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JURY
Omar Boussaid Pr, Université Lumière Lyon 2 Rapporteur
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Abstract
The availability and collection of increasingly numerous and heterogeneous data, com-
bined with the development of AI work on machine learning in big data, leads to questions
about the impacts of using AI systems to support human decisions. In the context of
machine learning, data is the main resource to guide decision-making. However, when
bias exists in the data, this can significantly affect the decision-making process and
could have far-reaching consequences. By bias we mean any systematic distortion of an
evaluation or of a statistical sample chosen in a defective way.

Thus, through this thesis, our research focuses on the qualification of data and bias as
well as their applications decision-making systems. The main goal is to explore the
means of informing about input data impacts on decision-making systems results
by proposing a qualification of the input data importance and biases induced by the
data used. The work carried out during this thesis addresses the entire decision-
making process in AI with the aim of understanding the different sources of bias,
detecting them and mitigating their effects on the results produced for specific
applications.

During this thesis, we have developed, through several contributions, approaches and
methods that make it possible to identify, correct biases and improve fairness in decision-
making systems. First, we established a taxonomy of biases and the area where they are
likely to occur in the data science process. This first work allowed us to reveal in a second
step how feature selection can contribute to induce biases in the decision-making process
when features considered to be sensitive (protected) or their redundant are selected.
Based on that, we have proposed a first method which consists in evaluating redundancy
between features to avoid, in search of fairness, deleting too many features, which would
lead to a significant performance loss. Then, we proposed a second approach where we
avoid using protected features in the decision-making model but instead their redundant
by establishing a trade-off strategy between the model’s performance and its fairness.
And finally, to compensate the limits of this previous approach on the fact that it did not
use any protected features, we opted for an approach of group-balancing and non-deletion
of data. Through this last approach, we have proposed a method which aims to divide
the input data into subgroups which later will be balanced with regard to the protected
features. Then fair local decision-making models are built on these balanced subgroups.
Finally, using a learning ensemble strategy, we obtain a final model that is fair without
removing any protected features.

We have evaluated and experimentally validated the effectiveness of each of these
contributions, which have proven to be very relevant in view of our issue of bias.

Keywords: Artificial intelligence; machine learning; bias; feature selection; decision-
making system; protected feature; imbalanced data; redundant feature; fairness
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Résumé
La disponibilité et le recueil de données qui sont de plus en plus nombreuses mais
hétérogènes, alliés au développement de travaux en intelligence artificielle (IA) basée
sur l’apprentissage machine, conduit à se questionner sur les impacts de l’utilisation
de ces systèmes d’IA pour accompagner des décisions humaines. Dans le contexte de
l’apprentissage machine, les données constituent la principale ressource pour guider
les prises de décisions. Cependant, lorsque des biais existent dans les données, cela
peut affecter de façon significative l’interprétation des décisions et pourrait avoir des
conséquences considérables. Par biais, nous entendons toute déformation systématique
d’une évaluation ou d’un échantillon statistique choisi de manière défectueuse.

Ainsi, à travers cette thèse, notre recherche se base sur la qualification des données
et des biais ainsi que leurs applications dans les systèmes décisionnels. L’objectif
est d’étudier les moyens d’informer sur les impacts des données d’entrées sur les
résultats des systèmes décisionnels en proposant une qualification de l’importance
des données et de leur biais. Le travail réalisé au cours de cette thèse aborde
l’ensemble du processus décisionnel en IA dans le but de comprendre les différentes
sources de biais, de les détecter et d’atténuer leurs effets sur les résultats produits
pour des applications spécifiques.

Au cours de la thèse, nous avons élaboré des approches et des méthodes qui permettent
d’identifier, corriger les biais et d’améliorer l’équité dans les systèmes décisionnels.
Nous avons établi en premier lieu une taxonomie de biais ainsi que les étapes où ils
sont susceptibles d’arriver lors du développement d’un système d’IA dirigé par les
données. Ce premier travail nous a permis par la suite de montrer comment la sélection
des caractéristiques d’entrées peut induire des biais lorsque des attributs jugés protégés
(ou leurs redondants) sont sélectionnés. Nous avons proposé une première méthode qui
consiste à évaluer la redondance entre les caractéristiques pour éviter, à trop vouloir être
équitable, de supprimer trop d’attributs, ce qui conduirait à une perte considérable en
terme de performance. Dans un second travail, nous avons proposé une approche qui vise
la non-prise en compte des attributs protégés dans la construction du modèle décisionnel
mais plutôt leurs redondants par un compromis entre la performance et l’équité. Et
finalement, pour compenser les limites de cette approche sur la non-prise en compte des
attributs protégés dans la construction du modèle, nous avons opté pour une approche
d’équilibrage et de non-suppression de données. A travers cette dernière approche, nous
avons proposé une méthode qui vise à découper les données d’entrées en sous-groupes
("clusters") qui sont équilibrés au regard des attributs protégés. Ensuite des modèles
décisionnels locaux équitables sont construits sur ces sous-groupes. Puis à l’aide d’une
stratégie ensembliste, un modèle global équitable est obtenu en conservant les attributs
protégés.

Nous avons évalué et validé expérimentalement l’efficacité de chacune de ces con-
tributions qui se sont avérées très pertinentes au vu de notre problématique sur les
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biais.
Mots-clés: Intelligence artificielle; apprentissage automatique; biais; sélection de

caractéristiques; système décisionnel; attribut protégé; déséquilibre des données; attribut
redondant; équité.
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1.1. CONTEXT AND MOTIVATION OF THE THESIS

1.1 Context and Motivation of the Thesis
The accessibility of numerous and heterogeneous data, coupled with the development of
work in artificial intelligence (AI) and machine learning on big data, has raised concerns
about the impacts using AI systems to support human decisions. These concerns are
clearly exposed in the Villany report 1 which highlights the need for transparency in
autonomous systems. This need for transparency is further carried by he DARFA (De-
fence Advanced Research Project Agency) which later defines the notion of Explainable
Artificial Intelligence (XAI) 2 to introduce explainability into decision-making systems
[Younsi et al., 2019]. In the context of health or justice applications for example, the
notion of explainability is particularly significant for offering systems that people can
put their trust. The need for explainability was identified from the first applications of AI
[Shortliffe et al., 1979] however, with the current trends where big data abounds and for
which a plethora of black box-type solutions are used, this need is crucially amplified.

Machine learning methods are based either on explicit models which in general make
it possible to obtain an explicable result (such as decision trees), or on black box-type
models (such as deep neural networks) which proof of their effectiveness in terms of
results but hiding the reason for obtaining such results. However, explaining, interpret-
ing or understanding the decision-making mechanisms are unavoidable challenges to
integrate such tools in decision-making systems of critical area such as justice, finance
as exposed by [Samek et Müller, 2019] and [Gunning et Aha, 2019], on the needs for an
explainable Artificial Intelligence.

Like many other scientific fields, data processing has greatly benefited from the
advancement of artificial intelligence and machine learning. The increase in the amount of
data produced on a daily basis plays an important role in data science work. With artificial
intelligence and machine learning, we have witnessed interesting advances in many
areas such as image recognition, prediction systems, recommendation systems, targeted
marketing, etc. The basis of these advances are implemented by algorithms performing
calculation beyond humans [Cortes et al., 2001]. Thus, algorithms are increasingly
part of our daily lives. However, despite of how efficient and intelligent they may be,
these algorithms only analyze data that is provided. These algorithms are criticized for
being black boxes and sometimes for producing controversial results qualified as biased
[Breiman et Wald Lecture, 2002, Ye et al., 2021, Cao et al., 2021]. Algorithms produce
outputs from what have been provided to them as inputs. Biases are likely to be linked to
the inputs, hence the importance of qualifying and identifying which input features to be
considered. An importance that is discussed throughout the first part of our work.

In this thesis, we are mainly focused on two issues related to the problematic of the
subject:

1https://www.aiforhumanity.fr/pdfs/9782111457089_Rapport_Villani_
accessible.pdf

2https://www.darpa.mil/program/explainable-artificial-intelligence

18 Ginel Dorleon

https://www.aiforhumanity.fr/pdfs/9782111457089_Rapport_Villani_accessible.pdf
https://www.aiforhumanity.fr/pdfs/9782111457089_Rapport_Villani_accessible.pdf
https://www.darpa.mil/program/explainable-artificial-intelligence


CHAPTER 1. INTRODUCTION

• a) Tackling inputs feature importance and bias related.
For the first issue of the thesis, we are interested in how bias occurs in machine
learning algorithms. For this, we investigate and qualify the characteristics of the
given inputs. We do so by addressing the notion of feature selection.

• b) Mitigating bias in machine learning models.
For the second issue of the thesis, we are interested in mitigating bias in machine
learning algorithms. To do this, we look at the main causes of bias that we have
identified in the first issue in terms of imbalanced data and protected features.

We extend our work to the notion of class imbalance and their impact on an output model.
We do this by looking at the effect of different classes’ imbalance ratio and the impact on
the obtained model.

1.2 Contributions Overview
Throughout the course of this PhD, our research has focused the entire AI decision-
making process with the aim of understanding how and where biases occur, how to
prevent them or mitigate their effects on specific applications. The main contributions of
this thesis that we later detail in the individual chapters have been published in different
international venues. We summarize the contributions of our thesis in three parts detailed
below:

1. During the first part of the thesis, we have published a taxonomy and definition
of biases using a data-science process in which we have identified the different
areas where different types of biases are likely to occur. This contribution, named
as Qualification of data bias in the data science process, has been published in
EGC’21[Dorleon et al., 2021b].

2. In the second part of the thesis, the taxonomy defined in part 1 allowed us to
identify and focus on a specific type of bias: the one related to feature selection.
Thus, we have proposed an approach consisting of removing protected features
while using their redundant. This method named as Features Selection Under
Fairness Constraints is a trade-off between fairness and performance. A poster
of this contribution has been published in the 37th ACM/SIGAPP Symposium On
Applied Computing [Dorleon et al., 2022b]. The full paper has been published in
the 24th International Conference on Big Data Analytics and Knowledge Discovery
(DaWaK) [Dorleon et al., 2022a]. Beside this, we have also proposed a redundancy
analysis method that aims to handle redundancy when dealing with protected
features. This redundancy based method, Absolute Redundancy Analysis Based
on Features Selection, has been published in the 4th International Conference on
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Data Mining and Big Data (DMBD 2021), Shangai, China ACM, New York, NY,
USA [Dorleon et al., 2021a].

3. In the third part of the thesis, we have proposed another approach which attempts to
overcome limits of our second approach by not deleting data relating to protected
attributes. Thus, this method named FAPFID: A Fairness-aware Approach for
Protected Features and Imbalanced Data is a fairness-aware strategy based on
the use of balanced and stable clusters for dealing with protected features and data
imbalance. It has been accepted in TLDKS (Transactions on Large-Scale Data and
Knowledge-Centered Systems) 2023.

1.3 Outline of the Thesis
The rest of the manuscript is organized as follows: in chapter 2, we provide a wide state-
of-the-art of our main research interests in terms of bias, fairness and feature selection.
Furthermore, we investigate how bias occurs in AI decision-system, the different causes
and sources in terms of protected/redundant features and imbalanced data. We also give
more details on all fairness metrics that we have used in our experiments. In chapters 3,
4 and 5, we present our main contributions, their experimental process and results.

All of the work detailed in these three chapters are contained in the following
publications:

1. Ginel Dorleon and Nathalie Bricon-Souf and Imen Megdiche and Olivier Teste
Qualification du biais de données dans le processus de la science des données, Re-
vue des Nouvelles Technologies de l’Information EGC’21 [Dorleon et al., 2021b].

2. Ginel Dorleon, Nathalie Bricon-Souf, Imen Megdiche, and Olivier Teste Absolute
Redundancy Analysis Based on Features Selection. In DSIT ’21: 4th International
Conference on Data Mining and Big Data (DMBD 2021), Shangai, China. ACM,
New York, USA [Dorleon et al., 2021a].

3. Ginel Dorleon, Imen Megdiche, Nathalie Bricon-Souf, and Olivier Teste. 2022
Feature Selection Under Fairness Constraints [POSTER]. In Proceedings of ACM
SAC Conference (SAC’22), ACM, New York, NY, USA [Dorleon et al., 2022b].

4. Ginel Dorleon, Imen Megdiche, Nathalie Bricon-Souf, and Olivier Teste. 2022
Feature Selection Under Fairness and Performance Constraints. The 24th Inter-
national Conference on Big Data Analytics and Knowledge Discovery (DaWaK)
Vienna, Austria [Dorleon et al., 2022a].

5. Ginel Dorleon, Imen Megdiche, Nathalie Bricon-Souf, and Olivier Teste. 2022
FAPFID: A Fairness-aware Approach for Protected Feature and Imbalanced Data
[Accepted in TLDKS].

20 Ginel Dorleon



CHAPTER 1. INTRODUCTION

In chapter 6, we present a summary of our work, conclusions and future perspectives. In
the annex A, we introduce all the necessary basics settings and background on machine
learning techniques and algorithms that are used in different chapters of this manuscript.
This chapter aims to give more explanations and facilitate the understanding of the basics
of machine learning algorithms used in this thesis.
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2.1 Introduction
Current machine learning approaches are used to support decision-making process by
enabling the discovery and prediction of complex hidden scheme in big data. These
approaches are used in the decision-making process of many applications such as trans-
portation [Paparrizos et al., 2011], healthcare [Farahani et al., 2019], recruitment or em-
ployment screening [Qin et Tang, 2019], finance [Amarasinghe et al., 2018], engineer-
ing [Lejeune et al., 2020], business intelligence recommendation [Drushku et al., 2019],
news feed updates prediction [Belkacem et al., 2020] and many more. Any error made
during the decision-making process can cause significant damage to the organization
and more generally to human life [Osoba et IV, 2017]. It is a common belief that using
an automated algorithm makes decisions more objective [Baeza-Yates, 2018]. However,
this is unfortunately not the case since artificial intelligence (AI) algorithms are not
always as objective as we would expect to have a reliable model.

To be used in real-world, decision-making systems are evaluated based on their
performance which is mostly depends on data. Whether it is guiding businesses
decisions, offering new services using machine learning algorithms, data is the pri-
mary resource for improving decision-making’s performance and is being used in
all of the stages of the process. Consequently, any gap in the data or in its use dur-
ing any stage of the decision-making process may result in significant performance
losses at an economic and human level. One among the errors that can hinder ob-
taining reliable decision-making systems is the use of biased data, i.e data containing
bias [Pessach et Shmueli, 2020, Baeza-Yates, 2018]. In the context of decision-making
systems, bias is referred to the problems related to the gathering or processing of data
that might result in prejudiced decisions on the bases of inherent or acquired character-
istics such as race, sex, and so forth or the use of dataset with an imbalance between
classes [Ntoutsi et al., 2020]. When undetected, bias in data can significantly affect the
interpretation of results and have devastating consequences on the use of AI in areas such
as justice or health [Agarwal et al., 2019, Osoba et IV, 2017].

Recently, it as been discovered that machine learning algorithms [Yeom et al., 2018]
may lead to unfair decisions against certain groups defined by these inherent or acquired
characteristics. Thus, fairness [Barocas et al., 2017, Oneto et Chiappa, 2020] is another
concern in using automated decision-making based on machine learning algorithms. In
the context of decision-making, fairness is the absence of any discrimination or favoritism
towards an individual or a group based on their inherent or acquired characteristics
[Mitchell et al., 2021]. Since the use of these systems now affects many aspects of
people’s life, it is crucial to focus on the development of decision models that can help
mitigating bias in data [Chouldechova et al., 2018] and guarantee fairness in automated
decision-making based on machine learning algorithms.

The use of these inherent or acquired characteristics in decision-making systems
based on machine learning can be amplified by the application of certain feature selection
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methods [Jensen et Neville, 2002]. Feature selection methods aim to select a set of
relevant features for a learning task. However, in some cases where inherent or acquired
characteristics referred to as protected features are selected, this can significantly leads
to bias in the decision-making [Singhi et Liu, 2006].

In the sections of this chapter, we will address the issues of Bias, Fairness and Feature
Selection. The rest of the chapter is organized as follows: in section 2.2 we present
a state-of-the-art (sota) of the different categories and types of biases that have been
mentioned in the literature, with some real-world examples of known biased systems. In
section 2.3, we introduce a general data science process in which we identify areas on
the process where different types of bias are likely to occur. In section 2.4, we present a
state-of-the-art of fairness and the related literature of the most frequently used fairness
metrics and processing techniques that are used in the literature to mitigate bias. In
section 2.5 we review the different methods of feature selection whose applications can
also lead to bias.

2.2 Bias

One of the main causes of poor decision-making in automated machine learning systems
is what we most often referred to as bias [Baeza-Yates, 2018]. Machine learning is used
in many real life applications [Chouldechova et al., 2018, Guégan et Hassani, 2018]
such as courts to assess the likelihood of a recidivism, in different medical fields, in
child protection systems and in autonomous vehicles. All of these applications have a
direct effect on people’s lives and can harm society if not modeled and designed properly
between different groups with different characteristics. Thus, a biased model is one
whose decisions are biased in favor of a particular group.

2.2.1 Bias Definition

In machine learning, the term bias was introduced by [Mitchell, 1980] to mean any
basis for choosing one hypothesis over another, other than strict consistency with the
observed training instances. Authors in [Baeza-Yates, 2018] have defined bias as the
interference in the research results of any fault whose presence can distort the results
and their interpretation or influence them in a certain direction. Specifically related to
decision-making systems, [Ntoutsi et al., 2020] defined bias as the problem related to
the gathering or processing of data that might result in prejudiced decisions on the bases
of demographic features such as race, sex, and so forth.

Below, we present some examples of world-known systems where biases were
detected. Those systems were biased mostly towards certain groups on the bases of
inherent or demographic features.
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• The Amazon Prime Bias: That Amazon’s prime AI algorithm’s task was to decide
which areas of a city in the United Sates (US) is eligible for receiving advanced
services. However, [Ingold et Soper, 2016] found that areas mostly inhabited by
black people were ignored even though the algorithm did not consider race as a
feature.

• The Compass Software: Compass is software used in the criminal justice system
in the US. However, recent findings have shown that the algorithm used in that
software incorrectly predicted future crime among African Americans at twice the
rate it predicted for whites [Amini et al., 2019, Angwin et Kirchner, 2016].

• The Amazon Hiring System: In 2014, it was revealed that Amazon discovered that
its hiring system discriminates against female applicants, especially for software
development and technical positions [Wang et Wang, 2014]. It is suspected that
the reason is that most of the historical data recorded was of software developers
who were male [Backurs et al., 2019].

• The Google’s Ads Algorithm: [Datta et al., 2014] and [Baeza-Yates, 2018] pointed
out what is referred to as gender-bias in the Google’s ads targeting algorithm. In
fact, they discovered that this algorithm has been shown to offer higher-paying
senior executive jobs to men than women.

• The Biased Face Recognition Camera: [Alipourfard et al., 2018] identify a facial
recognition software in digital cameras that overestimates Asians blinking.

• The AI Beauty System: Another example of biased AI is that system [Lloyd, 2018]
that judges beauty pageant winners but biased against darker-skinned contes-
tants [Osoba et IV, 2017]. When the results where released, out of the 44 people
that the algorithms judged to be the most "attractive," all of the finalists were white
except for six who were Asian. Only one finalist had visibly dark skin.

2.2.2 Bias Categories

Several categories of bias have been mentioned in the literature by [Bellamy et al., 2018],
[Dobbe et al., 2018], [Amini et al., 2019] and also by [Osoba et IV, 2017]. Specially,
three categories of bias have been presented by [Barocas et Selbst, 2016]:

1. Humans Bias: systematic error in thinking that occurs when people are processing
and interpreting information in the world around them and affects the decisions and
judgments that they make. In other words, it is a systematic pattern of deviation
from norm and/or rationality in judgment.
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2. Algorithm Bias: this type of bias refers to the bias that is not present in the input
data but added, created or generated purely by the algorithm [Baeza-Yates, 2018].
The algorithmic design choices, such as use of certain optimization functions,
regularization, choices in applying regression models on the data as a whole or
considering subgroups can lead to algorithmic bias [Danks et London, 2017].

3. Data Bias: according to [Dee, 2005], bias in data is an error that occurs when
certain elements of a dataset are over-weighted or over-represented. Biased datasets
don’t accurately represent a model’s use case, which leads to skewed outcomes or
systematic prejudice. According to [Lavalle et al., 2020], bias in data most often
results from imbalance of classes.

Later on, this categorization made by [Barocas et Selbst, 2016] has been quoted by
[Mehrabi et al., 2021] who have identified two categories of bias:

1. Bias originating from data referred to as Data Bias

2. and those originating from algorithms mainly referred to as Algorithm Bias.

In this thesis, we were based on the study of bias by [Mehrabi et al., 2021] instead of
the categorization made by [Barocas et Selbst, 2016]. The reason is that the former one
demonstrated how human bias is considered as a type of data bias. Thus, we were
focused on data bias as data represents the starting point of a any decision problem based
on machine learning and artificial intelligence.

2.2.3 Data Bias
Data bias is one of the primary causes of unreliable outcomes from automated decision-
making system based on machine learning and big data [Žliobaitė, 2017]. Bias can exist
in different types and may have unreliable sources. Different types of data bias have
been mentioned in the literature, the study in [Mehrabi et al., 2021] highlights the more
important ones. In [Suresh et Guttag, 2019], the authors outline a list of different types
of biases with their corresponding definitions that exist in different cycles of a data
processing.

In the following , we outline the most relevant types of data bias based on the work
of [Suresh et Guttag, 2019] and [Mehrabi et al., 2021]:

1. Historical Bias. Historical bias is the socio-technical problems that often exist
in the environment where the data is collected and which can infiltrate the data
generation process [Mehrabi et al., 2021].

An example of this type of bias can be found in a 2018 image search result
on Google where searching for women CEOs1 ultimately resulted in fewer fe-
male CEO images due to the fact that only 5% of Fortune 500 CEOs were

1CEO: Chief Executive Officer
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woman, which would cause the search results to be biased towards male CEOs
[Suresh et Guttag, 2019]. These search results were of course reflecting the reality,
but whether or not the search algorithms should reflect this reality is an issue worth
considering.

2. Sampling Bias. According to [Mehrabi et al., 2021] is due to a non-random
sampling of the subgroups. As a result of the sampling bias, the trends estimated
for a population may not be generalized to the data collected from a new population.

To explain this type of bias, let’s consider a school with four grades. If we sample
the students from this school by using only students from one grade and ignore the
others, we will experience what is referred as sampling bias.

3. Representation Bias. Representation bias, by [Friedman et Nissenbaum, 1996],
occurs from the criteria used to sample a population or when certain characteristics
of the population are underrepresented.
Considering the above example in sampling bias, representation bias will arrive if,
among of the selected sample, one considers only male students over female or
vice versa.

4. Measurement Bias. According to [Mehrabi et al., 2021], measurement bias
comes from the way we choose and measure a particular feature.
An example of this type of bias was observed in the COMPAS recidivism risk pre-
diction algorithm [Angwin et Kirchner, 2016]. In this algorithm, previous arrests
and arrests of friends/families were used as proxy2 feature to measure the level
of risk or criminality by race. Thus, the algorithm was still biased against race
because the proxy feature has provided the same amount information as race. This
type of bias is also referred as feature selection bias.

