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Introduction

Intelligence is hard to define1 but it is closely related to understanding, which seems
to be a simpler concept. Understanding or more precisely comprehending means to
catch, to take within oneself, to make one’s own. Hence artificial intelligence looks like a
weird concept, since it seems to require to the computer to comprehend something. How
could a computer integrate an idea coming from human beings, given that its internal
structure has nothing in common with a human being? It is easier to imagine a computer
understanding another computer. Thus, I do not see artificial intelligence as a way to
make computers able to understand people. My current approach is rather about using
computers in order to help people better understand each other and better understand
their environment. Hence, I focus on modeling what an ideal human being would obtain
by reasoning: a computer is used to derive/predict the inference results which should
then be integrated by a human being. To sum up, my view of Artificial Intelligence
consists of building a collaboration between human beings and computers in order to
combine their different abilities for understanding the world. My work is about defining
tools for this collaboration.

Let me focus on the “rational agent basic control loop”, described in Algorithm 1
(slightly adapted from the basic algorithm2 given in [201]). This loop encodes an agent
behavior within a “BDI” (for Beliefs, Desires and Intentions) approach.

A rational agent has (lines 1-2) initial sets of beliefs and intentions (that could be
seen as preferred states of the world which the agent aims at achieving). This agent
is able to perceive information about the world (line 4); then it integrates this piece
of information (line 5). After that, it deliberates about what to do next (line 6-7): it
computes the “Desires” (line 6), i.e., the possible states that are achievable and their
associated preferences, which it then filters (line 7) in order to choose new “Intentions”
before executing a plan that achieves them.

My main domain of research relates to Step 5 of this algorithm, i.e., the field of
belief change. Indeed understanding the world means being able to integrate knowledge
about it (this can be a non-monotonic process) and it means also being able to integrate
its dynamics. These two processes require to allow for belief changes. Studying belief

1Yoggi, a taxi driver in Washington, gave me this poetic and pro-active definition: “Intelligence is the
ability to see the beauty”.

2In Conclusion, we give Wooldridge’s elaborated version of this algorithm.
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1 B := B0 ; /* initial beliefs */
2 I := I0 ; /* initial intentions (options to achieve) */
3 while true do
4 get_next_percept(p);
5 B := belief_integrate(B, p) ; /* current beliefs */
6 D := options(B, I) ; /* options generation */
7 I := filter(B,D, I) ; /* choice of options to achieve */
8 π :=plan(B, I) ; /* compute a sequence of actions for achieving I */
9 execute(π);

10 end
Algorithm 1: Rational Agent Basic Control Loop

change covers not only the analysis of the consequences of a belief change, but also the
study of how to produce some changes in order to achieve some goals (see Step 8).

Moreover, what is summarized in the single step 5 of this algorithm is a more complex
task than it appears, since when changes occur, the agent should be able to keep on
thinking. Hence the problem of consistency handling is crucial, in two respects: the
agent has to adapt its knowledge, goals and behaviors in order to try to remain consistent
whenever changes occur, or to be able to cope with inconsistency when it is there.

I have also studied Step 1 of this algorithm i.e., the problem of representing the
initial beliefs. Indeed, handling correctly information is also recognized as an “intelligent”
ability. There are several kinds of information: in particular we can make a distinction
between generic and factual information. A factual piece of information may be viewed
as a snapshot observation at a given time, such a piece of information will be called “fact”.
Generic information can be viewed as the gathering of factual pieces of information into
a compact form. We will call this kind of information: “rules”. The use of rules is
very common in artificial intelligence, since they can help to predict new conclusions in
a given context described by a set of factual pieces of information. The first part of
this document explores the different frameworks that I used in order to handle generic
information, with a particular focus on inconsistency management and change.

During the last ten years, I have been involved in the research on argumentation, it is
linked with belief change, since arguing aims at changing someone’s opinion (which relates
also to Step 8 of this algorithm). It is also linked to consistency handling since, in order
to persuade someone, arguments should be consistent or at least have this appearance.
Moreover arguments are acceptable only if they can be integrated consistently in the
mental state of an agent (again a problem embedded in Step 5 of the algorithm).

Rules, consistency and dynamicity are also key concepts in the argumentation con-
text. Indeed, an argument is often viewed as a pair (support, conclusion) where the
support is something that justifies the conclusion. This justification is often due to a
generic information that can be present explicitly in the support (in the case of logic-
based arguments). It is often the case, especially in natural argumentation, that the
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generic information necessary to understand the causal link between the support and
the conclusion of an argument is implicit (the argument is then called an “enthymeme”).
Some arguments and their conflict relations can also be used to represent generic infor-
mation: this is one claim of abstract argumentation (in which generic information is not
in the content of the argument but in the structure of the relation between arguments).

Argumentation and persuasion are very important in everyday life, hence studying
systems able to analyze the persuasion process is a useful challenge which may contribute
to rationalize these two activities. This is the subject of the second part of this report.

The third part will be concerned with my work in progress and the directions of
research that I would like to follow and that are related to some steps of the algorithm
on which I have not given much attention yet in my research, such as Steps 6, 7 and 9,
which concern preferences and goals.
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Notations

In this report, we are often going to refer to a propositional language, it is denoted by
L , the vocabulary (set of symbols) on which it is written is denoted by V . The Boolean
constants > and ⊥ represent respectively the tautology and the contradiction. We use the
symbols ∧, ∨,→, ¬,↔ for the usual connectives “and”, “or”, “material implication”, “not”,
“material equivalence”. Classical inference is denoted by `. The set of interpretations on
L is denoted by Ω. Lower Greek letters are used to represent propositional formulas (e.g.
ϕ,ψ, . . .) and interpretations (e.g. ω). The models of a formula ϕ are represented by [ϕ].
|= denotes the semantic inference and the satisfaction. ≡ denotes logical equivalence.

We denote by Φ the characteristic formula function of L , it is a function that as-
sociates to each interpretation a formula which has this interpretation as unique model:
∀ω ∈ Ω,Φ(ω) ∈ L and [Φ(ω)] = {ω}.

For instance, Φ can be defined as follows:

Φ(ω) =
∧

v∈V ,ω|=v

v ∧
∧

v∈V ,ω|=¬v

¬v

For representing default rules, we will use the notation α  β. In this expression α
and β are propositional formulas and  is a new symbol, it is interpreted as if α then
generally β.

For representing production rules, we will use the symbol 7→, α 7→ β is interpreted as
if α is proven then β is proven.

In this document, N is a positive integer representing the number of time points
considered. ∀v ∈ V and t ∈ J1, NK, v(t) is a time-stamped propositional symbol s.t. v(t)

holds in an interpretation ω if and only if v holds at time t in ω. Let V(N) = {v(t)|v ∈
V , 1 ≤ t ≤ N} denotes the set of all time-stamped propositional symbols.

L(N) is the language built on the vocabulary V(N), the time-stamped Boolean con-
stants >(t) and ⊥(t) (1 ≤ t ≤ N) and the usual connectives.

A formula of L(N) is called a temporal formula. Temporal formulas are denoted by
capital Greek letters (Ψ, etc.).

For any formula ϕ of L and any time point t ∈ J1, NK, ϕ(t) is called a t-formula, it
is obtained by replacing each symbol v appearing in ϕ by v(t).
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Part I

Beliefs, Consistency and Change
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In knowledge representation, conflicting information is difficult to handle. Indeed
in this domain, a knowledge base (KB) is a set of logical formulas which is used for
describing a system and for deducing new information about it. The difficulty is to
reason with an inconsistent KB since classical inference is no more reliable in that case.
Inconsistency may come from a change of beliefs when a new piece of information arrives
which contradicts what was believed before. Or it may come from the use of contradicting
defeasible rules. There are three ways to handle potentially dangerous belief changes:
either modify the system in order to prevent inconsistency to occur, or let it occur and
manage it, or embed the possibility to change in the system itself, i.e., use a representation
of an evolving system.

The first chapter shows several ways to deal with inconsistency: we show how to
check consistency thanks to a solver: it may help to detect mistakes or redundancies,
then we show how to prevent inconsistency to occur: in fusion of spatial information we
define methods to keep the maximum set of consistent information in case of conflicting
beliefs, in a priori revision we proposed to forbid some new facts to be added, and to
“put shields” on generic formulas. Another way to prevent consistency is to use defeasible
rules (enabling to cope with inconsistent generic information), we have developed several
methods for reasoning in presence of defeasible rules and we have extended them to
handle also uncertainty.

In the second chapter we deal with evolving systems, we first explain the principle of
extrapolation and then we extend it in order to make causal ascription which amounts
to update a system by a counter-factual. In a third section we describe how we have
extended classical belief update theory in order to cope with transition constraints while
updating.
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Chapter 1

Handling inconsistency

In the following we are going to explore several ways to handle generic knowledge encoding
“if a then b” where a and b are factual properties. Each of them is associated to a different
way to deal with inconsistency. Here are the different kinds of generic rules that we have
used:

• rules that correspond to material implications i.e., in this case the rule “if a then b”
is equivalent to ¬a∨b, it means that the rule can be used either in forward chaining
i.e., from a to deduce b and then possibly use b to trigger another rule, but they can
also be used for backward induction i.e., from ¬b to deduce ¬a. This expression is
used when the rules are assumed to be strong (i.e., do not admit exceptions). In
these rules the symbols a and b are representing the same kind of information, i.e.,
the rule does not deserve any particular status to the symbols according to the fact
that they are antecedent or consequent (since the rule can be contraposed).

• rules that correspond to one way implications (denoted by a 7→ b) and are only used
with Modus Ponens. In some applications it is useful to have this kind of triggering
rules (see Section 1.c) those rules use symbols of the same nature, rules can be used
in forward chaining but are not reversible. This kind of rules is classical in AI, and
was used in rule-based systems, in Prolog, in ASP. The intuitive meaning is based
on a proof notion: in order to trigger a rule it’s antecedent has to be established
(either by another rule, or by a direct observation). Defeasible rules (see Section
1.d) belong to this kind of rules with the particularity to allow for exceptions, it
means that they ase used only forward but even if the antecedent is true the rule
is not necessarily triggered.

• generic information may relate pieces of information that are not of the same na-
ture since it is sometimes very important to be able to distinguish the objects for
reasoning separately. There are two kinds of such generic information:

– an association (e.g. under the form of a reified formula) that relates two
properties of distinct nature, for instance in spatial or temporal reasoning
where some properties are attached to a region or to a time-point. In that
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case the inference about some properties that hold somewhere or sometimes
should not be mixed with inferences about the partition of the land or the
precedence relations between time points.

– special production rules, where knowing that a given property holds enable to
deduce something of a different nature. This kind of rule is useful when we
want to block the forward chaining at one step inference. This is the case for
instance in causal reasoning1 where an action enables us to deduce facts. It
is also the case in decision theory where it is crucial to reason independently
on goals and facts (in order to avoid wishful thinking).

The three previous kinds of generic information can all be extended in order to express
uncertainty. Indeed the categorization done above is a way to present a structural link
between two pieces of information, the strength of this link can be expressed by a certainty
level. The more certain we are that a generic information holds the more certainly
we can follow the link when the premises of the generic information hold (i.e., when
the rule/association is applicable). We have specifically studied such an extension for
attributive formulas in the spatial context (see Section 1.b.1) and for defeasible rules (see
Section 1.d.1).

In this chapter we give an overview of several formalisms that we have proposed
and studied in order to represent different kinds of generic information. We describe
four approaches in which we manage to avoid the perturbations that can come from
inconsistencies.

1.a Two examples based on material implication

Material implication is the most simple way to represent a generic information, it is a
classical logic-based operator hence it is well handled by tools based on classical logic,
like SAT or SMT solvers. This implication has been used from the beginning of AI
research, for representing dynamic and static knowledge, e.g. actions effects (under
the form of causal rules see [96]), inheritance properties,... In this section we show
how we have used this implication in two different contexts first for encoding industrial
texts in order to detect inconsistencies and second for encoding ontologies in a simplified
manner. However, material implication is not always the best choice for representing
generic information, in the next sections we describe some more expressive ways to do it:
enabling to block a backward reasoning, allowing for exceptions, or simply linking two
concepts (with no implication constraint).

1For a more detailed account on causal rules the user can refer to the chapter written with Andreas
Herzig, Jérôme Lang and Pierre Marquis of the French book “Panorama de l’intelligence artificielle”, in
which we analyze the use of causal rules in the domain of reasoning about change and actions [96].
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1.a.1 Encoding industrial requirements

[30] F. Bannay, M.-C. Lagasquie-Schiex, W. Raynaut, and P. Saint-Dizier. Using a SMT solver for
risk analysis: detecting logical mistakes in texts. In International Conference on Tools with Artificial
Intelligence (ICTAI), pages 867–874. IEEE, novembre 2014
[16] L. Amgoud, F. Dupin de Saint-Cyr, M.-C. Lagasquie-Schiex, and P. Saint-Dizier. Improving risk
analysis in procedures via text analysis and reasoning: a road-map. In International Forum on Industrial
Safety (IFIS), juillet 2010

In the Lelie project (described in [167]), we have used satisfiability checking for de-
tecting inconsistencies, redundancy and incompleteness in procedural texts and we have
implemented a tool (for more details the reader can refer to the articles [30, 16] writ-
ten with my colleagues Marie-Christine Lagasquie and Patrick Saint-Dizier on the tool
developed by the student William Raynaut).

The main generic information in this domain is given in the “requirements” that are
associated to an industrial procedure. Requirements are official texts coming from public
laws or specific industrial conventions, they are rules governing the actions and facts
that are allowed, forbidden or mandatory. It seems very natural to translate these rules
by classical material implications (in this work we consider only strong requirements,
defeasible advises are not taken into account) of the form a→ b where→ is the material
implication (i.e., a→ b ≡ ¬a ∨ b ≡ ¬b→ ¬a) hence, contraposition is allowed.

In this project, we have chosen to use the “Z3” solver [154] that respects the formalism
that is issued from the Satisfiability Modulo Theory (SMT) area [34], the efficiency of
this kind of tools has been stimulated by decades of research and competitions (among
SAT-solvers [130] and among SMT-solvers [33]). The SMT language is a variant of first-
order logic that enables to use numerical values which are frequent in industrial domains,
the availability of quantifiers and function symbols was also one reason for our choice
even if we do not use them in the current version of the tool.

The translation is based on a system, called TextCoop [168], which is dedicated to
language analysis in particular discourses (taking account of long-distance dependencies).
TextCoop identifies (and annotates in XML) some structures which are of interest for
our purpose: e.g. instructions, requirement statements, prerequisites, warnings, advices,
themes, strengths (for requirements), the main verb and its complements, particular
instruments (with equipment or product names) or adjuncts such as amounts which are
numerical values (PH, Volts, weights, etc.) and temporal complements.

The content analysis is done on two kinds of input data:

• requirements: information describing the context and the precautions with which
a given action (included in a procedure) must be carried out. Here is an example
of requirement tagged by TextCoop .
<requirement> in case of <theme> work at a height </theme> <predicate>
do
not use </predicate> <object> ropes </object> </requirement>

• procedures: ordered sequences of instructions. Here is an example of instruction
tagged by TextCoop .

11



<procedure> <predicate> use </predicate> <object> a rope </object> to
tie the harness. </procedure>

Then a list of synonyms is used in order to restrict the vocabulary and manage the term
matching aspects between requirements and the related procedures.

In the requirement example given above, the verb is translated into a predicate that
takes as arguments a subject (here the agent called op for “operator”) and a comple-
ment/adjunct (here “the rope”) : ¬use(op,rope). It is given with a theme: is(theme,work_
at_a_height) and they are linked by a material implication: is(theme,work_at_a_height)
→ ¬ use(op,rope).

The translation proposed in this work was a classical use of material implication,
it was used for translating requirements that are often of the form: “if you are in this
situation then you should [not] do this”. This kind of information is deontic, but since
our goal was to check if procedures were consistent with requirements, the translation
with a material implication was sufficient for our purpose.

Our tool is able to detect three kinds of mistakes:

• Inconsistency inside the requirements, or between requirements and instructions.
Moreover, thanks to the implementation of an ATMS [74] in Z3 , it has been
possible to identify the origin of the inconsistency.

• Redundancy of a new instruction wrt a set of existing instruction: detection is based
on checking if the instruction is already inferred by the previous instructions.

• Incompleteness: checking if the requirements and instructions allows the inference
of new formulas that are not inferred by the instructions alone (e.g. some instruc-
tions are missing in order to mention required security principles).

