
real world by an execution algorithm. In order to fit the global framework described in
Chapter 2, the schedule should be as proactive as one wishes, which means additional
constraints will have to be posted by the schedule generation algorithm to (more or less)
set resource allocations, make sequencing decisions, and set precise start times. Hence we
do not need to add anything to our model to represent what we have called continuous
flexibility, see Section 2.3.1.

But in order to address discrete (conditional) flexibility as well, we need to be able to
represent mutually exclusive alternatives. That is why we introduce conditions that are
subsets of variables related by logical and/or mathematical relationships.

4.2. DEFINITIONS 67

Definition 4.2.8 (condition). A condition cond = 〈func, [atw]〉 is a logical and/or math-
ematical relationship func in which at least one variable and/or attribute is involved. It
may be associated with an optional active temporal window that is an interval atw = [st, et]
between two time-points st and et in the current schedule. If st = et, then it means the
condition must be met at a precise time-point in the schedule.

A condition can involve characteristics of the distributions of uncontrollable variables
or attributes; e.g., for a probabilistic problem the time period between the current time
and the mean end time of operation o3 must be greater than the mean processing time
of operation o4. A condition can be expressed with conjunctions and disjunctions of
conditions; e.g., the capacity of resource r3 must be greater than the capacity of resource
r2 at the starting time of operation o3, AND the end time of operation o1 must be less
than the end time of operation o3: 〈cap(r3) > cap(r2), so3〉 AND 〈end(o1) < end(o3), ∅〉,
where ∅ means there is no active temporal window. Notice that cond can become true
either synchronously or asynchronously: the former if atw is a single time-point and the
latter arises if atw is an interval.

A typical example of a condition is what we will call a branching condition; i.e., a
branching condition is a condition that will be attached to one of mutually exclusive sets
of operations (see below). Such a condition will be synchronously checked at a specific
time-point that we will call a branching node.

We propose the following recursive definition of a schedule to describe our model with
respect to these particular mutually exclusive sets of operations.

Definition 4.2.9 (schedule). A schedule S is either
• void S = ∅, or
• S = 〈oS , {CT S}∗, },S ′〉 is an operation oS partially ordered via constraints in {CT S}∗
to a schedule S ′, or
• S = 〈bndS , {rcpS}∗, nbS , cndS〉 is a set of nbS mutually exclusive recipes; i.e., mutually
exclusive recipes represent different ways of attaining the same goal, as defined below; such
recipes follow a branching node bndS and converge on a converging node cndS .

Definition 4.2.10 (recipe). A recipe rcp = 〈S, Prrcp, bcrcp〉 is a schedule S associated with
a probability of being executed Prrcp and a branching condition bcrcp: it will be executed if
and only if bcrcp is true. A finite set of recipes is noted RCP.

A recipe can describe one of several possibilities for performing an action; e.g., a
product can be made in different ways that are mutually exclusive.

The first two ways of defining a schedule are just two alternatives to define recursively
a classical partially ordered schedule without alternatives. The third introduces parts of
a schedule that divide, at some given time-point, into mutually exclusive recipes: each
recipe has a given probability of being executed, and will be executed if a branching
condition holds at that point.

At execution time, for each set of mutually exclusive recipes, only one will be executed.
It should be noted that conditions must be designed such that they are actually mu-

tually exclusive and cover all possible cases; e.g., it is raining and it is not raining are
two mutually exclusive conditions, temperature is below 30 degrees, temperature is between
30 and 40 degrees and temperature is above 40 degrees are three mutually exclusive con-
ditions. Moreover, the sum of the probabilities of all recipes departing from the same
branching node should equal 1.

68 CHAPTER 4. THEORETICAL MODEL

The previous recursive definitions are actually constructive definitions that allow one
to build a schedule piece by piece, building sequences of operations that are then composed
into a set of mutually exclusive recipes, this set being in turn integrated into a sequence
that is in turn one of several mutually exclusive recipes, and so on: we actually have a
way of nesting alternatives within alternatives, as the example of Figure 4.1 on page 63
shows it with S2 and S3.

Such a schedule integrates both continuous and discrete flexibilities. It can be a
flexible conditional plan produced by a procedure that has solved a task-planning problem
for instance. Still, there can remain decisions to make: operation start times are not
necessarily set in time, resources are not necessarily allocated to operations, resource
and/or temporal conflicts are not necessarily resolved, and there are possibly mutually
exclusive recipes.

For tractability reasons, we assume there is no temporal constraint between an oper-
ation that belongs to a recipe and another operation that does not belong to this recipe.
However, some precedence constraints can be added to constrain branching conditions to
be observed before their related recipes would be executed; e.g., a precedence constraint
with dmin

11,bnd2
≥ 0 is added between end11 and bnd2 to guarantee that bc2,1 will be observed

before executing schedule S2, see Figure 4.1 on page 63. dmin
11,bnd2

is the minimal temporal
distance between end11 and bnd2.

Some nodes of the global schedule SΠ are observation nodes ; i.e., attributes involved
in the branching conditions are observed at observation nodes; e.g., we check the tire
pressure when we start a trip and want to travel either by car or on a bicycle.

start11 is actually an observation node since bc2,1 is observed when operation o11 starts.
Draper et al. proposed C-BURIDAN [52], a planner that can get feedback from performed
actions and reason about this. C-BURIDAN allows the execution of some actions to be
contingent on the outcome of previous actions, see Section 1.3.5. For example, a plan
might state that a "dry-gripper" action was to be executed only if a previous attempt to
pick up a block failed. Tsamardinos, Vidal, and Pollack [158] also worked on conditional
task planning and introduced observation nodes in their constraint-based formalism that
can check the dynamic consistency of a conditional plan before execution. It is important
to determine when an observation has to be made because we have to guarantee that
whatever happens during execution the selection of what operations to execute based on
observations is made in advance and does not stop execution.

To limit combinatorics we assume that any pair of schedules 〈Si,Sj〉 that both contain
mutually exclusive recipes are not in parallel; e.g., S1 is executed before S2 on Figure 4.1.
In case Si and Sj were in parallel, it would be computationally more expensive to update
distributions because we would have to consider all possible sequences of the recipes
contained in Si and Sj to make decisions.

Figure 4.1 represents the temporal constraint network with uncertainty and alterna-
tives obeying the above model, that could be generated and later on executed.

Resources, causal relations, the optimization criterion, and resource constraints are
not represented in the figure for legibility reasons. Some temporal constraints do not
appear in this figure for the same reasons; e.g., time windows, ready dates, due dates do
not appear on the figure. Operation start times and operation end times are represented
by time points that are small vertical lines on the figure. Branching and converging nodes
are represented by small black filled circles. White head arrows represent precedence
relationships and black head arrows represent operation processing times. The domains

4.2. DEFINITIONS 69

of these variables are represented close to arrows. Each operation oi is associated with
an interval [pmin

i , pmax
i] that represents the domain of its processing time; for example, o1

can execute between pmin
1 and pmax

1 time units. Each temporal relationship between the
end time of oi and the start time of oj is also associated with an interval [dmin

i,j , dmax
i,j].

dmin
i,j and dmax

i,j are the minimal temporal distance and the maximal temporal distance
between the end time of operation oi, endi, and the start time of operation oj, startj,
respectively. For example, o1 and o2 are related by a precedence relationship such that
o2 cannot start before dmin

1,2 time units after the end of o1 and o2 cannot start after dmax
1,2

time units after the end of o1. When a temporal constraint or an operation belongs to
a recipe, the letters Pr appear close to its arrow. For example, operation o16 belongs to
recipe rcp2,3 whereas operation o10 does not belong to a recipe. Any temporal constraint
associated with a branching condition is indicated by the two letters bc, close to its arrow;
e.g., the temporal constraint between o16 and o17 is associated with branching condition
bc2,3.

Schedule S1 is composed of two mutually exclusive recipes and each of them comprises
only one operation. For example, S1 may represent the two ways of digging the diversion
tunnel of a dam depending on the geological and weather conditions, this is expressed by
bc1,1. To estimate the geological and weather conditions and choose the way we have to
dig and study ground samples, this is performed by o3. bc1,1 is thus met or not met at
the observation node end3; this is indicated by label end3 = obs(S1) on the figure.

For example, schedule S2 consists in constructing the draining canal of the dam and
the way it is dug depends on geological and weather conditions observed at the observation
node start11. This is the reason why o11 is executed before S2.

4.2.2 Generation and Execution Model

As for now, we have only defined a model that a proactive method could use to generate
a flexible schedule that would then be entirely sent to the execution controller. To make
it possible to use revision and progressive techniques, we need to design a global model
interleaving generation and execution. Thus, we need to design a system that is able to
decide when to make decisions, what decisions to make, and how to make decisions.

This system must be able to monitor execution to decide when to make decisions. This
monitoring can be implemented on specific event occurrence or condition meeting. Such
events or conditions are used to make decisions off and on line; e.g., select a sub-problem
and solve it. Events and conditions are monitored during execution, and if such an event
occurs or such a condition is met, then we know we have to make or change decisions;
e.g., when operation o3 with an imprecise processing time ends (an event occurs), then
resource r1 operation o3 has required becomes available, we have to decide what operation
to execute next on r1 and when this operation starts. Once we know we have to make
decisions, we have to decide what types of decisions to make before making decisions. An
execution algorithm is in charge of monitoring execution, making decisions accordingly,
and starting to run a generation algorithm when a particular condition is met; e.g., when
the capacity of a resource becomes too low, a particular algorithm is run and changes the
allocations of a subset of operations.

When we use such a system, execution and decision-making are interleaved. These
requirements come from the fact that solutions are executed in a non-deterministic envi-
ronment, and our problem is dynamic and composed of alternative recipes for example.

70 CHAPTER 4. THEORETICAL MODEL

To help the design of such a monitoring and decision-making system, we propose a generic
generation and execution model that develops dynamically. This model can be instanti-
ated to create a system capable of solving a problem as complex as or simpler than the
one presented in the preceding section.

We first need to introduce a new type of condition, following our general definition
in the previous section: an activation condition is a condition that may become true
synchronously or asynchronously, and which as a consequence activates a new generation
step that will modify the current schedule. A branching condition is exactly the opposite
as it does not modify the current schedule but merely guides the execution algorithm into
one of several alternatives. As we will see, such an activation condition is needed both in
revision and progressive approaches.

Typical examples of activation conditions are a violation of some constraints in the
current schedule, or the arrival of new information, such as a new goal or a critical
resource that is no longer available (such conditions will imply a revision mechanism),
or more simply a condition stating that our horizon becomes too short and we should
include a new set of operations in our schedule (such conditions will imply a progressive
mechanism).

The generation and execution model can be represented by an automaton whose each
state is called an execution context.

Definition 4.2.11 (execution context). An execution context ect = 〈Sect, αect〉 is com-
posed of a schedule Sect and an execution algorithm αect.

An execution context is actually composed of a part of the complete schedule model.
In addition, an execution context may not contain all recipes starting from a branching
node, but only those with highest probabilities: another example of condition is hence
that when the probabilities of the remaining recipes become high enough, they should be
included in the schedule.

αect makes the remaining scheduling decisions. In case of pure execution approach,
such as dispatching, αect makes all decisions: allocation, sequencing, and operation start
time decisions.

The execution algorithm αect cannot change already made generation decisions and
it makes all its scheduling decisions at the last time; i.e., its decisions are made greedily
and executed without anticipation during execution; e.g., αect decides what resources to
allocate to operations based on a dispatching rule. It also makes branching decisions, such
as what recipe to execute, based on what happens during execution; e.g., an operation
processing time is imprecise and αect has to wait for the occurrence of the operation end
time to decide which subset of operations to execute next. In other words, αect is a reactive
algorithm; i.e., αect does not revise the current schedule, it is not a proactive algorithm
and it does not use a progressive approach, see Chapter 2.

Our automaton also includes transitions for going from one context to another one,
they are called generation transitions.

Definition 4.2.12 (generation transition). A generation transition
gtr = 〈ectsource

gtr , ecttarget
gtr , condgtr, βgtr〉 is composed of a source execution context ectsource

gtr ,
a target execution context ecttarget

gtr , an activation condition condgtr, and a generation al-
gorithm βgtr.

4.2. DEFINITIONS 71

During execution, a generation transition is active when its condition condgtr is ac-
tive, see Definition 4.2.8; e.g., we assume the generation transition gtr2 is fired whenever
resource r5 breaks down and the condition associated with gtr2 is only active during
atwcondgtr2

; gtr2 is associated with a revision generation algorithm; if we know that r5 is
required by operation o2, then gtr2 can be fired only if r5 breaks down during atwcondgtr2

,
that is to say only if the execution of o2 overlaps with atwcondgtr2

.
Note that the default situation for a temporal window of such an activation condition

is the whole context; i.e., the temporal window is the interval between the start point and
the end point of the context.

Template generation transitions are defined off line and each of them is an implicit
description of many active generation transitions in an automaton model; e.g., a template
generation transition associated with a resource constraint rct1 may be active each time
one of the operations involved in rct1 is executing and allocated to the resource involved
in rct1.

A generation transition is fired when its activation condition is met, and can only be
fired when it is active. It can be fired at a given time point chosen in advance; e.g., we may
want to select and schedule a new subset of operations periodically. It can alternatively be
fired at a time instant that is not known in advance; e.g., a resource breaks down and we
have to change allocation decisions. At any instant, there are never several synchronously
generation transitions fired simultaneously. If there is more than one generation transition
fired at a given point in time, then the generation transitions that are asynchronously fired
have priority over the transition that is synchronously fired; e.g., a resource breaks down
at the same time as we have to select a new subset of operations (the selection is periodic
for example). However, we assume that the probability that two or more asynchronous
generation transitions are fired at the same time is very small.

When a generation transition gtr is fired at time ftime, its associated generation
algorithm βgtr is applied. βgtr generates a new execution context, called target context
ecttarget

gtr , from the current execution context, called source execution context ectsource
gtr , and

from the complete problem model. The undecided part of ecttarget
gtr is then addressed by

its execution algorithm αect that has been set by βgtr from a library of template execution
algorithms. βgtr is run off line and/or on line, otherwise βgtr is only run off line. When we
use a revision approach purely or mixed with other approaches, βgtr is only run on line.
βgtr can decide all or a part of decisions; i.e., βgtr can choose what recipes to execute, decide
allocations and operation sequences, and/or set precisely operations in time. When we
use a revision approach, βgtr is also able to change decisions that are not already effective,
see Definition 1.3.1.

The generation algorithm of a generation transition and the execution algorithm used
to make the remaining decisions of the target context are complementary. The generation
transition is actually in charge of generating a context; it produces an execution algorithm
in particular. It should also be noted that branching conditions are used by execution
algorithms while activation conditions are associated with generation algorithms.

Figure 4.2 represents an execution context ect and two generation transitions gtr1 and
gtr2. Note that some elements of the context are not represented, such as resource con-
straints for example. This figure is a snapshot of the automaton created with respect to
the problem model presented in Figure 4.1 on page 63. This snapshot is taken during the
execution of o3. There are two recipes that have to be discriminated based on meeting
either bc1,1 or bc1,2. The domains of temporal constraints are not represented but we

72 CHAPTER 4. THEORETICAL MODEL

assume a subset of them have been reduced by a propagation algorithm (included in the
execution algorithm) with respect to their initial domains. We assume that a subset of
operations have been assigned to resources. The operations included in ect have been se-
lected based on the temporal horizon, the uncertainty horizon, and/or their probabilities
of execution: a progressive approach has been applied, off or on line. Note that a prece-
dence constraint has been added by the generation algorithm between o4 and o6. The
execution algorithm αect makes the remaining scheduling decisions; e.g., it decides the
remaining allocations and when to start operations. Generation transition gtr1 would be
fired if one of the resources required by o3 broke down for example. gtr1 is associated with
a revision algorithm. Generation transition gtr2 would be fired if the expected makespan
updated during the execution of o3 diverged too much with respect to its indicative value
computed when generating context ect for example. gtr2 is associated with a revision
algorithm.

��
��
��

��
��
��

o5

ect

o6

o4o3

o13

o9

gtr1 gtr2

o12

bnd1 cnd1

Figure 4.2: An execution context with two active generation transitions.

4.3 Schedule Generation and Execution

Our representation is inspired by execution strategy for task planning with real-time
systems [148] where execution is controlled. We use an automaton to design a generation-
execution procedure in the context of scheduling with alternatives while an automaton
can be used for instance to check whether a plan is consistent [76] in task planning. In
this section, we explain how the generation of a schedule takes place, how the execution
of a schedule unfolds, and how the generation and execution processes are interleaved
during execution.

4.3. SCHEDULE GENERATION AND EXECUTION 73

Our first assumption is that uncertainty level decreases when executing a context.
Ergo, we leave some decisions to the execution algorithm to limit the computational
effort that would be used to revise decisions that would have been made too early, and the
perturbations and instability due to such revision. Decisions that can be made in advance
because they concern variables with low uncertainty are taken by generation algorithms,
while remaining decisions will be taken later either by generation or execution algorithms
when their uncertainty will be lower.