5. Omitted Variable Bias. Omitted feature bias, as mentioned by [Mehrabi et al., 2021]
and [Friedman et Nissenbaum, 1996], is the type of bias that occurs when one or
more important features are omitted during the model construction phase. This
type of bias is likely a result of a technical default.

6. Aggregation Bias. This bias appears when a single model is used for groups with
different conditional distributions. Aggregation bias can lead to a model that is not
optimal for any group, or a model adapted to the dominant population (if combined
with a representation bias) [Mehrabi et al., 2021]. For example, a model trained
on a population H1 should not be used for a a population H2 as they may present
different conditional distributions.

2By proxy feature we mean a feature by which we can find information about another one, for example
age and date of birth.
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7. Evaluation Bias. Evaluation bias according to [Friedman et Nissenbaum, 1996]
occurs when the evaluation and/or the reference data used to evaluate a model does
not represent the target population. A model is optimized on its training data, but its
quality is often measured on benchmarks. For example, benchmarks datasets such
as the UCI3 data sets [Huang et al., 2008], Faces in the Wild [Wan et al., 2020],
ImageNet [Deng et al., 2009] are often used to evaluate face recognition models.
However, it can not be certain that the obtained performance is reliable enough for
deployment.

8. Deployment Bias. This type of bias arises when there is a mismatch between the
problem that a model is designed to solve and the way it is actually used. This often
happens when a system is built and evaluated as if it were entirely autonomous,
when in reality it operates in a complex socio-technical system moderated by
institutional structures and human decision-makers [Barocas et Selbst, 2016]. In
other words, a model is built for a particular task; if this is not the task actually
accomplished after deployment, there is no guarantee that a good evaluation
performance will be maintained. Likewise, a model trained and used on patients
with skin cancer in Europe is not certain to be effective on patients from another
continent such as Asia for example.

2.3 Qualification of data bias in the data science process
In this section we present a qualification of data bias in the data science process. This
work constitutes our first contribution [Dorleon et al., 2021b]. The goal is to alert readers
so that they can be aware of the areas where bias can occur in the data science process
when they are about to develop a machine-learning data-based-model. Development of
such systems requires a deep understanding on why and where biases arise in a data
science process.

2.3.1 Presentation of the Data Science Process
The classic data science process considered (Fig. 2.1) has tree stages: data collection,
data preparation and model usage.

— Data Collection is the first stage of the data science process. It contains actions
devoted to gather information from the actual world, extracting significant sample
of a population. We notice three actions in this stage: Data generation, selection of
a population and sample selection.

3University of California Irvine ( https://archive.ics.uci.edu/ml/index.php)
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— Data Preparation is the second stage of the data science process, it contains
actions which help to clean the data, measure and select feature to build the
training and the test datasets.

— Model Usage is the last stage and gathers all actions linked to built, deploy and
evaluate the model.

Figure 2.1: The three stages of the data science process

Below, we present a simple formalization of the settings used for describing the data
science process. The general data science process considered begins with collecting data
from an operational environment, the collected data helps to build a population. The
input data of the process can be modeled as a set of data annotated Xn,m ∈ Rn×m (with
no added constraints on data type) consisting of n independents distributed samples and
m non-independents features with F = {F1, ..., Fm} being the feature space. Using a
matrix, we can then write our input data as:

Xn,m =


x1,1 · · · x1,m

x2,1 · · · x2,m
... . . . ...

xn,1 · · · xn,m

 = (xi,j)1≤i≤n,1≤j≤m

Each variable of Xn,m is represented by a column vector annotated

x•j = (xi,j)1≤i≤n ∈ Rn

and each individual of Xn,m is represented by a line vector annotated

xi• = (xi,j)1≤j≤m ∈ Rm
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In the data collection stage, the goal is to select a set of data by sampling a population
from the data generated. To do so, we introduce the following parameters: let X ′ ⊆ X
be a sample, S : X → X ′ a sampling function and P be a distribution probability of all
the samples X ′ ⊂ X identically distributed such that P (X ′) ≥ 0 and

∑
X′⊂X P (X ′)=1.

In the data preparation stage, measurement techniques such as feature selection or
other dimensionality reduction methods are used; the initial dataset Xn,m ∈ Rn×m is
then redefined through a reduced features set. Let w be a feature selection function over
x•j such that w : x•j → x′

•j and h a dimensionality reduction function as described by
[Khalid et al., 2014] over x•j such that h : x•j → x′

•j .
The dataset is then divided into training and evaluation sets which are used to develop

and evaluate a desired model. The generated model produces an output according to the
objective for a real-world application. This steps represents the model usage stage in
the process. At this stage, a learning model is chosen and configured to learn with the
training dataset. This learning process can be described by

(
Xn,m, Yn,1) where Xn,m ∈

Rn×m, and Yn,1 ∈ Rn, which is a learning model learned using Yn,1 = f
(
Xn,m) + ϵn+1

with ϵn+1 ∈ Rn representing the noise in the data. The learning process then consists in
estimating the function f by a learned function f̂ in order to generate a model noted z.

The different steps of the data science process could obviously induce different kinds
of bias. In section 2.2.3, we benefit from different taxonomies of bias mentioned in the
literature. Our purpose is then to identify different areas where bias can occur in the
process.

2.3.2 Data Bias: Qualification and Impacts
To clarify our presentation of bias, we identify for each stage section which kind of bias
that could be encountered in the process. We first identify areas where in the process bias
can occur and then recall about risks and impacts on the process induced by such bias.

2.3.2.1 Data Collection

Results, analysis, evaluations and conclusions depend on the data collected and then
on this stage. The appearance of bias may be the result of several anomalies. Either
generated data are not representative of the chosen population, or they reflect existing
prejudices. The data collection process can also generate biases according to several other
practices such as : the use of survey questions constructed with a particular inclination,
data transfer into non-related categories or non-random sampling between groups.

In Fig. 2.2, we illustrate the data collection stage of the process and indicate areas
where each type of biases is likely to occur. We then qualify each type of these bias
and point out their impacts on the decision of the learning process. At the stage of data
collection in the data science process, we highlight three type of bias:
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Figure 2.2: Data collection stage. P is a probability distribution over each sample, S is a
sampling function.

- Historical bias occurs in the data generation step. This type of bias is likely to
arise depending on how the dataset Xn,m is generated. If the generated dataset
contains n samples xi• = (xi,j)1≤i≤m predefined, unverified and accepted in the
dataset, these samples will lead to an historical bias during the learning process by
a model which will seek to reflect the existing reality of the dataset.

- Sampling bias impacts the sampled population. It occurs if the samples annotated
X ′ from X formed by the sampling function S are generated in a non-random way.
In other words, samplis bias occurs if the algorithm used by the function S did
not randomly generate the X ′ samples and the trends estimated for a sample X ′

cannot be generalized to new samples of Xn,m.

- Representation bias occurs during the population distribution. There will be
representation bias if the probability distribution P samples too few samples
xi•∈X ′ and if certain samples xi•∈ X are underrepresented in the X ′ sample.

In Table 2.1, we notice the impacts that different types of bias of the data collection stage
may have on the output of the process.

Table 2.1: Data collection: potential cause and impacts on the process
Data Collection

Potential Cause Bias Impact on the process
Bias can be introduced by any-
one involved in the data col-
lection process. This can hap-
pen during sampling or dur-
ing group building, as well
as during data submission and
collection.

Historical Bias The algorithm will try to reflect the
existing trends in the data.

Sampling Bias Erroneous deductions because cer-
tain subgroups may not exist in suf-
ficient number for a learning algo-
rithm.

Representation
Bias

Limitation of the decision to the
most represented groups.
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2.3.2.2 Data Preparation

Data preparation is the second stage of the process. Different types of measures and
processing methods can be applied to the dataset before using it. Training and test data

Figure 2.3: Data preparation stage, w represents a feature selection function and h is a
dimensionality reduction function.

are created at this stage. However, it is possible to generate biases during this stage
which includes the selection and measurement of features that the algorithm will use to
build the model. We noticed two types of bias that can arise at this stage and that are
illustrated in Fig 2.3:

- Measurement bias is likely to occur in the data preparation stage. It impacts the
feature selection and dimensionality step in the data preparation stage. It will
arise from the different techniques used by w, the feature selection function and h,
the dimensionality reduction function, to measure and select features fj that the
algorithm will consider for training a model.

- Omitted feature bias occurs if important features fj defined by h are not considered
or missed when learning the function f̂ .

The table 2.2 below provides a summary of this stage and the biases that are likely to be
generated.

Table 2.2: Data preparation: potential cause and impacts on the process
Data Preparation

Potential Cause Bias Impact on the process
Using incorrect cri-

teria to select the at-
tributes that the algo-
rithm will use can lead
to bias.

Measurement
Bias

Erroneous deductions because some mea-
sures may be inconsistent between groups.

Omitted Vari-
able Bias

Removing important features by using in-
consistent measures will generate a model
built on insignificant data.
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2.3.2.3 Model Usage : Learning, Evaluation and Deployment

Model usage is the last stage of the process. This is the stage where we build, train,
evaluate and deploy the model using the training data created in the data preparation stage.
After training the model, test data is used to report the performance of the output model.
In addition to the test data, other available datasets - also called reference datasets - can
be used to demonstrate the robustness of the model or to allow comparison with different
existing methods. Therefore, it is important to choose a well-adapted performance
measures in other to avoid biased conclusion.

Figure 2.4: Final stage in the process: Model Usage. f̂ is the learned function, z is the
output model, d is the final decision and k an external factor (may be human) that has a
potential influence on the final decision d.

We noticed three types of bias at this stage as illustrated in Fig 2.4, a summary is
presented in Table 2.3.

- Aggregation bias occurs in the population where the model is used. It will occur
if decisions are taken by the learned model f̂ for a Xn,m sub-population with
different distributions.

- Evaluation bias occurs in the model’s evaluation. It will occur if a new dataset
with different modality from Xn,m is used to evaluate the learned model f̂ .

- Deployment bias occurs when k, the external factor potentially a human, does not
simply reproduce the predictions made by z but introduces unexpected behavior
affecting the final decision d.
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Table 2.3: Model usage: potential cause and impacts on the process
Model Usage

Potential Cause Bias Impact on the process

Evaluation criteria that do
not correspond to the
studied population or a
wrong combination of
distinct populations.

Aggregation
Bias

A single model cannot be effective on
a heterogeneous population.

Evaluation
Bias

Using evaluation criteria that are not
appropriate leads to a false model’s
evaluation.

Deployment
Bias

Using the model in a different context
from the primary objective may harm
not because the model is defective but
because the context is different.

2.3.3 Bias Mitigation Methods
To reduce or mitigate bias in data, some general methods referred to as "Bias Mitigation
Methods" have been proposed. These methods aim to support having good practices
while working with data, from processing the data to the selection of which features that
should be used to train the model.

• Data Collection
For representation and sampling issues, existing solutions most often analyze
them as problems linked to imbalanced data. The proposed methods are mostly
focused on oversampling the data using different techniques such as SMOTE by
[Chawla et al., 2002] and ADASYN by [He et al., 2008].

• Data Preparation
For bias related to feature selection and dimensionality reduction methods, authors
in [Cascaro et al., 2019] and [Mostert et al., 2018] have suggested to use different
techniques such as embedded, filter and wrapper methods. In [Oneto et al., 2019],
authors have proposed a learning function that consider groups difference, this
method can help reducing aggregation bias by taking advantage of multitask
learning. Finally, authors in [Buolamwini et Gebru, 2018] have proposed to use
per-groups metrics in order to create subgroup to evaluate a model and avoid
evaluation bias.

• Model Usage
For bias related to the model usage, authors in [Calmon et al., 2017], have intro-
duced a novel probabilistic formulation. It consists in three approaches: i) control-
ling discrimination, ii) limiting distortion in individual data samples and iii) preserv-
ing utility in order to ensure an unbiased learning. Other preliminary mechanisms,
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such as those proposed by [Kamiran et Calders, 2011] and [Luong et al., 2011],
have suggested to relabel examples or readjust their weight before the training
stage in order to have a better output.

2.3.4 Summary
Data bias is a major problem due to its impact on data analysis and decision-making
systems. Being able to define and qualify bias in the data is an important step in the
process of reducing these harmful impacts. Current solutions focus on the problem from
the view of AI results, but tackling the process where these biases are generated and
identifying the causes is very important.

In this contribution, we have defined and qualified the problems that can harm AI
systems in terms of data bias. This notion of bias has been examined mainly at the
data level [Dorleon et al., 2021b]. For our contribution, using data science process, we
identified areas in the process where different types of bias are likely to occur. The goal
is to propose taxonomy of bias and where exactly they occur on the process. By using
this taxonomy, one can be aware to these areas while working on a system or method to
ensure that it has a low probability of causing potential harm or bias towards a group.

Being aware of bias and the inherent limitations of attempts to ’de-bias’decision
systems, we will address in the next chapters in this thesis, different methods in order to
mitigate and reduce bias in the data science process.
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2.4 Fairness
Nowadays, we are observing extraordinary advances in the field of machine learning
(ML). Automated decision-making based on ML algorithms are now replacing human at
many critical decision points, such loan application or hiring. Against all odds, we might
think that these ML algorithms are objective and free from bias, but that is not always
the case. As we saw in section 2.2.1, many previously used real-world applications have
exhibited bias towards race, place of living or gender. In the context of decision-making,
fairness is the absence of any discrimination or favoritism towards an individual or a
group based on their inherent or acquired characteristics referred to as protected feature
by [Ntoutsi et al., 2020]. According to [Fang et al., 2020], a Protected Feature is a
feature that is of particular importance either for social, ethical or legal reasons when
making decision. The list of protected attributes may include: sex, race, ethnic or social
origin, genetic features, language, religion or belief, political opinion, disability, age,
sexual orientation, and so on. This type of features are protected by laws in some
countries such as US, UK, Australia where several Equality Acts45 has been adopted.

To assess fairness in automated decision-making, authors have used different strate-
gies either by processing methods or data balancing. To evaluate fairness strategies,
fairness metrics have used to qualify when a machine learning model is fair. We review
below these strategies and the most used fairness metrics.

2.4.1 Fairness via Processing Techniques
For fairness methods involving processing techniques, we notice different mechanisms.
The aim is to use processing technique either on the data, the algorithm or the output
result. These mechanisms are generally classified into three categories: pre-processing, in-
processing, and post-processing [Caton et Haas, 2020]. The following three subsections
review the studies in each of these categories.

1. Pre-Processing. With these methods, the main idea is to keep the training data free
of bias in order to learn a fair classifier. Thus, mechanisms in this category involve
modifying training data before feeding it into a machine learning algorithm. Some
mechanisms, such as [Kamiran et Calders, 2011] and [Thanh et al., 2011], have
proposed changing the labels of certain cases or readjusting their weight before
training to make a more accurate classification.

2. In-Processing. The main idea of In-Processing methods is to modify the learning
algorithms in order to eliminate potential bias and improve fairness [Agarwal et al., 2018,
Bechavod et Ligett, 2017]. For example, authors in [Kamishima et al., 2012] have

4Australian Equality Acts
5UK Equality Acts
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suggested to add a regularization parameter to the objective function that penalizes
mutual information between protected feature and the classifier.

3. Post-Processing. In Post-processing methods, the idea is to modify the results of
a the trained classifier in order to ensure that the fairness goal is achieved. Some
post-processing methods like in [Corbett-Davies et al., 2017] have also tried to
adjust and modify the decision boundary of the classifier in order to improve
fairness. For example, in [Dwork et al., 2018] authors have proposed a decoupling
technique to learn a different classifier for each group. They further combined
a transfer learning technique with their procedure for learning from out-group
samples. Generally, post-processing methods do not use classical fairness metrics
to evaluate their proposed method, they tend to use instead individual or group
fairness as it is shown in Table 2.4.

2.4.2 Fairness via Data Balancing
Fairness methods using data balancing techniques aim to address the problem of class
imbalanced dataset which is a challenging issue in a wide variety of fields such as finance
or justice [He et Garcia, 2009].

In a binary classification task for example, class imbalanced dataset refers to the
skewed label distributions within data; i.e between-classes, where one class, referred to
as majority class, dominates the other referred to as minority class. For example, given
a dataset containing 100 observations for a binary output such as positive and negative,
the majority class may contain 90 instances labeled as positive and the minority class 10
instances labeled as negative.

To solve the problem posed by class-imbalanced dataset on fairness, authors have
introduced several methods to help overcoming and reducing the effects that class-
imbalanced dataset may have on machine learning models. These methods can be either
using oversampling strategy, undersampling or hybrid resulting in a mix of both. Below,
we give more details on these strategies.

1. Oversampling Methods. The main idea of oversampling methods for dealing
with class-imbalanced dataset is that new instances are generated in the class with
less instances, i.e the minority class. The new oversampled data set contains equal
number of samples in each class. A wide variety of oversampling methods exist
in the literature [Viloria et al., 2020, Mohammed et al., 2020, Huda et al., 2018,
He et al., 2008] each with the aims of avoiding bias and improving machine learn-
ing model’s accuracy towards minority group. To date, one of the most used
technique for oversampling can be found in the work of [Chawla et al., 2002] who
introduced a method named SMOTE: Synthetic Minority Oversampling Technique.
With this method, authors seek to oversample instances in the minority class by us-
ing the instances’s neighborhood with the k-NN algorithm [Zhang, 2016]. SMOTE
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first locates neighborhoods of minority instances, and then it generates synthetic
instances by combining the attribute values of the neighborhood.

2. Undersampling Methods. These methods aim to reduce instances from the ma-
jority class; i.e the class with more instances. The new under-sampled data set con-
tains equal number of samples in each class. Like the oversampling strategy, there
is a variety of work that exist [Hoyos-Osorio et al., 2021, Krawczyk et al., 2021,
Zheng et al., 2021].

Particularly, we notice a recent work [Yao et Wang, 2021] from the literature.
In this work, authors have proposed to the solve the problem of low classifica-
tion accuracy of minority classes caused by data imbalance; they proposed an
undersampling classification algorithm based on mean shift clustering for imbal-
anced data (UECMS). The UECMS method uses mean shift clustering and instance
selection for the samples of majority classes to complete the undersampling. The
selected samples and all the minority samples from the original data set form a new
balanced data set. Then, bagging-based ensemble learning algorithms are used to
classify the balanced data sets. Authors do believe that the experimental results
show that the UECMS method improves classification accuracy and fairness for
minority classes.

3. Hybrid Methods. These methods are a mix of oversampling and undersampling
methods to deal with class imbalanced datasets . According to [Liu et al., 2017],
combining undersampling or oversampling methods can result in models with
better performance. Like in the other strategies, the new resulted data set contains
equal number of samples in each class.

For hybrid methods that deal with class imbalanced problem, we notice the recent
work of [Elyan et al., 2021] where authors have proposed a new hybrid approach.
The approach aims to reduce the dominance of the majority class instances using
class decomposition and increasing the minority class instances using an over-
sampling method. Unlike other undersampling methods, which suffer data loss,
this method preserves the majority class instances, yet significantly reduces its
dominance, resulting in a more balanced dataset and hence improving the result’s
accuracy and fairness. A large-scale experiment using 60 public datasets was
carried out to validate the proposed methods.

2.4.3 Fairness Metrics

Fairness metrics are used to evaluate how fair is a machine learning model. To evaluate a
model, these fairness metrics are conditionally based on the use of what is referred to as
protected (sensitive) feature in the data.
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We present below the different fairness metrics that can be used to deal with bias
related to protected features. To date, more than twenty two fairness metrics exist
[Verma et Rubin, 2018], however there is no consensus on which one is better. In this
section, we are giving more details on fairness metrics that have been used to mitigate
bias in machine learning models and their definitions, particularly in supervised tasks.

To introduce the related fairness metrics, we consider an input dataset S =
(
Xm,n , Y1,n

)
consisting of n observations and m features. Let f be a learning model and its per-
formance score f [S] which will be used to predict a binary output ŷ ∈ {0, 1}. Let
F = {F1, F2, ...,Fm be the feature space. Each sample x•i is associated to a protected
feature P , with P ∈ F . For simplicity we consider that P is binary: P ∈ {P0, P1}, thus
P0 represents an unprivileged group and P1 a privileged group. Likewise, we consider
ŷ = 1 to be the preferred outcome, assuming it represents the more desirable of the
two possible outcomes. For instance, P =‘gender’ could be the protected attribute with
P0 =‘female’, the unprivileged group, and P1=‘male’ the privileged one. Suppose for
some samples we know the ground truth; i.e., the true value y ∈ {0, 1}. Note that these
outcomes may be statistically different between different groups, either because the dif-
ferences are real, or because the model is somewhat biased. Depending on the situation,
we may want our estimate ŷ to take these differences into account or to compensate them.

Below, we are going to give an overview of the most frequently used metrics to assess
fairness in machine learning algorithms in the literature.

1. Demographic Parity [Bellamy et al., 2018]. Also called Statistical Parity, this
metric suggests that a predictor is unbiased if the prediction ŷ is independent
of the protected feature P such that Pr(ŷ| P ) = Pr(ŷ) (Pr is the prediction rate).
This means that the same proportion of each subgroup is classified as positive.
This metric has been used in many recent state-of-the-art methods [Räz, 2021,
Hertweck et al., 2021, Yeom et Tschantz, 2021] for fairness improvement. Differ-
ence between prediction rates of the subgroups can be used to assess fairness from
this metric. Assuming this difference is noted Demographic Parity Difference
(DPD), it can be defined as:

DPD = Pr(ŷ = 1|P = 1)− Pr(ŷ = 1|P = 0) (2.1)

2. Equalized Odds [Bellamy et al., 2018]. This metric states that the prediction ŷ
is conditionally independent of the protected feature P , given the true value y:
Pr (ŷ|y, P ) = Pr (ŷ|y). This metric is widely used and adopted by recent state-of-
the-art methods [Mary et al., 2019, Salazar et al., 2021, Iosifidis et Ntoutsi, 2019,
Park et al., 2021] This means that the true positive rate and the false positive rate
will be the same between the unprivileged (P0) and privileged groups (P1). To
assess fairness from this metric, one might use the difference between prediction
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rates (positive and negative). Assuming this difference is called Equalized of Odds
Difference (EOD), it can be defined it as:

EOD = Pr(ŷ = 1|P = 1, y = yi)− Pr(ŷ = 1|P = 0, y = yi), yi ∈ {0, 1}
(2.2)

3. Equal Opportunity [Bellamy et al., 2018]. This metric is basically the same
as Equalized Odds, however it only focuses on a particular label y = 1 of the
true value so that Pr (ŷ|y = 1, P ) = Pr (ŷ|y = 1). It is also widely used in recent
fairness studies [Park et al., 2021, Khalili et al., 2021, Yeom et Tschantz, 2021].
One might use use the difference between prediction rates between the subgroups
to assess fairness from this metric. Assuming this difference is called Equal
Opportunity Difference (EOpD), it can defined it as follow:

EOpD = Pr(ŷ = 1|P = 1, y = 1)− Pr(ŷ = 1|P = 0, y = 1) (2.3)

We also notice that some work in the literature have combined both processing techniques
and fairness metrics. So, we present in Table 2.4 a summary of these work that used both
fairness metrics and other mechanisms to improve fairness.