1.a.2 Encoding hierarchical relations

[76] F. Dupin de Saint-Cyr and H. Prade. Logical handling of uncertain, ontology-based, spatial informa-
tion. Fuzzy Sets and Systems, Advances in Intelligent Databases and Information Systems, 159(12):1515–
1534, juin 2008

Although Description Logics (see the book of Baader et al. [24]) have been developed
as tractable fragments of first order logics, for encoding ontologies, in my work with Henri
Prade [76], we have provided a simplified propositional encoding of the intuitive notion
of ontology, which is sufficient for handling fusion problems of symbolic information
expressed by means of category labels2. Hence, we use the term ontology here, in the
weak technical sense of a graph structure between concepts, where the arrows encode
specializing/subsuming relations. The simple type of ontology that we consider has three
characteristics: a label may have sub-labels that represent its sub-categories, a label is

2In this section and Section 1.b we describe a work done about fusing uncertain spatial information
that took place in the framework of an Inter-Regional Action Project “GEOFUSE: Fusion d’informations
géographiques incertaines", partially supported by Midi-Pyrénées and Provence-Alpes-Côte d’Azur re-
gions.
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considered to be the reunion of its sub-labels, labels referring to the most specific classes
are pairwise mutually exclusive. For instance, Figure 1.1 provides an example of (a part
of) an ontology about land cover (where arrows refer to generalization relations).

Land cover

Water Vegetation

Rivers Lakes Agr. areas Woods Meadows

Rice plant. Cereals Orchards Orn. trees

⊥

. . .

. . .

. . . . . .

Figure 1.1: Example of a fragment of an ontology of features

In the partition of a territory, particular subsets of parcels may have names. The
inclusion relation between sets of parcels can be also represented by an ontology, as for
features. Note that even if several spatial ontologies may coexist (due to the existence of
several points of view in the way the geographical space can be portioned in a meaningful
way), all these ontologies share the same set of elementary parcels. See Figure 1.2 that
exhibits two spatial ontologies Gs and Gs′ , where in each case, the leaves, i.e., the
elementary parcels, are p1, . . . , p6. A similar assumption seems more difficult to do for
“property" ontologies, used by different sources.

Gs Gs′

p1 p23

p4 p56
p14

p2

p5

p3

p6

>
p1 p23 p4 p56

p2 p3 p5 p6

⊥

>
p14 p2 p3 p5 p6

p1 p4

⊥

Figure 1.2: Two space ontologies

We have defined an ontology as a graph G = (X,U) where X ⊆ L is a set of
formulas and U is a set of arcs. Each arc (ϕ,ψ) ∈ U represents the fact that ϕ subsumes
ψ i.e., the set of objects satisfying ϕ is a subset of the objects satisfying ψ. An ontology
is connected, without circuit and it admits a unique source equal to ⊥ and a unique
sink (called Sink). Moreover all the vertices that have ⊥ as predecessor, called leaves,
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are pairwise mutually exclusive properties. Each feature which is not a leave nor ⊥ is
equivalent to the disjunction of all its predecessors, i.e., the set of objects satisfying it is
the union of the sets of objects satisfying all its predecessors.

The levels of the ontology are defined inductively as: Level 0 (L0) is the set of source
vertices, Level i is the set of source vertices in G\(L0 ∪ . . . Li−1) and so on.

Example 1 The ontology of Fig.1.1 has four levels:
L0: ⊥
L1: Rivers; Lakes; Rice plantations; Cereals; Orchards; Orn. trees;Meadows
L2: Water; Agricultural areas; Woods
L3: Vegetation
L4: Land cover

It is not difficult to give a logical encoding to an ontology, as we did in the following
definition:

Definition 1 (logical encoding of an ontology) Any graph G = (X,U) represent-
ing an ontology can be associated to a set LG of formulas such that:
1. ∀(ϕ,ψ) ∈ U , it holds that ϕ→ ψ.
2. ∀ϕ ∈ X\{L1 ∪ L0}, it holds that ϕ→

∨
ϕi∈U−(ϕ) ϕi.

3. ∀ϕ,ψ ∈ L1, it holds that ϕ ∧ ψ → ⊥.
4. ∀(ϕ,ψ) ∈ X ×X, s.t. ϕ ` ψ, it exists a directed path from ϕ to ψ in G.

Example 2 Using the logical encoding LG of the ontology given in Figure 1.1, we get e.g.
that {Water}∪LG ` Rivers∨Lake∨RiceP lantations and {Water∧Ornamental_trees}∪
LG ` ⊥. We can also establish that Water and V egetation have a common subclass since
{Water ∧ V egetation} ∪ LG ` Rice_plantation. Hence, LG ` Water ∧ V egetation ↔
Rice_plantation.

We have only illustrated our view of an ontology for property labels. However, Defi-
nition 1 is supposed to apply as well for spatial ontologies.

In the previous frameworks (Lelie project and Ontology representation), we have en-
coded information as if it was perfect: i.e., complete and certain. In the first example it
means that we only consider requirements that should always be fulfilled, and in the sec-
ond example it means that the inclusion link between properties is perfectly known and
assumed to be correct. If we want to manage defeasible requirements or imperfect infor-
mation in general then this amounts to consider that some formulas are not mandatory,
handling this kind of information can be done in a possibilistic setting (as we will see in
Section 1.b.1) or with penalties (like in Section 2.b in the context of causal ascription),
or probabilities.
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1.b Spatial Information

[76] F. Dupin de Saint-Cyr and H. Prade. Logical handling of uncertain, ontology-based, spatial informa-
tion. Fuzzy Sets and Systems, Advances in Intelligent Databases and Information Systems, 159(12):1515–
1534, juin 2008
[98] F. Dupin de Saint-Cyr, R. Jeansoulin, and H. Prade. Spatial information fusion: Coping with uncer-
tainty in conceptual structures. In International Conference on Conceptual Structures (ICCS), volume
Supplementary Proceedings, pages 66–74. Springer, 2008
[97] F. Dupin de Saint-Cyr, R. Jeansoulin, and H. Prade. Fusing uncertain structured spatial informa-
tion. In Sergio Greco and Thomas Lukasiewicz, editors, International Conference on Scalable Uncertainty
Management (SUM), number 5291 in LNAI, pages 174–188. Springer, octobre 2008
[105] F. Dupin de Saint-Cyr and H. Prade. Multiple-source data fusion problems in spatial information
systems. In (Proc. of the 11th International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU’06), pages 2189–2196, Paris, France, july 2006

Generic information is not always implication but concerns a link between two things.
Associations may relate information of the same kind (e.g. for encoding hierarchical
relations) or they may concern two different kinds of information that cannot be mixed,
namely geographic parcels and land cover properties. When information is not of the
same kind, it is convenient to be able to separate the properties (e.g. a Boolean formula)
from the object to which they are attached (e.g. the spatial location or the time point),
this can be done with reified formulas.

1.b.1 Spatially reified formulas

A specific aspect of spatial information is that information is associated to parcels that
are geographically identified (the parcels are usually defined through partitions of the
territory). This means that information is of the type “property-object", where the
object is a parcel or a set of parcels. In the literature, a piece of spatial information is
often represented

• either in a relational data base style (see e.g. Laurini and Thompson work [143]):
each parcel is described in terms of attributes, and is thus associated with a set of
attribute values.

• or in the formal concept analysis domain (see [199, 116]), a relation specifies the
links between parcels and properties. In this domain a concept is a pair (extension,
intention) whose components are referring to each other in a bi-univocal way. How-
ever, in spatial information, the vocabulary is often insufficient for describing any
subset of parcels in a non-ambiguous way, or conversely given a set of properties
there may be no proper set of parcels that satisfy them and only them.

While the two previous representations could be translated in first order logic, where
constants can either represent parcels or properties, very few authors use a logical ap-
proach for handling geographical information, up to some noticeable exceptions such as
the work of Wurbel, Papini and Jeansoulin [203].

Henri Prade and I have developed a logical framework [76] in which “attributive
formulas” are linking a property statement to a set of parcels where it applies. More
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precisely, (ϕ, p) expresses that ϕ is true for each elementary parcel (i.e., set of leaves of
a given spatial ontology) satisfying p. Hence, our representational language is built on
ordered pairs of formulas of two distinct vocabularies (one for the parcels, say Vs, and one
for the properties, say Vi), here denoted (ϕ, p) and called attributive formula. Another
understanding would view (ϕ, p) as the material implication ¬p ∨ ϕ in the language
based on the union of the two vocabularies. Note that the properties and the parcels
may themselves be symbolic labels taken from a vocabulary organized in an ontology as
the ones seen in Section 1.a.2.

Observe that there exist propositional formulas built on the vocabulary Vi∪Vs which
cannot be put under the attributive form, e.g., a ∧ p1 where a is a literal of Vi and p1

a literal of Vs. However, the introduction of classical connectives (∧, ∨ and ¬) between
attributive formulas does make sense, since any pair (ϕ, p) is a classical formula. Thus,
formulas such as ¬(ϕ, p) or (ϕ1, p1) ∨ (ϕ2, p2) are logical formulas (but not necessarily
attributive ones).

The attributive formulas considered above are similar to the ones encountered in a
multi-agent extension [88] of possibilistic logic where they are used to express that any
agent in a subset has some belief ϕ. As in the multi-agent case, this formalism can be
extended in order to handle uncertainty of formulas, as well as existential quantification
on subsets of parcels.

Agr. areas Orchards
Meadows Woods

Water

Figure 1.3: Information about a region

Example 3 Let us consider the situation represented on Figure 1.3. Presented as such,
the example is ambiguous, because when there are two labels on a parcel, we do not know
if they are connected by a conjunction (meaning that several labels apply simultaneously
to the parcel) or by a disjunction (meaning that one does not know what is the right label,
but one of them applies to the parcel).

Similarly as the above example, when a label applies to a union of elementary parcels,
one may wonder if the label applies to each elementary parcel or, maybe to some of them
without knowing which of them. Clearly, this leads to four logical readings of two labels
a and b associated with an area covered by two elementary parcels p1 and p2:

i.. (a ∧ b, p1 ∨ p2): both a and b apply to each of p1 and p2.

ii.. (a ∧ b, p1) ∨ (a ∧ b, p2): both a and b apply to p1 or they both apply to p2.

iii.. (a ∨ b, p1 ∨ p2): a applies to each of p1 and p2 or b applies to each of p1 and p2.
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iv.. (a∨ b, p1)∨ (a∨ b, p2): this is the most imprecise case where we do not know what
of a or b applies to what of p1 or p2. This case may be particularized by a mutual
exclusiveness: ¬(a, p1 ∨ p2) ∧ ¬(b, p1 ∨ p2) specifying that each label cannot apply
to both parcels.

Note that there is another latent ambiguity, when a label is attached to a parcel,
regarding the localization of how the label applies to the parcel: it may apply everywhere
or only somewhere in the parcel. Observe that in the first above reading if a and b are
mutually exclusive (e.g. “Meadows” and “Agr. areas”) the everywhere understanding is
impossible.

A third kind of ambiguity is about the implicit use of the “closed world assumption”
(CWA). For instance, if a source says that a parcel contains “Meadows” and “Cereals”
does it exclude that the parcel would also include “Woods”? “Woods” would be indeed
excluded by applying CWA. Note that the application of the “closed world assumption”
may help to induce “everywhere” information from “somewhere” information.

Another need when dealing with spatial information is to be able to take into account
any spatial information even if it is imprecise or pervaded with uncertainty. For instance,
one may know that a parcel is covered either by “cereals” or by “meadows”, where the two
categories are mutually exclusive. Such a disjunctive value is not allowed in standard
relational databases, or in standard formal concept analysis, while it raises no problem in
a logical representation. Moreover, in case of imprecise information, it might be useful to
represent that some alternatives are more likely than others. Disjunction may apply also
to non mutually exclusive categories, as in the expression “cereals or vegetation” whose
intended meaning could be “it is likely to be cereals, although any other vegetation might
be possible”. It leads us to introduce uncertainty on properties. This extension is natural
in a possibilistic setting [84] since a possibilistic formula (ϕ, α) can be viewed at the meta
level as being only true or false, since either N(ϕ) ≥ α or N(ϕ) < α (where N represents
a necessity measure):

Definition 2 (uncertain attributive formula) An uncertain attributive formula is
a pair ((ϕ, α), p) meaning that for all elementary parcels satisfying p, ϕ is certain at least
at level α.

As we have seen handling spatial information may be a complex representational
task, but once the representation setting is established some other tasks may be tackled:
we have defined new inference rules based on classical inference adapted to spatially-
reified formulas. Our second study concerns fusion, indeed spatial information is often
distributed over different sources using different sensors.

1.b.2 Inference

In the case of spatially-reified information, we have proposed an adaptation of classical
inference rules (see [98, 97, 76, 105]). In our view of attributive formulas, it holds that
(ϕ, p) is equivalent to ¬p ∨ ϕ.
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We have shown that the inference rules of possibilistic logic [84] straightforwardly
extend to uncertain attributive formulas, e.g. the inference rule (¬ϕ∨ϕ′, p), (ϕ∨ϕ′′, p′) `
(ϕ′ ∨ϕ′′, p∧ p′) becomes ((¬ϕ∨ϕ′, α), p), ((ϕ∨ϕ′′, β), p′) ` ((ϕ′ ∨ϕ′′,min(α, β)), p∧ p′).

The attributive formulas associated with a somewhere reading (where a parcel p is
viewed as a collection of more elementary objects o, and (ϕ, p, s) means that ∃o ∈ p, ϕ(o))
have a different behavior w.r.t. inference. Indeed, the inference rule (ϕ, p), (ψ, p) `
(ϕ ∧ ψ, p) is no longer compatible with this reading since ∃o ∈ p, ϕ(o) and ∃o′ ∈ p, ψ(o′)
does not entail ∃o′′ ∈ p, ϕ(o′′) ∧ ψ(o′′).

1.b.3 Fusion

It is often the case that spatial information is provided by different sources, however to
exploit them it is important to be able to gather all the pieces of information in only
one consistent base. We assume in the following that the sources are equally reliable.
When the sources are consistent, fusion amounts to do an union, if they are not, the idea
is to discard less information as possible. More formally, suppose we have two pieces of
information ϕ and ψ provided by two different sources. If ϕ and ψ are consistent, the
fusion is straightforward and yields the conjunction ϕ ∧ ψ. If ϕ ∧ ψ ≡ ⊥ then at least
one of the two sources should be wrong. But, if we do not want to throw away all pieces
of information, we may still assume that one is right, this yielding the disjunction ϕ∨ ψ
as a result of the fusion.

In standard possibilistic logic, conflict becomes a matter of degree. When fusionning
two possibilistic knowledge bases K1 and K2 the idea is to consider the possibility distri-
butions [84] π1 and π2 that are semantically respectively associated to them and then to
combine those distributions. This yields so-called adaptive fusion operators [89] which
are parameterized with the level of inconsistency Inc of the knowledge base K1 ∪ K2.
These operators are such that if Inc = 0 the conjunctive min-based combination of the
distributions is retrieved, and if Inc = 1 the disjunctive max-based combination of the
distributions is obtained.

Possibilistic information fusion easily extends to attributive formulas expressing spa-
tial information. Indeed, each formula (ϕ, p) provided by a source is equivalent to the
conjunction of formulas (ϕ, pi), where the pi’s correspond to the leaves of the spatial
ontology used by this source such that pi |= p. The sources may or may not use the same
ontology of properties and the same spatial ontology this may lead to inconsistencies. In
Section 1.a.2, we have advocated the idea that different spatial ontologies should at least
share the same leaves (called elementary parcels).

Then, for each elementary parcel pi possibilistic information fusion takes place. How-
ever, if the two sources do not use the same property ontology, an additional source of
knowledge laying bare the links between the two vocabularies is necessary in order to
determine if for a given elementary parcel the sources are conflicting or not. This is
specially important if the fusion principle depends on the existence and the extent of
inconsistency between the sources.

In case of inconsistency, instead of building a disjunction, another possibility would be
to weaken the “everywhere” reading leading to inconsistency into a “somewhere” reading.
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In the particular case of an inconsistency due to a mutual exclusiveness constraint coming
from an ontology, still another way of getting rid of this inconsistency is to introduce new
labels in the ontology which would be compatible with the apparently conflicting labels.
For instance, two mutually exclusive labels such as “Vegetation” and “Lakes” might be
attached to the same area because they are intimately mixed there, hence there is no
inconsistency if a new label is introduced for this situation, namely “swamp”. This latter
option has been proposed by Doukari and Jeansoulin [80].

1.c Production Rules
[95] F. Dupin de Saint-Cyr, B. Duval, and S. Loiseau. A priori revision. In Lecture Notes in Artificial
Intelligence (Proc. of ECSQARU-01), pages 488–497, Toulouse, France, September 2001
[103] F. Dupin de Saint-Cyr and S. Loiseau. Validation and refinement versus revision. In Symposium on
verification and validation of knowledge based systems and components (EUROVAV’99), pages 163–176,
Oslo, Norway, June 1999. Kluwer Academic Publishers

1.c.1 Framework

This section is in the frame of the rule-based systems domain (initially developed under
the name “expert system” (e.g. MYCIN [179]). A rule-base system is composed of
an inference engine and a set of rules called knowledge base (abbreviated “KB”) that
are “production” rules. Production rules are different from material implications since
they can only be used in forward chaining by the inference engine. They are used to
derive new pieces of knowledge, starting from some factual information. This framework
has had famous applications in the eighties, the two main tasks required to use such
rule-based systems were first knowledge acquisition and second knowledge validation.
Acquisition techniques were based on interviews of human experts and case studies,
nowadays knowledge acquisition is more related to machine learning techniques applied
to information that can be found on the web. However the second task, first explored
by Sowa et al. [182], is still very important (and maybe more crucial to achieve with the
phenomenal rise of mass information to deal with): it consists in measuring the quality
of an existing rule base. Note that at that time inconsistency measures on knowledge
bases (see e.g. Hunter and Konieczny [128]) had not yet been developed. The reader
can refer to the articles done with my colleagues Béatrice Duval and Stephane Loiseau
[95, 103] for more details about my contribution to this domain.