Our second assumption is that dynamics of the underlying controlled physical system
are low enough with respect to the time allotted to the reasoning system to search for
solutions on line. Therefore one has enough time to find at least one solution, if not the
optimal one. Generation algorithms should be anytime; i.e., generation algorithms should
be able to produce a solution whose quality increases with search time. In principle, the
decisions made by the generation algorithms that use proactive and/or progressive ap-
proaches are of better quality with respect to an optimization criterion than the decisions
made by execution algorithms and the generation algorithms that use revision approaches.
The former have more time to reason and can choose the best solution among a set of
solutions whereas the latter are greedy or can not explore a large part of the solution
space and return the first solutions they find.

When tackling a new problem, the first thing to do is to create template genera-
tion transitions; i.e., we have to design conditions to monitor execution and generation
algorithms to generate schedules.

We propose the following, non-exhaustive list of conditions that can be associated with
generation transitions:

• the current time equals a particular value; e.g., when we want to select and schedule
a subset of operations periodically;

• if not all recipes have been generated, because we use a maximal coverage approach
for example, see Section 2.3, for which we have only developed the recipes that
cover up to x% of the possible executions, then when the probabilities associated
with recipes change, new recipes may need be developed to maintain the intended
coverage;

• the anticipation horizon, that is the time period between the current time and the
maximal operation end time among all the selected operations, becomes too small;

• the uncertainty level becomes low enough; e.g., when the maximal standard devia-
tion of the probability distribution associated with the operation end time among
all the selected and not executed operations becomes small enough, see Chapter 5;

• the expected quality decreases or increases too much with respect to a reference
value; e.g., the cumulative sum of expected operation tardiness is too big or the
expected number of late operations becomes too high;

• the problem changes (it is a dynamic problem): new sets of operations must be
generated; e.g., we have to meet a new goal.

Note that the conditions related to anticipation and uncertainty horizons are particu-
larly well suitable for implementing a progressive approach for which subsets of operations

74 CHAPTER 4. THEORETICAL MODEL

are incrementally selected and scheduled. There is also no limitation to implementing a
proactive technique since it depends on how distributions are used and what optimiza-
tion criteria are used by the generation algorithms to select robust solutions; e.g., it is
possible to use a deterministic approximation of the problem and use simulation to filter
solutions when dealing with probabilistic problems, see Chapter 5 for example. Note also
that the last item of condition can be associated with generation transitions that revise
the partial or complete schedule included in the current context by changing decisions.
Any constraint of our model that is violated during execution has to be associated with
a generation transition that changes the already made decisions if we want an adaptive
generation-execution system; e.g., a machine breaks down or the memory for storing data
is almost full.

It is also important to endow the automaton model with a procedure that updates dis-
tributions during execution periodically and when events occur, because some conditions
may only be met once distributions are updated.

One of the generation algorithms should be designed to select a subset of operations
that are used to reason and make decisions. The selection can take into account the
time horizon, the uncertainty level, and the probabilities associated with the mutually
exclusive recipes.

When the selection is done with respect to the time horizon, we mean that the selec-
tion of operations starts when the anticipation horizon becomes too small and stops when
the time period between the current time and the ends/starts of the selected operations
is long enough. When selecting operations with respect to uncertainty level that signifies
that we select the operations whose uncertainty level is not too high with respect to a
threshold; e.g., an operation is selected if the standard deviation of the probability distri-
bution associated with its end time is not too high with respect to a threshold. However,
we cannot delay an operation again and again because there is too much uncertainty
associated with its execution, otherwise the quality decreases. We thus have to take into
account both quality and uncertainty level when selecting operations.

In case there are mutually exclusive recipes and a maximal coverage approach has been
adopted, the selection takes into account the associated probabilities; i.e., the operations
of a recipe are selected if their probabilities of being executed are high enough with respect
to the maximal coverage threshold.

This selection procedure can limit the space and time complexities of the sub-problem
to solve because the size of its search space is limited. This is an important property since
search time and memory can be limited in a number of application domains; for instance,
when such a decision-making system is implemented on board of an autonomous system,
such as a satellite.

Our automaton model comprises only one execution context at any time. In case a
generation transition is fired, a new execution context is generated and the old context
is removed from the automaton. This automaton develops dynamically and we do not
know a priori the number of execution contexts that are going to be generated during
execution, what generation transitions are going to be fired, and the precise time instants
at which they are going to be fired during execution, apart from particular synchronous
generation transitions that are fired at predicted precise time instants.

To summarize the behavior of our automaton model, we can remember that each con-
text contains a partial flexible baseline schedule that an execution algorithm instantiates,
and that a generation algorithm modifies or completes with respect to what effectively

4.4. A TOY EXAMPLE 75

happens during execution. Any general resolution approach that has been identified in
Chapter 2; i.e., a revision technique, a proactive technique, a progressive technique, or any
combination thereof can be implemented by instantiating such a model: there are gener-
ation transitions that are responsible for revising schedules, other generation transitions
select new sub-sets of operations to complete schedules, and a generation algorithm can be
designed to produce more or less proactive schedules. Chapter 5 presents an instantiation
of this automaton model for addressing scheduling problems with probabilistic processing
times.

In the next section, we present a toy example that demonstrates how such an automa-
ton model is instantiated when using a mixed approach.

4.4 A Toy Example
This section presents a toy example that shows how our generation-execution model is
applied in practice. The following toy example is inspired by our application domain, see
Section 3.2.

We assume we have to perform a set of tasks:

• construction of three roads road1, road2, and road3;

• construction of two houses house1 and house2;

• digging of a tunnel in one of two alternative ways tunnel1 and tunnel2 depending
on geological conditions observed at the end of road1;

• preparation of dam foundations foundation.

In addition, we assume we can use two trucks and each task requires one of them except
house1 that requires both. There are precedence relations between tasks, due dates, and
a tardiness-cost function. Task durations are imprecise and modeled by probability dis-
tributions. Our objective is to generate a schedule that minimizes the expected tardiness
cost.

Figure 4.3 represents the temporal constraints between tasks of this small dam-con-
struction project. This is a directed AND/OR graph. Each box symbolizes a task and
the box lengths depend on task durations. Arcs represent precedence constraints between
tasks; e.g., road2 must start after the end of road1. Conjunctions are represented by arcs
connected with small arcs of a circle; e.g., tasks house2 and road2 might be executed in
any order or in parallel. Disjunctions are represented by arcs that are not connected with
arcs of a circle; e.g., tasks tunnel1 and tunnel2 are mutually exclusive. Each recipe is
associated with a probability of being executed that may vary during execution.

When creating a generation-execution model for this toy problem, the first phase
consists in deciding whether we want to monitor schedule execution. Since our knowledge
about uncertainty is limited to probability distributions, we want to be able to change
decisions when expected tardiness cost deviates too much from its baseline value. In
addition, we want to be able to make decisions on a gliding-time horizon to limit our
commitment. For these reasons, we need to monitor schedule execution. We decide to
design two template generation transitions. The revision generation transition is active
during execution, whereas the progression generation transition is active as long as there

76 CHAPTER 4. THEORETICAL MODEL

house1 house2

road2road1 road3

tunnel1

tunnel2

foundation

Figure 4.3: Temporal representation of a small dam-construction project.

is at least one task that is still not scheduled. We decide to use the same execution
algorithm for any execution context. This execution algorithm fixes task start times as
early as possible.

The first execution context ect1 is generated off line since we need to schedule at
least one task before starting execution. Figure 4.4 represents ect1. Notice that ect1 only
includes a subset of tasks since our progression generation algorithm makes scheduling
decisions on a short-term horizon. tunnel1 is scheduled because its probability of being
executed is higher than the one associated with tunnel2 at this time. In addition, two
additional precedence constraints are included in ect1 as we cannot use more than two
trucks at the same time: road2 starts after the end of house1; house2 starts after the end
of road2 . These sequencing decisions are made to minimize the expected tardiness cost
given probability distributions.

We start executing ect1. During the execution of road1, the probability associated with
tunnel1 decreases, so the probability associated with tunnel2 increases. These changes
activate the progression generation transition and a new context ect2 is generated. Fig-
ure 4.5 represents ect2 that includes both tunnel1 and tunnel2.

When road1 finishes, we observe geological conditions and choose tunnel2 accordingly.
Figure 4.6 represents ect2 at this time. Note that the branching node disappears in ect2.

The execution of ect2 continues until we observe that the mean end time of house1 is
later than predicted in such a way that house2 is postponed and the expected tardiness
cost increases too much with respect to its baseline value. This activates the revision
generation transition that creates a new context ect3. Figure 4.7 represents ect3, where
road2 is now sequenced after house2.

We are now executing ect3. When house2 is executing, the progression generation
transition is activated since we need to select and schedule new tasks to maintain the lead
of generation over execution. A new context ect4, which includes all tasks, is generated,
see Figure 4.8. Notice that the template progression generation transition is no longer
active as all tasks have now been scheduled.

We do not develop this example model further since the rest would not illustrate other

4.4. A TOY EXAMPLE 77

house1 house2

road2road1

tunnel1

ect1

gtrprogression

gtrrevision

Figure 4.4: Execution context generated before starting execution.

�����
�����
�����

�����
�����
�����

house1 house2

road2

tunnel2

road1

tunnel1

ect2

gtrprogression

gtrrevision

Figure 4.5: Execution context generated during the execution of road1.

78 CHAPTER 4. THEORETICAL MODEL

�����
�����
�����

�����
�����
�����

house1 house2

road2

tunnel2

road1

ect2

gtrprogression

gtrrevision

Figure 4.6: Execution context generated when road1 ends.

����
����
����

����
����
����

���
���
���

���
���
���

road2

house2

road1

tunnel2

house1

ect3

gtrprogression

gtrrevision

Figure 4.7: Execution context generated during the execution of house1.

4.5. SUMMARY AND GENERAL COMMENTS 79

��
��
��

��
��
�������

�����
�����

�����
�����
�����

������
������
������

������
������
������

road2road1

house1

road3

house2

tunnel2

foundation

gtrrevision

ect4

Figure 4.8: Execution context generated during the execution of house2.

characteristics of our generation-execution model.

4.5 Summary and General Comments

In this chapter, we presented our theoretical generation-execution model. In the first
section, we informally described how expressive this model is. In the second section, we
gave definitions that are necessary to define our model. In the third section, we described
how generation and execution are interleaved with our model. In the fourth section,
we illustrated our model with a toy example inspired by our application domain. This
example demonstrates how our model can be instantiated to mix revision, proactive, and
progressive generation-execution techniques.

Of course, this model is not completely described; for instance, all types of constraints
are not made explicit. More than that, we have intentionally left apart optimization
concerns: what types of optimization criteria could be modeled, and what would be
the properties of our model with respect to stability and robustness issues for instance?
Actually, our model is only a representation model that does not address reasoning issues;
i.e., what there really is within generation and execution algorithms, our intention was
indeed merely to show how and where proactive, revision, and progressive techniques
should appear and interact with each other in a system that would interleave generation
and execution of a schedule, which we have tried to design as generic as possible.

This model is open and could be extended in different directions. For example, we
could develop generation algorithms that can deal with causal relationships.

The combinatorial problems that can be solved by using this model can be composed
of causal relationships between its data. These causal relationships can be expressed with
conditional probability distributions, such as in a Bayesian network, see Section 1.3.3; e.g.,
the processing time or the distribution of the processing time of an operation o1 depends
on the outside humidity when we start executing o1 and we do not know in advance
the outside humidity with accuracy. There may be conditional probability distributions

80 CHAPTER 4. THEORETICAL MODEL

depending on time as well.
A set of mutually exclusive recipes can be seen as a sub-goal that is reached when one

of its mutually exclusive recipes is chosen to be executed from the task-planning point
of view. Thus, the problem we can tackle with this model lies somewhere in between
task planning and scheduling since it comprises mutually exclusive recipes. A future work
would consist in extending the definition of the problem with sub-goals. A thought about
the rules to insert operations or recipes into the schedule and to remove operations or
recipes from the schedule would be useful. The definitions of an operation and a recipe
would be also extended by introducing preconditions and effects.

In other words, to design this model, we have been inspired by task planning and in
particular, conditional task planning, see Section 1.3.5. However, this model is used in
the context of scheduling. We could really bridge the gap between scheduling and task
planning by integrating more aspects of task planning in this model.

The next chapter describes our experimental system, the scheduling problems un-
der uncertainty we have tackled by implementing instantiations of the theoretical model
presented in this chapter, and some commented results.

Chapter 5

Experimental System

In Chapter 2, we presented a review of planning and scheduling under uncertainty and
it was noted there are currently few scheduling systems that can tackle complex prob-

lems under uncertainty with mixed approaches. We are thus motivated to design and
implement a scheduling system in which combined solving techniques are applied off line
and on line to solve large-scale scheduling problems with uncertainty. In this chapter,
we propose such a system that is actually an instantiation of the theoretical automaton
model presented in Chapter 4.

The first section of this chapter presents the scheduling problem we tackle. The second
section we detail the architecture of our prototype, the resolution techniques implemented,
how it interleaves generation and execution, and its parameters and indicators. The
third section describes the revision-proactive approach that is integrated in our prototype
and an experimental study. The fourth section is dedicated to the progressive-proactive
technique that is implemented in our prototype. The fifth section discusses general aspects
of our experimental system and the last section summarizes the chapter.

5.1 Scheduling Problem

We are interested in scheduling problems with probabilistic operation durations; i.e., op-
eration end times are observed during execution. Moreover, resources may break down:
for each resource, the duration between two consecutive breakdowns is probabilistic and
breakdown durations are also probabilistic. In addition, there are alternative unary re-
sources; i.e., an operation can require one of a number of resources. In other words, we
address job-shop problems with general allocation, probabilistic operation durations and
uncertain resources.

The problem is a randomly generated n × m scheduling problem and consists in n
process plans. Each process plan pi consists in a sequence of m operations (oij). For each
operation, a given number k of randomly picked alternative resources constitute the set
of possible resources. There are n ×m operations to be processed and the total number
of resources is equal to q. A process plan is thus defined as a job whose each operation
will be executed on one of k alternative resources.

We assume operations are not preemptive.

81

82 CHAPTER 5. EXPERIMENTAL SYSTEM

5.1.1 Costs

This scheduling problem is an optimization problem where the objective is to find the
schedule that minimizes the average global cost. We distinguish two types of schedule
costs: tardiness and allocation costs.

Tardiness Cost

Each process plan pi ∈ P is associated with a due date duei. If the last executed operation
of pi finishes later than duei, then a cost tardiCosteffi = tardieffi × φi is incurred, called
tardiness cost. tardieffi depends on how late pi finishes: tardieffi = max(endpeff

i − duei, 0),
where endpeff

i is the effective end time of pi, observed during execution. If pi finishes
earlier than or at duei, then tardieffi is equal to zero. Tardiness costs increase linearly
with respect to how late process plans finish: a weight, φi, is applied to each time unit
after the due date that the process plan has not yet finished. A schedule is associated
with a tardiness cost Ktardiness defined as follows.

Ktardiness =
∑

∀pi∈P

tardiCosteffi

Allocation Cost

Another cost, called allocation cost, is associated with each resource allocation: when
a given operation oij ∈ O is executed with a given resource rl ∈ Rij, it incurs a cost
allocCostijl. Note that allocCostijl is not completely random since it depends on resource
rl and there are more or less cheap resources. A schedule is defined by a set of allocations
and associated with an allocation cost Kallocation: each operation oij is effectively allocated
to a resource reff ∈ Rij and this allocation costs allocCosteffij .

Kallocation =
∑

∀oij∈O

allocCosteffij

Global Cost

The global cost K represents the whole cost of a solution; this cost takes both allocation
and tardiness costs into account. It is formally defined as:

K = Kallocation + Ktardiness

Each scheduling problem is characterized by a maximal global cost, Kmax, that defines
an upper bound with respect to the schedule costs. We want to maximize the probability
that the global cost is less than the maximal global cost; this can be formally expressed
as follows.

max Pr(K ≤ Kmax)

Note that tardiness and allocation costs are antagonistic since the tardiness cost is
likely to be high if we only want to reduce allocation cost by choosing systematically the
cheapest resources when allocating operations, and conversely the allocation cost is likely
to be high if we only take tardiness cost into account since this increases the likelihood
that more expensive resources will be made so that operations can be done in parallel.

5.2. ARCHITECTURE 83

met?

condition

progress.

selection
of a sub-problem

met?

condition

revision

solver

world
simulator

controller

decisionsobservations

flexible

scheduledecisions

observationsyes

no

model

problem

non-deterministic

complete

yes

no

Figure 5.1: The general schema of our software prototype.

5.2 Architecture

In Figure 5.1, our general schedule generation-execution schema is represented. It is com-
posed of different modules: a solver, a controller, and a world simulator. The solver
module is in charge of solving a problem and sends the solution to the controller module.
The controller module is responsible for adapting the solution it receives from the solver
module with respect to what happens during execution, in particular, it monitors con-
ditions and calls the solver module when these conditions are met. The world simulator
simulates a non-deterministic execution environment.