Table 2.4: State-of-the-art of fairness metrics and other mechanisms
Method Strategy Metrics

[Kamishima et al., 2012] In-Processing Normalized Prejudice

[Feldman et al., 2015] Pre-Processing Disparate Impact

[Zafar et al., 2017] In-Processing Equalized Odds

[Zemel et al., 2013] Pre & In-Processing Demographic Parity

[Goh et al., 2016] In-Processing Disparate impact

[Heidari et Krause, 2018] In-Processing Disparate Impact

[Lohia et al., 2019] Post-Processing Individual/Group Fairness

[Kim et al., 2019] Post-Processing Group Fairness

[Petersen et al., 2021] Post-Processing Group Fairness

2.4.3.1 Datasets used for fairness study

Beside the fairness metrics and processing techniques used for fairness improvement,
we notice that most of the work from the literature have used at least twelve common
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datasets. We presented in Table 2.5 those datasets with information about their size, the
number of protected feature and their availability.

Table 2.5: Commonly used datasets in fairness study

Dataset Area Size Protected Feature Availability

Ricci Job promotion 118 Race UCI

ProPublica Justice 6 167 Race, Sex GitHub

Adult Income Economic 48 842 Age, Sex, Race UCI

German Credit Credit Scoring 1 000 Sex, Age UCI

Mexican Poverty Demographic 183 Race Atlas

Diabetes Medical 100 000 Age UCI

Heritage Health Medical 143 473 Age Kaggle

College Admission Education 20 000 Race, Sex Kaggle

Bank Churn Marketing 45 211 Age UCI

Loan Finance 30 000 Sex Kaggle

Dutch Census Demographic 189 275 Sex Micro-Data

Communities & Crime Crime 1 994 Race UCI

2.4.4 Summary

In this section we have presented a state-of-the-art of fairness via processing techniques
and data balancing. We have also presented the fairness metrics that are used to assess
fairness of a machine learning model. As highlighted by [Verma et Rubin, 2018], there
exists a plethora of fairness metrics however, we have presented the ones that are mostly
used in the recent work on fairness. We have also presented the most used datasets in
Table 2.5. Among those datasets, we highlight in bold the ones that we have used in most
of the work of our thesis. The reason why we have chosen to use those specifics datasets
is because they represent a complete benchmark and allow us to compare our results to
other work that have used the same dataset. We have also pointed out in Table 2.4 some
work that combine both metrics and processing techniques to assess fairness.
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2.5 Feature Selection (FS)
Nowadays, many real world applications [Amarasinghe et al., 2018, Farahani et al., 2019,
Paparrizos et al., 2011] deal with so called high-dimensional data. High dimensional data
refers to a dataset in which the number of features m is larger than the number of samples
n [Nordhausen, 2009]. In gene expression, health care, financial or genomics datasets
for instance, it is not uncommon to encounter high-dimensional datasets (m > n).

However, in the filed of machine learning, high-dimensional datasets became a major
issue [Reddy et al., 2020] due to their size and the amount of resources required to pro-
cess them. Learning performance is impacted by high-dimensional datasets [Ullah et al., 2017].
Naturally, one may believes that more features we get, the more information we get
from the features, but that is far from true because it becomes more and more difficult to
extract meaningful conclusions from a dataset as the dimensionality of the data increases.
Hence there is a need to resort to dimensionality reduction techniques in order to reduce
the size of these data.

Among the methods commonly used in dimensionality reduction, we notice partic-
ularly feature extraction and feature selection [Khalid et al., 2014, Ullah et al., 2017]
which are the most used. In feature extraction, new features are created based on the
transformation or combination of the original input features set. The new transformed
or reduced features set is believed to be more manageable facilitating its later process-
ing [Guyon et al., 2008]. In feature selection, we try to find the best subset among the
input feature set. A feature is an attribute that has an impact on a problem or is useful for
the problem, and choosing the important features is an important step in building reliable
and efficient machine learning model. On Fig 2.5, we present an overview of the basic
difference between these two dimensionality reductions techniques.
In this thesis, we are focused on feature selection as dimensionality reduction. As we did
see in section 2.2.3, feature selection could be a source of bias in the data preparation
stage of the data science process. The selection of features is based on some methods
and measures. Depends on the methods or measures used, it is possible to introduce bias
in the process. During the work of this thesis, we were mainly focus on bias related to
feature selection. We made this choice because we believe that mitigating bias at an entry
level could be benefit to ensure fairness in automated decision-making system.

2.5.1 Definition
Machine learning model’s performance could be negatively impacted by using irrelevant
features from the input data. Indeed, it is important to identify and select the most relevant
features in the data. The goal is therefore to obtain a meaningful subset of relevant that is
vital for improving efficiency and reducing over-fitting of a learning model. This is done
by feature selection, as it helps to understand data, improve prediction performance and
reduce computational costs [Gutkin et al., 2009].
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Figure 2.5: Dimensionality Reduction Techniques: Feature Extraction (FE) vs Feature
Selection (FS). FE creates new features by combining features of the original input,
whereas FS removes features that are considered either irrelevant or redundant, while the
rest are kept unaltered.

Feature selection, also known as attribute selection or variable subset selection, is
the process of selecting a subset of relevant features for use in model construction
[Li et al., 2017]. Depends on the strategy used to select the best subset of features, the
process of selecting feature can be seen as Filter, Wrapper, Embedded or Hybrid. Below,
we are giving more details on each feature selection method and explain the pro and cons
of each method. We also show by using a example how using different feature selection
methods can lead to different selected subsets. However, before introducing the different
categories of feature selection, we introduce in the next sections some basics settings to
explain what is a relevant or irrelevant feature.

2.5.2 Context and Description
A fundamental problem in machine learning is to approximate the functional relationship
f() between inputs data X =

{
x1, x2, ..., xM

}
and output Y . Sometimes the output Y is

not determined by the complete set of input features X =
{
x1, x2, ..., xn

}
but only by a

subset of X =
{
x(1), x(2), ..., x(m)

}
where m < M .

We use Figure 2.6 below to show the different stages of the FS process which is then
explained. The performance of the process depends on the decision taken at each level.

1. Search Direction:
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Figure 2.6: Stages in Feature Selection by [Venkatesh et Anuradha, 2019]

[Chandrashekar et Sahin, 2014] state that the first step in the FS process is to
find the search direction and starting point. Search directions are broadly clas-
sified into three types: forward search, backward search and random search
[Chandrashekar et Sahin, 2014, Ang et al., 2016]. The search process can start
with an empty set where new features are recursively added at each iteration, such
a phenomenon is called forward search. Conversely, the backward search method
starts with a full set of features and features are iteratively removed until the desired
subset of features is reached. The other approach is a random search, which builds
the feature subset by iteratively adding and removing features. Once the search
direction is complete, the search strategy can then be applied.

2. Search Strategy:
The scientific literature allows us to classify search strategies into random, ex-
ponential and sequential search [Chandrashekar et Sahin, 2014]. Exponential
search has the disadvantage of requiring 2m combinations including empty sets
for m features. It is an exhaustive search strategy. To overcome this draw-
back, random search strategies have been introduced. In sequential search, fea-
tures are sequentially added to an empty set or removed from the complete set
[Pudil et al., 1994, Doak, 1992].

3. Evaluation Criteria:
The best features are selected based on an evaluation criteria [Chandrashekar et Sahin, 2014,
Li et al., 2017]. Based on this criteria, FS methods are classified into Filter, Wrap-
per and Embedded. More details on these concepts are discussed later in section
2.5.4.

4. Stopping Criteria:
Stopping criteria specify when the FS process should stop. A good stopping
criterion leads to low computational complexity to find an optimal subset and also
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overcomes over-fitting. Stopping criterion choice is influenced by the choices made
in the previous steps [Kumar et Minz, 2014]. Some common stopping criteria are
a predefined number of features, a predefined number of iterations or a progress
percentage over two successive iteration steps [Visalakshi et Radha, 2014].

5. Final Results Validation:
To validate the results, feature set validation techniques are used [Ambure et al., 2019].
Cross validation, confusion matrix, F1-score, AUC are some of the validation tech-
niques [Raschka, 2018]. Cross-validation is the most commonly used validation
method [Venkatesh et Anuradha, 2019].

2.5.3 Selection Condition
Reduction of the feature set is based on conditions such as relevance and redundancy
with respect to the objective. Specifically, according to [Yu et Liu, 2004] a feature is
usually classified as 1) strongly relevant, 2) weakly relevant, but not redundant, 3) not
relevant, and 4) redundant.

There are a number of definitions [Yu et Liu, 2004, Li et al., 2017] in the machine
learning literature of what feature “relevance” means. The reason for this variety is that
it usually depends on the question: “relevant for what?” Different definitions may be
more appropriate depending on the objectives set. Here, to describe the relevance and its
meaning, we introduce a simple modeling.

Let M = {m1,m2, ...,mp} where there are p features used to describe examples and
each feature m has a domain Fm. For example, a feature can be boolean (is it red?),
discrete with multiple values (what color?) or continuous (what length?). An example is
a point in the space X = {x1, x2, ..., xn}. Let S be a sample of features where each data
point xi is an example associated with an associated label or classification (which can
also be boolean, discrete or continuous). Let T be a probability distribution on the space
of instances X , and a target function denoted C. We then model the sample S as having
been produced by repeatedly selecting examples by T and then labeling them according
to the function C. Given this configuration, the most simple relevance is perhaps that
of being “relevant to the target concept C”. Then, a feature mi is relevant for the target
concept C if there exists a pair of instances xi and xj in the instance space such that xi

and xj differ only in their assignment to mi and C(xi) ̸= C(xj). We can then resume
the above conditions as follows according to [Yu et Liu, 2004].

1. Strongly relevant. A strongly relevant feature is always needed for an optimal
feature subset; it can not be removed without affecting the condition of the target
distribution of origin.

2. Weakly relevant, but not redundant A weakly relevant feature may not always
be necessary for a subset.
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3. Irrelevant. Irrelevant features are not at all necessary.

4. Redundant and irrelevant. Redundant features are those that are of little rele-
vance but can be completely replaced by a set of other features so that the target
distribution is not disturbed.

Redundancy is thus always inspected when analyzing a subset of features while relevance
is established for individual features. Thus, the goal of feature selection is to maximize
relevance and minimize redundancy. This generally corresponds to the researches for a
subset of features composed only of relevant features.

2.5.4 Feature Selection Methods
Feature selection methods can be categorized in several ways.

Based on the label information, feature selection approaches could be classified into
three classes, such as supervised methods [Wolf et Shashua, 2003, Zhao et Liu, 2007,
Nie et al., 2010], semi-supervised methods [Zhao et Liu, , Xu et al., 2010] and unsu-
pervised methods [Wang et al., 2017]. Labels provide convenience information, so that
relevant features are selected to distinguish samples of different classes via supervised fea-
ture selection methods. In case where only a part of the data is labeled, semi-supervised
feature selection could be used, so that both labeled and unlabeled data are exploited.

Based on the selection strategy, i.e. how features are selected, FS methods are
classified into: Filter method - Wrapper method - Embedded method. This classification
on the basis of selection strategy being the most common [Yu et Liu, 2004], we focus
in this thesis on this classification and we will discuss below these three methods, their
strategy, their advantages and their disadvantages.

2.5.4.1 Filter Methods

Filter methods [Cherrington et al., 2019, Sánchez-Marono et al., 2007] are typically used
as a pre-processing step. In Filter method, the feature selection process is independent of
any machine learning algorithm as illustrated on Fig. 2.7. Features are selected based on
their scores using various statistical tests for their correlation with the output variable
(feature). Below, we define some statistical tests that are generally used by Filter methods.

Figure 2.7: Filter feature selection method
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1. Pearson Correlation
Pearson Correlation [Benesty et al., 2009] is used as a measure to quantify the
linear dependence between two continuous features xi• and xj•. Its value varies
from −1 to +1. The Pearson correlation is given as follows by:

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(2.4)

With r the correlation coefficient, xi the values of the X-variable in a sample, x̄,
mean of the values of the xi•-variable, yi values of the xj•-variable in a sample
and ȳ mean of the values of the xj•-variable. Pearson correlation can only detect
linear dependencies linear between features and the output target.

2. Mutual Information
Mutual information [Estévez et al., 2009, Peng et al., 2005] is a measure of the
mutual dependence between two features. It is based on the information theoretical
concept of entropy, a measure of uncertainty of a random variable. The entropy of
a random variable xi• is defined by:

H(xi•) = −
∑
i

P (xi) log2 P (xi) (2.5)

and the entropy of xi• observing another variable xj• is:

H(xi•|xj•) =
∑
j

P (yj)
∑
i

P (xi|yj) log2
(
P (xi|yj)) (2.6)

Where P (xi) represents the prior probabilities for all values of xi• and P (xi|yj),
the conditional probabilities of xi• being given the values of xj•. The statistical
difference between H(xi•) and H(xi•|xj•) is then called information gain or
mutual information and represents the degree of correlation between xi• and xj•.
Thus, using formulas 2.5 and 2.6, information gain or mutual information can be
defined as:

IG(xi•, xj•) = H(xi•)−H(xi•|xj•) (2.7)

3. Chi-Square
Chi-square [Jin et al., 2006] is a statistical test applied to groups of categorical
features to assess the likelihood of correlation or association between them using
their frequency distribution. The general formula is as follows:

χ2 =
∑ (Oi − Ei)

2

Ei

(2.8)
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Figure 2.8: Statistical tests for Filter selection method [Jović et al., 2015]

with Oi the observed value and Ei the expected value. Many other statistical tests
are used in the literature. Based on the input features types, different statistic tests
can be used. The following diagram gives an overview of how these tests can be
used.

2.5.4.2 Wrapper Methods

In so-called “Wrapper” methods, the process aims to use a subset of features and create
a model for their use [Chandrashekar et Sahin, 2014, Zhu et al., 2007]. Based on the
inferences drawn from the previous model, one decides to add or remove features from
the subset. Fig. 2.9 gives an overview of how Wrapper feature selection works. The

Figure 2.9: Wrapper feature selection method

feature selection under Wrapper is essentially reduced to a research problem. These
methods are usually very computationally expensive. Based on how the research is done,
Wrapper methods can be categorized as: Forward Feature Selection, Backward Feature
Selection, Recursive Feature Elimination.

1. Forward Feature Selection (FFS)
FFS [Ren et al., 2008, Mao, 2002] is an iterative method where we start with
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having no features in the model. At each iteration, we keep adding the feature that
best improves our model until adding a new variable does not improve the model’s
performance. On Fig. 2.10, we show using a example of 5 features, how forward
feature selection works. The process starts with an empty set of features then adds
the most relevant one in step two. It then trains a model with the added feature
then adds more features to the previous model until all the relevant features until a
defined stopping criteria is reached or until there is no more features left.

Figure 2.10: Forward feature selection process

2. Backward Feature Selection (BFS)
In BFS [Kostrzewa et Brzeski, 2017, Tharmakulasingam et al., 2020], we start
with all features and remove the least significant feature at each iteration, which
improves model performance. We repeat this until no improvement is seen when
removing features. Below on Fig. 2.11, we show using a example of 5 features
how backward feature selection works.

3. Recursive Feature Selection (RFS)
RFS [You et al., 2014, Zeng et al., 2009] is an optimized Wrapper method that
aims to find the best performing feature subset. It repeatedly creates models and
discards the best or worst performing features within each iteration. It builds the
next model with features set aside until all features are exhausted. It then ranks the
features according to the order of their selection.
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Figure 2.11: Backward feature selection process

2.5.4.3 Embedded Method

Embedded feature selection methods aim at combining the advantages of “Filter” and
“Wrapper” methods. Embedded methods are implemented by algorithms that have
their own built-in feature selection methods as mentioned by [Guyon et Elisseeff, 2003,
Chandrashekar et Sahin, 2014]. Some of the most popular examples of those methods
incorporate regression algorithms such as LASSO [Muthukrishnan et Rohini, 2016] and
RIDGE [Zhang et al., 2018] which have built-in penalty functions to reduce over-fitting.

Figure 2.12: Embedded feature selection method

2.5.4.4 Experimentation

Different feature selection methods exist and there are no consensus on which one is
better. They each have the own pros and cons. Here, first we summarize in Table 2.6
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the pros and cons of the three categories of feature selection methods that we mentioned
above. Secondly, we show below using an example, another drawback of different feature

Table 2.6: Feature Selection Methods - Pros and Cons

selection methods.
We notice that when using different statistical tests for selecting feature in Filter

or different strategies for Wrapper, we end up with different selected subsets. In the
following, we show how using different feature selection methods on the same dataset
can output different subsets based on each feature’s importance.

For this example, we will use different feature selection strategies to asses features
importance in a dataset. We will use two different statistical tests for Filter (Chi²,
ANOVA), two Wrapper strategies (FBS, BFS) and one Embedded feature selection
method. For the data, we will be using Heart Disease dataset ( 2.7 ) from the UCI public
directory [Dua et Graff, 2017]. This dataset consists of 14 features including 1 output
variable, 303 observations. The task using this dataset is, based on the set of features, to
predict individuals with heart disease and those without it.

Table 2.7: Heart Disease- Dataset details
Nb of features 14
Nb of observations 303
Type Medical
Features List age, cp, trestbps, chol, fbs, restecg, thalach, sex, exang, oldpeak,

slope, ca, thal

In Table 2.8, we report the features importance according to different feature selection
methods. We can clearly see that the ordered feature importance list varies from a method
to another. In the case where we would have wanted to choose 5, 6 or 7 features, we
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would in fact be spoiled for choice because each feature selection method would have
given a different list of feature importance. Even by doing so, it is not certain that these
methods can limit, in such cases, biases related to the chosen FS method.

Table 2.8: Heart Disease - Features Importance with Filter (ANOVA & CHI²) ,
Wrapper ( FBS & BFS) & Embedded

Method Ordered Features List from 1 - 13

ANOVA exang, cp, oldpeak, thalach,ca,slope, thal, sex, age, trestbps, restecg, chol,fbs
CHI² thalach, oldpeak, ca, cp, exang, chol, age, trestbps, slope, sex, thal, restecg, fbs
FBS cp, fbs, restecg, ca, thal, slope, trestbps, sex, chol, thalach, exang, oldpeak, age
BFS cp, ca, thal, slope, sex, oldpeak, chol, fbs, thalach, age, exang, restecg, trestbps
Embedded cp, thalach, thal, ca, oldpeak, age, chol, trestbps, exang, slope, sex, restecg, fbs

2.5.4.5 Other Existing Methods

Other feature selection methods are emerging in the literature. Those methods are based
on existing feature selection methods in order to propose a more robust and efficient
selection strategy. Among those emerging feature selection methods, we can site:

• Hybrid Methods. These methods [Hsu et al., 2011, Lu et al., 2017] combine
different types of other feature selection methods in order to benefit from their
advantages.

• Ensemble Methods. Rather than using a single approach to select a subset
of features like the previous methods, ensemble methods [Moghimi et al., 2018,
He et al., 2019, Ndirangu et al., 2019] combine different approaches to obtain the
best possible subset of features. There are no consensus on how to combine these
approaches, since many methods are available. The great advantage offered by
these methods is that they benefit the best advantages from other selection methods
and, as such, can reduce their disadvantages. Ensemble methods are known for
their high performance and precision and the fact that they are more robust against
high-dimensional datasets. However, they can be computationally expensive as
they aim to process large amounts of data.

2.6 Summary
In this chapter, we have presented a state-of-the-art of the three main problematic of our
thesis. Basically we have addressed the notion of bias, the notion of fairness and the
notion of feature selection.
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We have investigated the different types of biases that can occur when building a
machine learning model and introduced a taxonomy of these different types of biases. We
have also looked at the different sources of bias in terms of data imbalance and protected
feature that can impact machine learning algorithms in terms of fairness. For data
imbalance or protected features issues, we have given details on the different methods
that have been used or proposed in the machine learning literature.

For the notion of fairness, we have detailed the most used metrics fairness and
different fairness strategies that have been used or proposed in the past years.

For feature selection methods, we have looked at all the three categories of feature
selection methods named as Filter, Wrapper and Embedded. We also show by using
an example, an experiment where using different feature selection methods on a same
dataset can result in different selected subsets. We also presented other existing feature
selection methods with their strategy of combining different other feature methods in
order to maximise the chance of selecting the most relevant features.

In the next chapters, we will present our contributions to the main problematic that
we have investigated in this thesis under the notions of bias, protected features, data
imbalance, fairness and feature selection.
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3.1. INTRODUCTION

3.1 Introduction
In this chapter, we investigated the notion of feature redundancy. By looking at existing
and traditional feature selection methods, we pointed out their limit regarding feature
redundancy, indeed most of these methods often make the assumption of the independent
feature only, i.e the output variable. To overcome the limits of existing feature selection
methods regarding redundant features, we introduce a new feature redundancy strategy.
We present this strategy in this chapter.

Generally, FS methods are used to assess features relevancy for a specific task. An
efficient feature selection method normally should be able to select relevant and non-
redundant features in order to improve learning performance and training efficiency.
Globally, it is easier to remove irrelevant features than finding redundant ones. Thus,
the difficulty in selecting features now is finding the ones that are redundant. Exist-
ing works for features redundancy analysis such as [Yu et Liu, 2004, Peng et al., 2005,
Wang et al., 2020] introduced approaches to reduce redundancy. However in the case of
non-independent features, our study shows that these methods inappropriately remove
redundancy because they required user to set a threshold.

In this chapter, our focus lies on feature redundancy and our contribution can be
summarized as follows:

• we propose a new method for analyzing feature redundancy.

• the proposed redundancy method does not require user to set a threshold.

In section 3.2, we look at the existing feature redundancy methods and how they addressed
the issue of feature redundancy. We exposed the proposed approach in section 3.3 then
detailed experiments and results obtained in section 3.4.

3.2 Related Work
We notice many existing work that discuss feature redundancy and it is mainly described
is in the sense of correlation between features with respect to the output variable.

This is the case of authors in [Wang et al., 2020] whose redundancy approach is
defined by a high correlation coefficient between features. This "high correlation" is
determined by a chosen threshold. In their approach, authors in [Wang et al., 2020]
believed that redundancy could be strong, moderate or weak. In their method called
Redundancy Analysis Based Feature Selection (RABFS), they use maximum information
coefficient (mic) as correlation measure in order to establish a threshold, analyze the
redundancy between features and create a subset of relevant features. Correlation between
features determine if the redundancy is strong, moderate or weak.

In [Peng et al., 2005], authors have presented a feature selection method described
as "Minimum Redundancy & Maximum Relevance (mRMR). This method, based on
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Mutual Information (MI) as a correlation measure, makes it possible to select features
that have a strong correlation with the output and a weak correlation between them in
order to maximize relevancy and minimize redundancy. The authors in [Yu et Liu, 2004]
proposed another feature selection method called Fast Correlation-Based Filter(FCBF),
which uses symmetrical uncertainty (3.4) as correlation measure and approximate Markov
blanket to remove redundancy among features. In [Zhang et al., 2020], authors intro-
duced GRRO (Global Relevance and Redundancy Optimization), a multi-label feature
selection. In this method, authors proposed a general global optimization framework
incorporating feature relevance, feature redundancy, and label correlation based on the
use of information gain.

However, when analyzing the methods cited above, we found that they inappropriately
remove redundancy because they require users to set a single-defined threshold. We
observed several problems with the strategy of using a single-defined threshold:

• feature redundancy depends on the threshold set, that being said, different thresh-
olds led to different sets of redundant features; thus, different models.

• as more redundant features are removed according to the single-specified threshold,
we observed a significant loss of performance.

Given the limitations of these above redundancy approaches, we propose a new criterion
to evaluate the redundancy between relevant features. Unless other proposed redundancy
methods, our method does not require users to set a threshold.