In my particular study, the rule-based system contains only three kinds of propo-
sitional formulas that are facts, rules and constraints ; we distinguish between input
symbols (denoted by uppercase letters), which can compose new factual pieces of infor-
mation, and other symbols (intern symbols).

We consider the following restrictions: the possible new information is a conjunction
of input literals (input symbol or its negation) and the knowledge base is a set of Horn
clause formulas called rules denoted by: α 7→ β, where α is a conjunction of literals and
β is a non input literal, interpreted as if α is proven then β is proven. This framework
allows us to consider Modus Ponens (denoted by `MP ) as the unique inference relation.
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Example 4 Let us consider the following knowledge base KB1: Quakers (Qua) are Paci-
fists (pac), Republicans (Rep) are non Pacifists, Quakers are American (am), Americans
like Baseball (bball), and Quakers don’t like Baseball.

KB1 =


r1 : Qua 7→ pac, r2 : Rep 7→ ¬pac,
r3 : Qua 7→ am, r4 : am 7→ bball,
r5 : Qua 7→ ¬bball


The set of input symbol is {Qua,Rep}.

With this knowledge base KB1, if a new piece of information arrives and states that
Nixon is both a Quaker and a Republican, it is possible to deduce that Nixon is both
pacifist and not pacifist, a contradiction that we want to avoid.

As we noticed at the end of the previous example, when generic information is ex-
pressed by production rules, some contradiction may arise if several rules that have a
contradicting conclusion are triggered together. In the next section we will see a proposal
to avoid this problem.

1.c.2 A priori revision

As we will see in more details in Chapter 2, the problem of belief change [1, 200, 136]
is to find what can be inferred from a knowledge base when a new formula ϕ has been
added to it. It is called belief revision when ϕ is a new piece of information completing
what is currently known about the system. Note that classical revision takes place after
the arrival of a new piece of information ϕ, so this revision can be called a posteriori
revision.

The aim of the work I did with Stephane Loiseau [103] and Béatrice Duval [95] was
to propose a way to make a priori revision. In a priori revision, we have provided a way
to "armor" the KB by suppressing some rules and by forbidding to accept some new
information such that adding any allowed formula ϕ to the revised KB will not bring
inconsistency. Consequently, in the revised KB, classical monotonic inference relation
will always be usable. Given an initial KB, we were able to provide a set of armored KB
such that each one will be consistent with any conjunction ϕ of allowed input literals. In
order to do that, we compute a set of diagnoses that can explain a potential inconsistency
of the KB. A diagnosis is a pair composed by a set of integrity constraints which define
a set of input facts (conjunction of input literals) that are forbidden and by a set of
formulas that must be removed from the KB. Applying a diagnosis to a KB is called
“armoring” it.
Example 4 (continued): For Nixon example, here are some diagnoses: D0 = 〈∅, {r1,
r2, r3, r4, r5}〉, D1 = 〈∅, {r1, r3}〉, and D9 = 〈{{Rep,Qua}}, {r4}〉. If we consider D9,
the new information "Nixon is both pacifist and Quaker" represented by Rep ∧ Qua is
forbidden. Moreover, for any input fact ϕ that is not forbidden, we can guarantee that
ϕ ∪ {r1, r2, r3, r5} is consistent.

One difficulty is that it can exist many such diagnoses. In order to chose a diagnosis,
we first discard non minimal ones. Second, we use a penalty approach that provides
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criteria to prefer the diagnoses that reject or make useless the less important formulas of
KB.

A minimal diagnosis is a diagnosis that leads to minimal change in the corresponding
armored KB (i.e., which suppresses the smallest number of rules and forbids the smallest
number of input facts). If we consider the three diagnoses: D11 = 〈{{a, b}, {a, c}}, {r1}〉,
D12 = 〈{{a, b}}, {r1}〉 and D13 = 〈{{a}}, {r1}〉. D11 is not minimal because it is not
necessary to forbid the conjunction of the literals a and c to have a diagnosis; D13 is
not minimal because D12 shows that it is not necessary to forbid all the interpretations
satisfying a, it is sufficient to forbid the interpretations having a and b (D12 is minimal).

Note that the minimality principle that we used is based on the syntax. For instance,
between two diagnoses Da = 〈{a, b}, {a,¬b}}, {r1}〉 and Db = 〈{{a}}, {r1}〉, that are
equivalent semantically, the minimality criterion leads to prefer Da. This definition is
in accordance with the interpretation of the production rules (that are not equivalent to
classical material implication).

A diagnosis explicitly excludes some rules from the knowledge base. It may also
happen that some rules become useless in the revised knowledge base because they can
never be fired. A rule cannot be fired if its conditions correspond to an impossible
conjunction of input literals or if its premise can not be derived from any input.

We have proven [95]] that If a diagnosis contains a useless rule then it is not minimal.
It means that minimality and uselessness are complementary notions to evaluate diag-
noses. We can use them in order to refine the preference relation on diagnoses in a way
that we can prefer diagnoses that reject or make useless the less formulas of the initial
KB. For any rule ri of the KB, we assume an associated penalty α(ri) that represents
a degree of confidence in ri, it must be understood as the cost that the user must pay
in order to discard the rule ri. The diagnoses are compared according to the cost of the
rules that are discarded or that become useless.
Example 4 (continued): We associate a penalty to each rule.
r1 : Qua 7→ pac α1 = 5 r2 : Rep 7→ ¬pac α2 = 5
r3 : Qua 7→ am α3 = 100 r4 : am 7→ bball α4 = 5
r5 : Qua 7→ ¬bball α5 = 7

The penalty associated to r3 means that this rule is very important. The penalty-
preferred a priori revised KB corresponds to the diagnosis D9.

A difficulty with this approach is to obtain the penalties for the rules. They can
be given by an expert. If no penalty is given, each formula can be associated with a
penalty equal to 1, this approach is equivalent to count the number of formulas. If the
KB represents a default behavior of some components, penalties can be proportional to
probabilities associated to a faulty component, as done by de-Kleer and Williams in [75].

Adding a fact to an a priori revised knowledge base is very easy: it only amounts
to check if it is allowed. Now, adding a rule p 7→ c can be done if it does not exist
a set of possible inputs which can lead both to the premise p and also to a conclusion
incompatible with c. So if a rule is “allowed” then no input fact used with it will bring
inconsistencies, this is why when a rule is added there is no new input fact to forbid.

An interesting point is that a priori revision being done once for all, it means that
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incrementing can be done iteratively. However some increments are not allowed. The
computation of diagnoses as well as the incrementing process is based on a ATMS and
described in [95].

The idea of pre-processing a knowledge base was not new, Liberatore [147] had inves-
tigated the feasibility of reducing the on-line complexity of some AI problems (diagnosis,
planning, reasoning about actions, and belief revision). In particular, he has shown how
to use a pre-compilation for iterated revision: first compute a formula K ′ which can
represent the result of the classical iterated revision of K by a sequence of formulas
ϕ1, . . . , ϕn. This computation is made once for all given a knowledge base K and the
formulas ϕ1, . . . , ϕn. The on-line remaining steps consists only in computing if for a
given formula ψ, K ′ |= ψ. The use of pre-processing for revision had also been done by
Coste-Marquis and Marquis in [70] for stratified knowledge bases, the aim of the authors
was to decide, in polynomial time w.r.t. the size of the KB, if a formula is a logical con-
sequence of the pre-compiled revised knowledge base. Our, approach is linked with these
two works, but the main difference is that we place ourselves before the arrival of the
pieces of information ϕ1, . . . , ϕn. So we can view a priori revision as a pre-compilation
of the pre-compilation done by [147] and [70].

In that view, our approach has not much links with all the approaches proposed for
handling iterated-revision, first introduced by Darwiche and Pearl [73], that are based
on rankings on interpretations that can evolve with the arrival of new information. The
main difference is on the priority given to the new information: in a-priori revision the
initial knowledge is prioritary and the idea is to protect it against inconsistent evolution,
while in iterated-revision the priority is given to the new pieces of information (see e.g.
the postulates proposed by Delgrande, Dubois and Lang [77] relating prioritized merging
and iterated revision).

Notice that contrarily to classical revision, in our work, after the pre-compilation of
the a priori revised KB, addition and iterated addition of new pieces of information is
very simple, and can be done in a polynomial time.

The use of constraints and rules has already been done in the field of non-monotonic
reasoning (see for instance [41]). Indeed they are very expressive, this is why we thought
that our framework should express this two kinds of rules. Notice that some frameworks
provide more precise distinctions by ranking the rules in the knowledge base according
to their importance. This more precise distinction is done in our proposal by using
penalties (as in [102]) associated to the formulas. A refinement of a priori revision
could allow to modify the rules of the initial knowledge base. Indeed, in our current
work the pre-compilation consists only in removing rules and forbidding input facts, a
possible extension should be to attenuate some rules by precising its premise. This kind
of attenuation has been done for repairing inconsistencies, see for instance the recent
proposal of Doder and Vesic in [79].
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1.d Default rules
[106] F. Dupin de Saint-Cyr and H. Prade. Possibilistic Handling of Uncertain Default Rules with
Applications to Persistence Modeling and Fuzzy Default Reasoning. In International Conference on
Principles of Knowledge Representation and Reasoning (KR), pages 440–450. AAAI Press, 2006

1.d.1 Default rules and uncertain default rules

A default rule is a typical generic information relating some premises a to a conclusion
b. a  b translates, in the possibility theory framework, into the constraint Π(a ∧ b) >
Π(a ∧ ¬b) which expresses that having b true is strictly more possible than having it
false when a is true [38]. Default rules can not be represented by a material implication
(i.e., they are not equivalent to their contraposed formula). This is due to the fact that
the premises and the conclusion play a completely distinct role: namely the premise is
related to the context i.e., the applicability of the rule while the conclusion is a result
that is obtained only when the rule is fired. This is why this kind of rule can only be
handled in forward reasoning, like a production rule.

Defeasibility is crucial in order to be able to reason with incomplete information,
indeed in many situations it is more convenient to express general behavior concisely
without referring to exceptional cases. More precisely, using default rules has three
advantages :

• it allows to describe roughly a piece of knowledge without entering into details,
hence it is more concise

• it allows to handle default rules together with their exceptions, hence the reasoning
with default rules is non-monotonic

• knowing the precise context is not necessary since normality is assumed.

In the following, we consider a set ∆ of default rules (as defined in Section 1.d),
together with a propositional factual base FC describing all the available information
about the context. In my work done with Henri Prade [106], we have proposed a new
method for handling default rules which consists in rewriting the rules by expliciting
their exceptions in the context. The idea is to generate automatically from ∆ a set of
non-defeasible rules D in which the condition parts explicitly state that we are not in
an exceptional context to which other default rules refer. In the same time, strict rules
called “completion rules” stating that we are not in an exceptional situation are added to
a new set CR. The use of these completion rules is motivated by the need of reasoning
in presence of incomplete information: the completion allows us to still be able to apply
the modified rules which now have a more precise condition part. Note that the rules in
CR will only be used if they are consistent with the context described in FC (taking D
into account). Hence, it only requires to do a consistency test each time the context FC
is changed.
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We have proposed an algorithm for the rewriting based on System Z3. We showed
that this algorithm terminates and that the set D of strict rules given by this algorithm is
consistent. Note that each rule of the initial default knowledge base is present, modified
or not, in the resulting rule base. So, there is no loss of information as with System Z
inference. We also showed that the entailment defined on the rewriting method verifies
Reflexivity, Left logical equivalence, Right weakening, Or, Cautious monotony, Cut and
Rational monotony.

Example 5 Considering ∆ = {b  f, b  l, b ∧ w  ¬f} where b, f , l and w stand
respectively for bird, fly, have legs and wounded, we can rewrite these rules by describing
explicitly their exceptions starting from the last stratum. It gives the following knowledge
base D = {b ∧ w → ¬f, b ∧ ¬w → f, b → l}. There is only one completion rule:
CR = {b → ¬w}, hence, in the context FC = {b}, the completion rule is consistent, so
it allows us to deduce f ∧ l. In the context FC = {b ∧ w} we cannot add the completion
rule since it is inconsistent with FC so we can conclude ¬f ∧ l.

The non-monotonic inference relation called “Rewriting entailment” is a “rational
closure” entailment, and allows us to deduce more conclusions than “System Z” [161]
entailment (or its equivalent “best-out” entailment [37]). There has been other proposals
for “rational closure” inference from defaults, among them, the “lexicographic entailment”
[37, 144] is an approach that is recognized to give good results, in particular, it avoids
“blocking of inheritance problems”. Meanwhile it has a drawback, it is sensitive to direct
or indirect redundancy since it is based on a counting of the rules.

Reasoning under incomplete information by means of rules having exceptions, and
reasoning under uncertainty are two important types of reasoning that artificial intelli-
gence has studied at length and formalized in different ways in order to design inference
systems able to draw conclusions from available information as it is. They indeed address
two distinct problems, in general using symbolic and numerical approaches respectively.
However, the joint handling of exceptions and uncertainty has received little attention in
non-monotonic reasoning, up to few noticeable exceptions (see the approaches proposed
independently by Goldsmidt and Pearl [120], or by Lukasiewicz [149], or by Nicolas,
Garcia and Stephan [157]), or even conditional probabilities that do exhibit a kind4 of
non-monotonic behavior when its context part is modified). We have addressed this topic
in [76].

In order to be triggered, default rules only require “general” information, which agrees
with situations of incomplete information. However, conclusions that we want to privilege
in a given context may themselves be pervaded with uncertainty. Indeed, when a rule of
the form “if a then generally b" is stated, no estimate of the certainty of having b true in
context a is provided, even roughly. In the following definition we introduce the notion

3Pearl’s System Z [161] gives a stratification of a set of default rules s.t. the first stratum contains
the most specific rules, i.e., which do not admit exceptions (at least, expressed in the considered default
base), the second stratum has exceptions only in the first stratum and so on.

4Indeed translating the default “if a then b generally" by a constraint of the form Prob(b | a) ≥ α
violates System P postulates of non-monotonic reasoning [160, 86].

24



of uncertain default rule, in Section 1.d.3 we will discuss about the problem of handling
this kind of rule that involves a joint processing of defeasibility and uncertainty.

Definition 3 An uncertain default rule is a pair (a  b, α) where a and b are propo-
sitional formulas of L , and α is the certainty level of the rule, the symbol  is a non
classical connective encoding a non-monotonic consequence relation between a and b.

In the following, for simplicity, we use for certainty levels the real interval scale [0, 1].
However a qualitative scale could be used, since only the complete preorder between the
levels is meaningful. The intuitive meaning of (a b, α) is “by default” if a is true then b
has a certainty level at least equal to α. Note that, in general, there is no relation between
the certainty level associated with a default rule and the certainty level associated with
a more specific rule. In particular, it would be wrong to assume that the more specific
rule always provides a more certain conclusion. The status of being a default rule, is just
a proviso for possible exceptional situations to which other rules in the knowledge base
may refer.

For instance, the rule “birds with large wings fly” is more certain than “birds fly”,
while one may consider that the rule “Antarctic birds fly” is less certain than “birds fly”,
assuming that in Antarctic there are many penguins (that do not fly) together with some
more sea birds that fly.

But, even if it is less certain, the specific rule that fits the particular context of
incomplete information at hand, is the right one to use.

Moreover, handling uncertainty, at least qualitatively, in a given incomplete infor-
mation context is crucial in various situations. For example, high level descriptions of
dynamical systems often requires both the use of default rules that express persistence
(persistence rules are typical defeasible rules) and the processing of uncertainty due to
the limitation of the available information. Another illustration concerns fuzzy defaults
such as “young birds cannot fly" understood as “the younger the bird, the more certain
it cannot fly” (it has been published in [106]).

1.d.2 Particular Applications

Persistence modeling

The “frame” and “qualification” problems [151] are classical representation problems
about dynamic systems. The “frame problem” comes from the quasi-impossibility to
enumerate every fluent5 that is not changed by an action. The “qualification problem”
refers to the difficulty to exactly define all the preconditions of an action. An idea com-
mon to many proposals for solving the frame problem is to use default comportment
descriptions for expressing persistence. Stating default transitions may be also useful for
coping with the qualification problem. Besides, the available knowledge about the way a
real system under study can evolve may be incomplete. This is why uncertainty should
also be represented, at least in a qualitative way.

5A fluent is a literal representing a property of the world/system which may evolve over time.
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In this section, let A be the set of action symbols. We consider that the symbols set V
contains in addition to the symbols representing facts all the symbols do(a) where a ∈ A ,
representing action occurrences. When there is ambiguity, symbols may be indexed by
a number representing the time point in which it is considered (see Notations). The
evolution of the world is described by uncertain default rules of the form (ϕ(t)  ψ(t+k), α)
with k ≥ 1, meaning that if ϕ is true at time t then ψ is generally true at time t+k with
a certainty level of α.