5.2.1 Solver

The solver module is in charge of producing a flexible schedule. It has to solve a sub-
problem modeled by a constraint network whose a subset of variables are associated with
known probability distributions and another subset of non-controllable variables whose
probability distributions are unknown. The resolution process of the solver module is de-
picted in Figure 5.2. First, the user models a non-deterministic problem with variables and
conditions. This model is connected to the different modules of the software prototype.
Then, the resolution procedure proceeds as follows: (1) a deterministic approximation
constraint model is generated from the non-deterministic sub-problem model, the search
space of this combinatorial problem is then partially explored and the best flexible solution

84 CHAPTER 5. EXPERIMENTAL SYSTEM

model

sub-problem

non-deterministic generation
of a deterministic

approximation
constraint

solver

flexible
solution

Monte-Carlo
simulations

flexible solution
stored if best

time limit

exceeded?

solution sent
to controller

best flexible

distributions

probability

yes

no

Figure 5.2: The solver module of our resolution prototype.

is returned (operation start times are not set); (2) we run a number of simulations based
on the partial-order solution and the known probabilistic distributions of the underlying
sub-problem; (3) if the simulated flexible solution is better than the best solution found
so far in terms of optimization characteristics (standard deviation and mean), then it is
stored and we start a new search. We iterate the resolution procedure until the allotted
time for searching is elapsed. When we stop the resolution procedure the best flexible
schedule is sent to the controller module. Note that the generation of a deterministic
approximation and the Monte-Carlo simulator are parametrized. It is possible to unplug
simulation as well.

The solver module is called initially to compute the first execution context and during
execution when some conditions are met. These conditions are monitored during execution
by the controller module, see algorithm β presented in Chapter 4.

5.2.2 Controller

The controller module makes the remaining decisions; i.e., these are the decisions that
have not been made by the solver module. The controller module makes these decisions
with respect to problem constraints, observations, and a scheduling policy; e.g., execute
operations as soon as possible is a standard scheduling policy. The controller module is
also responsible for monitoring schedule execution and calling reactively the solver module
when progressive or revision conditions are met. The controller module plays a third role:
since these conditions are expressed with non-controllable variables (e.g., operation end

5.2. ARCHITECTURE 85

times), we have to estimate the current characteristics (means and standard deviations)
associated with these non-controllable variables. The controller has its own simulator and
we can update the means and standard deviations by running simulations periodically
and/or when an unexpected event occurs.

A constraint-based resolution combined with an execution controller are also used by
the scheduling system proposed by Cesta and Rasconi [39]. This system is capable of
reactively maintaining the consistency of the schedule in spite of possible unexpected
events that occur at schedule execution time. A new solution, computed after an unex-
pected event occurs, must be as close as possible to the preceding solution to maximize
the level of continuity that is the stability. However, their current system does not permit
a schedule generation on a gliding time horizon.

Progression and Revision Conditions

When progression conditions are met, we have to select and schedule a new subset of
operations to anticipate execution; e.g., when the time period between the current time
and the end time of the last scheduled operation is too short, we need to select a new
set of operations. This permits a progressive decision-making since the complete schedul-
ing problem is split into sub-problems and solved piece by piece during execution with
uncertainty level decreasing.

We have to change scheduling decisions; i.e., we have to revise the current schedule
when revision conditions are met: the current schedule is not any longer executable or
its expected quality deviates too much with respect to its baseline quality computed just
after its generation by the solver module. For example, we reschedule when a resource
breaks down.

The generation-execution loop is controlled by the controller on the basis of these
conditions.

5.2.3 World Simulator

The world simulator module generates unexpected events it sends to the controller module;
i.e., it sends operation end times, and breakdown start and end times. The probability
distributions used to generate these unexpected events can be different from those known
by the controller and the solver modules.

5.2.4 Resolution Techniques

In this section, we present different components that can be combined to tackle the
scheduling problem presented in the preceding section.

Constraint-based Search

This component belongs to the solver module. The role of this component is to find a
flexible solution of the constraint-based scheduling problem model that aims at minimizing
the expected global cost Kexp. Kexp is computed by running Monte-Carlo simulation. The
solution returned by the solver module is continuously flexible since only operation start
times are not decided.

86 CHAPTER 5. EXPERIMENTAL SYSTEM

The search space is divided into two parts: the allocation part and the sequencing
part. In the allocation part, allocation decisions are made and in the sequencing part, for
each unary resource, we order the operations requiring it.

We experimented with several heuristics to generate problem instances. The main
issue when generating these problem instances is to find maximal global costs that are
neither too high nor too low with respect to the other problem instance characteristics.
This is particularly difficult since the cost constraints are rather loose, so they do not
propagate efficiently.

During search, allocation decisions are made first and we have to proceed in two steps
as follows until all operations are allocated: we choose an operation oij and then we decide
what resource rl to allocate to oij.

The operation that we allocate first is randomly chosen as follows. We associate a
probability to each operation oij that depends on a parameter ω and the dispersion of its
allocation costs. The higher ω, the more random the choice. The higher its local disper-
sion, the higher its probability. The local dispersion dispij of operation oij is computed
as follows:

dispij =
1∑

∀rl∈Rij

1
ε+allocCostijl+min∀rk∈Rij

(allocCostijk)

,

where ε → 0. The main idea when using the dispersion of the allocation costs is to
choose the operations to allocate depending on the numbers of their possible alternative
resources that have a good chance of being reduced by propagating the cost constraints if
they are later allocated. The better the chance of being reduced, the highest the priority
of allocating the operation.

The allocation decisions are randomly made as follows. We associate a discrete prob-
ability distribution with the range of possible allocations such that the probability of
allocating operation oij to resource rl decreases with the corresponding allocation cost
allocCostijl: the higher the allocation cost, the lower the probability. The randomness of
the distribution depends on ω: the higher ω, the more random the choice of the resource.

These allocation heuristics are effective since (i) they avoid always making the same
allocation decisions and (ii) making allocation decisions is not completely random. More-
over, ω controls the randomness of the decision-making.

Sequencing decisions are then chronologically1 made by using the following heuristic:
for each resource, we order first the operation with the minimal earliest start time, ties
are broken by ranking first the operation that belongs to the most tardy process plan or
that belongs to the process plan whose end is the closest to its due date.

We have experimented two meta-heuristics, that is, fast random restart, and Large
Neighborhood Search (LNS), using alternatively two search techniques Depth-First Search
(DFS) and Slice-Based Search (SBS) as components.

DFS consists in visiting first the child node by following the heuristic choice and
chronologically backtracking. This is a constructive search and it is not effective in our
case since our search tree is divided into allocation nodes and sequencing nodes and we
want to change about the same number of allocation decisions as the number of changed
sequencing decisions.

SBS is close to Limited Discrepancy Search (LDS) [81]. LDS consists in exploring

1Here “chronologically” means that we do not systematically sequence all operations allocated to a
resource before sequencing the operations allocated to another resource.

5.2. ARCHITECTURE 87

nodes based on how many decisions have been made so far against the decisions that
the heuristic would make. In search trees, right moves are considered mistakes (they do
not follow heuristic decisions) and left moves are considered correct decisions (decisions
advised by heuristics). LDS first looks in the paths of the tree with fewer right moves. A
right move in the path from the root node of the search tree to the current node is known
as a discrepancy. LDS is parametrized such that it will first look at paths with 0 or 1
discrepancy, then the paths with 2 discrepancies, then the paths with 3 discrepancies and
so on. The maximal number of discrepancies of a path explored by LDS for a sub-problem
is limited. LDS is a constructive search that is more efficient than DFS for solving our
problem instances since we can change allocation decisions more often when using LDS.
The reader can read a paper by Beck and Perron that details SBS [19].

Fast random restart consists in probing the search tree several times each time making
different decisions since heuristics for making allocation decisions are randomized [77].
Fast random restart is a constructive search but it is not complete. As each probe consists
in a search with few backtracks we quickly restart search from scratch.

LNS starts from a solution and tries to improve it iteratively by changing a subset of
decisions. It consists in relaxing a subset of decisions; i.e., these decision variables are de-
instantiated. Then, we iteratively explore a limited search space with the rest of decisions
frozen. This technique fits well large-scale combinatorial problems since it permits the
exploration of different search subspaces.

The best combination of search techniques we have experimented when generating
problem instances is the following. Fast random restarts are first performed for finding
a good solution given a time limit. Then we use LNS with DFS to improve iteratively
the solution quality given another time limit. These search techniques are used because
we want to solve complex and large scheduling problems; i.e., we want to solve problem
instances with up to 5,000 operations, and fast random restart and LNS are anytime
search algorithms. The two moves for LNS that perform best are the following. The first
one relaxes a subset of process plans that are randomly chosen. A process plan is relaxed
by removing allocation and sequencing decisions related to its operations. The second
one relaxes a subset of operations that are randomly picked. An operation is relaxed by
removing its sequencing and allocation decisions. These two moves are interleaved for
exploring different search subspaces. LNS with DFS is efficient because it does not tackle
the complete problem but sub-problems that are randomly selected. Sub-problems are
easier to solve than the complete problem and the search space is randomly explored, so
we can easily escape from local optima.

Monte-Carlo Simulation

For updating unknown probability distributions associated with non-controllable variables
such as operation end times, we use Monte-Carlo simulation. A Monte-Carlo simulation
run consists in randomly picking a value for each random variable such that the two sets
of values that are randomly picked for two consecutive simulation runs may be completely
different. Our application domain implies computations that are complex and difficult,
indeed impossible to do with analytical approaches. Moreover, our application domain
does not require exact computations since it is not critical; i.e., the impact of our decisions
is not too serious with respect to the underlying physical system. A spacecraft is a critical
system since it can break down or crash after taking a bad decision and it is difficult to

88 CHAPTER 5. EXPERIMENTAL SYSTEM

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Figure 5.3: Two truncated and normalized normal laws.

repair it: its mission failed. However, a manufacturing workshop is a less critical system
since we can usually repair it when making a bad decision. For computing expected
operation end times, we run a series of simulations on the flexible schedule at hand
by assuming operations are executed as soon as possible. For each operation oij that is
allocated and sequenced but not yet executed, we randomly pick a set of possible durations
and for each resource that is allocated to oij, we randomly pick a series of breakdowns.
For generating resource breakdowns, we proceed as follows: for each resource allocated to
oij, the last breakdown generated occurs after the end time of oij; if a breakdown overlaps
with the operation, then the operation end time is delayed.

For running simulation, we use a precedence graph that is generated for the constraint
network: each node represents an operation and each arc represents a precedence con-
straint between two operations. We then topologically sort the precedence graph and use
this ordering in the simulations. The simulation horizon equals the sum of all operation
durations. The complexity of a single simulation run is in O(nbBk + nbOp + nbPCt),
where nbBk is the number of resource breakdowns, nbOp is the number of operations
and nbPCt is the number of precedence constraints; it is in O(nbBk + nbOp) for our
problem since there are fewer unary resources than operations and our problem has the
same number of precedence constraints as a job-shop scheduling problem.

Note that the number of simulation runs and the confidence intervals associated with
unknown probability distributions are related: the width of each confidence interval is a
function of 1/

√
nbSimRuns, where nbSimRuns is the number of simulation runs.

5.2. ARCHITECTURE 89

Controller

The implemented controller is in charge of updating both known and unknown probability
distributions.

The probability distributions we know, such as the probability distributions associ-
ated with resource breakdown start times, resource breakdown durations, and operation
durations, are truncated and normalized. Suppose we have an operation whose execution
started at date t = 0 and whose duration, which is between 10 and 60, follows a nor-
mal law of mean 30 and standard deviation 10. This operation duration is depicted by
the dotted curve in Figure 5.3. Now suppose that at date t = 35 the operation is still
executing, we will assume that the probability distribution of the operation end time is
the initial law truncated on the interval [35, 60] and renormalized as shown by the solid
curve in Figure 5.3. More formally, if the initial probability law of an operation duration
is described by a distribution function p0(dur) defined in [durmin, durmax], and if the op-
eration has been executed since dur0 units of time, the current distribution is defined by
the probability distribution pdur0(dur) as follows:

∀dur ∈ [dur0, durmax], pdur0(dur) =
p0(dur)∫ durmax

dur0 p0(t)dt
.

The probability distributions to be computed are updated by running Monte-Carlo
simulation, see Section 5.2.4.

5.2.5 Experimental Parameters and Indicators

This section describes how we proceed to compare experimentally different approaches to
solve a scheduling problem with uncertain operation durations, machine breakdowns, and
alternative resources. We can fix different parameters and assess solutions with indicators.
Parameters are independent of each other.

Problem Instance Generation

Concerning the scheduling problem, we can experiment with the following parameters:

• the number of process plans;

• the number of resources;

• the number of operations per process plan;

• the number of alternative resources per operation;

• the due dates;

• the uncertainty level associated with operation durations;

• the uncertainty level associated with durations between two consecutive machine
breakdowns;

• the uncertainty level associated with machine breakdown durations.

In addition, it is possible to make the scheduling problem more or less tight by choosing
the number of resources and the due dates.

90 CHAPTER 5. EXPERIMENTAL SYSTEM

Search

Constraint-based search consists in different parameters such as the maximal number of
fails and the time limit. Different search techniques can be compared such as local search,
LDS, DFS, etc., see Section 5.2.4. There are also parameters that characterize particular
search techniques such as LNS for which we can implement and test different moves.

Revision, Progressive, and Proactive Techniques

A revision technique is parametrized by choosing a revision criterion and a sensitivity
factor (ς). A revision criterion is a condition that is monitored during execution; e.g., we
monitor the absolute difference between the expected quality, computed before execution,
and the current expected quality, computed during execution based on what we observe,
and we compare this absolute difference with a reference value. If it is met, then we
reschedule. A sensitivity factor sets the sensitivity of the revision criterion with respect
to perturbations that occur during execution. The sensitivity factor is set to indirectly
choose the search effort that depends on the number of reschedulings that occur during
execution.

A progressive technique is characterized by four parameters that can be set to choose
indirectly the anticipation horizon and the size of each sub-problem: δtmin controls the
anticipation horizon with respect to time, σtmin controls the anticipation horizon with
respect to the uncertainty level, δtmax controls the size of each sub-problem with respect
to time (reasoning and commitment horizon), and σtmax controls the size of each sub-
problem with respect to the uncertainty level. These four parameters are expressed with
respect to uncertainty level and temporal horizon.

A proactive technique is set by two main parameters. The first parameter proactgene is
used to generate the deterministic sub-problem model from the non-deterministic problem
model; i.e., we choose a value for each random variable: operation durations, and resource
breakdown start times and durations. A possibility is to choose and use the average values
of distributions. The greater the values chosen, the more proactive the technique. The
second parameter proactsimu is Boolean and determines whether Monte-Carlo simulation
is used or not to find flexible solutions. Moreover, the number of simulation runs can
be chosen. Beck and Wilson studied proactive techniques to solve probabilistic job-shop
problems [21].

Indicators

There exist a number of possible indicators to assess a schedule or a scheduling system:

• the intrinsic quality of a solution that is the absolute quality;

• the robustness of solution quality that is the relative quality (how quality changes
with respect to its initial value);

• the stability of decisions (relative indicator) that is how many decisions are changed
with respect to initial commitments;

• the search effort measured with CPU time spent for searching solutions and the
number of reschedulings that occur;

5.3. REVISION-PROACTIVE APPROACH 91

• memory consumption.

Note that we have not yet implemented stability indicators but it would be possible
to extend the prototype in this way.

5.3 Revision-Proactive Approach
In this section, we present a mixed technique that has been implemented in our software
prototype. It combines a revision approach with a proactive approach.

5.3.1 Revision Approach

The revision approach consists in monitoring a condition called the revision criterion
during execution and when the condition is met we change decisions; i.e., we reschedule
when the revision condition is met. This is a generation-execution loop. The revision
criterion depends on uncontrollable variables such as operation end times. The revision
criterion depends on a sensitivity factor ς that controls indirectly the search effort; i.e.,
the number of reschedulings during execution depends on ς. ς fixes how much the effective
or expected values can deviate from nominal ones, such that nominal values are updated
each time we (re)schedule. Rescheduling is done by using constraint-based search, see
Section 5.2.4, combined possibly with Monte-Carlo simulation, see Section 5.2.4.

The initial (off-line) schedule starts execution and we must decide when to reschedule.
The main idea behind the parameters investigated here is that we use simulation to de-
termine when to reschedule. We start execution using the baseline schedule and a simple
execution policy: operations are started as soon as possible given the precedence con-
straints in the original problem, the operation sequences defined by the baseline schedule,
and the effective operation durations that are observed. During execution of the sched-
ule, we choose to evaluate the need for rescheduling whenever an operation ends. The
first step consists then in updating the truncated probability distributions representing
our view of the uncertain variables, as discussed in Section 5.3.3. The second step is to
calculate a chosen revision criterion that depends on expected values of some variables in
the problem. If the difference is too large between the expected values and the nominal
values, then it means that the assumptions made during the schedule computation are
becoming less and less relevant thus there is a chance that rescheduling will improve the
current schedule.