3.3 The Proposed Redundancy Analysis Method
In this section, we present our proposed redundancy analysis method which uses a re-
dundancy criterion based on symmetrical uncertainty [Ullah et al., 2017] as a correlation
measure. We identify a list of redundant features without a threshold setup by users.

3.3.1 Correlation Measure
We use symmetrical uncertainty (SU) as correlation measure, it is based on information
gain [Raileanu et Stoffel, 2004] which for two variables X ,Y is given by:

IG(X, Y ) = H(X)−H(X|Y ) (3.1)

Using this measurement, a feature Y is considered to be more correlated to a feature X
than a feature Z if and only if: IG(X|Y ) > IG(X|Z). Information gain uses the notion
of entropy to measure the mutual dependence between two variables. The entropy for a
random variable X is:

H(X) = −
∑
i

P (xi) log2 P (xi) (3.2)
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and between two variables X and Y, it is given by:

H(X|Y ) =
∑
j

P (yj)
∑
i

P (xi|yj) log2
(
P (xi|yj)) (3.3)

With P (xi): probabilities for all values of X, P (xi|yj): conditional probabilities between
X given the values of Y.
However, the study in [Raileanu et Stoffel, 2004] showed that features with more values
are favored with information gain, thus its normalized version known as Symmetrical
Uncertainty (SU) is used. Using equation (3.1), (3.2) and (3.3), SU is defined as:

SU(X, Y ) = 2
[ IG(X, Y )

H(X) +H(Y )

]
(3.4)

3.3.2 The Redundancy Criterion
To avoid the use of a defined threshold, we define our redundancy criterion by focus on
absolute feature redundancy. The criteria is defined as follow:

• Two features Fj and Fi are redundant with respect to a target class Y (the output
variable) if and only if they provide exactly the same amount of information for
the output variable. In other words if and only if:

SU(Fj, Y ) = SU(Fi, Y ) (3.5)

SU(Fj, Y ) refers to the symmetrical uncertainty between a feature Fj and the class Y
and SU(Fi, Y ) refers to the symmetrical uncertainty between a feature Fi and the class
Y . If Fj and Fi are redundant, the least relevant one needs to be deleted.

3.3.3 Redundancy Analysis Algorithm
The steps of redundancy analysis are summarized in Algorithm 1. As inputs, the algo-
rithm takes a list F of ranked relevant features resulting from a feature selection method
and Y as the target class. From this list F, we choose the most important or relevant
feature Fj (line 1). Then, the symmetrical uncertainty between Fj and the next remaining
feature Fi in the list F (line 2 to 5) is calculated. If the redundancy criterion is true
(line 6), the feature Fi is deleted from the list F (line 7) then the next feature Fi in F is
used (line 9) until all the remaining features in F have been used. Then we start over
by varying Fj in the list (line 11) and so on until we have considered every remaining
feature as Fj (line 12). After removing all the redundant ones, we add all the remaining
features to the list F’, (F’ ≤ F). This list, F’, containing only relevant and non-redundant
attributes, will be used for the desired learning task.
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Algorithm 1: Absolute Redundancy Algorithm
Input: F(F1, F2, ..., Fn), Y // Features list F and target class Y
Output: F’ //Final List of non-redundant attributes

1 Fj ← getFirstElement (F)
2 do begin:
3 Fi← getNextElement(F)
4 while Fi <> NULL:
5 compute SU

(
Fj, Y

)
, SU

(
Fi, Y

)
6 if SU

(
Fj, Y

)
== SU

(
Fi, Y

)
:

7 F ← F \ {Fi}
8 end if
9 Fi← getNextElement (F)

10 end while
11 Fj ← getNextElement(F)
12 end until (Fj == NULL)
13 F’← F

3.4 Experimental Approach

3.4.1 Experimental Design
The diagram in 3.1 reflects our experimental design to perform the redundancy analysis.
We carry out our experiments in a way so that we can compare our results with other exist-
ing methods. The existing methods that can reduce redundancy and to which we compare
our results are RABFS, mRMR and FCBF respectively. RABFS [Wang et al., 2020]
uses maximum information coefficient to establish a threshold and analyze features
redundancy and build a subset of features for training. In mRMR [Peng et al., 2005],
the aim is to select features with a high relevance with the target and a low redundancy
between themselves. FCBF uses symmetrical uncertainty as correlation measure and
approximate Markov blanket to remove redundancy [Yu et Liu, 2004].

Figure 3.1: Redundancy Analysis: Design of our experimental approach

Feature Selection: we determine features’ importance using a wrapper feature selection
method and then rank the features in order of importance from the most important one to
the least. Importantly, this ordered list constitutes the “Ranked Relevant Features”.
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Redundancy Analysis: to obtain the best subset of non-redundant features, we use
the “Ranked Relevant Features” list to proceed to the redundancy analysis using the
redundancy criterion that we defined in section 3.3.2 and the algorithm in 3.3.3.
Classification: the redundancy analysis produces a final reduced list of features, "Se-
lected Non-Redundant Features". This list is used to perform a supervised learning
task using SVM [Ring et Eskofier, 2016] and C4.5 [Salzberg, 1994] classifiers. These
classifiers were used for comparison purpose with other existing methods.

3.4.2 Datasets used
To evaluate the performance of our method in finding redundant features and improving
the performance of the learning task, six datasets including biological and text data from
the UCI [Dua et Graff, 2017] were used. Those datasets (Table 3.1) were chosen based
on their differences, the number of features varying from 325 to 22283. Plus, this choice
will help us to compare the result of our method against other proposed methods that
have used the same datasets. Specifically, the datasets used are:

• Colon Dataset: this dataset is composed of 40 colon tumor samples and 22 normal
colon tissue samples. It contains information from 2,000 genes (features) and the
goal is to classify the 62 samples into two classes: normal or tumor. It is available
here [Alon et al., 1999].

• ALLAML Dataset: Leukemia dataset [Abinash et Vasudevan, 2018], referred
to as ALLAML dataset is a text-based benchmark in the cancer classification
community. It contains in total 72 samples in 2 classes, ALL(acute lymphatic
leukaemia) and AML(acute myeloid leukaemia), which have 47 and 25 samples,
respectively. This dataset consists of 7,129 gene expression values which represent
the features. This goal again here is to obtain a molecular classification of cancer.

• PCMAC Dataset: this is a two classes text-based dataset that consists of 1943
samples and 3289 features [Jiang et al., 2019].

• Prostate-GE Dataset: the Prostate-GE [Yu et Zhao, 2018] is a clinical gene ex-
pression dataset consisting of 5966 features over 102 samples. It is a gene classifi-
cation task which the goal of obtaining two classes: malignant and benign.

• GLI-85 Dataset: this dataset [Golub et al., 1999] is a molecular classification
dataset that contains two classes with 85 samples for 22283 features.

• lung_small Dataset: this is a text-based dataset with the goal of classifying
samples based on lung cancer into two classes with or without tumors. Comparing
to the others, this is a very small sized-dataset that contains only 73 samples with
325 features [Dua et Graff, 2017].
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In Table 3.1 below, we give a summary of the datasets used.

Table 3.1: Experimental Datasets used
Dataset samples Nb of Features

Colon 62 2000

ALL/AML 71 7129

PCMAC 1943 3289

Prostage-GE 102 5966

GLI-85 85 22283

lung_small 73 325

3.4.3 Results
On a classification task, results of our method were compared to others based on the
number of non-redundant selected features and the classification accuracy. We have used
SVM with Gaussian kernel [Ring et Eskofier, 2016] and C4.5 [Salzberg, 1994] as classi-
fiers. SVM is a supervised machine learning model that uses classification algorithms
for two-group classification problems (see Annex A.1.1.6). C4.5 is an algorithm used to
generate a decision tree that can be used for classification (see Annex A.1.1.7).

In tables 3.2, 3.3 and 3.4, we report the results obtained during our experiments
including results reported by the other methods. To select our features, we used a
wrapper features selection method with a forward strategy [Raschka, 2016]. Then, with
the list of obtained features, we apply our redundancy criterion in order to obtain the list
of the best features without redundancy. And finally, we perform a classification task
using SVM and C4.5 so we can compare our results with other existing methods. To
assess the effectiveness of our result in term of accuracy, we applied cross validation
techniques on each dataset.

• Selected Features
In Table 3.2, the other algorithms have found fewer features than our proposed
method. This can be understood by the fact that the other methods used a filter
strategy by setting a threshold to select the features while we have used a wrapper
approach to subsequently select feature where we observe an absolute redundancy
before training a model.

• Results with SVM
In table 3.3 with SVM, our algorithm has a higher accuracy than other methods on
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Table 3.2: Number of Selected Features by method
Dataset Our Method RABFS FCBF mRMR

Colon 7 3 9 3

ALLAML 5 3 6 3

PCMAC 54 28 112 28

Prostage-GE 21 16 4 16

GLI-85 13 4 5 4

lung_small 52 34 112 34

5 datasets. On the Prostate-GE dataset, both RABFS and mRMR have a higher
accuracy (94%) than our method (93.83%). We notice that both of these methods
have used exactly 16 features in their training data where we have used 21. Thus, on
this dataset, theses methods have found more relevant features than our approach.
But beside this dataset, our proposed method outperforms these methods on all the
other datasets.

Table 3.3: SVM Classification accuracy by method
Dataset Our Method RABFS FCBF mRMR

Colon 92.03 91.66 90.0 78.57

ALLAML 97.8 96.07 92.85 97.14

PCMAC 83.01 80.91 77.51 56.25

Prostage-GE 93.83 94.0 91.99 94.0

GLI-85 94.01 92.77 90.69 89.30

lung_small 88.0 84.82 59.88 84.64

average 91.44 90.03 87.71 79.42

• Results with C4.5
In table 3.4 with C4.5, the accuracy of our method is better on all the six datasets
than all the other methods. We observe an average score of 91.65% for our method
while the other methods have respectively 90.58%, 83.49% and 82.33%.

In general, results on Tables 3.3 and 3.4 show that our method performs well.
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Table 3.4: C4.5 Classification accuracy by method
Dataset Our Method RABFS FCBF mRMR

Colon 92.04 91.90 75.47 91.78

ALLAML 96.56 96.07 95.71 94.28

PCMAC 84.01 82.50 77.81 59.42

Prostage-GE 91.73 90.09 86.18 84.18

GLI-85 96.60 95.13 84.58 85.69

lung_small 89.01 87.76 81.14 78.61

average 91.65 90.58 83.49 82.33

3.5 Summary
In this chapter, we have addressed the issue of feature redundancy in feature selection
methods. We have reviewed existing feature redundancy methods and pointed out their
limits. Among these limits, we basically pointed out the fact that the existing methods
usually require a single defined method and the fact the performance of the learning
model will depend on the chosen threshold.

In order to overcome these limits, we have presented in this chapter a new redundancy
analysis criterion based on symmetrical uncertainty which is a measure of correlation
between features [Dorleon et al., 2021a]. We have designed a redundancy analysis
algorithm according to this criterion. Unless the other proposed redundancy methods,
our algorithm does not require users to set a threshold. The performance of our method
was experimentally compared to other methods such as RABFS, FCBF and mRMR on
six different data sets. The comparative results show that our method finds satisfactory
results.

However this method could be extended to a higher level of contribution and therefore
has several limits. Firstly, the proposed method does not take care of protected feature.
Moreover, the proposed method does not provide any fairness guarantee in order to deal
with potential bias that can exist in the inputs data. For this reason, we provide in the next
chapter an extended version of this work. The extended method is a trade-off between
fairness and performance that deals with fairness, protected features and bias.

The source code, data and results for this contribution are available and can be
accessed under request only via the thesis’s repository on GitHub here Contrib3.
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4.1. INTRODUCTION

4.1 Introduction
In a data-based learning problem, datasets with a lot of features can be problematic
because some features may be either irrelevant or redundant; and as result it becomes dif-
ficult to extract meaningful conclusions [Reddy et al., 2020]. To deal with this problem,
dimensionality reduction technique such as feature selection is used [Reddy et al., 2020].
The main objective of any FS method is to select a subset of relevant features from the
input data that helps improving learning model [Guyon et Elisseeff, 2003]. Fairness is a
quality of the prediction model which can be of high importance for the usability of the
model. Some specific features known as protected could induce problems when dealing
with fairness and it has been proved [Yeom et al., 2018] that protected features can lead
to unfair decisions against minority groups.

Looking at traditional feature selection methods while selecting features, we have
observed two major problems which are:

• the selection of protected features whose presence leads to biased results and

• the selection of redundant features to the protected whose deletion leads to a loss
in prediction performance.

In our work, redundancy is considered in the sense of correlation between non-independent
features and the fact that the later can be strongly correlated with others enabling a clas-
sifier to reconstruct them.

Thus, in the work presented in this chapter, we focused on these two problems identi-
fied when using traditional feature selection methods that directly impact performance
and fairness. Dealing with such issues, performance and fairness are computationally
related and improving one leads to decreasing the other. In order to solve this, we
introduce a method that allows to obtain the best trade-off between performance and
fairness. Our method finds a set of relevant features without protected feature and with
the least possible redundancy which maximizes the performance while ensuring fairness
of the model obtained.
The contribution in this chapter can be summarized as follows:

• we introduce a more flexible way to use threshold for redundancy analysis by
defining a threshold space instead of using a single value which could be subjective.

• we define an outcome-fairness algorithm for dealing with protected features in
decision support algorithm:

– the algorithm takes into consideration redundant features while making deci-
sions on fairness, so that the overall performance remains high.

– our method is based on two different fairness metrics in order to ensure the
robustness of the approach.
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• with our method, we show that it is possible to comply with data privacy policy by
not using protected feature while remaining efficient and fair.

• our introduced method to achieve fairness is easily adaptable to any decision
making problems (regression, clustering...) involving protected features.

The rest of this chapter is organized as follows: in section 4.2, we summarize the different
existing methods to tackle the issues identified with their limitations. Section 4.3 presents
our new approach on protected features, redundancy and fairness. The experimental
results are described and analyzed in section 4.4.

4.2 Related Work
Many existing work proposed various feature selection methods to deal with the problem
of protected features with regards to redundancy, fairness and bias.

We noticed some existing work that introduced different strategies to handle the
problem posed by protected features. In [Dwork et al., 2012], the authors have intro-
duced a naive approach, named "Fairness Through Unawareness", consisting of removing
completely all protected features of the dataset to ensure fairness. In [Fang et al., 2020],
the authors have used a fair-group strategy based on a bias metric (disparate impact),
to improve the fairness of prediction results within each sub-group. In another method
[Yan et al., 2020] called "fair class balancing", the authors tackled the problem at a data
processing level by proposing a method that allows to enhance model fairness without
using any information about protected feature.

We highlight various limitations to the approaches cited above trying to improve fair-
ness while considering protected features. Firstly, the approach of [Dwork et al., 2012]
of completely removing protected features may not solve the problem because there
may be redundant features or even proxies to the protected. Because, as underlined by
[Yeom et al., 2018], some features known as proxies such as zip code, for example, can
reveal the economic level or even predominant race of a residential area. Thus, this can
still lead to racial discrimination in a decision making problem such as loan application
despite the fact that zip code appears to be a non-protected feature [Zhang et al., 2016].
Secondly, the approach of [Fang et al., 2020] using fair-group does not take into account
the existence of redundant features or proxies which, potentially carry the same infor-
mation as the protected and can affect the prediction within groups. As underlined by
[Yeom et al., 2018], it is possible to reveal information about a protected feature using
its redundant. We notice the same observation for the work in [Yan et al., 2020], where
redundant features to the protected are also ignored; this is dangerous in terms of fair
outcomes when dealing with decisions problems involving minority groups.

Given the limitations of these above methods, there is a need for more in-depth
research to overcome these limitations. Thus, we propose a new feature selection method
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which allows the building of efficient and fair models without protected feature and with
the least possible redundancy. Our new method is a trade-off between performance and
fairness. To compute fairness, we use two different bias metrics that have been proposed
in the literature [Bellamy et al., 2018]: Demographic Parity and Equality of Odds. As
each one of this metric uses a different criteria, they allow us to evaluate different fairness
aspects of our approach.

4.3 The Proposed Trade-off Method

Figure 4.1: The proposed approach and its different stages

In this section, we present our approach, the different steps are illustrated in Figure 4.1.
Our method takes as input a dataset divided into protected and unprotected features. Then,
it performs a redundancy analysis based on a defined threshold space (S). Following
the redundancy analysis, two subsets of features are obtained: a list of non-redundant
features (N ) and a list of redundant features (R). These two lists are used subsequently
to train various models using all possible partitions between (N ) and (R).The partitions
are created by taking iterative combinations without duplication between the two subsets
(N ) and (R). Each partition is used to train a model, then for each model obtained, we
calculate its f1-score, its fairness and a trade-off score. We will keep as final model the
one which has the highest trade-off (delta) score, i-e, the most efficient and fair one.

With this new method, we propose an efficient solution to the problem related to
protected and redundant features on performance and fairness. This method makes it
possible to take into account i) redundancy, ii) protected features and iii) fairness. Below,
we give more details and explain every step of the proposed approach.

4.3.1 Input Data
Once the input data is processed, we divided the input features into protected and non-
protected. In the majority of cases, protected features are known or designated by a
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system expert. In our case, to select protected features, we referred to the general data
protection regulation (GDPR) of the European Parliament and Council on processing of
personal data and the protection of privacy. According to article 4(13), (14) and (15) of
the GDPR [EU, 2002], protected features include: gender, race, ethnicity, age and more.
For example in the datasets [Dua et Graff, 2017] used (German Credit, Adult Income
and Loan Approval), gender and race were used as protected.

4.3.2 Redundancy Analysis
As we saw above in section 4.2, using a single-defined threshold could be subjective
for redundancy analysis because for each chosen threshold, we would have a different
feature lists and thus, different models. To avoid this subjectivity in our redundancy
analysis, we introduced a more flexible way to use threshold for redundancy analysis.
To do so, we defined a redundancy space S = [0.5, 1.0] in which we vary different
redundancy thresholds (hyper-parameters) with a step t = 0.05. S = [0.5, 1.0] is chosen
as redundancy space as it includes different thresholds that one can use to describe
high correlation between features. This strategy is efficient and allows to vary the
thresholds precisely in order to have several graduation of the selected redundancy level.
Thus, using the list of non-protected and protected features from our input dataset, we
sought to determine the lists of non-redundant (N ) and redundant (R) features based
on the thresholds space S by using symmetrical uncertainty as measure of correlation
[Raileanu et Stoffel, 2004]. The formula for calculating symmetrical uncertainty (SU)
as detailed in section 3.3.1 is defined by:

SU(X, Y ) = 2
[ IG(X, Y )

H(X) +H(Y )

]
(4.1)

We choose to use the SU as correlation measure for several reasons. Firstly, it produces a
normalized result between 0 and 1 and observes not only linear correlations, but also non-
linear relationships between features. Secondly, it compensates the bias of information
gain towards features with more values and restricts its values between [0,1]. A value of
1 indicates a strong correlation, a value of 0 indicates that X and Y are independent.

4.3.3 Model Evaluation
Once the list of non-redundant features (N ) and the list of redundant features (R) are
obtained from 4.3.2, we then seek to train various models using all possible combinations
between N and R. We start by training a model with N only then we add iteratively
every combination of features of R until all the iterative combinations between N and
R have been used. Like this, we have a list of models, each trained with a different
combination of features (partition).
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4.3.3.1 Computing F1-Score

F1-score is used as measure to assess performance of the learning models obtained in
section 4.3.3. In a classification problem, f1-score, is used to find the balance between
precision and recall. Precision is the fraction of true positive (TP) examples among
the examples that the model classified as positive (TP:true positive, FP:false positive).
Recall, also known as sensitivity, is the fraction of the number of all correct examples
classified as positive (TP) out of all positive that could have been classified (TP, FN:false
negative). Based on the definition of Precision and Recall, the f1-score can be written as:

F1− score =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4.2)

4.3.3.2 Computing Fairness

To compute fairness, we use two different bias metrics that have been proposed in the
literature [Bellamy et al., 2018]. In order to introduce the bias metrics that we used, we
recall the basic settings for the dataset introduced in section 2.3.1. Let X be an input
dataset modeled as a set of data annotated Xn,m ∈ Rn×m consisting of n individuals and
m variables of a space representing the process. Using a matrix, we can then write our
input data as:

Xn,m =


x1,1 · · · x1,m

x2,1 · · · x2,m
... . . . ...

xn,1 · · · xn,m

 = (xi,j)1≤i≤n,1≤j≤m

Each variable of Xn,m is represented by a column vector annotated

x•j = (xi,j)1≤i≤n ∈ Rn

and each individual of Xn,m is represented by a line vector annotated

xi• = (xi,j)1≤j≤m ∈ Rm

Let f be a learning model and its performance score f [X] which will be used to predict
a binary output ŷ ∈ {0, 1}. Each data point Xi is associated to a protected feature P ,
here we consider that P is binary: P ∈ { 0,1}. We consider P = 0 to be an unprivileged
group and P = 1 a privileged group. Likewise, we consider ŷ = 1 to be the preferred
outcome, assuming it represents the more desirable of the two possible outcomes. For
instance, P =‘gender’ could be the protected attribute with ‘female’ = 0, the unprivileged
group, and ‘male’ = 1 the privileged.
Suppose for some data points we know the ground truth; i.e., the true value y ∈ {0, 1}.
Note that these outcomes may be statistically different between different groups, either
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because the differences are real, or because the model is somewhat biased. Depending
on the situation, we may want our estimate ŷ to take these differences into account or to
compensate them. So, we used the two bias metrics introduced in [Bellamy et al., 2018]
and defined below:

1. Demographic Parity. This metric suggests that a predictor is unbiased if the
prediction ŷ is independent of the protected feature P such that Pr(ŷ | P ) = Pr(ŷ)
(Pr: Prediction rate). This means that the same proportion of each subgroup is
classified as positive. To assess fairness from this metric, we use the difference
between prediction rates of the subgroups. Let us call this difference Demographic
Parity Difference (DPD), we defined it as:

DPD = Pr(ŷ = 1|P = 1)− Pr(ŷ = 1|P = 0) (4.3)

2. Equality of Odds. This metric states that the prediction ŷ is conditionally inde-
pendent of the protected feature P , given the true value y: Pr (ŷ |y, P ) = Pr (ŷ |y).
This means that the true positive rate and the false positive rate will be the same
between unprivileged and privileged groups. To assess fairness from this metric,
we use the difference between prediction rates (positive and negative). Let us call
it Equality of Odds Difference (EOD), we defined it as:

EOD = Pr(ŷ = 1|P = 1, y = yi)− Pr(ŷ = 1|P = 0, y = yi), yi ∈ {0, 1}
(4.4)

Using the measurements obtained with the two metrics defined above in formulas (4.3)
and (4.4), we are ready to compute a fairness score. For these two metrics, the result
obtained is between -1 and 1, however the ideal value we would like to obtain is 0. Since
the domain of performance values (F1-score) is between 0 and 1, we use the absolute
value of the measurement obtained in order to normalize the fairness domain between 0
and 1. Then, we invert the value obtained so that its greatest value is 1. For example, let
val ∈ [-1, 1] be the fairness value obtained for a metric, to invert it we proceed like this:
new_val = 1-|val|.