In order to handle the frame problem, we have chosen to define a frame axiom. Among
all the kinds of fluents, we can distinguish persistent fluents (for which a change of value
is surprising), from non persistent ones (which are also called dynamic by Sandewall
[171]). Here, we assume that a set of non persistent literals NP is defined. Note that
occurrences of actions are clearly non persistent fluents: {do(a)|a ∈ A } ⊆ NP .

Definition 4 (frame axiom) ∀f ∈ V , if f 6∈ NP then (f(t)  f(t+1), p(f)) and if
¬f 6∈ NP then (¬f(t)  ¬f(t+1), p(¬f)) where p(f) is the persistence degree of f .

The persistence degree depends on the nature of the fluent, for instance, the fluent asleep
is persistent but it is less persistent than deaf .

Given the description of an evolving system composed of a set of uncertain default
transition rules ∆ describing its behavior (∆ contains laws describing fluents evolutions
when times goes by or actions/events occur, and default persistence rules (coming from
the frame axiom)) and a possibilistic knowledge base FC(t) that describes the initial state
of the world, we have studied the problem of predicting the next state FC(t+1) of the
world.

Fuzzy default rules

Let us outline another application for uncertain default where the certainty levels may
vary. This setting enables us to handle fuzzy default rules of the form ‘the more b, the
more it is certain that a implies c is true” (this kind of rules were first introduced by
Benferhat, Dubois and Prade in [40]). For instance, “the younger a bird is, the more
certain it cannot fly”. This kind of rule can be encoded by (b  ¬f, µy) where µy is
a certainty level depending on how young is the bird. For instance, if tweety is a bird
of known age then the plausible consequence (¬fly(tweety), µy(age(tweety))) can be
obtained.

Decreasing Persistence

The possibility to affect variable levels to a rule may be also useful in order to express
decreasing persistence (see e.g. the study done with Jérôme Lang in [99]): the more the
time goes by the less it is certain that a fluent keeps its value. A decreasing persistence
rule is generally of the form (m(t)  m(t+d), f(m, d)) where the level attached to the rule
depends on the fluent quality (highly persistent or dynamic) and of the length d of the
time interval.
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1.d.3 Inference with uncertain default rules

The core of the treatment of uncertain default rules that we proposed with Henri Prade
[106], is based on the idea of translating them into a set of uncertain (non defeasible)
rules. We had chosen to model uncertainty in the qualitative setting of possibility theory
[85, 87]. Indeed, this agrees with the qualitative nature of default rules.

Let U∆ be a set of uncertain default rules of the form (a b, α), while ∆ continues
to represent a set of default rules without certainty levels. In this approach, two types of
levels are involved: namely levels encoding specificity and levels of certainty. Although it
is possible to handle specificity by possibilistic logic in the same manner as the certainty
levels will be processed in this section, the two types of levels should not be confused
and the inference process uses the two scales separately.

We compared three methods for handling default rules, the first one in the possibilistic
counterpart [39] of System Z, the second is contextual entailment [41] and the third one
is the rewriting method presented in Section 1.d.1. In these three methods, specificity
is used to determine which rules are appropriate in the current context. We denote by
D the set of strict rules obtained from ∆ by applying one of the three methods, and we
denote by UD the corresponding set of strict rules associated with their certainty levels.
Then, in the resulting base UD, the certainty levels are taken into account in agreement
with possibility theory in order to draw plausible conclusions with their certainty levels.

The first method suffers from a drawback called the “drawning effect” in particular
when modelizing a dynamic system: all the persistence rules are drowned. One noticeable
advantage of the third method is that the deduction can be iterated without recompilation
of the default base (whereas it would be necessary with the second method).

1.d.4 Related works

There has been very few works handling both defeasibility and uncertainty, up to the
noticeable exception of system Z+ (defined by Goldsmith and Pearl [120]). In system Z+,
a default rule (a b) is extended with a parameter representing the degree of strength or
firmness of the rule and denoted by (a→δ b). In Z+, the ranking of defaults is obtained
by comparing sums of strength degrees, somewhat mixing the ideas of specificity and
strength. Separate scales for specificity and certainty are not used is this approach, this
may not always yield the expected conclusion.

Nicolas et al. [157, 156] also present an approach that deals with defeasibility and
uncertainty in a possibilistic framework. But, they combine possibilistic logic with An-
swer Set Programming rather than using the same setting for default and uncertainty
handling. Certainty levels are used in order to help to restore consistency of a logic
program by removing rules that are below a level of inconsistency. As our first method,
this approach does not avoid the drowning problem, while our two other methods do.

Using an uncertain framework in order to describe an evolving system has been done
by many authors, for instance in a probabilistic setting. But reasoning in this setting
implies to dispose of many a priori probabilities, this is why using defeasibility may help
to reduce the size of information for representing the system. Besides, it is a common idea
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to define a frame axiom in terms of default rules (see Lang et al. [142] for an overview
or my more recent production with Andreas Herzig, Jerome Lang and Pierre Marquis
in the French book “Panorama de l’intelligence artificielle” [96]). But, as far as I know,
frame rules are either considered as default rules (see Giunchiglia et al. [119], or Baral
and Lobo [31] for instance), or are associated with low priority levels (see Kakas et al.
proposal in [132]), but do not involve both default and uncertainty features.

In this chapter we have explored several representations of generic information and
have proposed inference mechanisms able to deal with inconsistency problems. The first
section concern classical inference and inconsistency checking. In the second section, we
have explained how inference can be done with spatially reified formulas. The partic-
ularity of this inference is due to the fact that some formulas apply everywhere on a
parcel and other only somewhere. Then we showed how spatial information fusion can
be handled in a possibilistic setting. The third section describes “a priori revision”, this
work concerns KB that contains production rules, and the aim is to provide a way to
protect them against incoming information that could bring inconsistency. In the fourth
section we have presented an approach aiming at reasoning with default rules. The aim
of this work is very closed to the aim of the work I did in “a priori revision” since the
idea is to transform rules into material implication but it differs on three points: 1) in
the rewriting method when the rules may bring inconsistency they are modified and not
deleted; 2) the algorithm that we provided for the rewriting method is not based on an
ATMS but rather on the stratification given by System Z; 3) the idea of the rewriting
method is to enable us to draw defeasible conclusions hence formulas are added for this
purpose while in a priori revision the added formulas are constraints forbidding some
inputs facts. Note that “rewriting” defaults by mentioning explicit exceptions is reminis-
cent of techniques used in circumscription-based approaches. Lastly, we have proposed
inference mechanisms that allow us to handle rules which are both uncertain and defeasi-
ble. The inference method has two steps: first building a set of non defeasible rules that
can be used in the current context, and then processing the uncertainty of the identified
rules in the setting of possibility theory.

As seen for a priori revision or in the applications of defeasibility, inconsistency han-
dling and representation problems are strongly related to possible changes. Since in order
to chose a representation setting one must foresee what will be the possible evolutions of
the system hence prepare oneself to manage forthcoming inconsistencies...
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Chapter 2

Reasoning about a dynamic system

Intelligence is often related to the ability to adapt oneself to any new environment, hence
handling change has been an important research domain in AI. As it is recalled in [96],
reasoning about actions and change is maybe the most classical AI topic: in particular it
is the subject of the founding article of McCarthy and Hayes [151]. Research in this area
had been very productive until the end of the nineties. It has led to propose solutions to
the different problems linked to action representation and to elaborate a typology of the
different formalisms on the basis of their expressive power [171] and to progress towards
automatic reasoning about actions and change.

There are various reasons why an agent may desire to act on the current state of a
dynamic system. It is either to modify it in order to obtain a better situation for its
own interest, or to maintain a given state, or to ensure that the successive states are
not digressing too much from a normal trajectory, or the agent may desire to acquire
a better knowledge of it. Such reasons imply some concepts (state, action, observation,
etc.) and some process relating them (planning, prediction, explanation, etc.). We focus
here on the problem of handling the arrival of new pieces of information that may be
contradictory w.r.t. what was previously believed.

The way change is taken into account has an influence on the methods for handling
generic information. There is a classical dichotomy (first discovered by Winslett [200]
and developed by Katsuno and Mendelzon [136]) between two kinds of evolutions of the
beliefs: the first one, called “revision” concerns changes in the beliefs about a system which
itself has not changed while the second one called “update” is defined by an evolution
of the system itself. Rather than the usual presentation of revision by Alchourrón,
Gärdenfors and Makinson [1], that views revision as mapping a closed logical theory
K and an input formula α to a closed logical theory K ? α. In this report, we choose
the syntactical presentation of Katsuno and Mendelzon [136], which views revision as
mapping a propositional formula ϕ (representing the initial belief state) and another
propositional formula α (the “input”) to a propositional formula ϕ ? α (representing the
belief state after revision by α). This simplification is without loss of generality whenever
the propositional language is generated by a finite set of propositional symbols (which is
the case here).
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In this chapter, we first explain the process of extrapolation (which amounts to reason
about incomplete temporal information and try to complete it), second we present our
work about causal ascription (which amounts to find what is the cause of a given tem-
poral fact) and lastly we present our work about the axiomatisation of update operators
satisfying transition constraints.

2.a Extrapolation

[101] F. Dupin de Saint-Cyr and J. Lang. Belief extrapolation (or how to reason about observations and
unpredicted change). Artificial Intelligence, 175:760–790, janvier 2011
[100] F. Dupin de Saint-Cyr and J. Lang. Belief extrapolation (or how to reason about observations
and unpredicted change). In International Conference, Principles of Knowledge Representation and
Reasoning (KR), pages 497–508. Morgan Kaufmann Publishers, avril 2002

The process of extrapolation [101, 100] starts from a set of temporal observations,
encoded by a temporal formula Ψ, and tries to complete these observations in order to
infer new information assuming that changes are exceptional. Such a process is a specific
case of chronicle completion [171]. The rationale of belief extrapolation is that as long as
nothing tells the contrary, fluents do not change. More precisely, the basic assumptions
for extrapolation operators are the following:

1. the agent observes some properties of the world at different time points, but does
not have the ability of performing actions; furthermore, if exogenous events occur,
they are perceived by the agent through the observations of their effects only (for
instance, the occurrence of the event that it rained last night is perceived by actual
rain last night, or by seeing the wet ground this morning). This is why changes
can be qualified as unpredicted.

2. the system is inertial: by default, it remains in a static state. This assumption
justifies the use of a change minimization policy.

We had introduced particular temporal formulas, called scenarios, for speaking about
series of observations at different (but precisely located) time points.

Definition 5 (scenarios) A scenario Σ is a conjunction of t-formulas for t ∈ J1, NK,
i.e., a temporal formula of the form ϕ1

(1) ∧ ... ∧ ϕ
N
(N), where ϕ

1, . . . , ϕN are formulas of
L . To simplify notations, a scenario is written under the form: Σ = 〈ϕ1, ..., ϕN 〉, where
Σ(i) = ϕi. S(N) denotes the set of all scenarios1.

As observed with spatial attributive formulas, a temporal formula is not necessarily
expressible by a scenario. Hence, considering scenarios only is not sufficient if we want
to express implications between fluents at different time points, or observations whose
temporal location is imprecise.

1Formally, we should write SV ,N , since the set of scenarios has been defined for a given set of
propositional symbols V and a fixed N . However, for sake of lightness, we omit the subscripts when
there is no ambiguity.
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Example 6 Let V = {a, b} and N = 3. a(1) ∧ (a(2) ∨ ¬b(2)) ∧ >(3) is a scenario, more
simply denoted by 〈a, a ∨ ¬b,>〉. a(1) ∨ b(2) is a temporal formula (but not a scenario).

2.a.1 Extrapolation Semantic

Definition 6 (trajectories) TRAJ(N) = 2V(N) denotes the set of all interpretations
for V(N), called trajectories. For shortness, a trajectory is represented by a sequence
τ = 〈τ(1), . . . ,τ(N)〉 of interpretations in Ω. The satisfaction of a temporal formula
Ψ ∈ L(N) by a trajectory τ ∈ TRAJ(N) is defined as in standard propositional logic
and is denoted by τ |= Ψ. Traj(Ψ) = {τ ∈ TRAJ(N)|τ |= Ψ} is the set of trajectories
satisfying Ψ. A temporal formula Ψ is consistent iff Traj(Ψ) 6= ∅. A trajectory τ is
static iff τ(1) = ... = τ(N).

If τ is a trajectory and v ∈ V, we denote by τ(t)(v) the truth value of v at time t in
τ , that is, τ(t)(v) = true if τ(t) |= v and τ(t)(v) = false if τ(t) |= ¬v.

m1:abc
m2:abc
m3:abc
m4:abc
m5:abc
m6:abc
m7:abc
m8:abc

1 2 3 4 5t:
Σ: a a ∨ c b ¬a ∨ ¬b ¬c

τ1

τ0

Figure 2.1: Two trajectories satisfying Σ = 〈a, a ∨ c, b,¬a ∨ ¬b,¬c〉

Example 7 Let us consider the scenario Σ = 〈a, a ∨ c, b,¬a ∨ ¬b,¬c〉. The trajecto-
ries satisfying Σ are all those connecting the big dots of Figure 2.1. Two of them are
represented: τ0 = 〈 m3, m7, m5, m5, m8 〉 and τ1 = 〈 m2, m2, m2, m4, m4 〉.

We define the change set of a trajectory as the set of all pairs consisting of a literal
and a time point such that the literal becomes true at this time point. Note that a
trajectory τ can be unambiguously defined by one of its states (for instance, its initial
state τ(1)) and its change set.

Definition 7 (change set)
The change set Ch(τ) of a trajectory τ is defined by:

Ch(τ) =

{
〈l, t〉

∣∣∣∣ l ∈ LIT, t ∈ J2, NK,
τ(t− 1) |= ¬l and τ(t) |= l

}
Notation: Ch(τ)(t) = {{l | 〈l, t〉 ∈ Ch(τ)} is the set of literals changing to true at

time point t
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For instance, in the previous example, Ch(τ0) = {〈¬a, 2〉, 〈b, 3〉, 〈¬b, 5〉, 〈¬c, 5〉} and
Ch(τ1) = {〈¬b, 4〉}. Ch(τ0)(5) = {¬b,¬c}.

Semantically, extrapolation consists in finding the preferred trajectories satisfying Ψ,
with respect to some given preference relation between trajectories (this is similar to
many approaches to non-monotonic reasoning, where we select preferred models among
those that satisfy a formula). A preference relation on trajectory � is a reflexive and
transitive relation on TRAJ(N) (not necessarily connected). τ � τ ′ means that τ is at
least as preferred2 as τ ′.

In this section, most preference relations are inertial (i.e., static trajectories are al-
ways preferred to non-static ones) and change-monotonic (i.e., they can be defined from
a comparison of their change sets). We are now in position to formally define an extrap-
olation operator.

Definition 8 (extrapolation operator)
Let � be an inertial preference relation on TRAJ(N). The extrapolation operator induced
by � maps every temporal formula Ψ to another temporal formula E�(Ψ), unique up to
logical equivalence, which is satisfied exactly by the preferred trajectories among those
that satisfy Ψ. More formally, E� is a mapping from L(N) to L(N) such that

Traj(E�(Ψ)) = min(�, T raj(Ψ))

If � is complete then E� is said to be a complete extrapolation operator.

Note that we have required � to be inertial. This condition will be droped for
extended extrapolation operators (see Section 2.b).

As said before, we give special attention to the case where the input is a scenario and
we define the operator that associates with each initial scenario an extrapolated scenario
defined as the scenario projection of its extrapolation. Formally: Ex is the mapping from
S(N) to S(N) defined by Ex(Σ) = S(E(Σ)) where S(ϕ) is the scenario approximation of
the formula ϕ s.t. Mod(S(ϕ)(t)) = {τ(t)|τ ∈ Traj(ϕ)}. Scenario-scenario extrapolation
is semantically characterized by:

Traj(Ex(Σ))(t) = {τ(t) | τ ∈ min(�, T raj(Σ))}

Example 8 Let V = {a} and N = 2. The four possible trajectories are τ1 = 〈a, a〉,
τ2 = 〈a,¬a〉, τ3 = 〈¬a, a〉 and τ4 = 〈¬a,¬a〉. Consider the preference relation � defined
by τ1 ∼ τ4 ≺ τ2 ∼ τ3. Let Σ = 〈>,>〉. We have Traj(Σ) = {τ1, τ2, τ3, τ4} and
min(�, T raj(Σ)) = {τ1, τ4}, from which we get E�(Σ) = (a(1) ∧ a(2)) ∨ (¬a(1) ∧ ¬a(2))
and Ex�(Σ) = Ex�(>(1) ∧ >(2)) = 〈>,>〉.

This example shows that unlike formula-formula extrapolation E, scenario-scenario
extrapolation Ex generally leads to a loss of information. This is due to the fact that for
a given set X of trajectories there is generally no scenario Σ such that Traj(Σ) = X.