The expected values for the variables we are interested in are estimated through the
use of Monte-Carlo simulation. According to the currently executing schedule and the
current probability distributions, we run 1,000 simulations whenever an operation ends.
Each simulation run allows one to calculate the values of the variables we are monitoring
and by running simulations we can calculate approximately their means and standard
deviations. The expected value of the variable is its mean value obtained after simulating.
If we decide to reschedule, the current schedule is ignored and a new schedule is generated
except for the operations that have already started or finished executing. Each scheduling
problem is represented by a constraint network whose constraints must be satisfied by
solutions. We here deal with Dynamic Constraint-Satisfaction Problems, see Section 1.3.3,
since each time we reschedule it amounts to redefining a new sub-problem by changing
the previous approximated deterministic problem model that has been solved to find

92 CHAPTER 5. EXPERIMENTAL SYSTEM

the current baseline schedule. The previous approximated problem model is changed
by taking into account what has been observed since the last rescheduling. We use the
current distributions of the operation end times and resource breakdown end times; a
subset of the current distributions are truncated.

5.3.2 Proactive Approach

The proactive approach consists in finding flexible schedules that minimize the average
global cost using knowledge about uncertain data. This search process can be run when
using the solver module. The first way of making a solution more robust in our system is
to approximate the deterministic constraint-based problem model by taking into account
uncertainty; e.g., operation durations of the deterministic problem model are chosen to
cover 50% or more of possible operation durations. The second way of finding robust
solutions is to use Monte-Carlo simulation during search. Beck and Wilson experimented
such an approach for solving job-shop scheduling problems with probabilistic durations
where expected makespan is minimized [20, 21]. When using simulation, they model
the problem with a constraint network in which operation durations are chosen equal
to or greater than the mean operation durations. The constraint model is solved by a
branch-and-bound procedure with constraint propagation. Each flexible solution (oper-
ation start times are not set in time) is simulated for computing an estimation of the
corresponding expected makespan. During simulation, we start operations as soon as
possible. Simulations can also be run and expected values computed to prune the search
tree at intermediary nodes; i.e., when only a subset of decisions are made but it is too
costly to be applied for solving large scale decision problems.

5.3.3 Experimental Studies

This section reports results obtained by experimenting a proactive-revision technique
based on constraint programming and simulation for schedule execution monitoring and
on-line rescheduling. We tackle job-shop scheduling problems with probabilistic operation
durations. This is a subset of the scheduling problems that were described in Section 5.1.
Some model features are disabled: there are no alternative resources and no allocation
costs.

Problem Description

Our experiments concern the job-shop scheduling problem (JSSP) with probabilistic oper-
ation durations and makespan minimization. In this section, we present our assumptions
about the evolution of the uncertainty of operation durations during execution.

Each uncertain operation duration is modeled by a variable that follows a probability
distribution and is associated with a domain. Any probability law can be used (normal,
uniform, etc.), however, as an operation duration must be strictly positive, the laws
are truncated. At execution, we know the effective duration of an operation only when
the operation ends and we learn this piece of information from the environment (world
simulator). The only decision is when to start the execution of each operation. As a
consequence, we know at each moment, during the execution which are the operations
that have been executed, the ones that are currently executing, and the ones that have

5.3. REVISION-PROACTIVE APPROACH 93

not been started yet. When an operation is still executing and its minimum possible
duration has been exceeded, our information on the uncertainty can be updated since the
set of possible durations is now reduced. Therefore, the probability distribution is further
truncated and renormalized, see Section 5.2.4. We update data at specific points in time
that are the moments when we want to decide if we reschedule or not, and hence we need
to know the precise current state.

The effective duration of an operation is the duration that is observed during execution,
see Definition 1.3.1. An execution scenario is a set of all effective operation durations.

A baseline schedule is a schedule where the operations on each resource are totally or-
dered. The first baseline schedule is calculated off-line by solving a deterministic problem
where operation durations equal the mean operation durations of the non-deterministic
problem. A Depth-First Search is used to explore the search space. During execution, a
new baseline schedule is constructed if we decide to reschedule; in that case, this new base-
line schedule is calculated by using both the effective durations of the operations already
executed and the mean durations of the other operations. Note that given our tuning
of proactgene, one of the proactive parameters, a baseline schedule is proactive at a low
level since it is generated by using mean operation durations; i.e., only 50% of execution
scenarios are covered locally when using mean operation durations. We do not know the
percentage of execution scenarios that are covered from a global point of view; i.e., when
we consider the complete problem with temporal relations between operations. However,
if Monte-Carlo simulation is used, the search technique can be much more proactive.

Experimental Results and Conclusions

In this section, we report the results of two experimental studies aiming at determining
the impacts of the revision criterion and the uncertainty level on makespan with a limited
computational effort. All the programs run to perform these tests have been written in
C++, use ILOG Scheduler 5.3 [88] for scheduling, and have been compiled with Microsoft
Visual C++ 6. The results presented here have been obtained with using a dual processor
Pentium II Xeon 450MHz with 256MB.

Impact of Revision Criterion on Makespan We report a study of the impact of
revision criterion on effective makespan in this section. We investigated three different
revision criteria for deciding when to reschedule.2

First, we describe formally the three criteria. All these criteria depend on a strictly
positive parameter called the sensitivity factor ς that can tune the sensitivity of the
revision criteria. When ς is very small, there will not be any rescheduling. The larger the
sensitivity factor ς, the higher the number of reschedulings (and the smaller the stability
of the schedule).

The first criterion revCrit1 consists in monitoring the makespan and is defined as
follows: we reschedule when

Mexp >
Mind

ς
,

where Mexp is the current expected makespan and Mind is the makespan of the current
baseline schedule. This criterion will not result in rescheduling if the effective operation

2The work reported in this section was partially published [25].

94 CHAPTER 5. EXPERIMENTAL SYSTEM

durations are shorter than expected. In other words, it does not allow “opportunistic”
rescheduling that would take advantage of unexpectedly short execution times.

A second variation revCrit2, based on the first, is opportunistic because it reschedules
based on the absolute difference between the expected and baseline makespans. We
reschedule when

|Mexp −Mind| >
D

ς
,

where D is the mean of all operation durations of the initial problem.
The two versions based on makespan monitoring are a priori rather crude: we mainly

take into account the observed durations of the operations of the critical paths. If these
operations do not slip too much, then, as a consequence, the makespan will not slip too
much either. It is possible however, that the expected makespan remains approximately
stable while the executions of the operations that do not belong to the critical paths are
such that it is possible to find a much better solution by rescheduling. We thus propose a
third variation of the approach revCrit3 that takes into account each operation duration.
We reschedule when ∑

Onew
|endexp − endind|
nbNewOp

>
D

ς
,

where Onew is the set of nbNewOp operations that were executing the last time we
rescheduled, and endexp and endind are respectively the expected and baseline operation
end times.

The problem instances with imprecise durations are generated from classical JSSP
instances. Each operation is associated with a normal probability distribution with mean,
p, corresponding to the duration in the classical instance, and with standard deviation α×p
with α > 0. α characterizes the degree of uncertainty of the problem. The higher α, the
larger the standard deviation of each operation duration so the more uncertainty in the
system. α is constant and equals 0.3 for each experiment done in this first study.

During schedule execution, whenever we are informed by the environment that an
operation ends, we update all our data structures, and simulate the continued execution
of the schedule. The updating frequency is sufficiently low to permit 1,000 simulation runs
each time. When the end of an operation is observed, there might be other concurrent
operations still executing for which distributions are updated. We are using simulation
to calculate the revision criterion and then we reschedule only if the revision criterion is
met.

Scheduling and rescheduling are done using the constraint programming approach with
a standard chronological backtracking algorithm and a time limit of one second. The new
schedule is the best solution found within the time limit using a depth-first search. Two
heuristic rules are used to make sequencing decisions: first, we have to select the resource
and second, we have to select the resource constraint to rank first on this resource. The
resource r with the minimal global slack is selected with priority, and then the operation
requiring r, with the minimal latest start time is ranked first on r. The global slack of
a resource is the slack time of the operations that are allocated to it. The global slack
is computed on the basis of the temporal window of each operation; i.e., this temporal
window is the time period between its earliest start time and its latest end time. During
search constraint, propagation is used to prune the search tree, in particular Edge-Finder,

5.3. REVISION-PROACTIVE APPROACH 95

M
ea

n
ef

fe
ct

iv
e

m
ak

es
pa

n

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Mean number of reschedulings

1,230

1,240

1,250

1,260

1,270

1,280

1,290

1,300

1,310

1,320

1,330

1,340

1,350

criterion with makespan
criterion with absolute makespan
criterion with operation end times
mean off−line optimal makespan

Figure 5.4: Mean effective makespan for la11 with a low uncertainty.

see Section 1.2.4. Note that we do not use simulation to filter solutions found by the tree
search because we assume that a solution with a low deterministic makespan is also a
solution with a low expected makespan [21].

The results shown on Figure 5.4 come from running 100 different execution scenarios
per value of the sensitivity factor ς. These results are obtained from experimenting with
the problem la11 that consists of 100 operations. We observe that monitoring sched-
ule execution with the use of each rescheduling criterion improves schedule quality; i.e.,
mean effective makespan is smaller than the mean effective makespan obtained with-
out rescheduling that equals 1,350: for example, after 2 reschedulings the mean effective
makespan approximately equals 1,290 (4.4% of improvement). The most significant im-
provement is obtained with less than about ten reschedulings. The mean off-line optimal
makespan equals the average of the 100 optimal makespans, each of them is computed
off line assuming we know the execution scenario in advance; i.e., we have to solve 100
deterministic JSSPs to optimality. Each of these 100 optimal makespans is a lower bound
on the best schedule quality that can be achieved. We actually experimented with other
literature JSSPs of the same size: la12, la13, la14, abz5, abz6, orb1, orb2, orb3, and
orb4. The results obtained with these instances corroborate these observations [99, 13, 9].
These curves confirm the criterion based on the operation end times provides the smallest
makespan for a given computational effort since it is more opportunistic than the first two
revision criteria. We also think this is due to the fact that the operations placed close to

96 CHAPTER 5. EXPERIMENTAL SYSTEM

the start of the schedule have a smaller impact on makespan than the operations placed
close to the end of the schedule.

Impact of Uncertainty Level on Makespan In this section, we report a study that
investigates the impact of uncertainty level α on makespan. All experiments have been
run with the same revision criterion. We chose the revision criterion revCrit3 presented
in the preceding paragraph; i.e., this is the revision criterion that takes into account all
operation durations. This revision criterion performs best when about ten reschedulings
are done.

Our study consists in varying the uncertainty level α and observe how the effective
makespan changes accordingly. α directly changes the standard deviations of operation
durations: the higher α, the larger the standard deviations, that is, more imprecise oper-
ation durations. We considered the same ten JSSP instances as those used in the study of
the impact of the revision criterion on makespan, see the preceding section. We conducted
three series of experiments, each of them corresponds to a fixed value of α. The curves
represented on the next four figures have been obtained by testing 30 problem instances,
100 different realizations per problem instance. The search procedure is the same as the
one presented in the preceding section. The tree search is limited to one second when
rescheduling and we run 1,000 simulation runs each time an operation ends as well.

The curves on the next three figures represent the relationship between the mean
number of reschedulings and the mean relative error of effective makespan for thirty
problem instances. We tested ten problem instances per uncertainty level. The mean
relative error of makespan is computed over the nbExecSce = 100 execution scenarios of
each problem instance as follows.

mean relative error =
1

nbExecSce
×

nbExecSce∑
sce=1

M eff
sce −Mopt

sce

Mopt
sce

,

where M eff
sce is the effective makespan obtained after scheduling and rescheduling execu-

tion scenario sce, Mopt
sce is the optimal makespan of sce computed off line knowing sce

in advance. Each Mopt
sce has been computed with a texture-based search [22]. Note that

we have actually experimented with 3,000 execution scenarios since there are three un-
certainty levels, ten problem instances per uncertainty level, and one hundred execution
scenarios per problem instance.

Figure 5.5 represents the results obtained when α = 0.3.
Figure 5.6 represents the results obtained when α = 0.5.
Figure 5.7 represents the results obtained when α = 0.8.
Note that all these uncertainty levels are actually rather high since even when α =

0.3 the standard deviation equals about the third of the mean value of the probability
distribution.

Figure 5.8 represents the aggregated results obtained when α varies. These curves
have been obtained by using linear approximation of the preceding results shown on
Figures 5.5, 5.6, and 5.7, and by computing the average curve over the ten problem
instances for a given uncertainty level. We have to approximate linearly the curves to
perform mathematical operations on them, such as computing the average curve, because
we do not control directly the number of reschedulings that are performed but we control
it via sensitivity factor ς.

5.3. REVISION-PROACTIVE APPROACH 97

0 2 4 6 8 10 12
mean number of reschedulings

0

0.1

0.2

0.3

0.4
m

ea
n

re
la

tiv
e

er
ro

r

abz5
abz6
la11
la12
la13
la14
orb1
orb2
orb3
orb4

Figure 5.5: Mean relative error with a low uncertainty.

0 2 4 6 8 10 12 14
mean number of reschedulings

0

0.1

0.2

0.3

0.4

m
ea

n
re

la
tiv

e
er

ro
r

abz5
abz6
la11
la12
la13
la14
orb1
orb2
orb3
orb4

Figure 5.6: Mean relative error with a medium uncertainty.

98 CHAPTER 5. EXPERIMENTAL SYSTEM

0 2 4 6 8 10 12 14
mean number of reschedulings

0

0.1

0.2

0.3

0.4

0.5
m

ea
n

re
la

tiv
e

er
ro

r

abz5
abz6
la11
la12
la13
la14
orb1
orb2
orb3
orb4

Figure 5.7: Mean relative error with a high uncertainty.

0 2 4 6 8 10
mean number of reschedulings

0.1

0.15

0.2

0.25

m
ea

n
re

la
tiv

e
er

ro
r

low uncertainty
medium uncertainty
high uncertainty

Figure 5.8: Mean relative error for different uncertainty levels.

5.4. PROGRESSIVE-PROACTIVE APPROACH 99

From these results, we conclude that it is worth using a revision approach when dealing
with a JSSP with probabilistic operation durations even with a high imprecision. The
higher the number of reschedulings, the lower the effective makespan. We observe that
the higher the imprecision, the higher the effective makespan, and the improvement of
the mean effective makespan is the same for the three uncertainty levels; moreover, it is
about 6% smaller than the mean effective makespan obtained without rescheduling. Note
also that the effective makespans of the schedules obtained without rescheduling are not
longer than 25% of their corresponding optimal makespans on average. After about 10
reschedulings effective makespans are not longer than 18% of their corresponding optimal
makespans on average. These optimal makespans are true lower bounds since they are
obtained when we know the execution scenario in advance.

5.4 Progressive-Proactive Approach

The proactive approach has already been presented in Section 5.3.2.
The progressive technique we present in this section permits one to construct a schedule

solution piece by piece as long as execution goes along. The idea is to select, allocate, and
order a series of subsets of operations during execution by taking into account temporal,
resource, and cost constraints. In a pure progressive approach, allocation and ordering
decisions made are never changed later on. Operation start times are set by our controller
just before execution. We observe operation end times and apply a scheduling decision
policy to choose operation start times; i.e., we execute operations as soon as possible.

The problem with such an approach is that we must be very careful when taking an
allocation decision or an ordering decision. (i) We have to wait until the uncertainty
level around the decision is low enough so that the decision is well informed, and (ii) we
cannot wait too long because we do not just want to have a reactive and myopic decision
process. Determining when to select, allocate, and order a new subset of operations
will be done based on monitoring a progression criterion during execution. Determining
what operations to select will be done by using heuristics and Monte-Carlo simulation.
Determining how to allocate and order the operations of the selected subset will be done
using constraint-based search, see Section 5.2.4, combined possibly with Monte-Carlo
simulation, see Section 5.2.4.

More precisely, suppose that we are at a given time t and we are executing a partial
flexible schedule. We assume that a subset of operations OallocOrder of the problem have
already been allocated and ordered given all constraints at t and the rest of the opera-
tions Opending of the problem are not yet allocated and only ordered given the precedence
constraints of the original problem. A subset of operations Oexecuted ⊆ OallocOrder have
already been executed, a second one Oexecuting ⊆ OallocOrder are executing, and a third
one OtoBeExe ⊆ OallocOrder have to be scheduled and executed. An operation is scheduled
when its start time is fixed at a date before, at, or after the current time. (i) Of course, we
do not want to wait until the last operation of OtoBeExe finishes execution before allocat-
ing and ordering subsequent operations of Opending because we would then have very little
time to react and could not easily come up with a good decision, and (ii) we do not want
to make decisions too far in the future in regions where there is still a lot of uncertainty.
Furthermore, we do not want to take the allocation and ordering decisions one by one,
which would be very myopic and certainly lead to a poor schedule quality but rather,

100 CHAPTER 5. EXPERIMENTAL SYSTEM

select a subset of operations and perform a combinatorial search on this sub-problem in
order to satisfy temporal, resource, and cost constraints. So there are three questions
here: (1) how to design conditions that will be monitored during execution and say “now,
we can try to extend the current partial flexible schedule by allocating and ordering a
new part of the problem,” (2) when these conditions are met, how to select the subset of
operations to be allocated and ordered, and (3) when the subset of operations is selected,
how to allocate and order the operations of this subset in such a way that we maximize
the probability that the constraints will be satisfied and the global cost will be minimal
at the end of execution.