For the partitions used (section 4.3.3), when the list N is used alone, i.e when there is
no redundant feature, we consider that the fairness score is 1 since there are no protected
features nor redundant to the protected ones. When we add partitions from R to N , the
added redundant feature (from R) is used as P to assess fairness. If there are multiple
redundant features in R to the protected, we calculate an intermediate fairness score for
each of the redundant and then average it to obtain a final fairness score. With the other
FS methods used for comparison in our experiment, if there is any protected feature (i.e.
P ), in their list of selected features, it is used to assess fairness using the formulas in 4.3
and (4.4). Otherwise, we consider their fairness score to be 1. Since we have two values
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for fairness from the two bias metrics used, the final fairness value used is an average of
the two fairness scores obtained:

Fairness =
DPD + EOD

2
(4.5)

4.3.4 Computing the Trade-off (Delta)
We have defined our trade-off formula as follow:

∆ = (1 + β2) ∗ F1-score * Fairness
β2 ∗ F1-score + Fairness

(4.6)

The formula is inspired from the traditional F-measure [Powers, 2020] and helps to
compute the harmonic mean between our f1-score and fairness (fairness is the value
obtained from 4.5. The reason we have chosen to use the harmonic mean instead of
other means is that it allows us to weigh the fairness higher than the f1-score. With the
classical arithmetic mean, the higher score would have been more important (sometimes
it could be the f1-score and sometimes the fairness). But by choosing to do so, we decide
to assign a greater importance to fairness (whether this score is smaller than the f1-score
or not). In the formula defined for delta, two commonly used values for β are 1 which
weighs fairness higher than f1-score, and 0.5, which weighs fairness lower than f1-score.
In our experiments, the beta (β) in the formula is then set to 1 (β = 1). For each trained
model in step 4.3.3, we obtain a f1-score and a fairness value. Then we compute a delta
for each model using their f1 − score and fairness. The final delta will be the max,
which we note Fmax, of all the delta. The list of features according to Fmax is noted
as Mmax.

4.3.5 Algorithm of the Proposed Method
Algorithm 2 shows the process of the proposed method. Let N be the set of non-redundant
features, we denote by fi a feature of N . Let P the set of known protected features or
designated by a system expert before any analysis, we denote by pi any feature of P .
The algorithm takes as input two lists: the list of non-protected features N and the list
of protected features annotated P from the input dataset. We use the following defined
parameters: t the step (t = 0.05) to iterate over S and the hyper-parameter space (S =
[0.5, 1.0]). We start by initializing the values of Fmax, Mmax, d, t and the empty list R
(line 2-6). For each hyper-parameter (threshold) d in S, we seek to find the redundancy
between the list of protected P and the list of non-protected N , if any redundant feature
is found according to d, it is added to R then removed from N (line 7-16). Using N ,
we iteratively increment over all possible partitions cr of R to train all possible models
using all the partitions between the lists N and R, evaluate them and calculate their delta
according to the specified formula(17-25). Then we decrement, start over using a new
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value of d until all possible value in the hyper-parameter S have been used (line 27). For
the output of the algorithm, we have Fmax which is the max of all the calculated delta,
and Mmax which is the list of features constituting the model which led to the delta max
(Fmax).

Algorithm 2: Pseudo-code of the proposed method
Input: N, P // Non protected and protected Features
Output: Fmax, Mmax //max performance & feature list

1 Begin
2 t← 0.05 //iteration step over S
3 d← 1.0 //highest threshold value in S
4 R← { } //redundant list
5 Fmax = 0 //max(∆) to maximize
6 Mmax← { } //feature list of Fmax
7 while d ∈ S do
8 //finding redundant features
9 for fi ∈ N do

10 for pi ∈ P do
11 if |compute corr(pi, fi)| ≥ d then
12 R← R∪ {fi}
13 N← N \{fi}
14 end if
15 end do
16 end do
17 //search for the best model with the best trade-of f̂
18 for cr ∈ partition(R) do
19 compute f̂ using N ∪ cr
20 compute ∆ using eq. 4.6
21 if ∆ ≥ Fmax then
22 Fmax← ∆

23 Mmax← f̂
24 end if
25 end do
26 d← d - t
27 end do
28 End
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4.4 Experimental Validation
In this section, we present the experimental approach that we carried out and the com-
parative results obtained. The goal of these experiments is to compare the results
obtained with our method with other feature selection methods. Two other existing
feature selection methods were used for comparison: mRMR [Peng et al., 2005] and
FCBF [Yu et Liu, 2004]. In particular, this comparison was made based on three criterion
(performance, fairness and the trade-off score) using a classification task. We have also
compared the numbers of selected features by each method and the execution time.
Baseline.

• The first existing method used for comparison with our proposed method is mRMR
[Peng et al., 2005]. It aims to select a subset of highly relevant features while
reducing redundancy between themselves. This method is a two stage process; a
stage includes an incremental feature selection which later is combined to another
more sophisticated wrapper feature selectors. We used the backward and forward
selectors as in the original paper.

• FCBF [Yu et Liu, 2004] is the other existing method used for comparison to our
proposed one. It uses symmetrical uncertainty as correlation measure and approx-
imate Markov blanket to remove redundancy [Wang et al., 2020]. This method
requires the user to set up a threshold and this is somehow subjective. However, the
authors stated in their paper that setting the threshold to a reasonably large value
does not sacrifice the goodness of the selected subsets, thus in our experiment, the
threshold was set to 0.6.

When used, each above method outputs a final set of relevant features, normally this
represents a "partition" (a subset of features) of our proposed method. Then we use this
final relevant list from each method to train and evaluate a model (4.3.3) and compute its
trade-off score (4.3.4).

Classifiers.
To evaluate and compare the proposed method to existing methods, we proceeded to
a learning task by considering a binary classification problem over the four datasets
that we describe below (section 4.4.1). For this binary classification problem, Random
Forest [Pal, 2005] and AdaBoost [Schapire, 2013] (detailed in Annex A.1.1) were used
as classifiers. This choice is explained by the main advantages of these classifiers which
ensures high precision through cross validation, providing an easy interpretation of the
obtained result. And also the fact that these two classifiers use two different ensemble
strategies (bagging and boosting), this allowed us to seize different aspects of each
method on the learning task. Each model is trained and evaluated using the classic
cross-validation procedure. F1 Score is used as measure to assess the performance of
each trained model.
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4.4.1 Datasets
To evaluate our method, we carried out experiments on four well-known datasets in
the literature [Dua et Graff, 2017]. They each contain known protected features, which
allowed us to evaluate our method on appropriate cases. These datasets were chosen
on the basis of the differences they present, their types and the number of observations
varying from 615 to 32561 and the number of features.

• German Credit Dataset. The German credit dataset classifies people described by
a set of features as good or bad credit risks. This dataset contains 1000 observations
with 20 features. In this dataset, each entry represents a person who takes a credit
by a bank. Each person is classified as good or bad credit risks according to the set
of features.

• Adult Income Dataset. The Adult income dataset task it to predict whether
income exceeds "50K/yr" based on census data. It is a widely quoted public dataset
in machine learning literature and is used for introducing supervised machine
learning algorithms for binary classification. The dataset contains 32,561 rows
with 14 features of census data pertaining to adult income. The prediction task is
to determine whether a person makes over 50K income in a year.

• Bank Churn. The goal in Bank Churn dataset is to predict customer churn in a
bank. This data set contains details of a bank’s customers and the target variable is
a binary variable reflecting the fact whether a customer left the bank (closed the
account) or continues to be a customer.

• Loan Approval. The last dataset used is Loan Approval. The goal is to automate
the loan eligibility process based on customer detail provided while filling online
application form.

Based on the general data protection regulation (GDPR) policy, we have identified which
feature is protected in each dataset. In Table 4.1, we give more details on the datasets
used.

Table 4.1: Experimental datasets used
Dataset Observations Features Protected

Adult Income 32561 15 2

Bank Churn 10147 13 1

German Credit Scoring 1000 9 1

Loan Approval 615 14 2
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4.4.2 Results Analysis
The analysis of the results is based on two criterion: the number of selected features and
the trade-off score (fairness and performance).

4.4.2.1 Selected Features

We present in Table 4.2 below the first comparison results obtained with the different
methods over selected features.

Table 4.2: Comparison over selected features

Our Method mRMR FCBF

Data N P R (R ∈ f̂ ) N P (R) (R ∈ f̂ ) (N) P R (R ∈ f̂ )

German 7 1 1 1 5 1 0 0 6 1 0 0

Adult 12 2 3 2 7 2 1 1 9 1 1 1

Bank 11 1 2 1 8 0 0 0 7 0 2 2

Loan 11 2 3 1 6 1 1 1 8 1 0 0

In the Table 4.2, for our proposed method: (N) represents the number of selected
features, (P) the number of protected features, (R) the number of redundant features
detected and (R ∈ f̂ ) the number of redundant features that is part of the list used for the
final model. For the two other existing methods: (N) represents the number of selected
features, (P) the number of protected features that we observed in their selected list, (R)
the number of redundant features observed in their selected list and (R ∈ f̂ ) the number
of redundant features that is part of the list used for the final model.

We notice that the number of selected features of our method is higher than the
other approaches. This is due to our fairness goal without removing any feature before-
hand while the others remove some features based on their relevancy and redundancy
approaches. We also recall that our method, in order to find redundant features, uses
protected feature.

Observing the results, we have used two protected features for Adult and Loan
Approval dataset while for German Credit and Bank Churner dataset we have used one
protected feature. For our method, the protected features are used in the redundancy
analysis step only, they help finding the redundant features using the threshold space (S
= [0.5, 1.0]).

When applying the two other existing methods (mRMR and FCBF), we have observed
that their final lists contains protected features (P) and also features that have been
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highlighted as redundant (R) by our method. This is explained by the fact that theses
methods do not take care or propose any processing to handle protected features which is
not the case for for our method. Here comes one of the contribution of our method on
not using personal protected or sensitive data with respect to data privacy policy.

4.4.2.2 Trade-off score (F1-score, Fairness)

For every classifier used, we report the comparative performance for all the datasets for
the three methods of the basline. On Tables 4.3 and 4.4 below, we report the results based
on the trade-off score (f1-score, fairness), obtained by our method compared to the two
other FS methods.

The experiments were carried out using two classifiers: i) Random Forest and ii)
AdaBoost, on four well known datasets for fairness study. F1-score was used to assess
performance of each classifier. We compute fairness based on three different bias metrics
(Demographic Parity, Equal Opportunity, Equality of Odds). The score for Delta is
calculated using equation 4.6 with the process explained section 4.3.4.

• Result with Random Forest
Figures 4.2, 4.3 and 4.3 show the results obtained with Random Forest.

– For performance score, we report on Fig. 4.2. The performance results
using f1-score show that our method outperforms the baseline on all the four
datasets. FCBF achieved the lowest score on average.

Figure 4.2: Random Forest: f1-score for all the datasets

– For fairness score reported on Fig. 4.3, the proposed method has a better
score than the baseline on three datasets. However, for Bank dataset, the
other methods in the baseline have a better fairness score than our method.
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This is explained by the fact we had to set their fairness to 1 because there
was no protected feature in their lists of selected feature.

Figure 4.3: Random Forest: fairness score for all the datasets

– Fig. 4.4 reports on the trade-off score. We notice that mRMR and FCB have
surpassed our method on Bank dataset. Beside this dataset, the proposed
method achieved a better performance for the trade-off score than the baseline
on all the other datasets.

Figure 4.4: Random Forest: trade-off (Delta) score for all the datasets

We resume in Table 4.3 the comparison between our proposed method and the
baseline. The results show that our method outperforms the two other existing
methods on three datasets, except Bank where the mRMR and FCBF have a
higher score (0.88 and 0.87) for Delta than our method (0.83). However, this
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understandable because, since there was no protected feature in their final list of
selected feature, we had to set their fairness score to 1.

Table 4.3: Random Forest: Comparison based on performance, fairness and delta;
F1: F1-score, Fs: Fairness, Dt: Delta

Proposed Method mRMR Method FCBF Method

Dataset F1 Fs Dt F1 Fs Dt F1 Fs Dt

German 0.70 0.81 0.75 0.65 0.67 0.66 0.69 0.66 0.67

Adult 0.75 0.85 0.78 0.73 0.65 0.68 0.67 0.71 0.68

Bank 0.81 0.85 0.83 0.80 1 0.88 0.78 1 0.87

Loan 0. 77 0.89 0.82 0.76 0.73 0.74 0.73 0.73 0.73

• Result with AdaBoost
On Figures 4.5, 4.6, 4.7 and Table 4.4, we report the performance using AdaBoost
for all the four datasets in terms of performance, fairness and the trade-off score.
On each figure, we present the score for every dataset that we used.

– We report on Fig. 4.5 results for performance score using f1-score. We notice
particularly that, on German and Adult datasets, the two other methods in the
baseline have slightly surpassed our method with a f1-score of 78% where our
method achieved only 75%. However, our method achieved the highest score
for Bank and Loan datasets than the baseline, except FCBF that achieved the
same score of 84% on Loan dataset.

Figure 4.5: AdaBoost: f1-score for all the datasets
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– Fig. 4.6 reports the fairness results obtained for all the four datasets. The
proposed method has surpassed highly the baseline on three datasets. On
Bank dataset, the baseline surpassed our method, again this is explained by
the fact we add to set their fairness score to 1 prior applying the formula.

Figure 4.6: AdaBoost: fairness score for all the datasets

– Results for the trade-off score is reported on Fig. 4.7. For German, Adult and
Loan datasets, the proposed method has achieved the highest score comparing
to the baseline. mRMR surpassed slightly our method on Bank dataset, 93%
to 90%, however, we notice that even with a fairness score of 1 for FCBF,
our method has achieved a better score for the trade-off than this method.

Figure 4.7: AdaBoost: trade-off score for all the datasets

Table 4.4 recalls the comparative results for the experiments using AdaBoost.
We clearly notice that our method has higher Delta score than the other methods
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on three datasets, except Bank dataset where mRMR performed better than the
proposed. Particularly, we notice that mRMR and FCBF achieved the highest
f1-score (78%) on the German dataset, but still our method achieved a higher
trade-off score. We notice the same observation for the Adult dataset.

We also notice that FCBF has a higher fairness score (100%) than our method
(92%) on Bank dataset, but again, our method achieved a higher score for the
trade-off since our performance score is better.

Table 4.4: AdaBoost: Comparison based on performance, fairness and delta; F1:
F1-score, Fs: Fairness, Dt: Delta

Proposed Method mRMR Method FCBF Method

Dataset F1 Fs Dt F1 Fs Dt F1 Fs Dt

German 0.75 0.91 0.82 0.78 0.76 0.77 0.78 0.72 0.74

Adult 0.80 0.92 0.85 0.85 0.68 0.75 0.83 0.67 0.74

Bank 0.90 0.92 0.91 0.87 1 0.93 0.73 1 0.84

Loan 0.84 0.89 0.86 0.80 0.65 0.71 0.84 0. 73 0.78

Overall, the results of the experiments show that our method performs well.

4.4.2.3 Execution Time

We also compared the execution time of our algorithm to other FS methods (Figure 4.8).
The FCBF method is faster than our method over all the datasets. It is understandable
since this method performs a single redundancy analysis using only one defined threshold
while our method uses a threshold space to perform redundancy analysis. However, our
method is faster than the mRMR method which is in fact is a two stage process with two
wrapper selectors.

In general, on these four datasets, we get satisfactory results and we have maintained
a good level of performance (F1-score), a higher fairness guarantying a higher score for
the trade-off between f1 score and fairness.
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Figure 4.8: Comparison of execution time in milliseconds

4.5 Summary
In this chapter, we present a novel feature selection method to improve performance and
fairness in the case of protected features while considering their redundant. To achieve
our goal, we introduce a trade-off strategy between performance and fairness. Unlike
existing methods, the proposed method allows to obtain a model that is both optimal and
fair by considering protected and redundant features with respect to data privacy policy.

The performance of our method was experimentally evaluated on four well known
biased datasets. Compared to three other feature selection methods, we obtain satisfactory
results. The comparative results obtained show our method’s effectiveness in boosting
fairness while maintaining a high level of performance.

Nevertheless, our method has some limits regarding small sized datasets which im-
pact performance loss. In order to overcome these limits, we present in the next chapter
an improvement of this method. This improved contribution focuses on data imbalance
regarding protected and redundant features and sort out the imbalance that led to bias.

The full source code, data and results for this contribution can be accessed under
request only via the thesis’s repository on GitHub here (Contrib4).
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5.1. INTRODUCTION

5.1 Introduction
Nowadays, decision-making systems based on machine learning algorithms are becoming
more and more automated by helping human judgment with algorithmic decisions that
are largely based on data. However, concerns have been raised [Yeom et al., 2018]
that machine learning algorithms may lead to unfair decisions against certain groups
characterised by sensitives or protected features such as gender, race, religion.

Basically, two majors problems were identified [Ristanoski et al., 2013, Chawla et al., 2004]
as the main cause of the unfairness in automated decision-making: the uncontrolled use of
protected/sensitive features and the used of imbalanced datasets [Kotsiantis et al., 2006].
Protected or sensitive features, according to [Fang et al., 2020], are features that are of
particular importance either for social, ethical or legal reasons when making decisions.
According to [Chawla et al., 2004], a dataset suffers from class imbalance when there is
significant or extreme disproportion between the number of examples of each class in the
dataset. By class in the dataset we mean, in the context of supervised machine learning
and with a classification task in particular, the label or output we want to predict based on
a set of inputs values. Based on a protected feature such as gender, a privileged group
(male for example) would be more likely to receive an advantageous treatment than the
unprivileged group (here, female for example). Such a behavior is not only undesirable
but may have serious impact on the unprivileged group [Romei et Ruggieri, 2013].

To this end, many machine learning approaches have been proposed to help improving
fairness in decision-making systems that are based on machine learning algorithms. These
approaches are generally classified into three categories: pre-processing, in-processing,
and post-processing [Caton et Haas, 2020].

Some of the proposed machine learning approaches [Dwork et al., 2012] for fair-
ness improvement with regard to protected features tend to remove them prior the
learning model in order to obtain a fair outcome. However, while this strategy may
work, we found that it is limited and can lead to a significant performance loss in
the case where protected features are relevant for the learning task. Some other ap-
proaches [Chawla et al., 2003, Hu et al., 2009] to improve fairness also tend to focus on
maintaining an overall accuracy for both privileged and unprivileged. Again, we noticed
that this strategy may not always work when using data that suffers from class imbalance.
It has been proved [Gu et al., 2009, Zhuang et Dai, 2006] that overall accuracy is not
always a good performance indicator when using unbalanced dataset since it tends to
favor the majority group over the minority.

Since most of fairness-related datasets suffer from class imbalance, addressing fair-
ness with regards to protected features in machine learning algorithm also requires
addressing the issue of imbalanced dataset. Thus, in our work, we were focused on
these two issues, the use of protected features and class imbalance, that directly impact
performance and fairness of machine learning algorithms. To this end, we propose
FAPFID: A Fairness-aware Approach for Protected Feature and Imbalanced Data. Our
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method allows to handle protected feature and class imbalance while ensuring an efficient
and fair model for decision-making involving machine learning algorithms. Using the
input dataset, our method creates a set of balanced and stable clusters while ensuring
that both privileged and unprivileged groups are fairly represented in each cluster. Then
an ensemble learning model is built upon the aggregated balanced and stable clusters
which allow to obtain a cumulative and fair model. This work is an improved version
of our previous contribution presented in Chapter 4 and the contributions here can be
summarized as follows:

• We define a cumulative-fairness approach for dealing with protected features in
decision support, it is tested on a binary classification task using an ensemble
learning strategy.

• The proposed approach, FAPFID, is based on stable and balanced clusters, thus
we propose a clustering stability algorithm to this end.

• FAPFID takes into consideration protected features and class imbalance while
making fair decisions, so that the balanced-accuracy score remains high.

• To achieve fairness, FAPFID is based on Equalized Odds as fairness metric and
it being tested on three real-world dataset suitable for fairness study and is easily
adaptable to any social decision problems with regards to protected features and
class imbalance.

The rest of this chapter is organized as follows: in section 5.2, we summarize the different
existing methods to tackle the issues identified with their limitations. In section 5.3,
we introduce some basics concepts and definitions. We present our new approach in
section 5.4. The experimental results are described and analyzed in section 5.5. Chapter
summary and perspectives are presented in section 5.6.

5.2 Related Work
Many existing work proposed various machine learning methods to deal with fairness is-
sues related to the use of protected features and imbalanced data [del Barrio et al., 2020].
Here we look at those existing methods under these two categories and we also look at
what previous work has defined in terms of fairness metrics.

Many definitions of fairness [Chouldechova et Roth, 2018, Verma et Rubin, 2018,
Friedler et al., 2019] have been proposed over the recent years. Most of the recent
proposed methods use fairness definitions such as demographic parity [Jiang et al., 2021,
Singh et Joachims, 2018, Wadsworth et al., 2018]. This fairness metric suggests that a
predictor is unbiased if the prediction (ŷ) is independent of the protected feature such that
positive prediction rate between the two subgroups are the same. Other proposed methods
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have instead used other fairness metric such as equalized odds [Ghassami et al., 2018,
Mishler et al., 2021, Pleiss et al., 2017]. Unlike demographic parity, this fairness metric
instead suggests that the true positive rate and the false positive rate will be the same
for both unprivileged and privileged groups. However while each of these definition
has merit, there is no consensus on which one is consequently the best, and this issue is
beyond the scope of this chapter. Our goal is not to address the relative virtues of these
definitions of fairness, but rather to assess the strength of the evidence presented by a set
of subgroup that a model is unfair to a certain group based on a given metric and the best
possible trade-off between fairness and performance

For proposed methods that deal with fairness related to protected features, we notice
several approaches [Lahoti et al., 2020, Martínez et al., 2021]. Particularly, we notice
the work in [Dwork et al., 2012] where authors introduced a first approach, named
"Fairness Through Unawareness", consisting of removing completely all protected
features of the dataset to ensure fairness. However, we notice that this approach may
not solve the problem because there may be redundant features or even proxies to the
protected. As underlined by [Yeom et al., 2018], some features known as proxies such as
zip code, for example, can reveal the predominant race of a residential area. Thus, this can
still lead to racial discrimination in a decision making problem such as loan application
despite the fact that zip code appears to be a non-protected feature. We also notice
the work of [Iosifidis et al., 2019] where authors introduced a framework that combines
pre-processing balancing strategy with post-processing decision boundary adjustment
in order to deal with fairness related to protected features and class imbalance. In the
pre-processing strategy, they created local subgroups where they performed random
under-sampling technique to guarantee equitable representation between minority and
majority groups. While this strategy may work on large datasets with thousands of
instances, we notice that it suffers from a performance loss when used on a restricted
dataset.

Given the limitations of the above approaches, there is a need for more in-depth
research to overcome these limitations. Thus, we propose a new fairness-aware strategy
that allows the obtaining of an efficient and fair models with regards to protected features
and unbalanced data. We would like to recall here, as part of our approach, a given
model is said to be "fair", or "equitable", if its results are independent of one or more
given features, in particular those considered to be protected [Oneto et Chiappa, 2020,
Ji et al., 2020].