2Here, preference has to be interpreted in terms of plausibility, and not in decision-theoretic terms:
τ � τ ′ means that τ is at least as plausible as τ ′.
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a

a

1 2t:
Σ: > >

τ1

τ4

τ2 τ3

Figure 2.2: The four trajectories satisfying Σ = 〈>,>〉

2.a.2 Some extrapolation operators

We have studied several examples of typical, inertial and change-based preference rela-
tions together with their associated extrapolation operators. Although there are as many
change-based preference relations as preference relations on the set of all possible change
sets, there is a reasonable number of prototypical change-based relations obtained by
making some natural neutrality assumptions on fluents and on time points.

For instance �nct preference relation (nct standing for number of change time points)
prefers trajectories in which changes occur at fewer time points. Now, nct does not
distinguish trajectories having time points with a single change from the one that has
several changes per time points. �nc prefers trajectories with a minimal number of
changes, and �csi prefers a trajectory to another if there is a change set inclusion between
their respective change sets.
Example 7 (continued): The trajectory τ1 is preferred to τ0 wrt nct relation and wrt
nc. However, τ2 = 〈m3,m3,m6,m6,m6〉 which has three changes at time point 3 will be
equivalent to τ1 with nct while be less preferred by nc.

In all, we have obtained 15 “natural” preference relations, assuming neutrality between
time points and fluents. These relations have been refined by giving three ways of relaxing
the neutrality assumption:

chronologically by giving priority to later or earlier time points in change sets. For
instance, �csi can be refine into a preference relation that prefers trajectories where
changes occurs as late as possible. This policy is called chronological minimization
in [178] and is extensively discussed in [171]. It is defined by:

τ �chr τ ′ if Ch(τ) = Ch(τ ′) or ∃k ∈ J1, NK s.t.
{
Ch(τ)(k) ⊂ Ch(τ ′)(k)
∀t < k,Ch(τ)(t) = Ch(τ ′)(t)

fluent penalties by giving priority to some changes over others according to the nature
of the fluents: this was done by associating penalties to fluents.

event penalties by considering events as sets of dependent changes rather than atomic
changes with a event-based penalty preference relation (see Section 2.b for a more
detailed study of this kind of relation).
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2.a.3 Extrapolation and belief change

Extrapolation and revision

Belief revision is often thought of as dealing with static worlds, therefore with formulas
pertaining to the same time point. However, as remarked by Friedman and Halpern
in [115], “what is important for revision is not that the world is static, but that the
propositions used to describe the world are static”. That is, nothing prevents us from
considering revision operators in a language generated from a set of time-stamped propo-
sitional symbols. We have shown in [101], that belief extrapolation is a specific instance of
belief revision (on a time-stamped language): extrapolation amounts to revising the prior
belief that all fluents persist throughout time by the observations. More precisely, the fact
that all fluents persist throughout time is represented by a set of persistence rules defined
by PERS =

∧
v∈V

∧N−1
t=1 v(t) ↔ v(t+1) it is the temporal formula having for models the

set of static trajectories (PERS is true if and only if no change occurs between time 1
and time N). This result in turn allowed us for deriving easily a representation theorem
for extrapolation.

Theorem 1 E : L(N) → L(N) is a complete extrapolation operator iff it satisfies Ex1 to
Ex6.

Ex1 E(Ψ) |= Ψ

Ex2 If PERS ∧Ψ is satisfiable then E(Ψ) ≡ PERS ∧Ψ.

Ex3 If Ψ is satisfiable then E(Ψ) is satisfiable.

Ex4 If Ψ ≡ Ψ′ then E(Ψ) ≡ E(Ψ′).

Ex5 E(Ψ) ∧Ψ′ |= E(Ψ ∧Ψ′)

Ex6 If E(Ψ) ∧Ψ′ is consistent then E(Ψ ∧Ψ′) |= E(Ψ) ∧Ψ′.

These postulates Ex1-Ex6 correspond to the postulates R1-R6 of Katsuno and Mendel-
zon [137]3 . Note that when Ψ is a scenario Σ, (Ex2) comes down to

Ex2S If
∧N
t=1 Σ(t) is satisfiable then for every t ≤ N , E(Σ)(t) ≡

∧N
t=1 Σ(t).

3Katsuno and Mendelzon’s formulation of the AGM postulates for belief revision are:

• R1: ϕ ◦ µ implies µ

• R2: If ϕ ∧ µ is satisfiable then ϕ ◦ µ ≡ ϕ ∧ µ.
• R3: If µ is satisfiable then ϕ ◦ µ is also satisfiable.

• R4: If ϕ1 ≡ ϕ2 and µ1 ≡ µ2 then ϕ1 ◦ µ1 ≡ ϕ2 ◦ µ2.

• R5: (ϕ ◦ µ1) ∧ µ2 implies ϕ ◦ (µ1 ∧ µ2).

• R6: If (ϕ ◦ µ1) ∧ µ2 is satisfiable then ϕ ◦ (µ1 ∧ µ2) implies (ϕ ◦ µ1) ∧ µ2.

where ϕ,ϕ1, ϕ2, µ, µ1, µ2 are propositional formulas and ◦ is the revision operator that associates with
two formulas ϕ and µ a propositional formula denoted ϕ ◦ µ resulting from revising ϕ by µ.
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An immediate – but important – property deriving from Ex1, Ex4 and Ex5 is that
extrapolation is idempotent: E(E(Ψ)) ≡ E(Ψ).

The previous representation theorem characterizes extrapolation operators that are
defined on complete inertial orderings, but intuitively, it is natural to expect such or-
derings to be incomplete, allowing two trajectories to be incomparable. We have also
shown that incomplete extrapolation operators can also be characterized by the set of
postulates Ex1-Ex5, E7, E8 with

E7 If E(Ψ) |= Ψ′ and E(Ψ′) |= Ψ then E(Ψ) ≡ E(Ψ′).

E8 E(Ψ) ∧ E(Ψ′) |= E(Ψ ∧Ψ′)

Hence technically speaking, an extrapolation operator is a revision operator on a
time-stamped language where the initial belief state is fixed (to PERS). Is it nothing
more than that? The answer is both positive and negative. Positive, because indeed,
any extrapolation operator can be seen as a revision operator. Negative, because the
temporal structure makes extrapolation a specific class of belief change operators with
its specific properties.

We end this section by briefly discussing the possible connections between extrapola-
tion and Lehmann’s iterated belief revision [144]. An iterated revision function maps
any sequence of formulas σ = 〈ϕ1, . . . , ϕn〉 to a belief state [σ] resulting from the
sequence σ of individual revisions (only the final result is considered). The differ-
ence between extrapolation and iterated revision is clear when considering the follow-
ing example: let Σ = 〈a → b, a,¬a〉; any “reasonable” extrapolation operator satisfies
Ex(Σ) = 〈a ∧ b, a ∧ b,¬a ∧ b〉 (the change from a to ¬a between 2 and 3 being certain,
the preferred trajectory is the one containing no other changes). Now, Lehmann’s iter-
ated revision, and also most iterated revision operators defined on epistemic states (e.g.,
[42, 73]) give [a→ b, a,¬a] = ¬a. The reason for this difference is that iterated revision
is concerned with pieces of information concerning a static world; what evolves is the
agent’s belief state, not the state of the world. Therefore, once the new information ¬a
has “cancelled” the preceding one, the reasons to believe in b have disappeared. This
strong “directivity” of time in iterated revision contrasts with extrapolation, where past
and future can often be interchanged (as soon as Reversibility4 holds).

Extrapolation and update

The key property of belief update [136, 200] is Katsuno and Mendelzon’s postulate U8
which tells that models of K are updated independently:

U8 (K1 ∨K2) � ϕ↔ (K1 � ϕ) ∨ (K2 � ϕ)

Belief update only considers two time points and takes as input a pair (K,α) of
formulas referring respectively to t = 1 and t = 2. Rephrasing the framework of belief
update in terms of extrapolation will amount to consider a scenario Σ = 〈K,α〉 and

4see “Temporal properties”
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compute a completed belief set at time 2. At first glance, this extrapolation may look
similar to belief update. However, we have proven that this is not the case. The main
reason for this result is that as soon as the language contains at least two propositional
symbols, the AGM postulates are inconsistent with U8 (see for instance [124]).

Extrapolation and update complete each other and, in order to be able to reason
both with implicit and explicit change, we can integrate both. This has been developed
in my work about causal ascription [91] (see Section 2.b) under the name event-based
extrapolation.

Temporal properties of extrapolation

We have defined and characterized the following temporal properties (i.e., they explicitly
refer to the flow of time) for extrapolation operators:

• Inertia is, by definition, satisfied by all extrapolation operators.

• Reversibility expresses that “forward” persistence (inferring beliefs from the past
to the future) and “backward” persistence (inferring beliefs from the future to the
past) are symmetric. Its formal definition is based on the reverse of a temporal
formula which is a formula obtained by replacing each occurrence of any variable
x(t) by x(N−t+1); more precisely, an extrapolation operator satisfies Reversibility if
and only if ∀Ψ ∈ L(N), we have Reverse(E(Ψ)) = E(Reverse(Ψ)).

We have provided a semantic characterization (based on the preference relation
on trajectories that should be indifferent to the reversal of trajectories). We have
shown that Reversibility holds for many of the “typical” extrapolation operators,
which sheds more light on how extrapolation departs from (iterated) revision and
update, which obviously don’t satisfy it. Note that Reversibility is strongly linked
to the equal plausibility of a change from a to ¬a.

• The Markovianity property says that as soon as there is a complete observation
at a given time point k, an extrapolation problem can be decomposed into two
independent sub-problems: the first one up to k and the second one from k on.
For this we had to work with families of extrapolation operators, parameterized by
N , rather than for a fixed N , similarly, the length of scenarios could also vary. We
were able to provide a sufficient condition for Markovianity based on the fact that
the preference relation should be decomposable (i.e., comparing two trajectories
may be done by decomposing those trajectories into two parts and comparing the
combination of each two parts): if the preference relation is decomposable then Ex
satisfies Markovianity.

We have shown that most operators satisfy Markovianity, but that the property
fails typically for operators that use a global minimization like Exicl (inclusion of
changing literal which compares by inclusion the set of literals that have changed).

• Independence from empty observations (IEO) expresses that adding an empty ob-
servation between two observations should not change anything to the way obser-

36



vations are extrapolated — or, in other words, the choice of the time unit has no
influence on extrapolated beliefs.

We were able to provide a sufficient (but not necessary) condition for an extrapo-
lation operator to comply with (IEO) and we showed that all the typical operators
that we had defined satisfy it.

2.a.4 Computational issues

We have obtained complexity results for several preference relation �x concerning the
two decision problems:

• extrax: given two temporal formulas Ψ1,Ψ2, decide whether Ex(Ψ1) |= Ψ2;

• extra-scx: given two scenarios Σ and Σ′, decide whether Exx(Σ) |= Σ′.

For instance we have showed that extrax and extra-scx are Πp
2-complete for every

x ∈ {csi, icl, chr} while extranc and extra-scnc are ∆P
2 (O(log n))-complete.

Moreover we have provided an algorithm for the practical computation of extrapolated
beliefs. A bad news is that techniques for computing extrapolation are generally sensitive
to the choice of the preference relation, which means that, to a large extent, the study
has to be done independently for each preference relation. Considering all preference
relations we had studied would have been far too long. Rather, we had focused on the
“prototypical” preference relation �csi, and on scenario-scenario extrapolation.

We have shown that the computation of the preferred trajectories of a given scenario
Σ w.r.t. �csi (corresponding to the set of what we call minimal explanations for this
scenario) could be done in four steps :

1. for each variable, compute its relevant time points for Σ (i.e., the times points where
there are some observations that are “relevant” to v. This notion of relevance was
expressed similarly as in Lang et al. [142]), a formula ϕ is relevant for a variable v
if any formula equivalent to ϕ contains v.

2. generate the persistence formulas (of the form v(t) ↔ v(t′)) associated to each
variable w.r.t. its relevant time points (computed at step 1), in order to express
that v persists between two consecutive relevant observations;

3. select the maximal subsets of persistence formulas consistent with Σ;

4. compute the minimal change sets corresponding to the maximal persistence sets
(obtained at step 3).

Given a scenario Σ (of length N), the number of minimal explanations (i.e., minimal
change sets that are consistent with Σ) can be very large, even when the number of
changes is small:
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Example 9 Σ0 = 〈a∧ b∧ c∧ d, >, ¬b, d, ¬a, >, b, ¬c∨¬d〉 has 352 minimal explana-
tions (and as many minimal trajectories). Now, these 352 minimal explanations can be
expressed compactly: γ is a minimal explanation for Σ0 iff it contains exactly the follow-
ing changes: 〈¬a, t〉 for exactly one t ∈ {2..5};〈¬b, t〉 for exactly one t ∈ {2, 3}; 〈b, t〉 for
exactly one t ∈ {4..7}; either 〈¬c, t〉 for one t ∈ {2..8} or 〈¬d, t〉 for one t ∈ {5..8}.

These explanations can be represented more succinctly in what we have called compact
change sets, which are sets of change “contiguous” sets. Intuitively, a compact change set
consists of the disjunction of all the change sets it covers, e.g., two maximally compact
change sets are covering the previous example: {〈¬a, 2, 5〉, 〈¬b, 2, 3〉, 〈b, 4, 7〉, 〈¬c, 2, 8〉}
and {〈¬a, 2, 5〉, 〈¬b, 2, 3〉, 〈b, 4, 7〉, 〈¬d, 5, 8〉}.

We have shown that finding a covering set of compact explanations can be seen as
a logic-based abduction problem (where abducibles correspond to elementary changes),
and can be computed using dedicated algorithms, hence complexity results and tractable
classes that were obtained by Eiter and Gotlob [107] can be used to find some tractable
sub-classes of belief extrapolation.

2.b Causal ascription

[101] F. Dupin de Saint-Cyr and J. Lang. Belief extrapolation (or how to reason about observations and
unpredicted change). Artificial Intelligence, 175:760–790, janvier 2011
[91] F. Dupin de Saint-Cyr. Scenario Update Applied to Causal Reasoning. In International Conference
on Principles of Knowledge Representation and Reasoning (KR), pages 188–197. AAAI Press, 2008

In [91], we have proposed to define a kind of hypothetical reasoning using both update
and extrapolation, which amounts to compute what could have happened if something
had been different in a given story. Updating scenarios allows us to define formally the
counter-factual aspect of causation: to check if an event is a cause in a given scenario
amounts to update this scenario by the non-occurrence of this event. In many situations,
this question is fundamental, since it may help to assign responsibilities, it may clarify
causal relations, and enable people to distinguish variables which have a determining
impact on the future from those which finally have no influence. This approach was
developed in the context of the ANR project MICRAC (Computational and cognitive
models of causal reasoning) 2005-2008.

2.b.1 Event-Based Extrapolation

In this section, we show how we had introduced explicitly events in basic extrapolation,
we had started to work on it in [100] and developed it in [91] in order to encode causality.
An event is an operation which induces a change in the normal course of the evolution. In
the literature, events are often described by their effects and their preconditions. Here,
we assume that the system evolution is described in a similar way as in the work of
Boutilier [61], where the plausibility of events, as well as their dynamics, are modeled by
ordinal conditional functions.
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Definition 9 (Event encoding) Given a set of event symbols Ev, the two following
functions are available:
- the function ke measures the surprise degree associated with the simultaneous occur-
rence of a set of events in a situation: ke : Ω× 2Ev → N ∪ {∞}
- the function km that allows to obtain a penalty distribution over the possible situa-
tions (representing the surprise degree associated with the different situations after the
simultaneous occurrences of a set of events in a situation): km : Ω×2Ev×Ω→ N∪{∞}.

An infinite surprise degree means that the occurrence of the event (resp. the transi-
tion) is impossible. The two available characteristic functions ke and km are supposed
to be coherent with a given action theory. ke generalizes the function “Precond” (for
preconditions) of STRIPS [110] which defines necessary conditions for the occurrence of
one event. It is supposed to be defined for any set of events (events which took place
simultaneously). Here, the function km does not impose to have deterministic events as
in the case of the function Result of the situations calculus [151].

Note that this definition is under the strong assumption of a Markovian behavior of
the system, i.e., the evolution of the system does not depend on its history but only on
its current state. Taking into account non Markovian fluents would need a more heavy
formalism and was left outside the scope of scenario update.

An “inert” system (in the classification of Sandewall [171]) is a system where no fluent
is temporary. Thus, if no event occurs then the state of the world does not change and
the occurrence of any event is surprising.

Definition 10 (Inert System) The system is inert iff ∀m,m′ ∈ Ω, ∀ev ⊆ Ev,

1. km(m,∅,m′) = 0 ⇔ m = m′ and

2. ke(m, ev) = 0 ⇔ ev = ∅

Thanks to temporal formulas it is possible to represent scenarios containing at the
same time observations of facts and observations of event occurrences.