5.4.1 When to Try Extending the Current Partial Flexible Sched-
ule?

To extend the current partial flexible schedule, we need to assess what time we still have
before being forced to select, allocate, and order a new subset of operations of Opending

and how high the uncertainty level of the end times of the operations of OtoBeExe is; i.e.,
we need to monitor two conditions during schedule execution and when at least one of
them is met, we can try to extend the current partial flexible schedule.

We propose to evaluate the trade-off between the fact that δtmin should be large enough
to have time to perform a combinatorial search leading to a good solution and to ensure
the stability of the schedule, and the fact that execution has advanced far enough to get
reduced uncertainty on the expected end times of the operations of OtoBeExe.

Temporal Condition for Starting Selection

Given OtoBeExe, there exists a time point tD that is the last time point before which we have
to make at least an allocation decision if we want to anticipate execution. tD is equal to
the earliest of the expected end times of the operations of OallocOrderLast ⊆ OtoBeExe that are
ordered at last positions in process plans. tD is maintained using Monte-Carlo simulation,
see Section 5.2.4. We can try to extend the current partial flexible schedule from the
date at which tD − t ≤ δtmin, where tD = min∀pi∈P (max∀oij∈OtoBeExe

(endexp
ij)) and endexp

ij is
the expected end time of operation oij. δtmin is a parameter of the software prototype,
depending on the application domain of interest.

Figure 5.9 represents the execution of a partial flexible schedule of a scheduling prob-
lem; only three process plans are partially represented; OallocOrder is the subset of oper-
ations represented by nine shadowed rectangles; tD is the earliest expected end time of
the operation of p1 ordered at the third position; OallocOrderLast is composed of the three
operations represented by the most shadowed rectangles and ordered at the last positions
of process plans. Opending is composed of the operations represented by white rectangles.
Note that all pending operations are not represented. Precedence constraints are repre-
sented by arrows. The start times and end times of the executed operations and the start
times of the executing operations are highlighted.

Uncertainty Condition for Starting Selection

When the highest standard deviation of the end times of the operations to be executed
of a process plan is less than a given standard deviation σtmin, we can try to select a

5.4. PROGRESSIVE-PROACTIVE APPROACH 101

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������

������
������
������

������
������
������
������

������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

p1

p2

p3

allocated and ordered operation at the last position

pending operation

allocated and ordered operation

precedence constraint

executing operation

executed operation

δt
min

δt
max

t0 tD

Time

Figure 5.9: Example of a schedule progressively generated.

subset of pending operations. These standard deviations are maintained using Monte-
Carlo simulation. In a more formal way, we extend the current partial flexible schedule
from the date at which min∀pi∈P (max∀oij∈OtoBeExe

(σ(endexp
ij))) ≤ σtmin, where σ(endexp

ij)
is the standard deviation of the end time of operation oij. σtmin is a parameter of our
experimental system and depends on the application domain.

5.4.2 How to Select the Subset of Operations to Be Allocated
and Ordered?

As soon as one of the two conditions defined above is satisfied, we still need to select a
subset of operations to allocate and order. We need to find a relevant order in which we
iterate through a subset of pending operations and determine which of them are selected.
Actually, we do not want to select a too large problem because: (i) we do not have an
infinite time to allocate and order it (in any case less than tD−t) and (ii) we do not want to
take allocation and ordering decisions too far in the future as they concern data with too
much uncertainty. We thus need to monitor two conditions during the selection process.
To select the subset of pending operations to be allocated and ordered, we proceed in two
steps as follows: (i) we compute and associate priorities to a subset of pending operations
called the eligible operations to determine the order in which we assess each of them and
(ii) we assess the eligible operations by using a temporal condition and an uncertainty
condition, see Section 5.4.2, to determine which of them are selected.

102 CHAPTER 5. EXPERIMENTAL SYSTEM

Assessment Order

It is important to assess the eligible operations in a relevant order because we need to
consider the eligible operations that have priority in terms of resource contention and
tardiness costs. An eligible operation is the pending operation that is ordered at the first
position of a process plan. There is thus one and only one eligible operation per process
plan at the beginning of the selection process. We proceed in several steps. (1) We use a
heuristic that gives the order in which we iterate through the current eligible operations
and assess the current flexible schedule to determine which of them we select. (2) Once all
eligible operations have been labeled by a priority value we consider each eligible operation
in the decreasing order of priority and assess the probability distribution of the end time
of its preceding operation with respect to the process plan it belongs to:

• if this distribution does not meet at least one of the two conditions defined in the
next section, then the eligible operation is selected and no longer eligible (and no
longer pending); this selected operation is ordered and allocated in such a way that
its mean end time is minimized; the next operation of the same process plan, which
is a pending operation, becomes eligible and the priorities of the current eligible
operations are then (re)computed;

• if this distribution meets the temporal condition and the uncertainty condition de-
fined in the next section, then the eligible operation remains pending and is no
longer eligible concerning the current selection process. Both conditions must be
met to stop the selection because we want to be sure to select a minimal number of
pending operations.

(3) If there are no more eligible operations, then the selection process is stopped,
otherwise the selection process goes on by executing alternately (2) and (3).

Figure 5.10 gives an example of such an order; the three eligible operations are labeled
in the assessment order. We compute the priority of each eligible operation by using a
heuristic that is based on both an energy-based heuristic and the Apparent Tardiness
Cost rule described below.

����
����
����
����

����
����
����
����

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����
����

����
����
����
����

��������
��������
��������
��������

��������
��������
��������
��������

����
����
����
����

����
����
����
����

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

�������
�������
�������
�������

�������
�������
�������
�������

t

Time

0

p2

3

1

2

p1

p3

Figure 5.10: Example of the assessment order of eligible operations.

We assume the schedule execution is stopped during the selection process since the
dynamics of the underlying physical system are much lower than the dynamics of the

5.4. PROGRESSIVE-PROACTIVE APPROACH 103

decision-making system.
In fact, we are only interested in the probability distributions of the end times of the

operations of OallocOrderLast and in the probability distributions of resource breakdown end
times at time t when selecting and making decisions on a new subset of operations. When
an eligible operation is selected, we run a set of simulations concerning this operation, its
preceding operations, and the alternative resources it requires to decide what resource to
allocate during the selection process. Please, note that these allocation decisions are not
definitive since a combinatorial search is done when the selection is finished. Figure 5.11
shows one simulation run of an eligible operation o46 associated with two alternative
resources r3 and r4. This simulation is run at time t = 10. The duration of o46 that is
randomly picked given its probability distribution equals 15 time units; the end time of
its direct predecessor o45 is randomly picked using the current distribution and equals 25;
o46 cannot start execution before 25 as there is a precedence constraint between o45 and
o46 and finish before 40 (this value equals the sum of its start time and its duration).
Each of its alternative resources may be already allocated, not available and/or broken
down. After picking operation end times, resource breakdown start times, and resource
breakdown end times randomly, we can compute the expected end time of o46 for this
simulation run. r3 is allocated to o14 that finishes at 30, and r3 breaks down at 50 and
is fixed at 65. r4 breaks down at 30 and is repaired at 40. From this simulation run,
we can update the two means and standard deviations of the two end times of o46 (a
mean and a standard deviation for each resource) as follows: if a46 is executed with r3,
then its execution starts at 30 and finishes at 40 without interruption; if o46 is executed
with r4, then its execution starts at 25, it is suspended at 30, it resumes execution at 40
and finishes thus at 45; after updating the two expected end times of o46 we allocate the
resource that minimizes the expected end time of o46 (o46 would be allocated to r3 if only
considering this unique run).

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

o46

2510 4030 50

o14

o45

65

Time

p4

r3

r4

Figure 5.11: Example of simulation of a selected operation.

Temporal and Uncertainty Conditions for Stopping Selection

Given the assessment order, we have to make sure both that we will select enough pending
operations to keep an anticipation with respect to execution and that the uncertainty level

104 CHAPTER 5. EXPERIMENTAL SYSTEM

of the end time of each selected operation is higher than a given threshold: an eligible
operation oij is selected if the mean end time of its preceding operation of the same
process plan oij−1 is less than t+ δtmax and/or the standard deviation of oij−1 is less than
σtmax, otherwise it is not selected and is no longer eligible during the current selection
process. δtmax and σtmax are parameters of the software prototype and it is possible to
instantiate both δtmax and σtmax in order to select pending operations in a given way,
given an application domain. We assume δtmax ≥ δtmin and σtmax ≥ σtmin, otherwise we
could not select any pending operation.

• If δtmax is chosen close to δtmin and σtmax is close to σtmax, then it amounts to
selecting a small number of pending operations because both conditions are met
very quickly.

• If δtmax � δtmin and σtmax � σtmin, then it means that we select a large number of
pending operations until we meet both conditions.

• If δtmax is chosen close to δtmin and σtmax � σtmin, then it amounts to selecting
pending operations until the uncertainty condition is met because the temporal
condition is met very quickly.

• If δtmax � δtmin and σtmax is chosen close to σtmin, then it means that we select
pending operations until the temporal condition is met because the uncertainty
condition is met very quickly.

Energy-Based Heuristic

The energy-based heuristic is combined with the Apparent Tardiness Cost rule based
heuristic [10] to compute the priorities of eligible operations, and the estimations of the
process plan queues and the allocation costs of pending operations. We take resource
constraints into account by extending the mean durations of the pending operations by
using an energy-based heuristic [57]; i.e., we compute the criticality of each operation that
depends on the average loads and costs of the resources it requires, we then modify its
mean duration accordingly. We first compute the artificial duration durResijl of operation
oij executed with resource rl as follows:

durResijl =
mDurij

allocCostijl ×
∑

∀rk∈Rij

1
allocCostijk

,

where mDurij is the mean duration of oij, allocCostijl is the allocation cost when rl is
allocated to oij, and Rij is the set of all alternative resources required by oij. Note that
durResijl can be computed once for all off line.

It is also useful to compute the artificial duration of the pending operations requiring
rl: durResl =

∑
∀oij∈Opending∩Ol

durResijl, where Ol is the set of operations that require rl.
We can then compute the criticality degree critij of each pending operation oij:

∀oij ∈ Opending : critij = 1 +
∑

∀rl∈Rij

1− durResijl

durResl

.

critij represents how high the probability is that the effective duration of oij will be greater
than the original mean duration of oij given resource constraints and allocation costs. We

5.4. PROGRESSIVE-PROACTIVE APPROACH 105

then extend the mean duration mDurij of each pending operation oij ∈ Opending with
respect to how critical oij is:

extendedMDurij = mDurij × critij.

Apparent Tardiness Cost Rule Based Heuristic

We compute the priority of each eligible operation, the estimated process plan queues and
the allocation costs of pending operations by using a modified version of the Apparent
Tardiness Cost rule in which its weight is redefined [10]. The weight weightij associated
with each pending operation is equal to the sum of the expected tardiness cost of pi and
the expected allocation cost of the eligible operation oij:

∀oij ∈ Oeligible : weightij = tardiCostexp
i + allocCostexp

ij ,

where tardiCostexp
i = φi×max(endpexp

i − duei, γ× (endpexp
i − duei)), γ ∈]0, 1[, endpexp

i =
endallocOrderLast

i + queuei, allocCostexp
ij is the mean allocation cost associated to oij:

allocCostexp
ij =

∑
∀rl∈Rij

allocCostijl

k
,

where k is the number of alternative resources required by oij, endallocOrderLast
i is the

expected end time of the selected operation of pi ordered at the last position and is
computed by running Monte-Carlo simulations. In case no new operation is yet selected
for pi, endselectedLast

i is the expected end time of the allocated operation of pi ordered at the
last position and is computed by running Monte-Carlo simulations. γ ∈ [0, 1[is used to
balance the expected tardiness cost among the process plans. Note that allocCostexp

ij can
be computed once for all off line. We set the look-ahead parameter χ = 2, as suggested
by Morton and Pentico [113], in the formula to compute each priority πij:

∀oij ∈ Oeligible : πij =
weightij
queuei

× e
−max(0,duei−t−queuei)

χ×queuei ,

where t is the current time, queuei is the mean duration of the pending part of pi, and
queuei is the average of the mean durations of the pending operations of all the process
plans but pi. queuei and queuei are computed by using the extended mean durations. In
a more formal way:

queuei =
∑

∀oij∈Opending∩Oi

extendedMDurij

and
queuei =

∑
∀pq∈P\{pi} queueq

n− 1
,

where n is the number of process plans.

5.4.3 How to Allocate and Order the Subset of Operations?

The set of all the selected operations on all the process plans constitutes the sub-problem
to solve. After the selection process is finished, we need to approximate the contribu-
tion of each process plan in terms of cost; i.e., the allocation cost and the length of the

106 CHAPTER 5. EXPERIMENTAL SYSTEM

pending operations of each process plan. This approximation is done by using the same
heuristic as the one dedicated to the selection of operations. To make decisions, we gen-
erate a deterministic problem; i.e., we use the mean durations of the selected operations
extended depending on resource breakdown distributions, and process plan queues esti-
mated heuristically. We use standard constraint programming techniques to explore and
reduce the search space.

5.5 Discussion

With respect to the experimental study of our revision-proactive approach, we set the
value of the sensitivity factor that approximately determines the number of reschedulings.
When rescheduling, we are looking for solutions that optimize a criterion, there always
exists a solution in our case. It could be interesting to tackle more constrained problems
with the revision-proactive approach.

Monte-Carlo simulation is useful to select robust schedules but it is costly. An alter-
native to simulation is to generate a deterministic model of the non-deterministic problem
that is pessimistic and that cover more than 50% of the execution scenarios. The higher
the percentage of covered execution scenarios, the higher the robustness level of the so-
lution. The solutions that are found by this proactive techniques are less sensitive to
perturbations and should result in a smaller number of reschedulings during execution in
principle.

For the progressive-proactive approach, an experimental study has still to be con-
ducted to understand the relationships between the different and numerous parameters,
indicators, and problem characteristics.

If δtmin equals zero, then it amounts to only deciding to extend the current partial
flexible schedule when the uncertainty condition is met. The temporal condition is met
when at least one of the operations of OallocOrderLast finishes execution and the uncertainty
condition should be met before this date in principle, if σtmin is not too small, see below.
If δtmax and σtmax are small, then it means we frequently extend the current partial
flexible schedule with small subsets of operations: this is a reactive approach. If δtmax

and/or σtmax are large, then it amounts to selecting and scheduling all operations: this is
a predictive approach.

We can change both δtmin and σtmin to choose when we want to consider a subset
of pending operations during execution of the current flexible schedule. If δtmin is small
and σtmin is large, then it amounts to extending the current flexible schedule when the
uncertainty condition is met. If δtmin is large and σtmin is small, then it means we extend
the current flexible schedule when the temporal condition is met. If both δtmin and σtmin

are small, then it means we extend the current flexible schedule at the last time: the
temporal anticipation is short. If both δtmin and σtmin are large, then it amounts to
extending the current flexible schedule very early: the temporal anticipation is long.

An interesting future work consists in mixing the proactive, progressive, and revision
techniques and in studying the relationships between the different parameters, indicators,
and problem characteristics. For example, we could set a proactive approach that takes
into account 60% of execution scenarios, a middle progressive horizon, and a small number
of reschedulings. Another study could consist in setting a proactive approach that takes
into account 80% of execution scenarios, a large progressive horizon, and a small number

5.6. SUMMARY AND GENERAL COMMENTS 107

of reschedulings.

5.6 Summary and General Comments
In this chapter, we presented the software prototype implemented to experiment different
parameters used to solve scheduling problems with probabilistic data in different ways.
Some indicators have been proposed to assess solutions and to permit the knowledge of
the impact of each parameter on the solution generation that is performed off and on line.

Our initial objective with respect to ILOG was to design and implement an experimen-
tal system that integrates reactive, proactive, and progressive techniques, see Chapter 2,
in a generation-execution loop, see Chapter 4. We did not attain completely this goal
but we can fully achieve it by implementing the remaining part. We demonstrated that
this constraint-based system can address a lot of scheduling issues and can integrate all
ways of scheduling with uncertainty because it is flexible. In addition, this experimental
system offers a number of parameters that can be used to study stability and robustness
of solutions.

Chapter 6

Future Work

All along this thesis, we have identified research issues but we have not focused our
attention on all of them. They appear to be good candidate research directions

for future work to take from the work presented in this dissertation. They concern our
prototype and our theoretical model.

6.1 Prototype
We distinguish two main future research areas with respect to our prototype: further
experimental studies conducted with the current prototype and extensions of the current
prototype.

6.1.1 Experimental Studies

As explained in Chapter 5, our prototype offers a large range of parameters and indicators.
In addition, we can tackle scheduling problems with numerous characteristics. This is
obviously a wealthy source of future experimental investigations.