5.3 Basic Concepts and Definitions

Before going into more details, Here, we would like to recall the basic concepts that we
will use throughout this chapter. We consider an input dataset S =

(
Xm,n , Y1,n

)
con-
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sisting of n observations and m features. Let f be a learning model and its performance
score f [S] which will be used to predict a binary output ŷ ∈ {0, 1}. Each sample x•i is
associated to a protected feature P , for simplicity we consider that P is binary: P ∈ {P0,
P1}. We consider P0 to be an unprivileged group and P1 a privileged group. Likewise,
we consider ŷ = 1 to be the preferred outcome, assuming it represents the more desirable
of the two possible outcomes. For instance, P =‘gender’ could be the protected attribute
with P0 =‘female’, the unprivileged group, and P1=‘male’ the privileged one.
Suppose for some samples we know the ground truth; i.e., the true value y ∈ {0, 1}.
Note that these outcomes may be statistically different between different groups, either
because the differences are real, or because the model is somewhat biased. Depending
on the situation, we may want our estimate ŷ to take these differences into account or to
compensate them.*

5.3.1 Fairness Metric
In this work, we have used Equalized Odds (EqOd) as fairness metric since it is widely
used and adopted by recent state-of-the-art methods [Mary et al., 2019, Salazar et al., 2021,
Iosifidis et Ntoutsi, 2019]. EqOd measures the difference of true classified examples
between privileged and unprivileged group in all classes [Bellamy et al., 2018]. That
being said, prediction ŷ is conditionally independent of the protected feature P , given the
true value y : Pr(ŷ | y, P ) = Pr(ŷ | y). This means that the true positive rate and the
false positive rate will be the same between the privileged and unprivileged groups. To
compute the difference between classified instances of the two groups, EqOd is defined
as follow:

EqOd = Pr(ŷ = 1 | P1, y = yi)− Pr(ŷ = 1 | P0, y = yi), yi ∈ {0, 1} (5.1)

According to this metric, a method is fair if the value of EqOd is between [−0.1, 0.1].
The ideal value of this metric is 0. A value < 0 implies higher benefit for the privileged
group and a value > 0 implies higher benefit for the unprivileged group.

5.3.2 Ensemble Learning method
Ensemble Learning helps improving machine learning results by combining several inter-
mediate models. This approach allows the production of better predictive performance
compared to a single model. For our ensemble learning strategy, we will use the Bagging
method (A.1.1.4). Also known as bootstrap aggregating, Bagging is the aggregation of
multiple versions of a predicted model. Each model is trained individually upon a subset,
and combined using a majority voting process. Thus, we believe using an ensemble
learning is an efficient technique to tackle imbalanced ratio towards protected feature
as it divides the learning problem into multiple sub-problems and then combines their
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solutions (local models) into an final model. Intuitively, we found it easier to tackle the
problem related to fairness in the subset with locals models rather than in a single and
global model.

5.4 The FAPFID Approach
We depict in this section our approach to achieve fairness as illustrated in Fig. 5.1. It
works as follows: first the input data is divided into K stable clusters by a clustering
strategy [El Malki et al., 2020]; then we ensure that obtained clusters are balanced with
respect to the protected feature in each cluster. In the case where some clusters are
unbalanced, we apply an oversampling technique, SMOTE [Chawla et al., 2002]. Then
a final set of balanced clusters is constructed. The final ensemble is then divided into
bags where we apply an ensemble learning strategy, Bagging. A learner is trained on
each bag and then a final model is obtained by majority vote. Below we describe each
step.

Figure 5.1: The FAPFID approach with different steps

5.4.1 Stable Clustering
In this step, we use a strategy to ensure that the number of clusters that we obtain are
stable, i.e optimal clusters according to [von Luxburg, 2010] and [Jing, 2001]. For this,
we define a stability strategy to boost our clustering solution.

5.4.1.1 Why using clusters ?

In addition of its cost-effectiveness, using clusters help reflecting the variance of the
population of the dataset. Each cluster is a mini population and represents a mirror of the
total population and of each other. We use clusters instead of other grouping strategies
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because they guarantee a better homogeneity between clusters and heterogeneity within
the clusters [Dash et Liu, 2000]. This is helpful in reducing bias towards different
subgroups.

5.4.1.2 Why stable clusters ?

Obtaining stable clusters is useful to maintain a great performance hence ensuring a
reliable fairness. We use stable clusters because they ensure that the instances are truly
in their respective clusters. Thus, we establish a clustering stability strategy to avoid that
wrongly clustered instances impact the balancing strategy that we later perform. In order
to guarantee the obtaining of stable clusters, we define a statistical setup. Our stability
strategy aims to provide information on the variation of instances for different values
of k between two clusterings solutions of two sub-samples of the same dataset. Thus,
for each value of k, we seek to obtain a stability rate by looking at the percentage of
instances, points or pairs of points on which the two clusterings agree or disagree. The
value of k whose instances variation percentage between the two clusterings is closer to
zero will be the one that guarantees the best stability, and therefore the optimal value of
k to choose.

5.4.1.3 Stability Strategy

Here we define our clustering stability approach. We consider a generic clustering
algorithm such as K-means that receives as input a dataset S =

(
Xm,n , Y1,n

)
and an

additional parameter K. It then assigns clusters to all samples of S. The dataset S is
assumed to consist of n samples x•i, . . ., x•n that have been drawn independently from
a probability distribution T on some space X .
Assume we agree on a way to compute distances d(C, C ′) between clusterings C and
C ′. Then, for a fixed probability distribution T , a fixed number K of clusters and a fixed
sample size n, the stability of the clustering algorithm is defined as the expected distance
between two clusterings CK(Sz), CK(S

′
z) on different datasets Sz, S ′

z of size z with zmax

the highest number of samples, that is:

Cstab(K, z) = d(CK(Sz), CK(S
′
z)) (5.2)

The algorithm 3 below shows how we performed the stability analysis. On line (8),
since the two clusterings are defined on the same samples, then it is straightforward
to compute a distance score between these clusterings using any of the well-known
clustering distances such as the Rand index, Jaccard index, Hamming distance, Variation
of Information distance [Meil, 2003].

All these distances estimate, in some way or the other, the percentage of points or
pairs of points on which the two clusterings Cz and Cz′ agree or disagree. In our experi-
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ments, we chose to use the Jaccard Index Distance[Shameem et Ferdous, 2009] inside
our stability analysis because it offers more information about the cluster’s consistency.

Jaccard Index Similarity. The Jaccard similarity is a measure of how close two
clusters, Cz, Cz′ are. The closer the clusters are, the higher the Jaccard similarity. We
can associate an actual distance measure to it, which is called the Jaccard distance. The
Jaccard similarity of two clusters Cz and Cz′ is given by:

SIM(Cz, Cz′) =
Cz,∩Cz′

Cz ∪ Cz′
(5.3)

The Jaccard distance d(Cz, Cz′) is then given by equation 5.4 and, it equals 1 minus the
ratio of the sizes of the intersection and the union of the clusters Cz and Cz′ .

d(Cz, Cz′) = 1− SIM(Cz, Cz′) (5.4)

Algorithm 3: Clustering stability algorithm
Input: dataset S, a clustering algorithm A, kmax clusters and zmax samples.
Output: Optimal value of K

1 Begin
2 for k = 2 ... kmax:
3 Generate zmax sub-samples Sz (z = 1, ..., zmax) of S
4 for z = 1 ... zmax:
5 Split Sz into k clusters Cz using A
6 end for
7 for z, z′ = 1 ... zmax :
8 Compute pairwise distance d(Cz, Cz′) using Jaccard index distance (4)
9 Compute stability as the mean distance between clustering Cz and Cz′

as: Cstab(k, zmax) =
1

z2max

∑zmax

z,z′=1 d (Cz, Cz′)

10 Choose the parameter K with highest Cstab

11 end for
12 end for
13 End

5.4.2 Balanced Check Ratio
The main goal here is to divide the clusters into balanced and unbalanced clusters. We
compute the ratio rp,

(
rp = #P1/#P0

)
, between privileged and unprivileged instances

for each cluster. Clusters with ratio rp ̸= 1 are considered to be biased thus are sent
to the oversampling stage to be oversampled using SMOTE [Chawla et al., 2002]. We
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qualify these clusters as biased by the fact that the ratio rp ̸= 1 reflects a group imbalance
and what authors in [Mehrabi et al., 2019] have called population bias. We apply the
SMOTE strategy in a different way of what have being used. Hence, SMOTE in our
approach is only applied to protected features label, that means our clusters are balanced
towards the unprivileged and privileged groups only and not the class label.

Why using SMOTE on subgroups only ?

In a binary classification problem, SMOTE [Chawla et al., 2002] is used to generate
synthetic samples for minority class data points in order to equalize the two classes.
Suppose a data point from minority class is denoted as X where x1, x2, ..., xm are the
features. Suppose for this data point X , it exists a nearest neighbor X ′ whose features
are x′

1, x
′
2, ..., x

′
m. Using SMOTE, a new data point Xnew will be generated between X

and X ′ that is:

Xnew = X + rand(0, 1) ∗ (X −X ′) (5.5)

Indeed, SMOTE creates synthetic data points with regards to class labels but ignores the
imbalance that exists between subgroups in the dataset.

Figure. 5.2 represents the class imbalance before applying SMOTE. As we can see,
there is a huge imbalance between the two classes. On Figure 5.3, SMOTE definitely
balances the two classes but it increases the imbalanced ratio between privileged and
unprivileged groups (Fig. 5.3). That being said, considering the traditional application
of SMOTE, class balancing methods using SMOTE will improve their overall accuracy
while worsen fairness between privileged and unprivileged groups. This happens because
SMOTE synthetically generates new data points just to equalize the two classes in terms
of labels with no considerations whatsoever to protected features within subgroups. This
is where the novelty of our approach lies, instead of balancing the two classes, we create
balanced subgroups instead with regard to protected features. Once the unbalanced
clusters are oversampled, we construct a set of final balanced clusters that are therefore
aggregated into a final set from which bags will be created to fit different classification
models.

5.4.3 Bagging

Estimating the number of bags b must be sufficient to construct enough learners, since
we consider each bag as a sample of the training data. To ensure that all the clustered
instances are at least in one of the bags, we estimate the number of bags b as: b = 2K +1,
K is the number of stable clusters obtained in 5.4.1.3 with Algorithm 3. Since we will
consider a classification task, the final model will be chosen by a majority voting strategy.
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Figure 5.2: Adult Income: Group imbalance before applying SMOTE

Figure 5.3: Adult Income: Group imbalance after applying SMOTE, class labels are
balanced but group imbalance increases

5.4.4 Algorithm of the proposed method

Using the basic concepts that we previously defined in section 5.3, the algorithm 4
defined below takes as inputs a clustering algorithm A, a set of samples S, K number
of clusters, privileged group P1, unprivileged group P0 and a base classifier G. We start
by initializing an empty set of balanced clusters M (1) which later will contains the
final balanced clusters as explained in 5.4.2. Then split S into K clusters using A to
obtain Ci, i = 1...K (2). For each Ci cluster, we compute the imbalance ratio between
privileged group P1 and unprivileged group (P0) of clusters Ci. If the computed ratio is
equal to 1, we add the current cluster Ci to M (3-5),that means this cluster is balanced
toward privileged and unprivileged group. However, if the computed ratio is not equal to
1, we oversample the current cluster Ci using SMOTE [Chawla et al., 2002] to obtain a
balanced cluster Cbal

i . We add this balanced cluster Cbal
i to the final set M then we start

over using a different value of K(6-10).
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One we have used all the values of K and obtain our final list of balanced cluster M , we
create a balanced dataset X ′ from M (11). Then, we create b, (b = 2 ∗K + 1), number
of bags from X ′. For each bag X ′

j extracted from X ′, we fit it using the base classifier G
(12-14). The final output ensemble model E is obtained by a majority vote over Gj (16).
After obtaining the final ensemble model E, we then compute the performance scores
based on accuracy and balanced-accuracy, and we compute the fairness score using
Equalized of odds (EqOd).

Algorithm 4: Algorithm of the proposed method
Input: a clustering algorithm A, S samples, K number of clusters, privileged

group P1 & P0, a base classifier G
Output: Ensemble Model E

1 Begin
2 M ← { } //final set of balanced cluster
3 Split S into K clusters Ci, i = 1...K using A
4 for i = 1...K :
5 if Ratio Ci(P1)/Ci(P0) = 1:
6 M←M ∪ {Ci}
7 else
8 Cbal

i ← SMOTE(Ci)
9 M←M ∪ {Cbal

i }
10 end if
11 end for
12 Create X ′ from M
13 for j = 1...2K + 1 :
14 Extract boostrap sample X ′

j from X ′

15 Fit Gj(X
′
j)

16 end for
17 Output E : ensemble model of Gj

18 End

5.5 Experiment & Results
In this section we give more details on the experimental approach, the dataset used, base-
line and results. We carried out an experimental approach with three goals. First,
we compare our method to existing methods of fairness [Iosifidis et Ntoutsi, 2019,
Iosifidis et al., 2019, Chawla et al., 2003] and secondly, we aim to assess the impacts of
imbalance ratio between P0 and P1 on the performance of our method (section 5.5.3.3).
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In particular, for the first goal, the comparison was made based on two criterion: perfor-
mance and fairness score. For performance score, we have used Accuracy and Balanced-
Accuracy. Accuracy summarizes the performance of the classification task by dividing
the total correct prediction over the total prediction made by the model. It is the number of
correctly predicted samples out of all the samples. However, since all of the three datasets
used are highly imbalanced, we also use Balanced-Accuracy [Brodersen et al., 2010] in
order to shade more lights on our model’s evaluation on imbalanced datasets compared
to the Accuracy. It is the arithmetic mean of the true positive rate for each class.

5.5.1 Datasets
To evaluate our method, we carried out experiments using three well-known and real-
world datasets [Dua et Graff, 2017]. They each contain known protected features, which
allowed us to evaluate our method on appropriate cases. These datasets were chosen
on the basis of the differences and the characteristics, i-e, number of instances, dimen-
sionality and class imbalance. These datasets also provide an interesting benchmark,
which is tough, for fairness evaluation as most of recent proposed fairness approaches
in the literature have used them. Moreover, they facilitated our comparison with other
competitors.

• Adult census income dataset [Dua et Graff, 2017] contains census data from the
U.S whose task it to predict whether someone’s income exceeds ”50K/yr”. After
removing duplicate instances and instances with missing values, we ended up with
n = 45, 175 instances. Like our competitors, P = gender was considered as
protected feature with P0 = female and P1 = male. Ratio between unprivileged
and privileged instances is 2.23 and 3.53 between classes.

• Bank dataset [Dua et Graff, 2017] is related to direct marketing campaigns of a
Portuguese banking institution with n = 40, 004 instances. The task is to determine
whether a person subscribes to the product (bank term deposit). As target class
we consider people who subscribed to a term deposit. Again like our competitors,
we consider P = maritalstatus as protected feature with P0 = married and
P1 = unmarried. The dataset suffers from severe class imbalance with global
ratio between unprivileged and privileged instances of 2.13. This dataset also
suffers from a huge imbalance ratio between classes is 7.57.

• KDD census dataset [Dua et Graff, 2017] is basically the same with Adult cen-
sus, however the target field of this data, was drawn from the "total person income"
field rather than the "adjusted gross income" and, therefore, behave differently than
the original Adult target field. This dataset is very skewed, the global ratio between
unprivileged and privileged instances is 1.09 . P = gender was considered as
protected feature with P0 = female and P1 = male like in the other methods
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used for comparison. In terms of class imbalance, this is a very skew dataset;
the ratio between classes is 15.11. More details on these datasets are given in
Table 5.1.

Table 5.1: Experimental Datasets. For each dataset, n instances: number of instances
of each dataset, m Features: number of features, P Feature: protected feature, P
Ratio: ratio between privileged (P1) and unprivileged (P0) group of the protected
feature, Class Ratio: ratio between class label of the dataset

Adult Income Bank KDD Adult

n Instances 45175 40004 299285

m Features 14 16 41

P Feature Gender Marital S. Gender

Privileged Male Unmarried Male

Unprivileged Female Married Female

P Ratio 2.23 2.13 1.09

Class Ratio 3.53 7.57 15.11

Majority Label 1 1 1

5.5.2 Experimental Baseline
We compare our approach to three other recent state-of-the-art proposed methods tackling
the problem of imbalance and protected attributes with the aim of improving fairness.
The three other approaches used for comparison are:

• AdaFair [Iosifidis et Ntoutsi, 2019]. This method is a fairness-aware boosting
approach that adapts AdaBoost to fairness by changing the data distribution at
each round based on the notion of cumulative fairness.

• Fairness Aware Ensemble (FAE) [Iosifidis et al., 2019]. This strategy is a fairness
aware classification that combines pre-processing balancing strategies with post-
processing decision boundary adjustment. They use a bagging approach to create
sub-datasets while handling the imbalance by an undersampling strategy.

• SMOTEBoost [Chawla et al., 2003]. This is an extension of AdaBoost for un-
balanced data where new synthetic instances of the minority class are created
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using SMOTE [Chawla et al., 2002] at each boosting round to compensate the
imbalance. This strategy does not tackle the fairness problem, however we used its
performance score to evaluate fairness and see if by addressing only the imbalance
between classes, the fairness problem can be resolved.

To evaluate and compare the proposed method to existing methods, we proceeded
to a learning task by considering a binary classification problem over the three datasets.
For this binary classification problem, Decision Tree is used as the base classifiers. This
choice is made in order to be consistent with the evaluation protocol for concurrent
methods. For training and testing, first we use the classic train-test split strategy with a
70%-30% respectively then use k-fold validation on the train set, 2K + 1 folds in total
with K the number of clusters obtained for the used dataset. The folds are made by
preserving the percentage of samples for each class.

5.5.3 Results Analysis

For the results of our analysis, we present first the result for our stability algorithm that
allows us to select the K numbers of stable clusters to use prior our learning strategy.
Secondly, we present the predictive performance and fairness, reported on Balanced
Accuracy (Bal. Acc.), Accuracy, and Equalized of Odds (EqOd) by comparing our
method to the results of the three datasets of the benchmark. Third, we present the effects
of different imbalance ratio on the performance.

5.5.3.1 Cluster Stability

In Table 5.2 below, we report the results for our stability algorithm, the value of K and
the stability rate for each dataset. For Adult Income dataset, the best and stable value for
K is 4 with a stability rate of 89%. This means, among all of possible values for K, we
tried 12 values, K = 4 is the one that allowed us to obtain more consistent and stable
clusters.

Table 5.2: Cluster stability
Adult Income Bank KDD Adult

K Value 4 5 4

Stability Rate 89% 92% 92%
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5.5.3.2 Performance and Fairness Analysis

Adult Income Dataset

Performance results with the different approaches for this dataset are presented in
Table 5.3. For predictive performance, we can see that three methods, our proposed
one FAPFID, AdaFair and FAE achieve the same and highest performance score of
83% for Accuracy. However, like we stated above, Accuracy is not that reliable when
we are dealing with imbalanced data. Since this dataset suffers from class imbalance,
Balanced-Accuracy is the metric that will tell us how good our model is in terms of
performance score. For Balanced-Accuracy, our proposed method FAPFID outperforms
our competitors with a score of 83% as the highest, then FAE and SMOTEBoost both
with 81%. We notice that FAPFID performance score is the same for Balanced-Accuracy
and Accuracy, this is meaningful since it highlights our strategy of balancing with regards
to the protected features in each subgroup prior training the classifier.
For fairness score, we see clearly that our proposed method FAPFID has surpassed
the other three methods used for comparison. FAPFID has the lowest Equalized Odds
score, 0.05 (the lower the better for EqOd) following by AdaFair with 0.08. In short,
the proposed method outperforms our competitors on this dataset in terms of Balanced-
Accuracy and Fairness score.

Table 5.3: Adult Income: Predictive and Fairness performance, the best results are
in bold.

Score FAPFID AdaFair FAE SMOTEBoost

Bal. Acc. 0.83 0.78 0.81 0.81

Accuracy 0.83 0.83 0.83 0.80

EqOd 0.05 0.08 0.15 0.47

Bank Dataset

Performance results with the different approaches for this dataset are presented in
Table 5.4. For predictive performance, our proposed method and SMOTEBoost achieve
the same and highest performance score of 90%. However, since we are dealing with
imbalanced data, we look at Balanced-Accuracy instead. For this, our proposed method
achieves the highest score for Balanced-Accuracy, 82% following by the others with a
Balanced-Accuracy score under 79%.
For fairness score, our proposed method has surpassed the other three methods used for
comparison since it has the lowest Equalized Odds score, 0.1 following by FAE and
SMOTEBoost with -0.12 and 0.12 respectively. Again, the proposed method outperforms
our competitors on this dataset in terms of Balanced-Accuracy and Fairness score.
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Table 5.4: Bank Dataset: Predictive and Fairness performance, the best results are
in bold.

Score FAPFID AdaFair FAE SMOTEBoost

Bal. Acc. 0.82 0.77 0.78 0.74

Accuracy 0.90 0.87 0.83 0.90

EqOd 0.10 0.27 -0.12 0.12

KDD Adult Dataset

Performance results with the different approaches for this dataset are presented in
Table 5.5. For predictive performance, we can see that three methods, FAE achieves the
highest performance score of 95% for Accuracy following by the proposed method, 92%.
However, our proposed method has the highest Balanced-Accuracy score, 88% which is
the one we look at if since this dataset is highly imbalanced. Despite the fact that FAE
has the highest Accuracy score, it fails to provide a great Balanced-Accuracy score, it
achieves the lowest score of 66%. That means, since this dataset is highly imbalanced,
FAE has a higher predictive rate for one group at the expense of the other. Our proposed
approach instead, has a better fairness score, 0.01 which is the lowest here on this dataset.
In brief, the proposed outperforms our competitors on this dataset in terms of Balanced-
Accuracy and Fairness score.

Table 5.5: KDD Adult: Predictive and Fairness performance, the best results are in
bold.

Score FAPFID AdaFair FAE SMOTEBoost

Bal. Acc. 0.88 0.84 0.66 0.76

Accuracy 0.92 0.86 0.95 0.94

EqOd 0.01 0.07 0.27 0.36

Discussion

The results on these three datasets show that our method performs well. Compared
to other fairness-aware method for dealing with protected feature and data imbalance
in machine learning algorithm, we clearly see that our a method has a higher score for
Balanced-Accuracy and the lowest score for fairness evaluation. Even in the case where
other methods achieve an higher or equal value for Accuracy and Balanced-Accuracy,
our method still outperforms them in terms of fairness core. This is very interesting for
handling social decision problems guarantying a fair outcome for different groups.
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In general, on these 3 datasets, we get satisfactory results and we have maintained a
good level of performance (balanced-accuracy), and the best fairness score (the lowest)
in terms of Equalized of Odds.

5.5.3.3 Effects of Imbalance Ratio

The third goal of our experiments is to evaluate the effects of different imbalance ratio
on the performance. Our method FAPFID is able to achieve efficient and reliable results
on the benchmarks datasets above. However, in this section, we investigate the effects of
imbalance ratio between privileged and unprivileged group for a given dataset. The goal
is to observe the evolution of performance scores of the proposed method with regards
to different imbalance ratio. Thus, for a given dataset, we create 10 sub-samples where
we maintain a fixed imbalance ratio between privileged and unprivileged group, then we
report the balanced accuracy for these 10 sub-samples using box-plot.

Basically we proceed as follow: we consider a ratio of 40/60 between unprivileged
(P0) and privileged (P1) group and create 10 sub-samples, i-e, each sub-sample is created
with 40% of (P0) and 60% of (P1). We repeated this by varying the ratios such that
we obtain different imbalanced ratios between privileged and unprivileged group. The
different ratio that we have used are: 30/70, 20/80, 10/90 and 1/99.