Definition 11 (Mixed Temporal Formula) Let Ev be a set of event symbols (de-
noted ε1, . . . , εP )5. Let V ′ = V ∪ Ev and V ′(N) = {v(t)|(v ∈ V and t ∈ J1, NK) or
(v ∈ Ev, and t ∈ J1, N − 1K)} its set of associated time-stamped variables. We denote by
LIT ′ the set of literals built from V ′. A mixed temporal formula is built on the variables
of V ′(N) with the usual connectors and constants. Let L ′

(N) be the set of these formulas.

The formula: d(1) ∧ εcd(1) ∧ ¬d(2) is an example of mixed temporal formula expressing
that the door was open (d was true) at time point 1 and the event εcd has occurred
(meaning for instance that “somebody has closed the door”) at time point 1 and at time
point 2 the door was closed.

5More precisely, the symbol εi does not denote the event itself but its occurrence.
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Definition 12 (Mixed Trajectory) A mixed situation s is an interpretation of V ′. A
mixed trajectory corresponds to a truth value assignment to the variables of V ′(N). Every
mixed trajectory τ can be represented by a sequence τ = 〈τ(1), . . . τ(N)〉 of interpretations
of V ′. Let TRAJ ′(N) denote the set of mixed trajectories.
A mixed trajectory is called static if{
∀t ∈ J1, (N − 1)K, e(τ(t)) = ∅ and
∀t ∈ J1, NK, f(τ(1)) = ... = f(τ(N)).
where f(s) denote the facts that hold in the situation s (interpretations of V ) and

e(s) the events that occur in s (interpretations of Ev).

The cost of a trajectory corresponds to the sum for each time point of the surprise
degree associated to the occurrence of the events at this time point added to the surprise
degree to reach the following situation being given the occurrence of these events at the
previous time point.

Definition 13 (Cost of Mixed Trajectory) The cost of a trajectory τ is:

k(τ) =

N−1∑
t=1

ke(f(τ(t)), e(τ(t)) + km(f(τ(t)), e(τ(t)), f(τ(t+ 1)))

where f(s) denote the facts that hold in the situation s and e(s) the events that occur in
s.

We consider the cost of the events which occurred between time point 1 and N-1
without taking account of those which occurred at the last moment since they have no
impact. Let us note that, here, the surprise degree associated with the occurrence of an
event or the surprise degree associated with obtaining a given situation are quantified
in terms of penalties. Besides, the use of penalties to characterize surprise degrees has
been proposed initially by Sandewall in [170]. This choice is justified by the intrinsically
additive and compensatory character of surprises, but the use of other measures like
probabilities or possibilities is completely possible. One can refer to [102] for a study of
the links between these various measures.

Belief extrapolation extended to mixed formulas is defined by means of a preference
relation on trajectories which minimizes their cost, i.e., which minimizes the surprise
degree associated with the events of these trajectories.

Definition 14 Given a mixed temporal formula Ψ, the extended extrapolation of Ψ is
defined by: EE : L ′

(N) → L ′
(N) such that: Mod(EE(Ψ)) = {τ | τ ∈ min(k,Mod(Ψ))}

Example 10 Two agents a and b share their life between Toulouse and London. I re-
ceived a postcard from London but I could not read the signature, it was one of them but
I do not know who exactly. Hence a or b was in London at time point 1: a(1)∨ b(1) where
a(t) (resp. b(t)) denotes the fact that a (resp. b) is in London at time point t. I learn
that the day after they have exchanged secret documents, hence either they were together
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m1:ab
m2:ab
m3:ab
m4:ab

1 2 3t:
Σ: a ∨ b a↔ b ¬a ∨ ¬b

τ1

τ2

τ3

τ4

ε¬b

ε¬aε¬a

ε¬b

Figure 2.3: Spy story

either in London or in Toulouse that day: a(2) ↔ b(2). I know that one of them was seen
in Toulouse two days after: ¬a(3)∨¬b(3). I know that they prefer not to travel together in
order to avoid suspicion. Hence, I can extrapolate four possibilities (considering only the
less surprising ones, see Figure 2.3): either they were both in London, they met there and
then one of them left (it makes two possibilities τ1 and τ2 according to the identity of the
agent who left), either only one of them was in London, he left London and they met in
Toulouse (it also gives two possibilities τ3 and τ4). Traj(EE(Σ)) = {τ1, τ2, τ3, τ4}. If
we encode the event of living London to Toulouse by ε¬a for the first agent (and ε¬b) for
the second agent, we obtain EE(Σ) |= (ε¬a(1)⊕ ε

¬b
(1))⊕ (ε¬a(2)⊕ ε

¬b
(2)) where ⊕ is the exclusive

or.

We have shown that an extended extrapolation operator EE satisfies the extended
postulates of belief extrapolation Ex1, Ex2′ . . . Ex6 where Ex2′ replace the postulate
Ex2 since PERS′ involve event occurrence whereas the initial postulate did not, more
precisely,
Ex2’ : if PERS′ ∧Ψ is consistent then E(Ψ) ≡ PERS′ ∧Ψ
with PERS′ =

∧
t∈J1,N−1K(

∧
v∈V v(t) ↔ v(t+1) ∧

∧
ε∈Ev ¬ε(t)).

We can rephrase extended extrapolation in terms of revision since it amounts to revise
the formulas describing the natural evolution of the system (static and dynamic laws) by
the formula to extrapolate. This extrapolation operator is based on a preference relation
on trajectories which minimizes at the same time the occurrences of surprising events
and the surprising transitions. Note that in this version of Ex2’, the system is supposed
to be inert (see Definition 10).

2.b.2 The Question of “What would have occurred if...”

The question tackled in this paragraph is: being given a factual story and a knowledge of
the dynamics of the system, what would occur if someone imposes a change in this story?
Within our formal framework, the story is a sequence of observations (events or facts),
i.e., a mixed scenario or more generally, a mixed temporal formula. The knowledge of
the dynamics of the system corresponds to laws of evolution of the world summarized by
the cost functions ke and km. Let us examine again the spy-story example:
Example 10 (continued): Now, there are two interesting questions:
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1. What can I conclude if I learn that Gatwick airport in London was closed (because
of a strike of the controllers) at time point 1, preventing any flight between London
and Toulouse between time point 1 and 2:¬ε¬a(1) ∧ ¬ε

¬b
(1).

2. What would have happened if the police had set up a security check in Gatwick
airport? (and would have been able to arrest any suspect agent, hence forbidding
them to fly): ¬ε¬a(1) ∧ ¬ε

¬b
(1)

While the two questions are expressed by the same formula they do not imply the same
reasoning. The first question implies that I should take into account a new piece of
information about this story, I should complete my knowledge, it means that among all
possible trajectories, I am able to be more selective and pick the ones that are in agreement
with the new piece of information, or if no trajectory is in agreement, I should correct
minimally my beliefs in order to obtain a possible trajectory. In our case, I will conclude
that they were both in London and they left after their meeting.

The second question implies that I should make an hypothetical reasoning about what
the story becomes if something change, hence I should consider every possibility and see
how it may evolve. Hence the four initial trajectories (see Figure 2.3)should be reviewed,
for τ1 and τ2 the hypothesis does not change anything, if the two agents where in London
and met there then they were not at the airport when the police check point could have
been set up. While for τ3 and τ4 corresponding to the trajectories in which an agent
should leave London at time point 1, the consequences of such a supposition could be
more dramatic, since the agent could have been arrested in London and then he could not
have exchanged information with its colleague and so on...

In this toy example, we can see that the first reasoning is a belief revision while in the
second case the reasoning is an update. A main claim of this study is that the question
of “what would have happened if ...” is an update operation. Note that the update of this
example has been chosen with a formula containing only occurrences of events but we
could have chosen to update by a fact, for instance we could have wondered what would
have occurred if the first agent had been in Toulouse at time 2: ¬a(2).

To define in practice the update of mixed temporal formulas by an instantaneous
formula, we need to define a preference relation between trajectories w.r.t. any initial
given trajectory.

Many preorderings can be proposed to compare two trajectories with respect to a
same third (we have adapted every change-based preorderings defined for classical ex-
trapolation in order to obtain preorderings w.r.t. a given trajectory). For our specific
purpose of hypothetical reasoning, we have provided a new preference relation called
chronological closeness such that the trajectories that are identical to the initial trajec-
tory w.r.t. events occurrences should be preferred. Concerning facts they also should
be identical before the time point of the instantaneous formula. Indeed in the spy story
example, we can notice that the facts that were believed to hold after time point 2 are
no longer necessarily true. In summary, we chose to minimize chronologically the event
distances on the entire trajectory and minimize chronologically the fact distances only
until the change time point. This relation implies that any trajectory is closer to itself
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Figure 2.4: Trajectories satisfying ¬a(2)

than to other trajectories. Note that this is not a strict preference, i.e., the relation sug-
gested is not strictly faithful in the sense of Katsuno and Mendelzon6 some trajectories
may have the same sequence of events and differ only in the sequence of situations after
time point p but be as preferred as the reference trajectory. This idea is an extension
of the idea of branching time concerning the future and linear time concerning the past
[66].

Intuitively, the update of a mixed temporal formula Ψ by an instantaneous mixed
formula ϕ(t), denoted Ψ�tϕ(t), consists in calculating for each preferred (i.e., less surpris-
ing) trajectory τ satisfying Ψ, the possible trajectories satisfying ϕ(t) that are closest to
τ . The result is the union for each initial trajectory of the closest trajectories obtained.
Example 10 (continued): If we want to know what would have occurred if the first
agent had been in Toulouse at time point 2 then it is necessary to calculate Σ �2 ¬a(2). It
requires to compute the possible trajectories in which ¬a(2) holds; then select in this set,
the trajectories closest to each of the 4 initial trajectories drawn on Figure 2.3.

In this example, we suppose that the definitions of the surprise degrees associated with
the transitions of the system allow to obtain the 32 possible trajectories satisfying ¬a(2):
16 trajectories passing by ¬a(2)b(2) and 16 by ¬a(2)¬b(2) see Figure 2.4.

Note that τ3 and τ4 belong to this set. τ3 is strictly closer to itself than the 31
other trajectories. It is the same for τ4. In τ1 there was only one event occurring at
time 2, namely ε¬b. We can found one trajectory having the same curses of events,
namely: τ5 = 〈(m3,∅), (m3, {ε¬b}), (m4,∅)〉. This trajectory is the closest to τ1 w.r.t.
chronological closeness among all the 32 possible trajectories. Concerning τ2, there is no
trajectory identical for event occurrences, but two trajectories have only one difference
with it: namely the two static trajectories τ6 = 〈(m3,∅), (m3,∅), (m3,∅)〉 and τ7 =
〈(m4,∅), (m4,∅), (m4,∅)〉. But τ6 is closer since its situation at time point 1 less differs
from τ2 than τ7. Finally, we obtain exactly 4 trajectories satisfying Σ�(2)¬a(2): τ3, τ4,τ5

and τ6. In each trajectory the first agent stays in Toulouse at time 3. In this hypothetical
reasoning, one cannot conclude on the fact that the two agents could meet or not.

We have shown that the syntactic operator corresponding to the chronological close-
ness preference relation is an update operator in the sense of the definition we gave in
[81]. More precisely, in the proposal that we made in [81], the postulate U1 is not nec-

6 A faithful assignment is a function that associates with each ω ∈ Ω a complete preorder �ω such
that ∀ω1 ∈ Ω, ω ≺ω ω1 where ≺ is defined classically from � as follows: x ≺ y iff (x � y and y 6� x)
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essary since it can be deduce from U3bis, U5 and U10. The set U3bis, U4, U5, U8, U9
and U10 is minimal and complete with respect to the representation theorem7 where
U1 (K � ϕ) implies ϕ.
U3bis K � ϕ consistent implies K � (ϕ ∨ ψ) consistent.
U4 If K1↔ K2 and ϕ1 ↔ ϕ2 then (K1 � ϕ1)↔ (K2 � ϕ2).
U5 (K � ϕ) ∧ ψ implies (K � (ϕ ∧ ψ)).
U8 (K1 ∨K2) � ϕ↔ (K1 � ϕ) ∨ (K2 � ϕ).
U9 If K is deductively closed and (K �ϕ1)∧ϕ2 is consistent then (K � (ϕ1∧ϕ2)) implies
((K � ϕ1) ∧ ϕ2)).
U10 ∃ϕ ∈ L s.t. K � ϕ is inconsistent.
Note that we have chosen to propose a more general update operator than in Katsuno
and Mendelzon framework since we wanted to enable impossible updates and also we
wanted to allow not strict faithfulness. This is why in [81] we added U10 and removed
the postulates U2 and U3 since U3 imposes that updates are always possible8 and U2
which has been often discussed in the literature is well known to impose inertia9. We
will come back on a more precise explanation of the postulates in Section 2.c. Strict
faithfulness, in this context, is not always desirable (see Example 11) except in the par-
ticular case of a deterministic system. Let us note however that it is completely possible
to particularize the preference relation suggested in order to make it faithful.

Example 11 Let us consider a scenario Σ in which a die has been rolled on a green
carpet at time point 1 and its face is a six at time point 2. Σ does imply that the “carpet
is green" but if we update Σ by the fact (that we already know) that “the carpet is green”
denoted by cg, we do not necessarily obtain the same result: Σ �2 cg(2) is not equivalent
to Σ, since, if the encoding of ke and km represent the transition of a fair die (hence
non deterministic), it gives 6 possible trajectories.

2.b.3 Causality and Scenario Update

The numerous works in the field of causality lead to several definitions of causality, we
describe only two notions that we have used in our model, namely counter-factuality and
manipulability. Indeed, one of the first definitions was given by Lewis [145], which intro-
duces “counter-factuality” in 1973. This definition is based on the existence of possible
worlds and on a similarity distance between worlds. A causes B in a counter-factual way
when one can affirm that if A had not occurred in a world as close as possible of the
current world then B would not have occurred. Another type of definition uses manipu-
lability theory, in particular Von Wright [192] formalizes the idea that causality is related

7 The representation theorem for update of Katsuno and Mendelzon is: There is an operator � :
L ×L → L satisfying U1, U2, U3, U4, U5, U8, U9 if and only if there is a faithful assignment that
associates with each ω ∈ Ω a complete preorder denoted �ω such that ∀ϕ, α ∈ L , [ϕ �α] =

⋃
ω∈[ϕ]{ω

′ ∈
[α] such that ∀ω′′ ∈ [α], ω′ �ω ω′′}. (If postulates U6 and U7 are considered instead of U9 then the
theorem relates the update operator to a family of partial preorders).

8U3 If K and ϕ are consistent then (K � ϕ) is consistent
9U2 If K implies ϕ then (K � ϕ) is equivalent to K.
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to the concept of intervention. A causes B if while forcing A to be true, one forces B to
be true and by doing nothing to change the value of A then it does not change the value
of B. In their structural model approach, Halpern and Pearl [123] have also proposed
a counter-factual definition of causality (encoded by causal graphs with endogenous and
exogenous variables).

We were interested in searching for a concrete cause of a particular fact or event. In
our model, this cause could either be an event that has occurred or was coming from
some facts that hold in the initial situation. The counter-factual nature of the cause was
used in the following way: A causes B if A and B are true in the initial mixed temporal
formula, and if B is false after the update of this initial formula by ¬A. Formally:

Definition 15 (cause)
Given a mixed temporal formula Ψ ∈ L ′

(N),

A(t) causes B(N) iff


t = 1 or A ∈ LEv

EE(Ψ) |= A(t) ∧B(N)

Ψ �t ¬A(t) |= ¬B(N)

where LEv is the set of formulas built on Ev.

Several authors also use chronicles to study causality, for instance, one can refer to
[36] or [138]. These approaches use an interventionist modeling of causality. Indeed,
in [138], the authors define the concept of voluntary cause which implies a deliberated
choice of the agent among its possible actions. In the approach of Belnap et al., the
authors are interested in the representation of the fact that the agent “could have act
differently”. Only actions of agents are regarded as “true” causes. This definition is not
ours because we were not interested in the problem of perceived causality but in the event
causation problem (looking for the particular causes of a fact in a given scenario). We are
however in agreement with the fact that causes should correspond to actions or events
(to reflect that causality is related to manipulability as preached by Von Wright). The
works of [138] and of [36] use modal logic for the definition of the possible evolutions of
the worlds. In our work, we use similar concepts since we also define a preference relation
on trajectories, but we use a less complex formalism based simply on propositional logic.

In this approach, we made the assumption that the reported observations were reli-
able, it would be interesting to consider the possible existence of bad perceptions of the
world, it would require to utilize both revision and update operators, these two operators
being applied to temporal formulas.