In the near future, we envision to test our reactive-proactive approach more system-
atically. In particular, we would like to understand how to balance the reactive and
proactive techniques with respect to the characteristics of the problem, such as its seize
and its uncertainty level.

A first improvement for the revision technique could be to refine our rescheduling
criteria by taking into account the standard deviations of the probability distributions
we monitor on line for rescheduling; i.e., we could associate a weight with each of the
expected values we monitor such that this weight decreases with the standard deviation
of the corresponding uncontrollable variable.

It is also very appealing to experiment our progressive-proactive approach to draw
some conclusions about the relationships between the parameters, the indicators, and the
characteristics of the scheduling problem. In particular, the progressive approach seems
to be particularly suitable for tackling large scheduling problems because it allows one to
split the problem into sub-problems and solve each of them one after the other.

Our proactive approach could be compared with other existing scheduling techniques
that cope with uncertainty, such as slack-based techniques [45].

Both the reactive-proactive and the progressive-proactive approaches could be com-
pared. We could also study these approaches by combining them all together to determine

109

110 CHAPTER 6. FUTURE WORK

how the different parameters, indicators, and problem characteristics are related to each
other.

It would be interesting to compare the search techniques that have been used with
others, such as local search [91] or genetic algorithms.

Future work would be to experiment the different techniques on other problem in-
stances. For example, other cost functions would also be of interest, such as earliness-
tardiness cost function. Furthermore, the problems tackled could be dynamic and/or more
uncertain; e.g., process plans are added or removed during execution, there are imprecise
due dates, etc.

In the experimental study presented in this dissertation, we assume uncertainty is
evenly distributed among operations. It would be interesting to experiment with more
realistic problems described by a more erratic distribution of uncertainty.

6.1.2 Extensions

The prototype we have implemented on top of ILOG Scheduler is extensible in several
directions.

A source of thoughts for future comes from the design of indicators in scheduling. For
example, it is not obvious how to formalize an indicator that takes into account stability
of decisions and solution quality.

It would be desirable to implement resolution techniques to be able to tackle multi-
criteria problems that are common in many application domains.

The current progressive approach of our prototype could be extended in different ways.
For example, we could distinguish the operations that we select to complete the current
partial schedule from the operations from which we reason to make decisions but that are
not included in the current schedule.

Future investigations about heuristics will be conducted for improving the search effi-
ciency. In particular, when using Large Neighborhood Search it is important to relax in
priority the decisions for which the potential gain with respect to quality is maximal.

An important issue that has still to be addressed is the implementation of a conditional
scheduling approach. For achieving this objective, we could extend the capabilities of the
current software prototype by implementing a constraint-based search technique that can
deal with hypothetical variables, by using a Conditional Constraint-Satisfaction Problem
framework for instance, see Section 1.3.3. This would permit one to address scheduling
problems with alternatives [19].

Another promising research domain concerns the search algorithms implemented in
the prototype. In particular, we could use previous solutions or previous search to guide
decision-making when rescheduling. There exist search techniques in constraint pro-
gramming that can deal with such issues, see Section 1.3.3 dedicated to the Dynamic
Constraint-Satisfaction Problem framework.

An interesting future work concerns the handling of random variables that are depen-
dent on each other, such as random variables in Bayesian networks.

Future research could consist in addressing scheduling problems with more types of
decisions; e.g., we introduce more flexibility by removing the non-preemption assumption.

With respect to our application domain, our experimental system could be extended to
address project scheduling problems. To reach this objective, we have to define stability
metrics as optimization criteria such as deviation of operation start times. Such problems

6.2. THEORETICAL MODEL 111

can be modeled by large Resource-Constrained Project Scheduling Problems with several
due dates, alternative resources, and alternatives.

6.2 Theoretical Model
The generation-execution model presented in this dissertation is modular and open. We
think it could be of interest to extend this model by integrating more AI planning concepts
and resolution techniques in it.

A significant extension would consist in endowing the generation algorithm with causal
reasoning capabilities to be able to deal with goals, operations with preconditions and
effects, continuous resources.

It would be of interest to determine the optimality guarantees that are offered by our
theoretical model. In particular, it is desirable to describe in detail how such model devel-
ops when we adopt a maximal coverage approach combined with the existing conditional
approach.

Conclusions

The thesis of this dissertation is that interleaving generation and execution while using
uncertainty knowledge to generate and maintain partial and/or flexible schedules

of high quality turns out to be useful when execution takes place in a real-time, non-
deterministic environment. We avoid wasting computational power and limit our com-
mitment by generating partial solutions; i.e., these are solutions in a gliding-time horizon.
These partial schedules can be quickly produced since we only make decisions in a short-
term horizon and the decisions made are expected to not change since they concern the
operations with a low uncertainty level. Flexible schedules are solutions that are able to
provide a fast answer to external and/or internal changes. A flexible solution implicitly
contains a set of solutions that are able to match different execution scenarios. It is how-
ever necessary to endow the decision-making system with a fast revision capability in case
the problem changes, a constraint is violated, or the expected solution quality derives too
much since unexpected events occur during execution.

Our main objective was to clearly distinguish the techniques for solving scheduling and
planning problems under uncertainty and to create a software library that integrates these
resolution techniques. The latter sub-goal has been partially attained but we have demon-
strated this can now be achieved and this achievement only requires implementation effort.

The main contributions of this research work are the following:

• we propose a classification of the resolution methods and systems currently used in
task planning and scheduling under uncertainty. This taxonomy is based on how
decisions are made and is independent of the mathematical model used to represent
the problem, the resolution technique, and/or the planning/scheduling system;

• we describe a theoretical model that represents how to interleave schedule generation
and execution. This model is based on our original classification of the current
literature;

• we propose new scheduling problems with probabilistic data;

• we report an experimental study conducted with a software prototype implemented
in C++ using ILOG Solver and Scheduler libraries. We explain the constraint
model, the resolution methods and the mechanisms of this experimental system
for interleaving generation and execution of partial and/or flexible schedules. We
propose new benchmark scheduling problems that are pervaded by uncertainty. We
present some search heuristics and analyze some experimental results obtained by
investigating probabilistic scheduling problems with our software prototype.

113

114 CONCLUSIONS

The work presented in this dissertation is a relative small contribution in the research
ocean. However, we think that making decisions under uncertainty is really a contempo-
rary issue in many application domains, such as social-economic organizations, military
strategy, etc. This work has to be extended in the directions exposed in Chapter 6 to
address existing and new challenging issues.

Combining classical search techniques with simulation has the main advantage that
we can tackle problems with complex non-deterministic aspects. However, simulation can
not be used in every case since the results produced are only estimations and can be
misleading, indeed dangerous for critical applications, such as nuclear power-plants. In
the latter cases, we still need exact approaches.

Bibliography

[1] Proceedings of the 14thInternational Joint Conference on Artificial Intelligence (IJ-
CAI), Montréal, Québec, Canada, August 1995.

[2] Proceedings of the Third International Conference on Artificial Intelligence Planning
and Scheduling (AIPS), Edinburgh, Scotland, May 1996.

[3] Proceedings of the 15thNational Conference on Artificial Intelligence (AAAI), Madi-
son, Visconsin, United States of America, July 1998.

[4] Proceedings of the 16thInternational Joint Conference on Artificial Intelligence (IJ-
CAI), Stockholm, Sweden, July 1999.

[5] Proceedings of the 17thInternational Joint Conference on Artificial Intelligence (IJ-
CAI), Seattle, Washington, United States of America, August 2001.

[6] Proceedings of the Eighth International Conference on Principles and Practice of
Constraint Programming (CP), Cornell University, New York, United States of
America, September 2002.

[7] Proceedings of the Ninth International Conference on Principles and Practice of
Constraint Programming (CP), Kinsale, County Cork, Ireland, September 2003.

[8] Proceedings of the 19thInternational Joint Conference on Artificial Intelligence (IJ-
CAI), Edinburgh, Scotland, July 2005.

[9] Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure
for job-shop scheduling. Management Science, 34:391–401, 1988.

[10] M. Selim Aktürk and M. Bayram Yildirim. A new dominance rule for the total
weighted tardiness problem. Production Planning and Control, 10(2):138–149, 1999.

[11] A. Alan, B. Pritsker, Lawrence J. Watters, and Philip M. Wolfe. Multi-project
scheduling with limited resources: A zero-one programming approach. Management
Science, 16:93–108, 1969.

[12] Mohamed Ali Aloulou, Marie-Claude Portmann, and Antony Vignier. Predictive-
reactive scheduling for the single machine problem. In Proceedings of the Eighth
International Workshop on Project Management and Scheduling (PMS’02), pages
39–42, Valencia, Spain, April 2002.

[13] David Applegate and William Cook. A computational study of the job-shop schedul-
ing problem. ORSA Journal on Computing, 3(2):149–156, 1991.

115

116 BIBLIOGRAPHY

[14] Bernard Archimède, Laurent Geneste, Michael Fisher, and Jonas Högberg. Compar-
ison of schedules in a job-shop context: An approach based on structural indicators.
In Proceedings of the Mini EURO Conference, Bruges, Belgium, 1997.

[15] Christian Artigues. Ordonnancement en temps réel d’ateliers avec temps de prépara-
tion des ressources. Ph.D. dissertation, Université Paul Sabatier, Toulouse, France,
1997.

[16] Christian Artigues, Jean-Charles Billaut, and Carl Esswein. Maximization of so-
lution flexibility for robust shop scheduling. European Journal of Operational Re-
search, 165(2):314–328, 2005.

[17] Egon Balas. Project Scheduling with Resource Constraints. In Applications of
mathematical programming techniques. American Elsevier, 1970.

[18] Philippe Baptiste and Claude Le Pape. Edge-finding constraint propagation algo-
rithms for disjunctive and cumulative scheduling. Technical report, U.K. planning
and scheduling SIG meeting, Liverpool, United Kingdom, 1996.

[19] J. Christopher Beck and Mark S. Fox. Constraint-directed techniques for scheduling
with alernative activities. Artificial Intelligence, 121(1-2):211–250, 2000.

[20] J. Christopher Beck and Nic Wilson. Job-shop scheduling with probabilistic du-
rations. In Proceedings of the 16thEuropean Conference on Artificial Intelligence
(ECAI), pages 652–656, Valencia, Spain, August 2004.

[21] J. Christopher Beck and Nic Wilson. Proactive algorithms for scheduling with
probabilistic durations. In Proceedings of the 19thInternational Joint Conference on
Artificial Intelligence (IJCAI) [8].

[22] John Christopher Beck. Texture Measurements as a Basis for Heuristic Commit-
ment Techniques in Constraint-directed Scheduling. Ph.D. dissertation, University
of Toronto, Toronto, Canada, 1999.

[23] Richard Bellman, editor. Dynamic Programming. Princeton University Press, 1957.

[24] Dimitri P. Bertsekas, editor. Dynamic Programming: Deterministic and Stochastic
Models. Prentice-Hall, 1987.

[25] Julien Bidot, Philippe Laborie, J. Christopher Beck, and Thierry Vidal. Using sim-
ulation for execution monitoring and on-line rescheduling with uncertain durations.
In Working Notes of the ICAPS’03 Workshop on Plan Execution, Trento, Italy, June
2003.

[26] Jean-Charles Billaut. Prise en compte de ressources multiples et des temps de pré-
paration dans les problèmes d’ordonnancement. Ph.D. dissertation, Université Paul
Sabatier, Toulouse, France, 1993.

[27] Jean-Charles Billaut, Aziz Moukrim, and Eric Sanlaville, editors. Flexibilité et
robustesse en ordonnancement. Hermès, 2005.

BIBLIOGRAPHY 117

[28] Jean-Charles Billaut, Aziz Moukrim, and Eric Sanlaville. Introduction à la flexibilité
et à la robustesse en ordonnancement. In Flexibilité et robustesse en ordonnancement
[27], pages 13–32.

[29] John R. Birge and François Louveaux, editors. Introduction to Stochastic Program-
ming. Springer-Verlag, New York, United States of America, 1997.

[30] Stefano Bistarelli, Ugo Montanari, Francesca Rossi, Thomas Schiex, Gérard Ver-
faillie, and Hélène Fargier. Semiring-based CSPs and valued CSPs: Frameworks,
properties and comparison. CONSTRAINTS, 4(3):199–240, 1999.

[31] Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis.
In Proceedings of the 14thInternational Joint Conference on Artificial Intelligence
(IJCAI) [1].

[32] Craig Boutilier, Thomas Dean, and Steve Hanks. Planning under uncertainty:
Structural assumptions and computational leverage. In Proceedings of the Third
European Workshop on Planning (EWSP), Assise, Italy, September 1995.

[33] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision theoretic planning: Struc-
tural assumptions and computational leverage. Journal of Artificial Intelligence
Research, 11:1–94, 1999.

[34] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic
programming with factored representations. Artificial Intelligence, 121(1):49–107,
2000.

[35] James Bowen and Dennis Bahler. Conditional existence of variables in generalized
constraint networks. In Proceedings of the 9thNational Conference on Artificial
Intelligence (AAAI), Anaheim, California, United States of America, July 1991.

[36] Jürgen Branke and Dirk C. Mattfeld. Anticipatory scheduling for dynamic job-shop
problems. In Working Notes of the AIPS’02 Workshop on On-line Planning and
Scheduling, Toulouse, France, April 2002.

[37] Peter Burke and Patrick Prosser. The distributed asynchronous scheduler. In
Zweben and Fox [183], chapter 11, pages 309–339.

[38] Emmanuel Caillaud, Didier Gourc, Luis Antonio Garcia, Ross Crossland, and Chris
McMahon. A framework for a knowledge-based system for risk management in con-
current engineering. Concurrent Engineering Research and Applications, 7(3):257–
267, September 1999.

[39] Amedeo Cesta and Riccardo Rasconi. Execution monitoring and schedule revision
for O-OSCAR: A preliminary report. In Proceedings of the CP’03 Workshop on
Constraint Solving under Change and Uncertainty, Kinsale, County Cork, Ireland,
June 2003.

[40] Steve A. Chien, Russell Knight, Andre Stechert, Rob Sherwood, and Gregg Rapi-
deau. Using iterative repair to improve the responsiveness of planning and schedul-
ing. In Proceedings of the Fifth International Conference on Artificial Intelligence

118 BIBLIOGRAPHY

Planning and Scheduling (AIPS), pages 300–307, Breckenridge, Colorado, United
States of America, April 2000.

[41] Célia Da Costa Pereira. Planification d’actions en environnement incertain : une
approche fondée sur la théorie des possibilités. Ph.D. dissertation, Université Paul
Sabatier, Toulouse, France, 1998.

[42] Richard L. Daniels and Janice E. Carrillo. Beta-robust scheduling for single-machine
systems with uncertain processing times. IIE Transaction, 29:977–985, 1997.

[43] Andrew J. Davenport and J. Christopher Beck. Managing uncertainty in scheduling:
A survey. Preprint, 2000.

[44] Andrew J. Davenport and J. Christopher Beck. A survey of tech-
niques for scheduling with uncertainty. Unpublished manuscript available at
http://www.eil.utoronto.ca/profiles/chris/chris.papers.html, 2000.

[45] Andrew J. Davenport, Christophe Gefflot, and J. Christopher Beck. Slack-based
techniques for building robust schedules. In Proceedings of the Sixth European Con-
ference on Planning (ECP), Toledo, Spain, September 2001.

[46] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the Association of Computating Machinery, 7:201–215, 1960.

[47] Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and
causation. Computational Intelligence, 5(3):142–150, 1989.

[48] Rina Dechter. Constraint Processing. Morgan Kaufmann, San Francisco, California,
United States of America, 2003.

[49] Rina Dechter and David Larkin. Hybrid processing of beliefs and constraints. In
Proceedings of the 17thConference on Uncertainty in Artificial Intelligence (UAI),
Seattle, Washington, United States of America, August 2001.

[50] Rina Dechter and Robert Mateescu. Mixtures of deterministic-probabilistic net-
works and their AND/OR search space. In Proceedings of the 20thConference on
Uncertainty in Artificial Intelligence (UAI), Banff Park Lodge, Banff, Canada, July
2004.

[51] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61–95, 1991.

[52] Denise Lynn Draper, Steve Hanks, and Daniel S. Weld. Probabilistic planning
with information gathering and contingent execution. In Proceedings of the Second
International Conference on Artificial Intelligence Planning and Scheduling (AIPS),
pages 31–36, Chicago, Illinois, United States of America, June 1994.

[53] Mark Drummond, John L. Bresina, and Keith Swanson. Just-In-Case scheduling. In
Proceedings of the 12thNational Conference on Artificial Intelligence (AAAI), pages
1098–1104, Seattle, Washington, United States of America, July 1994.

BIBLIOGRAPHY 119

[54] Didier Dubois, Hélène Fargier, and Henri Prade. The use of fuzzy constraints in job-
shop scheduling. In Working Notes of the IJCAI’93 Workshop on Knowledge-based
Production Planning, Scheduling, and Control, pages 101–112, Chambéry, France,
August 1993.

[55] Jitka Dupacǒvá, Nicole Gröwe-Kuska, and Werner Römisch. Scenario reduction
in stochastic programming: An approach using probability metrics. Mathematical
Programming, Series A 95:493–511, 2003.