We report on Fig. 5.4 the results obtained with Adult Income dataset for performance
using Balanced-Accuracy. As we can see, there is a huge difference between perfor-
mance scores for different ratio of imbalance. For an imbalance ratio of at least 20%
(for P0), our method still maintains a great averaged Balanced-Accuracy score of 80% at
least. With an imbalanced ratio of 10/90, our method suffers from a decreasing in terms
of Balanced-Accuracy. We also tested on an extreme case of imbalance ratio between
P0 and P1 :1/99 where we observed a performance loss. This is because there are not
enough P0 in the cluster so the oversampling method used, SMOTE, can not generate as
many meaningful samples as possible for the under-represented group P0.

We also report on Fig. 5.5 the results obtained with Adult Income dataset for fairness
using Equalized of Odds. For an imbalanced ratio between 20/80 and 40/60, we get
satisfactory results in terms of fairness score with an average score under 0.1 which
acceptable for Equalized Odds. However, starting at 10/90 to lower, our method has
limited ability to maintain a high level of fairness on this dataset due to the limitations of
the oversampling method used and the lack of data for the under-represented group. A
limitation that we will later overcome in our future work.
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Figure 5.4: Effects of Imbalanced Ratio on Balanced-Accuracy

Figure 5.5: Effects of Imbalanced Ratio on Fairness
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5.6 Summary
In this chapter, we have proposed a fairness-aware ensemble learning method based on
balanced and stable clusters. The proposed method achieves fairness with regards to
protected features and class imbalance while maintaining a great performance score.

To do this, we divide the inputs dataset into stable clusters and ensure that privileged
and unprivileged groups are fairly represented in each clusters. To obtain stable clusters,
we introduce a stability clustering approach that helps maintaining a better homogeneity
between clusters. To ensure that privileged and unprivileged instances are fairly repre-
sented in each cluster, we have used a novel strategy where we compute a balanced ratio
rate within cluster and apply SMOTE only on clusters where the balanced ratio is ̸= 1 ;
i.e where it exists a group imbalance between privileged and unprivileged instances.

The performance of our method was experimentally evaluated on three well known
biased datasets that are largely used in fairness study. Compared to recent state-of-the-
art fairness-aware methods, we obtain satisfactory results and the proposed approach
outperforms our competitors in terms of performance (Balanced-Accuracy) and fairness
(EqOd) scores. The comparative results obtained show our method’s effectiveness in
boosting fairness with regard to protected feature and class imbalance while maintaining
a high level of performance. Beside the comparatives results, we also analyzed the effect
of imbalance ratio between subgroups on our model’s performance.

For our future work, we will look forward to generalise our approach on datasets that
are not part of this benchmark and improve our model’s performance in dealing with
datasets that suffer from a high (10/90) imbalance ratio.

Source code, data and results for this contribution are avaible and can be accessed
under request only via the thesis’s repository on GitHub here (Contrib5).

Mitigation of Data Bias using Fair Feature Selection Methods 103

https://github.com/gdorleon/GD_THESIS/tree/main/Contrib5


5.6. SUMMARY

104 Ginel Dorleon



Chapter 6
Conclusions and Future Work

Contents
6.1 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 106

105



6.1. CONCLUSION AND FUTURE WORK

6.1 Conclusion and Future Work
In this thesis, we have focused on data bias and its implications. Our research addressed
the entire learning-based decision-making process in AI with the aim of understanding
the different sources of bias, detecting them and mitigating their effects on the results
produced for specific applications. Besides the problematic of data bias, we have
investigated the issues of fairness and protected features that are related to data bias.
To support our work, we were focused on using machine learning approaches under
supervised and unsupervised learning.

In chapter 2, we have reviewed the scientific literature on different aspects. Firstly,
we have investigated the notion of data bias with definitions of the different types of bias
that may exist and that other researchers have pointed out in the literature. Based on the
different definitions and the impacts of these biases on a learning process, we were able
to propose a bias taxonomy. This bias taxonomy makes it possible, using a data science
process, to identify where biases can occur in the process. Besides, in the scientific
literature on bias, we have investigated the main causes and practices that can lead to bias,
the presence or the use of protected attribute/feature is somehow one. Then, we have
presented some concrete examples where the use of protected attribute/feature had led to
biased decisions in real life applications. Secondly, we have also reviewed the issue of
class imbalance in machine learning. We saw that class imbalance can be considered as
one of the causes of discriminatory output in decision-making based on machine learning
algorithms. We have also recalled on different methods that have been used to handle
class imbalance. These methods can be classed either as under-sampling, over-sampling
or a combination of the two of them. Finally, we have pointed out the different fairness
metrics that exist which make it possible to estimate the degree of fairness of different
methods when mitigating bias. For fairness metrics, we also saw that there exist others
techniques that can be used. Such techniques include pre-processing, in-processing and
post-processing mechanisms. We also saw that despite the fact that different fairness
metrics exist and have their own merit, there is no consensus whatsoever on which metric
is the best.

In chapter 3, we have investigated the problem of feature redundancy in machine
learning. For all the existing redundancy methods reviewed, they are mostly based
on correlation between features. Reviewing existing redundancy methods, we showed
that using a single defined threshold in redundancy analysis can be subjective. The
subjectiveness is due to the fact that there is no consensus on what is referred as to
highly correlated features and the fact that the latter one is based on a user fixed or
defined threshold. We showed that, using a same dataset, different users can find different
redundant features if they choose a different threshold. We demonstrated how dangerous
that can be in the case of a dataset containing protected features. To overcome this
situation, we have proposed an new redundancy method to evaluate feature redundancy
in machine learning. The proposed redundancy method uses symmetrical uncertainty
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as correlation measure. Unlike existing proposed methods, the proposed redundancy
method does not require to set any threshold. Experiments were carried out using well-
known datasets. Performance of the proposed method was experimentally compared to
three others state-of-the-art redundancy methods, results show that the proposed method
achieved satisfactory results.

In chapter 4, we have addressed the issues related to fairness, redundancy and the
use of protected features in machine learning algorithms. Moreover, we have pointed
out the limited ability of traditional features selection methods to deal with protected
features over data distribution due to data imbalance. In order to overcome the limits
pointed out, we have proposed in chapter 4 an outcome-fairness algorithm to deal
with protected features in decision support based on machine learning. The proposed
algorithm improves fairness and performance in the case of protected features while
considering their redundant. Unlike existing fairness methods, the proposed method
in chapter 4 does not use any protected feature in their model but instead, takes into
consideration redundancy while making decision on fairness. To take into consideration
the redundancy, we introduce in the proposed algorithm a more flexible way to assess
features redundancy by using a threshold space.

In chapter 5, we focused mainly on two problems that directly impact performance
and fairness on machine learning algorithms: the use of protected features and class
imbalance. In the proposed approach called FAPFID in chapter 5, we introduce a fairness-
aware approach for protected features and imbalanced data. The method allowed to
handle protected features and class imbalance while ensuring a fair model for decision-
making involving machine learning algorithms. To do so, the method creates a set of
balanced and stable clusters from the input dataset; clusters were balanced using SMOTE.
This is done in order to ensure that both privileged and underprivileged groups are fairly
represented. To create its final model, the algorithm uses an ensemble learning strategy
by aggregating all previously balanced and stable clusters. The performance of this
proposed method is evaluated on well known and real-world biased datasets from the
literature that are widely used in fairness study. Comparison to recent state-of-the art
fairness methods shows our method’s effectiveness in boosting model fairness with
regard to protected features and class imbalance. In this chapter, we also showed that
imbalance ratio has a significant impact on model fairness in machine learning algorithm.

Overall, in this thesis, we have addressed the issue of data bias in decision-making
systems based on machine learning algorithm. We have drawn up a rich literature of the
different types of data bias. Furthermore, we also looked at various issues that hamper
the obtaining of fair results in decision-making based on machine learning. By pointing
out the limits of existing solutions, we have proposed various fairness methods which
make it possible to deal with biases induced by protected features and by class imbalance.
Experiments, although with limits, proved that our solutions work well in the studies
case that have been used.
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Future Work:

The proposed bias taxonomy in chapter 2 addresses biases that occur in the data
science process. However, the proposed taxonomy does not cover all the existing types
of bias. A more complete taxonomy can be created based on the idea of the previous one
in order to extend the taxonomy and include more types of bias like algorithm bias for
example that we did not consider in our data science process.

The method proposed in chapter 4 is a very interesting approach, however it is limited
to dataset containing protected features only. A more in-depth study can be done to
extend this method to other datasets. Another improvement of this method could seek
to consider more than one protected features at once, which we had not done in the
initial method. Basically, one will need to modify the algorithm and allow user to set
the number of protected feature that they want to assess redundancy for. As for now, our
approach has used only known protected features of the dataset. However robustness of
the proposed method can be evaluated by letting user the choice of using any feature as
protected.

In chapter 5, the proposed method has some merits regarding fairness improvements.
However, future work can be done to reduce computational time and improve its global
performance. Besides the fact that the proposed approach in chapter 5 improves fairness
with regard to class imbalance and protected features, it does have some limits that can
be boosted. In our work, we were mainly focused on binary classification and datasets
containing protected features only. An improvement to this work can extend the solution
to a multi-class task or using a deep-learning approach. Also, one can seek to change the
balancing strategy used prior training the model.
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A.1 Algorithms Used
In this thesis we have used supervised and unsupervised learning techniques. For each
one, there is a set of variables that might be denoted as inputs. These inputs have some
influence on one or more outputs. For supervised learning, the goal is to find the precise
mapping between input and output, referred to as labeled data as shown on Fig. A.1.
In the unsupervised learning problem, we observe only the features without labels (Fig.
A.2) and have no measurements of the output. The task is rather to describe how the data
are organized or clustered.

To understand the algorithms presented below, we consider a set of input data
annotated Xn,m ∈ Rn×m consisting of n independents distributed samples and m non-
independents features with F = {F0, ..., Fm} being the feature space.

For the ease of simplicity, we consider a binary classification scenario, where y ∈
{0, 1} are the class labels with 0 is a negative label and 1, the positive label. The goal
of supervised classification is to find the learned function f̂ : X → Y to predict the
class labels of unseen instances. In the context of fairness, the function f̂ should help
minimizing bias. The function f̂ is obtained via machine learning algorithms, below we
describe we describe the algorithms that we have used in this thesis.

Figure A.1: An example of labeled data

A.1.1 Supervised Algorithms
A.1.1.1 Naive Bayes

Naive Bayes [Webb et al., 2010] are a family of simple probabilistic classifiers based on
applying Bayes’ theorem [Joyce, 2003] with strong (naive) independence assumptions
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Figure A.2: An example of unlabeled data

between the features. In simple terms, a Naive Bayes classifier assumes that the presence
of a particular feature in a class is unrelated to the presence of any other feature. By
probabilistic classifiers, we mean a machine learning model that is able to predict. In
other words, Naive Bayes methods are a set of supervised learning algorithms based
on applying Bayes’ theorem with the “naive” assumption of conditional independence
between every pair of features given the value of the class variable. Bayes’ theorem
states the following relationship, given class labels y and dependent feature vector xi

through X :

P(y | x1, . . . , xn) =
P(y)P(x1, . . . , xn | y)

P(x1, . . . , xn)
(A.1)

Using the naive conditional independence assumption that

P(xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P(xi|y), (A.2)

for all i, this relationship can be simplified as

P(y | x1, . . . , xn) =
P(y)

∏n
i=1 P(xi | y)

P(x1, . . . , xn)
(A.3)

Since P(x1, . . . , xn) is constant given the input, we can write the following classification
rule:

P(y | x1, . . . , xn) ∝ P(y)
n∏

i=1

P(xi | y)

⇓

ŷ = argmax
y

P(y)
n∏

i=1

P(xi | y),

(A.4)
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and use Maximum A Posteriori (MAP) estimation [Leung, 2007] to estimate P(xi | y)
and P(y), with P(y) the relative frequency of class y in the training set.

Naive Bayes classifiers have worked quite well in many real-world situations, such
as document classification and spam filtering. They require a small amount of training
data to estimate the necessary parameters [Zhang, 2004].

Naive Bayes make the assumption that the features are independent, however, since
we have worked with non-independent features as defined in section A.1, we have
used Gaussian Naive Bayes [Raizada et Lee, 2013, Bustamante et al., 2006] which is a
variant of Naive Bayes that follows Gaussian normal distribution and supports continuous
data. The Gaussian Naive Bayes can be written as:

P(xi | y) =
1√
2πσ2

y

exp

(
−(xi − µy)

2

2σ2
y

)
(A.5)

with (σy) and (µy) two parameters that are estimated using maximum likelihood estima-
tion [Myung, 2003]. In Fig. A.3, we show how Gaussian Naive Bayes work.

Figure A.3: Illustration of how a Gaussian Naive Bayes (GNB) by
[Bustamante et al., 2006]. For each data point, the z-score distance between that
point and each class-mean is calculated, namely the distance from the class mean divided
by the standard deviation of that class.

A.1.1.2 Decision Trees

Decision tree [Chauhan et Chauhan, 2013] is a very popular learning algorithm used in
supervised learning tasks [Kraiem et al., 2021]. It can be used for both classification
(prediction of a category) and regression (prediction of a numerical output) problems.
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It is a tree-structured classifier that consist of three main layers: the root node, the
internal nodes and finally the leaf nodes as shown in Fig A.4. Given a labeled set of
input data, the method splits the instances, based on a splitting criterion, into different
leaves. The internal nodes contain the decisions of each split. The expansion of the
decision tree is based on i) the split criteria, and ii) the stop criterion. The splitting

Figure A.4: Basic structure of a decision tree [Chiu et al., 2016]

criteria is used to split a node into sub-nodes that can be an internal nodes or leaf nodes.
It can be defined using a specific measure. Commonly used specific measures are infor-
mation gain (also called mutual information) [Rokach et Maimon, 2005], gini impurity
[Grabmeier et Lambe, 2007], chi_square [Wang et Chen, 2021]. However, through our
thesis, we have used the information gain which as splitting criteria, since as explained
by [Tangirala, 2020], there is no significant difference in terms of performance between
these two. Information gain is an entropy-based measure; i.e. the measure of uncertainty
of a random variable. By splitting the nodes based on a feature, decision trees try to
decrease the entropy on the node. Entropy is defined as:

H(X) = −
∑
i

P(xi) log2 P(xi) (A.6)

and the entropy of X observing Y is:

H(X|Y ) =
∑
j

P(yj)
∑
i

P(xi|yj) log2
(
P(xi|yj)) (A.7)

Where P(xi) represents the prior probabilities for all values of X and P(xi|yj), the
conditional probabilities of X being given the values of Y . The statistical difference
between H(X) and H(X|Y ) is called information gain or mutual information Thus,
using equations A.6 and A.7, information gain or mutual information can be defined by:

IG(X, Y ) = H(X)−H(X|Y ) (A.8)
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Decision trees need a stopping criteria otherwise it would be undesirable to grow a tree
in which each case occupied its own node. The resulting tree would be computationally
expensive, difficult to interpret and would probably not work very well with new data.
Some stopping criteria [Banfield et al., 2006] include but not limited to the number of
cases in the node is less than some prespecified limit or the depth of the node is more
than some pre-specified limit.

A.1.1.3 Random Forest

Figure A.5: Random Forest process

Random Forest [Liaw et al., 2002], as presented on Fig.A.5, is a tree-based ensemble
that makes use of building multiple classification trees based on bootstrapped random
training samples. It builds decision trees on different random subsets and takes their
majority vote for classification and average in case of regression. The size of a random
subset is typically the square root of the total number of features. More formally, for a
m-dimensional random vector X = (X1, ..., Xm)

T representing the real-valued inputs
(or predictor variables) and a random variable Y representing the real-valued response
with a joint distribution PXY (X, Y ). The goal is to find a prediction function f̂(x) for
predicting Y . The prediction function is determined by a loss function L(Y, f̂(x) and
defined to minimize the expected value of the loss:

EXY

(
L(Y, f̂(x)

)
(A.9)

where the subscripts denote expectation with respect to the joint distribution of X
and Y . Intuitively, L(Y, f̂(x) is a measure of how close f̂(x) is to Y ; it penalizes
values of f̂(x) that are a long way from Y . Typical choices of L are squared error loss
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L(Y, f(X)) = (Y -f(X))2 for regression and zero-one loss for classification:

L(Y, f̂(x)) = I(Y ̸= f̂(x)) =

{
0 if Y = f̂(x)

1 else
(A.10)

Ensembles construct f in terms of a collection of so-called “base learners” h1(x), ..., hJ(x)
and these base learners are combined to give the “ensemble predictor” f̂(x). In regression
task, the base learners are averaged to obtain the final prediction as:

f̂(x) = 1J
J∑

j=1

hj(x) (A.11)

while for a classification task, f̂(x) is the most frequently predicted class (“voting”)

f̂(x) = argmax
y∈ŷ

J∑
j=1

I(y = hj(x)) (A.12)

with ŷ the set of possible outcomes of Y .

A.1.1.4 Bagging

Bagging [Sutton, 2005] is an ensemble learning technique which aims to reduce the
learning error by implementing a set of homogeneous machine learning algorithms. The
main idea behind Bagging is that L intermediate and independent base learners are
used and trained separately by using bootstrapped samples, i.e. smaller samples of the
same size are repeatedly drawn, with replacement, from the original input set. These
intermediate base learners produce a final stable and accurate model through a voting or
averaging strategy.

Consider the basics settings as in section A.1, Bagging algorithm works as follow:
Given a training set X = (x1, y1), ...(xn, yn),

• sample T sets of n elements from X (with replacement) such as
X1, X2, ...XT → T quasi replica training sets;

• fit a machine learning model on each X i, i = 1, ..., T to obtain a sequence of T
outputs f1(x), ...fT (x)

• the final aggregate model for classification is then f̂(x) = argmax
y∈ŷ

∑T
i=1 I(fi(x))

with I the identity function.

Below on Fig.A.6, we show how this technique works.
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Figure A.6: Bagging - Fitting L intermediate models on different bootstrap samples and
build an ensemble model that “averages” the results of these weak learners.

A.1.1.5 Boosting

Boosting [Sutton, 2005] is another ensemble learning method where different models
are trained sequentially and iteratively. Each current model carries forth the performance

Figure A.7: Boosting process

of the previous so that it attempts to correct the errors and improve its previous model.
The current model is aggregated to the ensemble model and “update” the training dataset
in order to benefit from the strengths of the current ensemble model when fitting the next
base model. Using the basics settings defined in section A.1, Boosting algorithm works
as follow:
Given a class F = f : X :→ {0, 1} of weak learners and the data (x1, y1), ..., (xn, yn), yi∈0, 1.
Initialize the weights as w1(i) = 1/n. For t = 1, ...T :
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• Find a weak learner ft based on weights wt(i), compute the weighted error θt =∑n
i=1 wt(i)I(yi ̸= ˆf(x)t(xi)) and the importance of ft as αt = 1/2ln

(
1−θt
θt

)
• Update the distribution wt + 1(i) = wt(i)e−αtyift(xi)∑n

i=1 wt(i)e−αtyiht(xi)

The final boosting hypothesis is given by: g(x) =
∑T

t=1 αtft(x)). On Fig.A.7, we
show how Boosting technique works.

A.1.1.6 Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a type supervised machine learning algorithm that
can be used for both classification and regression purposes. However, SMS is more
commonly used in classification problems [Sha’Abani et al., 2020].

The idea of SVM is based on the idea of finding a hyperplane that best divides a
dataset into two classes ( blue vs red for example). Hyperplane, in two dimensions, it’s
simply a line) that best separates the tags. This line is the decision boundary, i.e anything
that falls to one side of it we will classify as blue, and anything that falls to the other as
red.

A.1.1.7 C4.5

C4.5 is an supervised learning algorithm developed by Ross Quinlan [Quinlan, 2014] that
use Decision Trees. This algorithm can be used for classification problems. It improves
(extends) Decision Tree by dealing with both continuous and discrete attributes, missing
values and pruning trees after construction. Being a supervised learning algorithm, it
normally requires a set of labeled training examples and each example can be seen as a
pair: input object and a desired output class. The algorithm then analyzes the training set
and builds a classifier that can classify both training and test examples. A test example is
an input object and the algorithm mus assign the example to a class.

A.1.2 Unsupervised Learning Algorithm Used
In this thesis, we have used only one unsupervised learning algorithm. This algorithm
(K-means) is mainly used in the work presented in chapter 5.

A.1.2.1 K-means

K-means algorithm is an iterative algorithm that tries to partition the dataset into K-pre-
defined distinct non-overlapping subgroups (clusters) where each data point belongs to
only one subgroup (cluster) [Fig. A.8]. In order word, the algorithm divides a set of N
sample X into K disjoint clusters, each described by the mean µj of the samples in the
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cluster [Ahmed et al., 2020]. The means are commonly called the cluster “centroids”.
K-means try to make the intra-cluster data points as similar (close) as possible while also
keeping the clusters as different (far) as possible. It assigns data points to a cluster such
that the sum of the squared distance between the data points and the cluster’s centroid is
at the minimum. The algorithm works as follows:

1. Specify number of clusters K.

2. Initialize centroids by first shuffling the dataset and then randomly selecting K
data points for the centroids (center of the cluster). [Hamerly et Elkan, 2003].

3. Assign each data point to the closest cluster (centroid).

4. Re-initialize centroids by calculating the average of all data points of that cluster.

5. Repeat steps 3 and 4

Figure A.8: An example of K-means clustering

118 Ginel Dorleon



Author Publications

119



Through this Thesis, I have co-authored and published the following papers:

(1) Ginel Dorleon and Nathalie Bricon-Souf and Imen Megdiche and Olivier Teste
Qualification du biais de données dans le processus de la science des données, Revue
des Nouvelles Technologies de l’Information EGC’21.

(2) Ginel Dorleon, Nathalie Bricon-Souf, Imen Megdiche, and Olivier Teste Absolute
Redundancy Analysis Based on Features Selection. In DSIT ’21: 4th International
Conference on Data Mining and Big Data (DMBD 2021), Shangai, China. ACM,
New York, NY, USA

(3) Ginel Dorleon, Imen Megdiche, Nathalie Bricon-Souf, and Olivier Teste. 2022 Fea-
ture Selection Under Fairness Constraints. In Proceedings of ACM SAC Conference
(SAC’22). ACM, New York, NY, USA

(4) Ginel Dorleon, Imen Megdiche, Nathalie Bricon-Souf, and Olivier Teste. Feature
Selection Under Fairness and Performance Constraints. In Proceedings of The 24th
International Conference on Big Data Analytics and Knowledge Discovery ( DaWaK
2022), Vienna, Austria

(5) Ginel Dorleon, Imen Megdiche, Nathalie Bricon-Souf, and Olivier Teste. 2022
FAPFID: A Fairness-aware Approach for Protected Feature and Imbalanced Data
[TLDKS 2023]

120 Ginel Dorleon



Bibliography

121



122 Ginel Dorleon



Bibliography

[Abinash et Vasudevan, 2018] ABINASH, M. et VASUDEVAN, V. (2018). A study on
wrapper-based feature selection algorithm for leukemia dataset. In Intelligent Engi-
neering Informatics, pages 311–321. Springer.

[Agarwal et al., 2018] AGARWAL, A., BEYGELZIMER, A., DUDÍK, M., 0001, J. L.
et WALLACH, H. M. (2018). A Reductions Approach to Fair Classification. In
Proceedings of the 35th International Conference on Machine Learning, pages 60–69.
PMLR.

[Agarwal et al., 2019] AGARWAL, A., DUDÍK, M. et WU, Z. S. (2019). Fair regression:
Quantitative definitions and reduction-based algorithms. CoRR, abs/1905.12843.