The distance between trajectories which we use in this work is rather simple, an
interesting prospect would be to use the DNA sequences alignment techniques used in
bio-data processing in order to calculate events sequence alignments. Thus, as in the
algorithm of [155], we could associate a cost with the addition, the withdrawal, the
substitution or the shift of an event in a sequence. Then we could define the distance
between a trajectory and another by the cost of the best alignment between these two
trajectories.
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2.c Belief update with transition constraints

[50] P. Bisquert, C. Cayrol, F. Dupin de Saint-Cyr, and M.-C. Lagasquie-Schiex. Enforcement in Ar-
gumentation is a kind of Update. In International Conference on Scalable Uncertainty Management
(SUM), number 8078 in LNAI, pages 30–43. Springer-Verlag, 2013
[94] F. Dupin de Saint-Cyr, P. Bisquert, C. Cayrol, and M.-C. Lagasquie-Schiex. Argumentation Update
in YALLA (Yet Another Logic Language for Argumentation). under submission to IJAR, 2015

In the following, we present a recent work about update [50] in which our aim was to
restrain the possible changes that can be done on a state of the world. It amounts to have
a different definition of update than Katsuno and Mendelzon [136] in which we can take
into account some constraints about the possible transitions. I had already developped
this kind of idea in [81] by introducing the set of postulates described in the previous
section, in which some transitions are not possible. This new definition of postulates is
more refined because it allows us to precise what are the possible transitions. This result
was required in order to be able to take into account the notion of authorized operation
in the argumentation domain where some operations are not allowed according to the
user knowledge or to the target system (see Section 4.c).

In [50], we have defined an update operator based on a set of authorized transitions
as follows:

Definition 16 (Update operator related to a set of authorized transitions)

• Let T ⊆ Ω × Ω be the set of all the authorized transitions between states of the
world.

• ∀ϕ,ψ ∈ L , a transition from ϕ to ψ satisfies T , denoted (ϕ,ψ) |= T , iff ([ϕ] 6= ∅
and ∀ω ∈ [ϕ], ∃ω′ ∈ [ψ], (ω, ω′) ∈ T ).

• An update operator ♦ is a mapping relative to a set of authorized transitions
T ⊆ Ω× Ω from L ×L → L which associates with

– any formula ϕ giving information about an initial state of the world,

– and any formula α,

a formula, denoted ϕ♦α, characterizing the states of the world in which α holds,
that can be obtained from states satisfying ϕ by a change belonging to T .

We have been able to define a set of rational postulates for ♦. These postulates
are constraints that aim at translating the idea of update under authorized transitions.
Some postulates coming from standard update are suitable, namely U1, since it ensures
that after an update the constraints imposed by α are true. U2 postulate is optional,
it imposes that if α already holds in a state of the world then updating α means no
change. This postulate imposes inertia as a preferred change, this may not be desirable
in all situations. U3 imposes that if a formula holds for some states of the world and
if the update piece of information also holds for some state then the result of update
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should give a non empty set of states. Here, we did not want to impose that any update
is always possible since some state of the world may be unreachable from others. So
we had proposed to replace U3 by a postulate called E3 based on the set of authorized
transitions T : ∀ϕ,ψ, α, β ∈ L

E3: [ϕ♦α] 6= ∅ if and only if (ϕ, α) |= T .

Due to the definition of (ϕ, α) |= T , E3 handles two cases of update impossibility:
no possible transition and no world (i.e., no state of the world where ϕ holds or no
state where α holds). U4 is suitable in our setting since update operators are defined
semantically. U5 is also suitable for update since it says that states of the world updated
by α in which β already holds are states in which the constraints α and β are updated.
Due to the fact that we want to allow for update failure, this postulate had been restricted
to “complete” formulas10

E5: if card([ϕ]) = 1 then (ϕ♦α) ∧ β |= ϕ♦(α ∧ β).

U8 captures the decomposability of update with respect to a set of possible input
states of the world. We slightly change this postulate in order to take into account the
possibility of failure, namely if updating something is impossible then updating it on a
larger set of states is also impossible, else the update can be decomposable:

E8: if ([ϕ] 6= ∅ and [ϕ♦α] = ∅) or ([ψ] 6= ∅ and [ψ♦α] = ∅)
then [(ϕ ∨ ψ)♦α] = ∅
else [(ϕ ∨ ψ)♦α] = [(ϕ♦α) ∨ (ψ♦α)].

Postulate U9 is a kind of converse of U5 but restricted to a “complete” formula ϕ
i.e., such that, card([ϕ]) = 1, this restriction is required in the proof of Katsuno and
Mendelzon’s Theorem (recalled in footnote 7) as well as in Theorem 2.

As already noticed for Katsuno and Mendelzon’s postulate, the presence of U1 is not
necessary, it is still the case in the new setting since U1 can be derived from E3, E5 and
E8. We have shown that E3, U4, E5, E8 and U9 constitute a minimal set. We have
obtained the following representation theorem, saying that an update operator satisfying
these postulates can be defined by means of the definition of a family of preorders on
states of the world.

Definition 17 Given a set T ⊆ Ω×Ω of authorized transitions, an assignment respect-
ing T is a function that associates with each ω ∈ Ω a complete preorder �ω such that
∀ω1, ω2 ∈ Ω, if (ω, ω1) ∈ T and (ω, ω2) 6∈ T then ω1 ≺ω ω2.

Theorem 2 Given a set T ⊆ Ω × Ω of authorized transitions, there is an operator
� : L × L → L satisfying E3, U4, E5, E8, U9 if and only if there is an assignment
respecting T such that ∀ω ∈ Ω, ∀ϕ, α ∈ L ,

10Note that card([ϕ]) = 1 if and only if ∃ω ∈ Ω such that [ϕ] = [ω].
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(1) [ϕ � α] = ∅ if ∃ω ∈ [ϕ] such that [Φ(ω) � α] = ∅

(2) [ϕ � α] =
⋃
ω∈[ϕ]

[Φ(ω) � α] otherwise

(3) [Φ(ω) � α] =

{
ω1 ∈ Ω

∣∣∣∣∣∣
ω1 ∈ [α] and
(ω, ω1) ∈ T and
(∀ω2 ∈ [α] such that (ω, ω2) ∈ T , ω1 �ω ω2)

}

In other words (1) and (2) allow us to define the update of a formula ϕ wrt the
update of its individual models, with (1) stating that if one of them can not be updated
the whole update fails, and (2) stating that otherwise the whole update corresponds to
the union of the individual updates defined by (3).

This result is a significant headway, but as usual for a representation theorem, it
gives only a link between the existence of an assignment of preorders and the fact that
an update operator satisfies the postulates. It does not give any clue about how to
assign these preorders i.e.,, how to design precisely an update operator. However, let us
illustrate this setting in an example where the assignment and the authorized transitions
are given.

Example 12 Let us consider three variables xx, xy and t meaning respectively “Mrs. X
is alive”, “Mr. X is alive”, “Mr. and Mrs. X are together in the same room”. Suppose that
we know that at a given time point Mr. X is alive (xy), we do not know whether Mrs. X
is alive and if they are together. However we know that Mrs. X cannot be alive if they
are together. It means that among the eight worlds: w1 = (xx, xy, t), w2 = (xx, xy, t),
w3 = (xx, xy, t), w4 = (xx, xy, t), w5 = (xx, xy, t), w6 = (xx, xy, t), w7 = (xx, xy, t),
w8 = (xx, xy, t) there are three possible worlds representing the situation: w2, w5 and
w6. We know that some transitions are not possible from this time point to the next time
point: it is impossible that Mrs. X (respectively Mr. X) rises from the dead, i.e., every
transition from (xx, .., ..) to (xx, .., ..) (respectively (.., xy, ..) to (.., xy, ..)) does not belong
to T .

A gunshot has been heard and “Mrs. X was found dead”. It means that the world has
evolved in such a way that xx is false. Let us consider a particular assignment satisfying
T with the following preference relations on transitions:

• ∀i 6= 6, w6 ≺w5 wi: if Mrs. X is dead and Mr. X is alive in the same room, then it
is likely that at the next instant Mr. X has left since he does not like to stay with
dead people,

• ∀i 6= 2, w2 ≺w2 wi: if Mr. and Mrs. X are alive and not together then it is more
plausible that at the next instant it is still the case, otherwise it is more plausible
that they met and stay alive than that one of them dies, which in turn is more
plausible than both of them died separately and so on11: w1 ≺w2 {w4, w6} ≺w2

11w5 is also considered as less plausible since it would require two steps for passing from w2 to w5

namely killing Mrs. X and gathering Mr. X and Mrs. X, moreover we know that Mr. X does not like to
be in such an equivocal situation.
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{w3, w5, w7, w8}

• ∀i 6= 6, w6 ≺w6 wi: if Mrs. X is dead and Mr. X is alive but elsewhere, then it is
more plausible that it is still the case at the next instant.

In that case [xy ∧ (t → ¬xx)♦T ¬xx] = {w6} since for every w ∈ {w2, w5, w6},
w6 ≺w w′ ∀w′ s.t. w′ |= ¬xx and (w,w′) ∈ T .12

From Theorem 2 we have deduce two simple cases of impossibility: if the initial
situation or the goal are impossible then update is impossible (this result is a kind of
converse of U3). Note that there are some cases where U2 does not hold together with
E3, U4, E5, E8 and U9. If U2 is imposed then the update operator is associated with
a preorder in which a given state is always closer to itself than to any other state of
the world. This is why it imposes to have a faithful assignment (see Footnote 6). In
that case, the relation represented by T should be reflexive. We have also shown that if
we remove the constraint about authorized transitions (by setting T = Ω × Ω) then we
recover Katsuno and Mendelzon theorem.

2.d Related works

Probably the most related approach to belief extrapolation is the generic class of belief
change operators proposed by Berger et al. [43]. This class of belief change operators is
actually a subclass of the set of extrapolation operators (although the authors use the
terminology “iterated updates" – which we think is not adequate, as discussed before, and
is probably the first approach, chronologically speaking, on belief extrapolation. Shapiro
and Pagnucco [177] introduced a framework which is a situation calculus version of a
specific extrapolation operator (minimizing the number of exogenous events) in which
ontic actions (and thus updates) are possible. Booth and Nittka [60] take a subjective
view of belief revision that could be seen as a subjective version of extrapolation: given
an observer and an observed agent, the observer tries to make inferences about what
the agent believed (or will believe) at a given moment, based on an observation of how
the agent has responded to some sequence of previous belief revision inputs over time.
Assuming a framework for iterated belief revision which is based on sequences, they
construct a model of the agent that “best explains” the observation. The comparison
between [60] and extrapolation suggests a promising issue for further research: “subjective
extrapolation” would consist in starting with a scenario describing what we know of the
agent’s beliefs at different time points (possibly using formulas from doxastic logic), and
then find the most plausible events that occurred and that explain the changes in the
agent’s beliefs.

12Note that the reasoning process would have been different if the coroner had discovered that Mrs.
X was already dead before the gunshot. This process is a revision and would have amount to complete
the initial knowledge hence to deduce that at the initial time, only two worlds were possible w5 and w6,
denoted [xy ∧ (t→ ¬xx) ? ¬xx] = {w5, w6}.
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The integration of unexpected change (via belief extrapolation) and ontic actions (via
belief update) has been investigated in a few proposal. Generalized update of Boutilier
[61] consists in finding out which events (from a given set of events E) most likely oc-
curred between two time points t1 and t2, and use the knowledge about the dynamics of
these events to reason about what was true at t1 and what is true at t2. We have shown
that for a fixed formula α, there exists a non-inertial extrapolation operator simulating an
update by α. The framework developed by Hunter and Delgrande in [127] allows not only
for unexpected changes, but also fallible observations, and actions (without exceptional
effects). Their approach is somehow similar to extrapolation, in the sense that it is based
on the selection of preferred trajectories. However, they commit to a specific choice of a
preference relation, that makes use of integer-valued ranking functions that can be seen
as associating “surprise degrees” both to unexpected events and incorrect observations.
This restriction on preference relations is the main reason for their Proposition 7, that
states that some extrapolation operators are not representable in their framework. The
approach of Liberatore and Schaerf [148] is also a fairly general system (BReLS) aiming
at integrating revision, update and merging. It deals with time-stamped observations
and consider two semantics: using the “trajectory” semantics and assuming that there is
no more than one observation at each time point, we obtain our extrapolation operator
induced by the penalty-induced relation �k; the other semantics (“pointwise”) yields iter-
ated update (but is incompatible with extrapolation because of U8 which underlies this
semantics). Lastly, Friedman and Halpern [115] have defined a very general framework
for belief change, of which revision and update are two specific instances. Now, for all
classes of preference relations studied in this article, scenario extrapolation is also an
instance of a belief change system satisfying the assumption called prior by Friedman
and Halpern.

Belief extrapolation addresses a problem similar to dynamic diagnosis, where the goal
is to identify a complete evolution of the world which best fits a given (maybe incomplete)
history that contains some abnormal behaviors. Dynamic diagnosis approaches (see e.g.
[62] for an early survey of definitions) can be handled differently according to the logical
language used for modeling the system, the actions and the observations (e.g., action lan-
guages in [185] and [32], logic programs in [26]), the nature of the available actions, the
type of diagnosis (abductive or consistency-based), and the selection principle for finding
plausible diagnoses. Consistency-based dynamic diagnosis consists in finding a series of
failures across time which is consistent with the observations and the system description
(while an abductive diagnosis together with the system description should allow to deduce
the observations). Therefore, extrapolation can be seen both as a simplification (because
extrapolation assumes inertia and that no action is available to the agent) and a gen-
eralization (because diagnosis makes use of a specific selection criterion compare to the
rich set of selection operators available for extrapolation) of consistency-based dynamic
diagnosis. For instance, the criterion in Thielscher [185] is chronological and minimizes
abnormalities in the initial state while taking account of the prior likelihood of failure of
the components; Baral et al. [32] minimize the set of faulty components and exogenous
actions and propose a diagnosis-plan that aims at selecting dynamically a diagnosis by
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giving the sequence of tests to be done in order to discriminate between the unobserved
possible faulty components; this kind of checking plan is also used by Balduccini and
Gelfond [26]. Thus, extrapolation offers a much more systematic and principled study
of such operators (through an axiomatisation and a representation result), our results
contributes to bridging dynamic diagnosis and belief change.

We chose to model beliefs across time using explicit time points (thus making use
of a propositional logic of reified time). Since our results, and the preference relations
we have focused on, do not exploit the metric nature of time, they would still hold in
a similar way if we had chosen to use a purely symbolic representation of time such as
in modal logics for belief change (e.g., [176, 189]) or epistemic or doxastic extensions of
the situation calculus (e.g., [78, 172]). Finally, using a modal language would open the
door to new opportunities; in particular, having a specific belief modality for each time
point (or situation) allows to express mutual inter-temporal beliefs such as “at time 3 I
believed that ϕ held at time 2 while I now believe that ϕ did not hold at time 2”.

Extrapolation is adequate for reasoning about time-stamped observations on a chang-
ing world while belief update is not. The key point is postulate U8 which, by requiring
that all models of the initial belief set be updated separately, forbids us inferring new
beliefs about the past from later observations. In belief update, the input α should rather
be interpreted as the projection of the expected effects of some “explicit change” , or more
precisely, the expected (not the observed) effect of the action (or event) “make α true”,
see [140] for further discussion. We see that the crucial issues are observability (what do
we observe about the world at what time?) and predictability of change. Belief extrapo-
lation deals with observation and unexpected change, while belief update is suitable for
expected change without observations. In Sandewall’s taxonomy [171], extrapolation is
adequate for the action-free subclass of K-IS (correct knowledge, inertia and surprises)
while update is adequate for the class Kp-IA (no observations after the initial time,
inertia and alternative results of actions). Event-based extrapolation is rather in K-AS.

In the last section we have presented a part of our last study published in [50] where
we came back again to the idea of finding more convenient update postulates than those
of Katsuno and Mendelzon [136]. Indeed, this set of postulates has already been broadly
discussed and criticized in the literature. Most critics were concerning the point that
Postulate U2 imposes inertia (which is not always suitable), Herzig [125] proposes to
restrict possible updates by taking into account integrity constraints, i.e.,, formulas that
should hold before and after update, our transition constraints generalizes this proposal.
On the same point, in [81], we had already worked on a proposal to not impose inertia
and to allow for update failure even if the formulas are consistent (see Section 2.b). One
benefit of the new model is that it does not require to invent an artificial inaccessible
state (as in our old postulate U10). This idea to restrict transitions in update was first
introduced by Cordier and Siegel [68]. Their proposal goes beyond our idea since they
allow for a greater expressive power by using prioritized transition constraints. However,
they do not provide postulates nor representation theorem associated with their update
operator.
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Our main contributions in this chapter are first a thorough investigation of the ex-
trapolation process, its use for causal reasoning and finally the investigation on a more
expressive update operator. These contributions are both foundational and computa-
tional. On the foundational side, we have defined a very general and structured class of
extrapolation operators. We have established a precise connection between extrapola-
tion and belief revision, showing that extrapolation can be seen as a particular case of
revision over a time-stamped language. This led us to give an axiomatic framework for
extrapolation including representation theorems inherited from representation theorems
for belief revision and sufficient (and sometimes necessary) conditions for some specific
temporal properties (reversibility, Markovianity, independence of empty observations) to
be satisfied. We also gave an impossibility result showing that an extrapolation operator
cannot be an update operator. Lastly we have provided new axioms for update operators
that respect transition constraints. On the computational side, we have identified the
computational complexity of belief extrapolation and provided a method for computing
extrapolated beliefs, for a specific (yet representative enough) operator. In the next
chapters we will see how these notions are of interest in the argumentation framework.
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Part II

Belief Change and Argumentation
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Argumentation is a reasoning model based on the construction and the comparison of
arguments. Arguments are reasons for believing in statements, or for performing actions.
Hence it can be used for reasoning or in a decision context, it may involve only one or
several agents. Argumentation has three expressive powers: it offers the opportunity to
express pros and cons (through the conflict relation between arguments), to justify some
claims (an argument can be viewed as a justification of a claim), to explain some logical
conclusion or some decisions (by being able to produce the set of arguments that support
those decisions/conclusions). In the representation field of artificial intelligence we are
often more interested in designing reasoning principles that can be explained in a high-
level language rather than black-box methods that give conclusions without being able to
explain the reasons that leads to them (for instance methods based on neural-network or
statistical learning approaches...). Since the principle of explanation is its main building
block, argumentation theory falls perfectly within the scope of Artificial Intelligence.
It is studied for modeling agent’s internal reasoning, namely for handling inconsistent,
incomplete or uncertain information (e.g., [45, 117]) and for making decisions (e.g., [21,
114]).