[56] Abdallah Elkhyari, Christelle Guéret, and Narendra Jussien. Explanation-based
repair techniques for solving dynamic scheduling problems. In Working Notes of the
AIPS’02 Workshop on On-line Planning and Scheduling, Toulouse, France, April
2002.

[57] Jacques Erschler. Analyse sous contraintes et aide à la décision pour certains prob-
lèmes d’ordonnancement. Ph.D. dissertation, Université Paul Sabatier, Toulouse,
France, 1976.

[58] Carl Esswein. Un apport de flexibilité séquentielle pour l’ordonnancement robuste.
Ph.D. dissertation, Laboratoire d’Informatique de l’Université de Tours, Tours,
France, December 2003.

[59] Tara Estlin, Gregg Rabideau, Darren Mutz, and Steve A. Chien. Using continuous
planning techniques to coordinate multiple rovers. Electronic Transactions on Artifi-
cial Intelligence, 4, Section A:45–57, 2000. http://www.ep.liu.se/ea/cis/2000/016/.

[60] Boi Faltings and Santiago Macho-Gonzalez. Open constraint satisfaction. In Pro-
ceedings of the Eighth International Conference on Principles and Practice of Con-
straint Programming (CP) [6], pages 356–370.

[61] Hélène Fargier and Jérôme Lang. Uncertainty in constraint satisfaction problems:
A probabilistic approach. In Proceedings of the European Conference on Symbolic
and Quantitive Approaches for Reasoning under Uncertainty (ECSQARU’93), pages
97–104, Grenade, Spain, 1993.

[62] Hélène Fargier, Jérôme Lang, Roger Martin-Clouaire, and Thomas Schiex. A con-
straint satisfaction framework for decision under uncertainty. In Proceedings of
the 14thInternational Joint Conference on Artificial Intelligence (IJCAI) [1], pages
167–174.

[63] Hélène Fargier, Jérôme Lang, and Thomas Schiex. Mixed constraint satisfaction:
A framework for decision problems under incomplete knowledge. In Proceedings
of the 13thNational Conference on Artificial Intelligence (AAAI), pages 175–180,
Portland, Oregon, United States of America, August 1996.

[64] G. Ferguson, J. Allen, and B. Miller. TRAINS-95: Towards a mixed-initiative plan-
ning assistant. In Proceedings of the Third International Conference on Artificial
Intelligence Planning and Scheduling (AIPS) [2], pages 70–77.

120 BIBLIOGRAPHY

[65] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the applica-
tion of theorem proving to problem solving. In Proceedings of the 2ndInternational
Joint Conference on Artificial Intelligence (IJCAI), pages 608–620, London, United
Kingdom, August 1971.

[66] M. L. Fisher. Optimal solutions of scheduling problems using Lagrange multipliers,
Part I. Operations Research, 21(5), 1973.

[67] Vincent Galvagnon. Aide à la décision en gestion multi-projet distribuée : approche
locale pour la planification à moyen terme. Ph.D. dissertation, Ecole Nationale
Supérieure de l’Aéronautique et de l’Espace, Toulouse, France, 2000.

[68] Hong Gao. Building robust schedules using temporal protection–an empirical study
of constraint-based scheduling under machine failure uncertainty. Master’s thesis,
Department of Industrial Engineering, University of Toronto, Toronto, Canada,
1995.

[69] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W. H. Freeman, San Francisco, California, United
States of America, 1979.

[70] Héctor Geffner. Modeling intelligent behaviour: The Markov decision process ap-
proach. In H. Coelho, editor, Proceedings of Iberamia 98, Lecture Notes in AI 1484,
pages 1–12. Springer, 1998. Invited talk.

[71] Esther Gelle and Boi Faltings. Solving mixed and conditional constraint satisfaction
problems. CONSTRAINTS, 8(2):107–141, 2003.

[72] Laurent Geneste and Bernard Grabort. Implicit versus explicit knowledge represen-
tation. International Journal of Expert Systems, 10(1):37–52, 1997.

[73] Laurent Geneste, Bernard Grabot, and Agnès Letouzet. Scheduling uncertain orders
in the customer-subcontractor context. European Journal of Operational Research,
147(2):297–311, 2003.

[74] Laurent Geneste, Bernard Grabot, and Philippe Moutarlier. Scheduling of heteroge-
neous data using fuzzy logic in a customer-subcontractor context. In Maciej Hapke
and Roman Słowiński, editors, Scheduling under Fuzziness, Studies in Fuzziness and
Soft Computing, pages 247–265. Springer-Verlag, 2000.

[75] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning: Theory
and Practice. Morgan Kaufmann, 2004.

[76] Robert P. Goldman, Michael J. S. Pelican, and David J. Musliner. Guiding plan-
ner backjumping using verifier traces. In Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling (ICAPS), pages 279–286,
Whistler, British Columbia, Canada, June 2004.

[77] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phe-
nomena in satisfiability and constraint satisfaction problems. Journal of Automated
Reasoning, 24:67–100, 2000.

BIBLIOGRAPHY 121

[78] Nicholas G. Hall and Marc E. Posner. Sensitivity analysis for scheduling problems.
Journal of Scheduling, 7(1):49–83, 2004.

[79] Maciej Hapke, Andrzej Jaskievicz, and Roman Słowiński. Fuzzy multi-mode
resource-constrained project scheduling with multiple objectives. In Weglarz [174],
pages 355–382.

[80] Emma Hart and Peter Ross. An immune system approach to scheduling in changing
environments. In A. E. Eiben M. H. Garzon V. Honavar M. Jakiela W. Banzhaf,
J. Daida and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’99), pages 1559–1565, Orlando, Florida, United
States of America, July 1999. Morgan Kaufmann.

[81] William D. Harvey and Matthew S. Ginsberg. Limited discrepancy search. In Pro-
ceedings of the 14thInternational Joint Conference on Artificial Intelligence (IJCAI)
[1], pages 607–613.

[82] Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. Super solutions in constraint
programming. In Proceedings of the 6thInternational Conference on Integration of
Artificial Intelligence and Operations Research Techniques in Constraint Program-
ming for Combinatorial Optimization Problems (CP-AI-OR), pages 157–172, Nice,
France, April 2004.

[83] Willy S. Herroelen and Roel Leus. Project scheduling under uncertainty–survey and
research potentials. In Proceedings of the Eighth International Workshop on Project
Management and Scheduling (PMS’02), Valencia, Spain, April 2002.

[84] Willy S. Herroelen and Roel Leus. The construction of stable project baseline
schedules. European Journal of Operational Research, 156:550–565, 2004.

[85] Willy S. Herroelen and Roel Leus. Robust and reactive project scheduling: A re-
view and classification of procedures. International Journal of Production Research,
42(8):1599–1620, 2004.

[86] Ronald A. Howard and James E. Matheson. Influence diagrams. In Ronald A.
Howard and James E. Matheson, editors, Readings on the Principles and Applica-
tions of Decision Analysis, volume II. Professional Collection, Strategic Decisions
Group, Menlo Park, California, United States of America, 1984.

[87] Marie-José Huguet, Pierre Lopez, and Thierry Vidal. Dynamic task sequencing in
temporal problems with uncertainty. In Working Notes of the AIPS’02 Workshop
on On-line Planning and Scheduling, Toulouse, France, April 2002.

[88] ILOG S. A. ILOG Scheduler 5.3: Reference Manual and User’s Manual, 2002.

[89] Harold Kerzner. Project Management. A Systems Approach to Planning, Scheduling
and Controlling. Wiley and Sons, Inc., 1998.

[90] Alexander Kott and Victor Saks. A multi-decompositional approach to integration
of planning and scheduling–an applied perspective. In Proceedings of the Work-
shop on Integrating Planning, Scheduling and Execution in Dynamic and Uncertain
Environments, Pittsburgh, Pennsylvania, United States of America, 1998.

122 BIBLIOGRAPHY

[91] Stephan Kreipl. A large step random walk for minimizing total weighted tardiness
in a job shop. Journal of Scheduling, 2000.

[92] Thittamaranahalli K. Satish Kumar. Incremental computation of resource-envelopes
in producer-consumer models. In Proceedings of the Ninth International Conference
on Principles and Practice of Constraint Programming (CP) [7], pages 664–678.

[93] Nicholas Kushmerick, Steve Hanks, and Daniel S. Weld. An algorithm for proba-
bilistic planning. Artificial Intelligence, 76(1–2):239–286, 1995.

[94] Hoang Trung La. Utilisation d’ordres partiels pour la caractérisation de solutions
robustes en ordonnancement. Ph.D. dissertation, Institut National des Sciences
Appliquées de Toulouse, Toulouse, France, January 2005.

[95] Philippe Laborie. IxTeT : une approche intégrée pour la gestion de ressources et la
synthèse de plans. Ph.D. dissertation, Laboratoire d’Analyse et d’Archictecture des
Systèmes du C. N. R. S., Toulouse, France, December 1995.

[96] Philippe Laborie. Algorithms for propagating resource constraints in AI plan-
ning and scheduling: Existing approaches and new results. Artificial Intelligence,
143:152–188, January 2003.

[97] Philippe Laborie. Complete MCS-based search: Application to resource-constrained
project scheduling. In Proceedings of the 19thInternational Joint Conference on
Artificial Intelligence (IJCAI) [8].

[98] Evelina Lamma, Paolo Mello, Michela Milano, Rita Cucchiara, Marco Gavanelli,
and Massimo Piccardi. Constraint propagation and value acquisition: Why we
should do it interactively. In Proceedings of the 16thInternational Joint Conference
on Artificial Intelligence (IJCAI) [4], pages 468–477.

[99] Sthephen R. Lawrence. Resource-constrained Project Scheduling: An Experimental
Investigation of Heuristic Scheduling Techniques (Supplement). Ph.D. dissertation,
Graduate School of Industrial Administration, Carnegie Mellon University, Pitts-
burgh, Pennsylvania, United States of America, 1984.

[100] Claude Le Pape, Philippe Couronné, Didier Vergamini, and Vincent Gosselin. Time-
versus-capacity compromises in project scheduling. In Proceedings of the Thirteenth
Workshop of the United Kingdom Planning Special Interest Group, 1994.

[101] Solange Lemai and François Félix Ingrand. Interleaving temporal planning and exe-
cution: IxTeT-eXeC. In Proceedings of the ICAPS’03 Workshop on Plan Execution,
June 2003.

[102] Solange Lemai and François Félix Ingrand. Planification et contrôle d’exécution
temporels : IxTeT-eXeC. In Proceedings of 14e Congrès Francophone AFRIF-AFIA
de Reconnaissance de Formes et Intelligence Artificielle, Toulouse, January 2004.

[103] Roel Leus. The Generation of Stable Project Plans. Ph.D. dissertation, Department
of Applied Economics, Katholieke Universiteit Leuven, Leuven, Belgium, September
2003.

BIBLIOGRAPHY 123

[104] Olivier Lhomme. Consistency techniques for numeric CSPs. In Proceedings of the
13thInternational Joint Conference on Artificial Intelligence (IJCAI), Chambéry,
France, August 1993.

[105] Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. Stochastic boolean
satisfiability. Journal of Automated Reasoning, 27(3):251–296, 2001.

[106] William S. Lovejoy. A survey of algorithmic methods for partially observed Markov
decision processes. Annals of Operations Research, 28, 1991.

[107] Suresh Manandhar, Armagan Tarim, and Toby Walsh. Scenario-based stochastic
constraint programming. In Proceedings of the 18thInternational Joint Conference
on Artificial Intelligence (IJCAI), pages 257–262, Acapulco, Mexico, August 2003.

[108] Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Intro-
duction. MIT Press, Cambridge, Massachusetts, United States of America, March
1998.

[109] Bart L. McCarthy and Jiyin Liu. Addressing the gap in scheduling research: A re-
view of optimization and heuristic methods in production scheduling. International
Journal of Production Research, 31(1):59–79, 1993.

[110] Jack R. Meredith and Samuel J. Mandel, Jr. Project Management. A Managerial
Approach with Microsoft Project 2000. Wiley and Sons, Inc., June 2001. Fourth
edition.

[111] Sanjay Mittal and Brian Falkenhainer. Dynamic constraint satisfaction problems. In
Proceedings of the 8thNational Conference on Artificial Intelligence (AAAI), pages
25–32, Boston, Massachusetts, United States of America, July 1990.

[112] Paul H. Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans
with temporal uncertainty. In Proceedings of the 17thInternational Joint Conference
on Artificial Intelligence (IJCAI) [5], pages 494–502.

[113] Thomas E. Morton and David W. Pentico. Heuristic Scheduling Systems with Ap-
plications to Production Systems and Project Management. John Wiley and Sons,
Inc., New York, United States of America, 1993.

[114] Nicola Muscettola. HSTS: Integrating planning and scheduling. In Zweben and Fox
[183], pages 169–212.

[115] Nicola Muscettola. Computing the envelope for stepwise-constant resource allo-
cations. In Proceedings of the Eighth International Conference on Principles and
Practice of Constraint Programming (CP) [6], pages 139–154.

[116] Rolf H. Möhring, Franz Josef Radermacher, and Gideon Weiss. Stochastic schedul-
ing problems I–general and set strategies. ZOR, Zeitschrift für Operations Research,
28:193–260, 1984.

[117] Rolf H. Möhring, Franz Josef Radermacher, and Gideon Weiss. Stochastic schedul-
ing problems II–general and set strategies. ZOR, Zeitschrift für Operations Research,
29:65–104, 1985.

124 BIBLIOGRAPHY

[118] Klaus Neumann. Scheduling of projects with stochastic evolution structure. In
Weglarz [174], chapter 14, pages 309–332.

[119] Wim P. M. Nuijten. Time- and Resource-constrained Scheduling. A Constraint Sat-
isfaction Approach. Ph.D. dissertation, Technische Universiteit Eindhoven, Eind-
hoven, Netherlands, 1994.

[120] Massimo Paolucci, Onn Shehory, Katia Sycara, Dirk Kalp, and Anandeep Pannu. A
planner for agents in open, dynamic MAS: The RETSINA planner. In Proceedings
of the IJCAI’99 Workshop “Scheduling and Planning Meet Real-Time Monitoring
in a Dynamic and Uncertain World”, Stockholm, Sweden, August 1999.

[121] James H. Patterson and G. W. Roth. Scheduling a project under multiple resource
constraints: A zero-one programming approach. AIIE Transactions, 8:449–455,
1976.

[122] Judea Pearl et al. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, 1988.

[123] J. Scott Penberthy. Planning with Continuous Change. Ph.D. dissertation, Depart-
ment of Computer Science and Engineering, University of Washington, 1993.

[124] J. Scott Penberthy and Daniel S. Weld. Temporal planning with continuous change.
In Proceedings of the 10thNational Conference on Artificial Intelligence (AAAI),
pages 1010–1015, San Rose, California, United States of America, July 1992.

[125] Michael L. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice Hall,
1995.

[126] Marco Pistore and Paolo Traverso. Planning as model checking for extended goals in
non-deterministic domains. In Proceedings of the 17thInternational Joint Conference
on Artificial Intelligence (IJCAI) [5], pages 479–484.

[127] Nicola Policella, Angelo Oddi, Stephen F. Smith, and Amedeo Cesta. Generating
robust schedules through chaining. In Proceedings of the Tenth International Con-
ference on Principles and Practice of Constraint Programming (CP), pages 496–511,
Toronto, Canada, September 2004.

[128] Cédric Pralet, Gérard Verfaillie, and Thomas Schiex. Belief and desire networks for
answering complex queries. In Proceedings of the CP’04 Workshop on Constraint
Solving under Change and Uncertainty, Toronto, Canada, September 2004.

[129] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, 1994.

[130] Maurice Queyranne and Andreas S. Schulz. Polyhedral approaches to machine
scheduling problems. Technical Report 2008/1994, Fachbereich Mathematik, Tech-
nische Universität Berlin, Berlin, Germany, 1994.

[131] Jean-Charles Régin. The symmetric alldiff constraint. In Proceedings of the
16thInternational Joint Conference on Artificial Intelligence (IJCAI) [4], pages 420–
425.

BIBLIOGRAPHY 125

[132] Francesca Rossi, Kristen Brent Venable, and Neil Yorke-Smith. Preferences and
uncertainty in simple temporal problems. In Proceedings of the CP’03 Workshop on
Constraint Solving under Change and Uncertainty, Kinsale, County Cork, Ireland,
June 2003.

[133] Stuart Russel and Peter Norvig. Artificial Intelligence. A Modern Approach. Pren-
tice Hall, 1995.

[134] Zsófia Ruttkay. Fuzzy constraint satisfaction. In Proceedings of the 3rd IEEE Con-
ference on Fuzzy Systems, 1994.

[135] Régis Sabbadin. Empirical comparison of probabilistic and possibilistic Markov de-
cision processes algorithms. In Proceedings of the 14thEuropean Conference on Arti-
ficial Intelligence (ECAI), pages 586–590, Humboldt-Universität zu Berlin, Berlin,
Germany, August 2000.