[Ahmed et al., 2020] AHMED, M., SERAJ, R. et ISLAM, S. M. S. (2020). The k-means
algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8):
1295.

[Alipourfard et al., 2018] ALIPOURFARD, N., FENNELL, P. G. et LERMAN, K. (2018).
Using simpson’s paradox to discover interesting patterns in behavioral data. In
Proceedings of the 12th International AAAI Conference On Web And Social Media
(ICWSM2018). AAAI.

[Alon et al., 1999] ALON, U., BARKAI, N., NOTTERMAN, D. A., GISH, K., YBARRA,
S., MACK, D. et LEVINE, A. J. (1999). Broad patterns of gene expression revealed
by clustering analysis of tumor and normal colon tissues probed by oligonucleotide
arrays. Proceedings of the National Academy of Sciences, 96(12):6745–6750.

[Amarasinghe et al., 2018] AMARASINGHE, T., APONSO, A. et KRISHNARAJAH, N.
(2018). Critical analysis of machine learning based approaches for fraud detection
in financial transactions. In Proceedings of the 2018 International Conference on
Machine Learning Technologies, ICMLT ’18, page 12–17, New York, NY, USA.
Association for Computing Machinery.

123



BIBLIOGRAPHY

[Ambure et al., 2019] AMBURE, P., GAJEWICZ-SKRETNA, A., CORDEIRO, M. N. D.
et ROY, K. (2019). New workflow for qsar model development from small data
sets: small dataset curator and small dataset modeler. integration of data curation,
exhaustive double cross-validation, and a set of optimal model selection techniques.
Journal of Chemical Information and Modeling, 59(10):4070–4076.

[Amini et al., 2019] AMINI, A., SOLEIMANY, A. P., SCHWARTING, W., BHATIA, S. N.
et RUS, D. (2019). Uncovering and mitigating algorithmic bias through learned latent
structure. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society, AIES ’19, page 289–295, New York, NY, USA. Association for Computing
Machinery.

[Ang et al., 2016] ANG, J., MIRZAL, A., HARON, H. et HAMED, H. N. A. (2016).
Supervised, unsupervised, and semi-supervised feature selection: A review on gene
selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
13:971–989.

[Angwin et Kirchner, 2016] ANGWIN, Jeff Larson, S. M. et KIRCHNER, L. (2016).
Machine Bias : there is a software used across the country to predict future criminals.
And it is biased against blacks. ProPublica 2016.

[Backurs et al., 2019] BACKURS, A., INDYK, P., ONAK, K., SCHIEBER, B., VAKILIAN,
A. et WAGNER, T. (2019). Scalable fair clustering. In CHAUDHURI, K. et SALAKHUT-
DINOV, R., éditeurs : Proceedings of the 36th International Conference on Machine
Learning, volume 97 de Proceedings of Machine Learning Research, pages 405–413.
PMLR.

[Baeza-Yates, 2018] BAEZA-YATES, R. (2018). Bias on the web. Commun. ACM,
61(6):54–61.

[Banfield et al., 2006] BANFIELD, R. E., HALL, L. O., BOWYER, K. W. et
KEGELMEYER, W. P. (2006). A comparison of decision tree ensemble creation tech-
niques. IEEE transactions on pattern analysis and machine intelligence, 29(1):173–
180.

[Barocas et al., 2017] BAROCAS, S., HARDT, M. et NARAYANAN, A. (2017). Fairness
in machine learning. Nips tutorial, 1:2.

[Barocas et Selbst, 2016] BAROCAS, S. et SELBST, A. D. (2016). Big data’s disparate
impact. California Law Review, 104:671.

[Bechavod et Ligett, 2017] BECHAVOD, Y. et LIGETT, K. (2017). Learning fair classi-
fiers: A regularization-inspired approach. ArXiv, abs/1707.00044.

124 Ginel Dorleon



BIBLIOGRAPHY

[Belkacem et al., 2020] BELKACEM, S., BOUSSAID, O. et BOUKHALFA, K. (2020).
Ranking news feed updates on social media: A comparative study of supervised
models. Revue des Nouvelles Technologies de l’Information, Extraction et Gestion
des Connaissances , RNTI-E-36:499–506.

[Bellamy et al., 2018] BELLAMY, R. K. E., DEY, K., HIND, M., HOFFMAN, S. C.,
HOUDE, S., KANNAN, K., LOHIA, P. K., MARTINO, J., MEHTA, S., MOJSILOVIC,
A., NAGAR, S., RAMAMURTHY, K. N., RICHARDS, J. T., SAHA, D., SATTIGERI, P.,
SINGH, M., VARSHNEY, K. R. et ZHANG, Y. (2018). Ai fairness 360: An extensible
toolkit for detecting, understanding, and mitigating unwanted algorithmic bias. ArXiv,
abs/1810.01943.

[Benesty et al., 2009] BENESTY, J., CHEN, J., HUANG, Y. et COHEN, I. (2009). Pearson
correlation coefficient. In Noise reduction in speech processing, pages 1–4. Springer.

[Breiman et Wald Lecture, 2002] BREIMAN, L. et WALD LECTURE, I. (2002). Looking
inside the black box. Wald Lecture II, Department of Statistics, California University.

[Brodersen et al., 2010] BRODERSEN, K. H., ONG, C. S., STEPHAN, K. E. et BUH-
MANN, J. M. (2010). The balanced accuracy and its posterior distribution. In 2010
20th international conference on pattern recognition, pages 3121–3124. IEEE.

[Buolamwini et Gebru, 2018] BUOLAMWINI, J. et GEBRU, T. (2018). Gender shades:
Intersectional accuracy disparities in commercial gender classification. In FAT.

[Bustamante et al., 2006] BUSTAMANTE, C., GARRIDO, L. et SOTO, R. (2006). Com-
paring fuzzy naive bayes and gaussian naive bayes for decision making in robocup
3d. In Mexican International Conference on Artificial Intelligence, pages 237–247.
Springer.

[Calmon et al., 2017] CALMON, F., WEI, D., VINZAMURI, B., NATESAN RAMA-
MURTHY, K. et VARSHNEY, K. R. (2017). Optimized pre-processing for discrim-
ination prevention. In GUYON, I., LUXBURG, U. V., BENGIO, S., WALLACH, H.,
FERGUS, R., VISHWANATHAN, S. et GARNETT, R., éditeurs : Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.

[Cao et al., 2021] CAO, Y., FANG, Z., WU, Y., ZHOU, D.-X. et GU, Q. (2021). To-
wards understanding the spectral bias of deep learning. In ZHOU, Z.-H., éditeur :
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, pages 2205–2211. International Joint Conferences on Artificial Intelligence
Organization. Main Track.

Mitigation of Data Bias using Fair Feature Selection Methods 125



BIBLIOGRAPHY

[Cascaro et al., 2019] CASCARO, R. J., GERARDO, B. D. et MEDINA, R. P. (2019).
Filter selection methods for multiclass classification. Proceedings of the 2nd Interna-
tional Conference on Computing and Big Data - ICCBD 2019.

[Caton et Haas, 2020] CATON, S. et HAAS, C. (2020). Fairness in machine learning: A
survey. arXiv preprint arXiv:2010.04053.

[Chandrashekar et Sahin, 2014] CHANDRASHEKAR, G. et SAHIN, F. (2014). A survey
on feature selection methods. Comput. Electr. Eng., 40(1):16–28.

[Chauhan et Chauhan, 2013] CHAUHAN, H. et CHAUHAN, A. (2013). Implementation
of decision tree algorithm c4. 5. International Journal of Scientific and Research
Publications, 3(10):1–3.

[Chawla et al., 2003] CHAWLA, N., LAZAREVIC, A., HALL, L. O. et BOWYER, K.
(2003). SMOTEBoost: Improving Prediction of the Minority Class in Boosting. In
PKDD.

[Chawla et al., 2002] CHAWLA, N. V., BOWYER, K. W., HALL, L. O. et KEGELMEYER,
W. P. (2002). Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res.,
16(1):321–357.

[Chawla et al., 2004] CHAWLA, N. V., JAPKOWICZ, N. et KOTCZ, A. (2004). Special
issue on learning from imbalanced data sets. ACM SIGKDD explorations newsletter,
6(1):1–6.

[Cherrington et al., 2019] CHERRINGTON, M., THABTAH, F., LU, J. et XU, Q. (2019).
Feature selection: filter methods performance challenges. In 2019 International
Conference on Computer and Information Sciences (ICCIS), pages 1–4. IEEE.

[Chiu et al., 2016] CHIU, M.-H., YU, Y.-R., LIAW, H. et HAO, L. (2016). The use of
facial micro-expression state and tree-forest model for predicting conceptual-conflict
based conceptual change.

[Chouldechova et al., 2018] CHOULDECHOVA, A., BENAVIDES-PRADO, D., FIALKO,
O. et VAITHIANATHAN, R. (2018). A case study of algorithm-assisted decision
making in child maltreatment hotline screening decisions. volume 81 de Proceedings
of Machine Learning Research, pages 134–148, New York, NY, USA. PMLR.

[Chouldechova et Roth, 2018] CHOULDECHOVA, A. et ROTH, A. (2018). The frontiers
of fairness in machine learning. arXiv preprint arXiv:1810.08810.

[Corbett-Davies et al., 2017] CORBETT-DAVIES, S., PIERSON, E., FELLER, A., GOEL,
S. et HUQ, A. (2017). Algorithmic decision making and the cost of fairness. In

126 Ginel Dorleon



BIBLIOGRAPHY

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’17, page 797–806, New York, NY, USA. Association
for Computing Machinery.

[Cortes et al., 2001] CORTES, C., PREGIBON, D. et VOLINSKY, C. (2001). Commu-
nities of interest. In Proceedings of the 4th International Conference on Advances
in Intelligent Data Analysis, IDA ’01, page 105–114, Berlin, Heidelberg. Springer-
Verlag.

[Danks et London, 2017] DANKS, D. et LONDON, A. J. (2017). Algorithmic bias in au-
tonomous systems. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, pages 4691–4697.

[Dash et Liu, 2000] DASH, M. et LIU, H. (2000). Feature selection for clustering. In
Pacific-Asia Conference on knowledge discovery and data mining, pages 110–121.
Springer.

[Datta et al., 2014] DATTA, A., TSCHANTZ, M. C. et DATTA, A. (2014). Automated
experiments on ad privacy settings: A tale of opacity, choice, and discrimination.

[Dee, 2005] DEE, D. P. (2005). Bias and data assimilation. Quarterly Journal of
the Royal Meteorological Society: A journal of the atmospheric sciences, applied
meteorology and physical oceanography, 131(613):3323–3343.

[del Barrio et al., 2020] del BARRIO, E., GORDALIZA, P. et LOUBES, J.-M. (2020).
Review of mathematical frameworks for fairness in machine learning. ArXiv,
abs/2005.13755.

[Deng et al., 2009] DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K. et FEI-FEI,
L. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 248–255.

[Doak, 1992] DOAK, J. D. (1992). An evaluation of feature selection methods and their
application to computer security.

[Dobbe et al., 2018] DOBBE, R., DEAN, S., GILBERT, T. K. et KOHLI, N. (2018). A
broader view on bias in automated decision-making: Reflecting on epistemology and
dynamics. ArXiv, abs/1807.00553.

[Dorleon et al., 2021a] DORLEON, G., BRICON-SOUF, N., MEGDICHE, I. et TESTE,
O. (2021a). Absolute redundancy analysis based on features selection. In 2021 4th
International Conference on Data Science and Information Technology, DSIT 2021,
page 458–461, New York, NY, USA. Association for Computing Machinery.

Mitigation of Data Bias using Fair Feature Selection Methods 127



BIBLIOGRAPHY

[Dorleon et al., 2021b] DORLEON, G., BRICON-SOUF, N., MEGDICHE, I. et TESTE,
O. (2021b). Qualification du biais de données dans le processus de la science des
données. Revue des Nouvelles Technologies de l’Information, Extraction et Gestion
des Connaissances, RNTI-E-37:515–516.

[Dorleon et al., 2022a] DORLEON, G., MEGDICHE, I., BRICON-SOUF, N. et TESTE, O.
(2022a). Feature selection under fairness and performance constraints. In Big Data
Analytics and Knowledge Discovery: 24th International Conference, DaWaK 2022,
Vienna, Austria, August 22–24, 2022, Proceedings, page 125–130, Berlin, Heidelberg.
Springer-Verlag.

[Dorleon et al., 2022b] DORLEON, G., MEGDICHE, I., BRICON-SOUF, N. et TESTE,
O. (2022b). Feature selection under fairness constraints. In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, SAC ’22, page 1125–1127, New
York, NY, USA. Association for Computing Machinery.

[Drushku et al., 2019] DRUSHKU, K., ALIGON, J., LABROCHE, N., MARCEL, P. et
PERALTA, V. (2019). Interest-based recommendations for business intelligence users.
Information Systems, 86:79–93.

[Dua et Graff, 2017] DUA, D. et GRAFF, C. (2017). UCI machine learning repository.

[Dwork et al., 2012] DWORK, C., HARDT, M., PITASSI, T., REINGOLD, O. et ZEMEL,
R. (2012). Fairness through awareness. In 12). Association for Computing Machinery,
New York, NY, USA, pages 214–226. Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference (ITCS.

[Dwork et al., 2018] DWORK, C., IMMORLICA, N., KALAI, A. T. et LEISERSON, M.
(2018). Decoupled classifiers for group-fair and efficient machine learning. In
FRIEDLER, S. A. et WILSON, C., éditeurs : Proceedings of the 1st Conference on
Fairness, Accountability and Transparency, volume 81 de Proceedings of Machine
Learning Research, pages 119–133. PMLR.

[El Malki et al., 2020] EL MALKI, N., CUGNY, R., TESTE, O. et RAVAT, F. (2020).
Decwa: Density-based clustering using wasserstein distance. In Proceedings of the
29th ACM International Conference on Information amp; Knowledge Management,
CIKM ’20, page 2005–2008, New York, NY, USA. Association for Computing
Machinery.

[Elyan et al., 2021] ELYAN, E., MORENO-GARCIA, C. F. et JAYNE, C. (2021). Cdsmote:
class decomposition and synthetic minority class oversampling technique for
imbalanced-data classification. Neural computing and applications, 33(7):2839–2851.

128 Ginel Dorleon



BIBLIOGRAPHY

[Estévez et al., 2009] ESTÉVEZ, P. A., TESMER, M., PEREZ, C. A. et ZURADA, J. M.
(2009). Normalized mutual information feature selection. IEEE Transactions on
neural networks, 20(2):189–201.

[EU, 2002] EU, P. (2002). Directive 2002/58/ec of the european parliament and of the
council of 12 july 2002 concerning the processing of personal data and the protection
of privacy in the electronic communications sector (directive on privacy and electronic
communications) (oj l 201, 31.7.2002, p. 37).

[Fang et al., 2020] FANG, B., JIANG, M., CHENG, P.-y., SHEN, J. et FANG, Y. (2020).
Achieving outcome fairness in machine learning models for social decision problems.
In BESSIERE, C., éditeur : Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI-20, pages 444–450. International Joint
Conferences on Artificial Intelligence Organization. Main track.

[Farahani et al., 2019] FARAHANI, B., BARZEGARI, M. et ALIEE, F. S. (2019). Towards
collaborative machine learning driven healthcare internet of things. In Proceedings of
the International Conference on Omni-Layer Intelligent Systems, COINS ’19, page
134–140, New York, NY, USA. Association for Computing Machinery.

[Feldman et al., 2015] FELDMAN, M., FRIEDLER, S. A., MOELLER, J., SCHEIDEGGER,
C. et VENKATASUBRAMANIAN, S. (2015). Certifying and removing disparate impact.
In proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, pages 259–268.

[Friedler et al., 2019] FRIEDLER, S. A., SCHEIDEGGER, C., VENKATASUBRAMANIAN,
S., CHOUDHARY, S., HAMILTON, E. P. et ROTH, D. (2019). A comparative study of
fairness-enhancing interventions in machine learning. In Proceedings of the conference
on fairness, accountability, and transparency, pages 329–338.

[Friedman et Nissenbaum, 1996] FRIEDMAN, B. et NISSENBAUM, H. (1996). Bias in
computer systems. 14(3):330–347.

[Ghassami et al., 2018] GHASSAMI, A., KHODADADIAN, S. et KIYAVASH, N. (2018).
Fairness in supervised learning: An information theoretic approach. In 2018 IEEE
International Symposium on Information Theory (ISIT), pages 176–180. IEEE.

[Goh et al., 2016] GOH, G., COTTER, A., GUPTA, M. et FRIEDLANDER, M. P. (2016).
Satisfying real-world goals with dataset constraints. Advances in Neural Information
Processing Systems, 29.

[Golub et al., 1999] GOLUB, T. R., SLONIM, D. K., TAMAYO, P., HUARD, C., GAASEN-
BEEK, M., MESIROV, J. P., COLLER, H. A., LOH, M. L., DOWNING, J. R., CALIGIURI,
M. A., BLOOMFIELD, C. D. et LANDER, E. S. (1999). Molecular classification of

Mitigation of Data Bias using Fair Feature Selection Methods 129



BIBLIOGRAPHY

cancer: class discovery and class prediction by gene expression monitoring. Science,
286 5439:531–7.

[Grabmeier et Lambe, 2007] GRABMEIER, J. et LAMBE, L. A. (2007). Decision trees
for binary classification variables grow equally with the gini impurity measure and
pearson’s chi-square test. Int. J. Bus. Intell. Data Min., 2:213–226.

[Gu et al., 2009] GU, Q., ZHU, L. et CAI, Z. (2009). Evaluation measures of the
classification performance of imbalanced data sets. In International symposium on
intelligence computation and applications, pages 461–471.

[Gunning et Aha, 2019] GUNNING, D. et AHA, D. (2019). Darpa’s explainable artificial
intelligence (xai) program. AI magazine, 40(2):44–58.

[Gutkin et al., 2009] GUTKIN, M., SHAMIR, R. et DROR, G. (2009). Slimpls: A method
for feature selection in gene expression-based disease classification. PLOS ONE,
4(7):1–12.

[Guyon et Elisseeff, 2003] GUYON, I. et ELISSEEFF, A. (2003). An introduction to
variable and feature selection. J. Mach. Learn. Res., 3:1157–1182.

[Guyon et al., 2008] GUYON, I., GUNN, S., NIKRAVESH, M. et ZADEH, L. A. (2008).
Feature extraction: foundations and applications, volume 207. Springer.

[Guégan et Hassani, 2018] GUÉGAN, D. et HASSANI, B. (2018). Regulatory learning:
How to supervise machine learning models? an application to credit scoring. The
Journal of Finance and Data Science, 4(3):157–171.

[Hamerly et Elkan, 2003] HAMERLY, G. et ELKAN, C. (2003). Learning the k in k-
means. Advances in neural information processing systems, 16.

[He et al., 2008] HE, H., BAI, Y., GARCIA, E. et LI, S. (2008). Adasyn: Adaptive
synthetic sampling approach for imbalanced learning. pages 1322 – 1328.

[He et Garcia, 2009] HE, H. et GARCIA, E. A. (2009). Learning from imbalanced data.
IEEE Trans. on Knowl. and Data Eng., 21(9):1263–1284.

[He et al., 2019] HE, W., LI, H. et LI, J. (2019). Ensemble feature selection for improv-
ing intrusion detection classification accuracy. Proceedings of the 2019 International
Conference on Artificial Intelligence and Computer Science.

[Heidari et Krause, 2018] HEIDARI, H. et KRAUSE, A. (2018). Preventing disparate
treatment in sequential decision making. In IJCAI, pages 2248–2254.

130 Ginel Dorleon



BIBLIOGRAPHY

[Hertweck et al., 2021] HERTWECK, C., HEITZ, C. et LOI, M. (2021). On the moral
justification of statistical parity. In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, FAccT ’21, page 747–757, New York,
NY, USA. Association for Computing Machinery.

[Hoyos-Osorio et al., 2021] HOYOS-OSORIO, J., ALVAREZ-MEZA, A., DAZA-
SANTACOLOMA, G., OROZCO-GUTIERREZ, A. et CASTELLANOS-DOMINGUEZ, G.
(2021). Relevant information undersampling to support imbalanced data classification.
Neurocomputing, 436:136–146.

[Hsu et al., 2011] HSU, H.-H., HSIEH, C.-W. et LU, M.-D. (2011). Hybrid feature
selection by combining filters and wrappers. Expert Systems with Applications,
38(7):8144–8150.

[Hu et al., 2009] HU, S., LIANG, Y., MA, L.-T. et HE., Y. (2009). Msmote: Improving
classification performance when training data is imbalanced. 2009 second international
workshop on computer science and engineering 2 (2009). pages 13–17.

[Huang et al., 2008] HUANG, G., MATTAR, M., BERG, T. et LEARNED-MILLER, E.
(2008). Labeled faces in the wild: A database forstudying face recognition in uncon-
strained environments. Tech. rep.

[Huda et al., 2018] HUDA, S., LIU, K., ABDELRAZEK, M., IBRAHIM, A., ALYAHYA,
S., AL-DOSSARI, H. et AHMAD, S. (2018). An ensemble oversampling model for
class imbalance problem in software defect prediction. IEEE access, 6:24184–24195.

[Ingold et Soper, 2016] INGOLD, D. et SOPER, S. (2016). Amazon does not consider
the race of its customers.

[Iosifidis et al., 2019] IOSIFIDIS, V., FETAHU, B. et NTOUTSI, E. (2019). Fae: A
fairness-aware ensemble framework. 2019 ieee international conference on big data
(big data) (2019). pages 108–110.

[Iosifidis et Ntoutsi, 2019] IOSIFIDIS, V. et NTOUTSI, E. (2019). Adafair: Cumula-
tive fairness adaptive boosting. CIKM ’19, page 781–790, New York, NY, USA.
Association for Computing Machinery.

[Jensen et Neville, 2002] JENSEN, D. et NEVILLE, J. (2002). Linkage and autocorre-
lation cause feature selection bias in relational learning. In ICML, volume 2, pages
259–266.

[Ji et al., 2020] JI, D., SMYTH, P. et STEYVERS, M. (2020). Can i trust my fairness met-
ric? assessing fairness with unlabeled data and Bayesian inference. In LAROCHELLE,
H., RANZATO, M., HADSELL, R., BALCAN, M. F. et LIN, H., éditeurs : Advances

Mitigation of Data Bias using Fair Feature Selection Methods 131



BIBLIOGRAPHY

in Neural Information Processing Systems, pages 18600–18612. Vol. 33. Curran
Associates, Inc.

[Jiang et al., 2019] JIANG, B., WU, X., YU, K. et CHEN, H. (2019). Joint semi-
supervised feature selection and classification through bayesian approach. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):3983–3990.

[Jiang et al., 2021] JIANG, Z., HAN, X., FAN, C., YANG, F., MOSTAFAVI, A. et HU.,
X. (2021). Generalized demographic parity for group fairness. In International
Conference on Learning Representations.

[Jin et al., 2006] JIN, X., XU, A., BIE, R. et GUO, P. (2006). Machine learning tech-
niques and chi-square feature selection for cancer classification using sage gene
expression profiles. In International workshop on data mining for biomedical appli-
cations, pages 106–115. Springer.

[Jing, 2001] JING, Y. (2001). A new test for the stable clustering hypothesis. The
Astrophysical Journal Letters, 550:L125 – L128.
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