[136] Daniel Sabin and Eugene C. Freuder. Configuration as composite constraint sat-
isfaction. In Working Notes of the AAAI’96 Fall Symposium on Configuration,
Cambridge, Massachusetts, United States of America, November 1996.

[137] Mihaela C. Sabin and Eugene C. Freuder. Detecting and resolving inconsistency
and redundancy in conditional constraint satisfaction problems. In Working Notes
of the CP’98 Workshop on Constraint Reformulation, Pisa, Italy, October 1998.

[138] Mihaela C. Sabin, Eugene C. Freuder, and Richard J. Wallace. Greater efficiency
for conditional constraint satisfaction. In Proceedings of the Ninth International
Conference on Principles and Practice of Constraint Programming (CP) [7], pages
649–663.

[139] Ihsan Sabuncuoglu and Murat Bayiz. Analysis of reactive scheduling problems in
a job-shop environment. European Journal of Operational Research, 126:567–586,
2000.

[140] Norman M. Sadeh, Shinichi Otsuka, and Robert Schnelbach. Predictive and reac-
tive scheduling with the Micro-Boss production scheduling and control system. In
Working Notes of the IJCAI’93 Workshop on Knowledge-based Production Planning,
Scheduling, and Control, Chambéry, France, August 1993.

[141] Hani El Sakkout and Mark Wallace. Probe backtrack search for minimal perturba-
tion in dynamic scheduling. CONSTRAINTS, 5:359–388, 2000.

[142] Eric Sanlaville et al. Flexibilité et robustesse en ordonnancement. ROADEF Bulletin
number 8, 2002.

[143] Oscar Sapena and Eva Onaindia. Execution, monitoring, and replanning in dynamic
environments. In Working Notes of the AIPS’02 Workshop on On-line Planning and
Scheduling, Toulouse, France, April 2002.

[144] Thomas Schiex, Hélène Fargier, and Gérard Verfaillie. Valued constraint satisfaction
problems: Hard and easy problems. In Proceedings of the 14thInternational Joint
Conference on Artificial Intelligence (IJCAI) [1].

126 BIBLIOGRAPHY

[145] R. Shafaei and P. Brunn. Workshop scheduling using practical (inaccurate) data.
Part 1: The performance of heuristic scheduling rules in a dynamic job-shop envi-
ronment using a rolling-time horizon approach. International Journal of Production
Research, 37(17):3913–3925, November 1999.

[146] R. Shafaei and P. Brunn. Workshop scheduling using practical (inaccurate) data.
Part 2: An investigation of the robustness of scheduling rules in a dynamic and
stochastic environment. International Journal of Production Research, 37(18):4105–
4117, December 1999.

[147] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press,
Princeton, New Jersey, United States of America, 1976.

[148] Alan C. Shaw. Real-Time Systems and Software. John Wiley and Sons, Inc., March
2001.

[149] David E. Smith, Jeremy Frank, and Ari K. Jónsson. Bridging the gap between
planning and scheduling. Knowledge Engineering Review, 15(1), April 2000.

[150] David E. Smith and Daniel S. Weld. Conformant Graphplan. In Proceedings of the
15thNational Conference on Artificial Intelligence (AAAI) [3], pages 889–896.

[151] Stephen F. Smith. OPIS: A methodology and architecture for reactive scheduling.
In Zweben and Fox [183], pages 29–66.

[152] Timo Soininen, Esther Gelle, and Ilkka Niemela. A fixpoint definition of dynamic
constraint satisfaction. In Proceedings of the Fifth International Conference on Prin-
ciples and Practice of Constraint Programming (CP), Alexandria, Virginia, United
States of America, October 1999.

[153] Yuri N. Sotskov. On the calculation of the stability radius of an optimal or an
approximate schedule. Annals of Operational Research, 83:213–225, 1998.

[154] Joel P. Stinson, Edward W. Davis, and Basheer M. Khumawala. Multiple resource-
constrained scheduling using branch-and-bound. AIIE Transactions, 10(3):252–259,
1978.

[155] Frederik Stork. Stochastic Resource-constrained Project Scheduling. Ph.D. disser-
tation, Fachbereich Mathematik, Technische Universität Berlin, Berlin, Germany,
April 2001.

[156] F. Brian Talbot and James H. Patterson. An efficient integer programming algo-
rithm with network cuts for solving RCSP. Management Science, 24(11):1163–1174,
1978.

[157] Austin Tate, Brian Drabble, and Richard Kirby. O-Plan2: An open architecture for
command, planning, and control. In Zweben and Fox [183], pages 213–239.

[158] Ioannis Tsamardinos, Thierry Vidal, and Martha E. Pollack. CTP: A new
constraint-based formalism for conditional, temporal planning. CONSTRAINTS,
8(4), 2003.

BIBLIOGRAPHY 127

[159] Edward P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press,
London and San Diego, 1993.

[160] Vicente Valls, Manuel Laguna, Pilar Lino, Angeles Pérez, and Sacramen Quin-
tanilla. Project scheduling with stochastic activity interruptions. In Weglarz [174],
chapter 15, pages 333–353.

[161] Gérard Verfaillie and Narendra Jussien. Commented bibliography on dynamic con-
straint solving, October 2003. Associated with the CP’03 Tutorial on Dynamic
Constraint Solving and available on www.emn.fr/x-info/jussien/CP03tutorial/.

[162] Gérard Verfaillie and Narendra Jussien. Constraint solving in uncertain and dy-
namic environments: A survey. CONSTRAINTS, 10(3), 2005.

[163] Thierry Vidal, J. Christopher Beck, and Julien Bidot. Vers un modèle intégrant
les diverses approches d’ordonnancement sous incertitudes. In Proceedings of the
Workshop “Risque” of Plate-forme de l’Association Française pour l’Intelligence Ar-
tificielle, Laval, France, July 2003.

[164] Thierry Vidal and Julien Bidot. Dynamic sequencing of tasks in simple temporal
networks with uncertainty. In Working Notes of the CP’01 Workshop on Constraints
and Uncertainties, Paphos, Cyprus, November 2001.

[165] Thierry Vidal, Julien Bidot, J. Christopher Beck, and Philippe Laborie. Gestion
de projets sous incertitudes : un modèle de génération de plans flexibles en horizon
glissant. In Proceedings of 5econgrès de la Société Française de Recherche Opéra-
tionnelle et d’Aide à la Décision (ROADEF), Avignon, France, February 2003.

[166] Thierry Vidal and Hélène Fargier. Handling contingency in temporal constraint
networks: From consistency to controllabilities. Journal of Experimental and The-
oretical Artificial Intelligence, 11, 1999.

[167] Thierry Vidal, Malik Ghallab, and Rachid Alami. Incremental mission allocation
to a large team of robots. In Proceedings of the Third International Conference on
Artificial Intelligence Planning and Scheduling (AIPS) [2].

[168] Vincent Vidal and Héctor Geffner. Branching and pruning: An optimal temporal
POCL planner. In Proceedings of the 19thNational Conference on Artificial Intelli-
gence (AAAI), pages 570–577, San Jose, California, United States of America, July
2004.

[169] Richard J. Wallace and Eugene C. Freuder. Stable solutions for dynamic con-
straint satisfaction problems. In Proceedings of the Fourth International Conference
on Principles and Practice of Constraint Programming (CP), pages 447–461, Pisa,
Italy, October 1998.

[170] Richard J. Wallace and Eugene C. Freuder. Supporting dispatchability in schedules
with consumable resources. Journal of Scheduling, 8:7–23, 2005.

[171] Stein W. Wallace. Decision making under uncertainty: Is sensitivity analysis of any
use? Operations Research, 48(1):20–25, 2000.

128 BIBLIOGRAPHY

[172] Toby Walsh. Stochastic constraint programming. In Proceedings of the 15thEuropean
Conference on Artificial Intelligence (ECAI), pages 111–115, Lyon, France, July
2002.

[173] Richard Washington, Keith Golden, and John L. Bresina. Plan execution, moni-
toring, and adaptation for planetary rovers. Electronic Transactions on Artificial
Intelligence, 4, Section A:3–21, 2000. http://www.ep.liu.se/ej/etai/2000/004/.

[174] Jan Weglarz, editor. Project Scheduling: Recent Models, Algorithms and Applica-
tions. Kluwer Academic Publishers, 1999.

[175] Daniel S. Weld. Recent advances in AI planning. AI Magazine, 20(2):93–123, 1999.

[176] Daniel S. Weld, Corin R. Anderson, and David E. Smith. Extending Graphplan to
handle uncertainty and sensing actions. In Proceedings of the 15thNational Confer-
ence on Artificial Intelligence (AAAI) [3], pages 897–904.

[177] Steven A. Wolfman and Daniel S. Weld. Combining linear programming and satis-
fiability solving for resource planning. The Knowledge Engineering Review, 15(1),
1999.

[178] Laurence Wolsey. Integer Programming. Wiley, New York, 1998.

[179] S. David Wu, Eui-Seok Byeon, and Robert H. Storer. A graph-theoretic decomposi-
tion of the job-shop scheduling problem to achieve scheduling robustness. Operations
Research, 47:113–123, 1999.

[180] Qiang Yang. Formalizing planning knowledge for hierarchical planning. Computa-
tional Intelligence, 6:12–24, 1990.

[181] Lofti A. Zadeh. Fuzzy sets. Information and Control, 1965.

[182] Lofti A. Zadeh. Fuzzy sets as basis for a theory of possibility. Fuzzy Sets and
Systems, 1:3–28, 1978.

[183] Monte Zweben and Mark S. Fox, editors. Intelligent Scheduling. Morgan Kaufmann,
San Francisco, 1994.

Index

automaton, 70

branch-and-bound, 11

constraint propagation, 9
Constraint-Satisfaction Problem, 9

Conditional, 22
Dynamic, 22
Fuzzy, 23
Mixed, 23
Open, 23
Probabilistic, 23
Scenario-based, 24
Stochastic, 23
Temporal, 24

controllability, 24, 25, 44

dam construction, 56
dispatching rules, 27, 46

effectiveness, 13
event, 13

asynchronous, 40
synchronous, 40

flexibility, 38
fuzzy sets, 18

Markov Decision Process, 20
Factored, 21
Partially Observable, 21

maximal coverage, 43

network
Bayesian, 16
fuzzy PERT-, 34
GERT, 31

optimization, 11

planning

classical, 6
conditional, 26, 44
conformant, 26, 45
contingent, 26, 44
continuous, 26, 52
possibilistic, 25
proactive, 53
probabilistic, 25, 44
progressive, 48, 52
revision, 42, 52
state-based, 26
temporal, 9

planning with resources, 9
possibility theory, 18
priority rules, 27
probability theory, 16
problem

deterministic, 13
dynamic, 13
non-deterministic, 13
static, 13

programming
dynamic, 21
mathematical, 10
stochastic, 21

project management, 55
project scheduling, 55

real-time system, 72
reasoning

off-line, 13
on-line, 14

rescheduling, 32
robustness, 38, 39

scheduling, 7
contingent, 29, 45
fuzzy, 34
mixed, 52

129

130 INDEX

partial-order, 30, 45
proactive, 92
progressive, 48, 99
redundancy-based, 28, 45
revision, 42, 91
stochastic, 31

sensitivity analysis, 21
solution

conditional, 38
contingent, 38

solution generation
mixed, 49
predictive, 13, 43
proactive, 43, 49
progressive, 46, 49
reactive, 13, 47
revision, 40, 49

stability, 39

uncertainty
sources of, 12

A General Framework Integrating Techniques for Scheduling under Uncertainty

For last years, a number of research investigations on task planning and scheduling under uncer-
tainty have been conducted. This research domain comprises a large number of models, resolution
techniques, and systems, and it is difficult to compare them since the existing terminologies are
incomplete. However, we identified general families of approaches that can be used to structure
the literature given three perpendicular axes. This new classification of the state of the art is
based on the way decisions are taken.

In addition, we propose a generation and execution model for scheduling under uncertainty
that combines these three families of approaches. This model is an automaton that develops
when the current schedule is no longer executable or when some particular conditions are met.

The third part of this thesis concerns our experimental study. On top of ILOG Solver and
Scheduler, we implemented a software prototype in C++ directly instantiated from our genera-
tion and execution model. We present new probabilistic scheduling problems and a constraint-
based approach combined with simulation to solve some instances thereof.

Keywords: Task Planning, Scheduling, Uncertainty, Flexibility, Robustness, Stability, Combina-
torial Optimization, Constraint Satisfaction, Simulation

Un cadre général intégrant les techniques d’ordonnancement sous incertitudes

Ces dernières années, de nombreux travaux de recherche ont porté sur la planification de tâches et
l’ordonnancement sous incertitudes. Ce domaine de recherche comprend un large choix de mod-
èles, techniques de résolution et systèmes, et il est difficile de les comparer car les terminologies
existantes sont incomplètes. Nous avons cependant identifié des familles d’approches générales
qui peuvent être utilisées pour structurer la littérature suivant trois axes perpendiculaires. Cette
nouvelle structuration de l’état de l’art est basée sur la façon dont les décisions sont prises.

De plus, nous proposons un modèle de génération et d’exécution pour ordonnancer sous
incertitudes qui met en œuvre ces trois familles d’approches. Ce modèle est un automate qui
se développe lorsque l’ordonnancement courant n’est plus exécutable ou lorsque des conditions
particulières sont vérifiées.

Le troisième volet de cette thèse concerne l’étude expérimentale que nous avons menée.
Au-dessus de ILOG Solver et Scheduler nous avons implémenté un prototype logiciel en C++,
directement instancié de notre modèle de génération et d’exécution. Nous présentons de nou-
veaux problèmes d’ordonnancement probabilistes et une approche par satisfaction de contraintes
combinée avec de la simulation pour les résoudre.

Mots clés : planification de tâches, ordonnancement, incertitudes, flexibilité, robustesse, stabilité,
optimisation combinatoire, satisfaction de contraintes, simulation

This Ph.D. thesis was carried out in collaboration with the research team “Production Automa-
tisée” of “Laboratoire Génie de Production” of “Ecole Nationale d’Ingénieurs de Tarbes” – 47,
avenue d’Azereix – B. P. 1629 – 65016 Tarbes Cedex – France.

	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Chapter 1 - State of the Art
	1.1 What We Do Not Review
	1.2 Deterministic Domains
	1.2.1 Task Planning
	1.2.2 Scheduling
	1.2.3 Bridging the Gap Between Task Planning and Scheduling
	1.2.4 Models
	1.2.5 Optimization

	1.3 Non-deterministic Domains
	1.3.1 Uncertainty Sources
	1.3.2 Definitions
	1.3.3 Uncertainty Models
	1.3.4 Temporal Extensions of CSPs
	1.3.5 Task Planning under Uncertainty
	1.3.6 Scheduling under Uncertainty

	1.4 Summary and General Comments

	Chapter 2 - General Framework
	2.1 Definitions and Discussion
	2.2 Revision Techniques
	2.2.1 Generalities
	2.2.2 Examples of Revision Techniques in Task Planning and Scheduling
	2.2.3 Discussion

	2.3 Proactive Techniques
	2.3.1 Generalities
	2.3.2 Examples of Proactive Techniques in Task Planning and Scheduling
	2.3.3 Discussion

	2.4 Progressive Techniques
	2.4.1 Generalities
	2.4.2 Examples of Progressive Techniques in Task Planning and Scheduling
	2.4.3 Discussion

	2.5 Mixed Techniques
	2.5.1 Generalities
	2.5.2 Examples of Mixed Techniques in Task Planning and Scheduling

	2.6 Summary and General Comments

	Chapter 3 - Application Domain
	3.1 Project Management and Project Scheduling
	3.2 Construction of Dams
	3.2.1 General Description
	3.2.2 Uncertainty Sources
	3.2.3 An Illustrative Example

	3.3 General Comments

	Chapter 4 - Theoretical Model
	4.1 Model Expressivity
	4.2 Definitions
	4.2.1 Scheduling Problem and Schedule Model
	4.2.2 Generation and Execution Model

	4.3 Schedule Generation and Execution
	4.4 A Toy Example
	4.5 Summary and General Comments

	Chapter 5 - Experimental System
	5.1 Scheduling Problem
	5.1.1 Costs

	5.2 Architecture
	5.2.1 Solver
	5.2.2 Controller
	5.2.3 World Simulator
	5.2.4 Resolution Techniques
	5.2.5 Experimental Parameters and Indicators

	5.3 Revision-Proactive Approach
	5.3.1 Revision Approach
	5.3.2 Proactive Approach
	5.3.3 Experimental Studies

	5.4 Progressive-Proactive Approach
	5.4.1 When to Try Extending the Current Partial Flexible Schedule?
	5.4.2 How to Select the Subset of Operations to Be Allocated and Ordered?
	5.4.3 How to Allocate and Order the Subset of Operations?

	5.5 Discussion
	5.6 Summary and General Comments

	Chapter 6 - Future Work
	6.1 Prototype
	6.1.1 Experimental Studies
	6.1.2 Extensions

	6.2 Theoretical Model

	Conclusions
	Bibliography
	Index
	Abstract / Résumé