There is also an extensive literature devoted to modeling agent’s interactions, namely
dialogs in which agents may exchange arguments with each other, like persuasion (e.g.,
[18, 164]) and negotiation (e.g., [134, 159]). Indeed, the most natural application of argu-
mentation is for persuasion purposes. The ability to persuade other people is commonly
viewed as an intelligent feature hence it is another reason to justify its study in AI. For
instance, many persuasion debates have marked human history: Herodotus debate on
the three government types, Valiadolid debate, the Bohr-Einstein debate about quantum
mechanics, presidential TV debates... The “winner” is often considered as very clever and
skilled. Incidentally, oratory featured in the original Olympics and there exist teaching
lessons for being a good orator (e.g. the book of Schopenhauer [173]). A good orator is
someone who is able to make his point of view adopted by the public whatever the truth
is and whatever his adversary may say. This skill and cleverness is a big challenge for
human being in everyday life as well as in History since debates are both very common
and very influential. This is why it is important that artificial intelligence focuses on
this field of research. This implies to develop at least two features: representing and
handling persuasion dialogs, designing good artificial orators (able to find strategies to
win a debate) in order to be able to analyze persuasion process for controlling them and
for increasing the awareness of the citizens.
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Chapter 3

Arguments

In this chapter, we will describe two representations of arguments, the first one has been
introduced by Dung [90], it is an abstract framework in which arguments are abstract
entities about which only one thing is known (and represented): namely their binary
conflict relations. Hence, the origin of arguments is supposed to be unknown. The second
representation of argument uses a structured pair (support, conclusion). We present the
classical representation of so called logic-based arguments where the support is a set of
formulas that entails the conclusion. However this kind of ideal argument is not easy to
build in practice and we propose to use a relaxed version of it, where some information
can be missing either in the support part or in the conclusion. These kind of arguments
are called enthymemes.

3.a Abstract Arguments

[47] P. Bisquert, C. Cayrol, F. Dupin de Saint-Cyr, and M.-C. Lagasquie-Schiex. Change in argumenta-
tion systems: exploring the interest of removing an argument. In International Conference on Scalable
Uncertainty Management (SUM), number 6929 in LNAI, pages 275–288. Springer-Verlag, octobre 2011
[94] F. Dupin de Saint-Cyr, P. Bisquert, C. Cayrol, and M.-C. Lagasquie-Schiex. Argumentation Update
in YALLA (Yet Another Logic Language for Argumentation). under submission to IJAR, 2015

In this section, we describe a model of abstract argumentation. Due to the modeling
of change (see Chapter 4), we have realized that it is important to be able to consider
several argumentation systems, hence we had extended Dung’s definitions in order to
be able to deal with an argumentation universe in which several argumentation systems
can be defined. It is an extension of the classical approach proposed by Dung [90]:
we consider a set AU of symbols (denoted by lower case letters) representing a set of
arguments and an attack relation RU on AU ×AU . The pair (AU ,RU ), called universe,
allows us to represent the set of possible arguments together with their interactions. AU
may be infinite, maybe a set of logic-based arguments built from a knowledge base, or
may be explicitly provided as in the following example created by Pierre Bisquert in [47]:

55



Example 13 During a trial concerning a defendant (Mr. X), several arguments can be
involved to determine his guilt. The set of arguments AU and the relation RU are given
below.

a0 Mr. X is not guilty of premeditated murder of Mrs. X, his wife.
a1 Mr. X is guilty of premeditated murder of Mrs. X.
a2 The defendant has an alibi, his business associate has solemnly sworn that he

met him at the time of the murder.
a3 The close working business relationships between Mr. X and his associate induce

suspicions about his testimony.
a4 Mr. X loves his wife so deeply that he asked her to marry him twice. A man

who loves his wife cannot be her killer.
a5 Mr. X has a reputation for being promiscuous.
a6 The defendant had no interest to kill his wife, since he was not the beneficiary

of the huge life insurance she contracted.
a7 The defendant is a man known to be venal and his “love” for a very rich woman

could be only lure of profit.

a5 a6 a3 a2

a7 a4 a1 a0

Given a universe (AU , RU ), an argumentation system is defined as follows.

Definition 18 An argumentation graph G on (AU ,RU ) is a pair (A,R) where

• A ⊆ AU is the finite set of vertices of G called “arguments” and

• R ⊆ RU ∩ (A×A) is its set of edges, called “attacks”.

The set of argumentation graphs that may be built on the universe (AU ,RU ) is denoted
by GU .

Example 14 The prosecutor is trying to make accepted the guilt of Mr. X and her knowl-
edge is summarized in her argumentation system (Gpros) inside the universe described in
Example13:

a2

a7 a4 a1 a0

Moreover, the prosecutor knows the content of the jury’s argumentation system (Gjury).
Indeed, she had given the argument a1 against the argument a0 and knows that in the
jury’s mind Mr. X is more plausibly guilty than innocent inducing a preference on the
attack from a1 to a0 over the attack from a0 to a1 (which is thus neglected), the lawyer
had answered by uttering a4 attacking this suspicion of guiltiness:
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a4 a1 a0

The acceptable sets of arguments (“extensions”) inside an argumentation system
(A,R) are computed using “semantics” that are based on the following notions defined
for any argument α ∈ A and any set of arguments S ⊆ A:

• S attacks α if and only if ∃β ∈ S such that βRα.

• S is conflict free if and only if @α, β ∈ S such that αRβ.

• S defends an argument α if and only if S attacks any argument attacking α. The
set of the arguments defended by S is denoted by F(S). More generally, S indirectly
defends α if and only if α ∈

⋃
i≥1

F i(S).

• S is an admissible set if and only if it is both conflict free and defends all its
elements.

For abstract argumentation, we only consider the semantics proposed by Dung [90]):

Definition 19 (Dung’s semantics) Given (A,R) an argumentation graph with E ⊆ A

• E is a complete extension of (A,R) if and only if E is an admissible set and every
argument which is defended by E belongs to E.

• E is a preferred extension of (A,R) if and only if E is a maximal (with respect to
set-inclusion ⊆) admissible set.

• E is the only grounded extension of (A,R) if and only if E is a minimal (with
respect to ⊆) complete extension.

• E is a stable extension of (A,R) if and only if E is conflict-free and attacks any
argument not belonging to E.

The status of an argument is determined by its presence in the extensions of the
selected semantics. For example, an argument can be “skeptically accepted” (resp. “cred-
ulously”) if it belongs to all the extensions (resp. at least to one extension) and be
“rejected” if it does not belong to any extension.

In the PhD thesis of Pierre Bisquert and furthermore in [94], our purpose was to build
a first-order logical theory able to describe properties of sets of vertices in a graph, hence
able to manipulate extensions. This logical formalism called YALLAU was introduced
in order to make a bridge between argumentation theory and belief change theory, this
precise link will be explained in Section 4.c. The signature ΣU includes as many symbols
as elements in 2AU .

Definition 20 (Signature) ΣU = (Vconst, Vf , VP ) where Vconst = {c⊥, c1, . . . , cp} with
p = 2|AU | − 1, Vf = {union2} and VP = {on1,B2,⊆2}.
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The semantics of YALLAU is defined thanks to a structure over ΣU . Such a structure
is associated with an argumentation system (A,R) built on the universe AU , viewed as
an attack relation between sets of arguments. We have A ⊆ AU and R ⊆ RU ∩ (A×A).

Definition 21 (Structure) A structureM of signature ΣU , associated with (A,R), is
a pair (D, I) with D = 2AU the domain and I an interpretation function associating:

• a unique element of D to each constant symbol ci (in particular ∅ is associated with
c⊥),

• the binary set union operator (function from D2 to D) to the function symbol union,

• the characterization of the subsets of A to the symbol on: on(S) if and only if
S ⊆ A

• the binary set inclusion relation (binary relation on D2) to the predicate symbol ⊆,

• the attack relation between sets of arguments induced by R, and defined by S1RS2

if and only if S1 ⊆ A, S2 ⊆ A and ∃x1 ∈ S1, ∃x2 ∈ S2, (x1Rx2), to the predicate
symbol B.

We have proposed specific axioms called AXU for the predicates ⊆, union, B and on
in order to conform their behavior to set inclusion, union and attacks between sets, and
to translate the meaning that a set of arguments belongs to an argumentation system
respectively. The axiomatisation is sound and complete (since for any formula ϕ of
YALLAU : AXU |= ϕ if and only if AXU `Sys ϕ, where `Sys is the inference consequence
based on any sound and complete Axiomatic System Sys for predicate calculus).

We have presented several examples illustrating the expressive power of YALLAU .
In particular, we have shown that we can precisely describe an argumentation system by
its characteristic formula1, this formula has the given argumentation system for unique
model.

Definition 22 (Characteristic formula of an Argumentation System) The func-
tion ΦU associated with YALLAU is defined by: ΦU : GU → YALLAU , s.t.

ΦU ((A,R)) = on(A)∧
∧

x∈AU\A

¬(on({x})∧
∧

(x,y)∈R

({x} B {y})∧
∧

(x,y)∈RU\R

¬({x} B {y}).

ΦU (A,R) is called the characteristic formula of (A,R).

Example 15 The argumentation systems Gjury of Example 13 can be expressed by:
ΦU (Gjury) = on({a0, a1, a4})∧({a4} B {a1})∧({a1} B {a0})∧

∧
a∈{a2,a3,a5,a6,a7} ¬on({a})∧

¬({a0} B {a1})
1The constant symbols of the language YALLAU are abusively denoted by the elements of 2AU .
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YALLAU allows us to express incomplete knowledge by using disjunctions. Moreover,
thanks to the idea to interpret a term by a set of arguments, we have been able to provide
formulas that express the criteria about sets of arguments underlying the traditional argu-
mentation semantics (such as conflict-freeness, defense, admissibility etc.). For instance
a term t represents a conflict-free set in (A,R) if and only if (A,R) |= on(t)∧ (¬(t B t)).

In the literature several logical formalisms have already been proposed for encoding
argumentation systems. For instance, Villata et al. [191] have proposed a logical for-
malism for representing (and reasoning about) the extensions of traditional semantics.
This work follows the work of Besnard and Doutre [44] where the arguments are denoted
by symbols of the language enabling the user to write formulas whose models are sets
of arguments. The purpose of this work is to characterize the extensions. A language
with a similar expressive power has been proposed by Coste-Marquis et al. [69], with
another purpose. The idea was to generalize Dung’s formal framework [90] by taking
into account additional constraints (expressed in a logical form) about the admissible
sets of arguments. A logical language was also proposed by Wooldridge et al. [202] in
which it is possible to express acceptability, conflicts and defense notions. However, this
formalism is devoted to logical arguments (see next Section).

Those works are related to our YALLAU proposal since these languages enable also
to describe and reason about argumentation systems, however none of them enables the
user to express structural properties of an abstract argumentation system together with
its semantical properties (which is the main purpose of YALLAU ). In Section 4.c, the
language YALLAU is used in order to apply belief update concepts to argumentation.

3.b (Support, Claim) Arguments

[93] F. Dupin de Saint-Cyr. Handling enthymemes in time-limited persuasion dialogs. In International
Conference on Scalable Uncertainty Management (SUM), number 6929 in LNAI, pages 149–162. Springer-
Verlag, 2011
[92] F. Dupin de Saint-Cyr. A first attempt to allow enthymemes in persuasion dialogs. In DEXA
International Workshop: Data, Logic and Inconsistency (DALI), pages 332–336. IEEE Computer Society
- Conference Publishing Services, 2011

In this section we are going to explore another representation framework that uses
structured arguments.

It is generally admitted that a logic-based argument is composed of two parts: a
support and a claim, such that the support is a logical minimal proof of the claim [126].
In everyday life, there is nearly no “logical argument”, we often give an argument without
mentioning implicit common knowledge. Otherwise an argument would be very long to
express and boring to listen (it could even be infinite when each part of the support of
a claim should in turn be completely explained). Shortly speaking a logical argument
is not into line with Gricean maxims2. Approximate arguments, called enthymeme by

2In [122], Grice describes four categories of cooperative principles: Quantity (“make your contribution
as informative as is required (for the current purposes of the exchange)” and “do not make your contri-
bution more informative than required” (Grice conceded that this last part is not mandatory), Quality
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Aristotle, is a syllogism keeping at least one of the premises or conclusion unsaid.
Handling enthymeme has two advantages: first it allows to deal with more concrete

cases where agents want to shorten their arguments. Note that the problem of implicit
knowledge was one of the motivation for non-monotonic reasoning which aims at rea-
soning despite a lack of information, indeed argumentation is clearly linked with default
reasoning (Dung’s semantics were inspired from the ASP domain). Second it may involve
a strategic matter, namely droping a premise may remove a possible attack or may enable
to cheat by pretending that implicit knowledge can help to prove a claim while it is not
the case...

Enthymemes have already been studied in the literature (by Walton and Reed and
Macagno and also by Black and Hunter in [198, 193, 55, 196]), in [93, 92], we have
adopted and extended the definitions proposed by those authors:

Definition 23 (logical arguments)

A logical argument is a pair 〈S, ϕ〉 such that:


(1) S ⊆ L , ϕ ∈ L
(2) S 0 ⊥,
(3) S ` ϕ,
(4) @S′ ⊂ S s.t. S′ ` ϕ

The set of logical-arguments that can be built on a set E ⊆ L of formulas is denoted
by Args(E). S is called the support (Supp) and c is the conclusion (Conc).

More generally, the definition of argument can be grounded on Tarski’s logics [183]
as in [4]: i.e., those logics are defined by pairs (L ,CN) where L is a set of well-formed
formulas and CN is a consequence operator that satisfies the following basic properties:

• Expansion: X ⊆ CN(X)

• Idempotence: CN(CN(X)) = CN(X)

• Absurdity: CN({x}) = L for some x ∈ L

The notion of consistency is then defined as follows: A set X ⊆ L is consistent w.r.t.
a logic (L ,CN) iff CN(X) 6= L . It is inconsistent otherwise.

In such a setting an argument that is built from a knowledge base Σ ⊆ L is a pair
(X,x) s.t. X ⊆ Σ, X is consistent x ∈ CN(X) and @X ′ ⊂ X such that x ∈ CN(X ′). An
argument (X, y) is atomic iff X = {x} and CN({x}) = CN({y}). An argument (X ′, x′)
is a sub-argument of an argument (X,x) iff X ′ ⊆ X.

In [6], different conflict relations between logic-based arguments have been studied.
For instance the relation “Undercut” defined as followed will be used in Section 5.a.

Definition 24 (Undercut) Let A1 = (X1, x1), A2 = (X2, x2) be two logical arguments,
A1 undercuts A2 if ∃ h2 ∈ X2 such that x1 ≡ ¬ h2.

(“Try to make your contribution one that is true: Do not say what you believe to be false, Do not say
that for which you lack adequate evidence”), Relation (“Be relevant”), Manner (“related to HOW” to
say things: “Avoid obscurity of expression, Avoid ambiguity, Be brief (avoid unnecessary prolixity), Be
orderly”).

60



Works by linguists [165, 169] have emphasized the main forms of counter-argumentation
that may take place in every day life dialogs. The first one concerns undermining the
conclusion of another argument. It is known in AI as “rebuttal” [108]. The second com-
mon form of attacks, known in AI as “assumption attack” [108], consists of undermining
a premise in the support of another argument.

Definition 25 (Rebuttal and Assumption attack)
- An argument α rebuts an argument β iff the set {Conc(α), Conc(β)} is inconsistent.
- An argument α assumption-attacks an argument β iff ∃x ∈ Supp(β) s.t. the set
{Conc(α), x} is inconsistent.

In a context of reasoning, Dung’s extensions can be used in order to define the plau-
sible conclusions denoted Output(A,R) to be drawn from a knowledge base Σ. The idea
is to infer a formula x from Σ iff x is the conclusion of an argument that is skeptically
accepted. However Amgoud and Besnard [5] have shown that the conclusions that can
be obtained from a knowledge base by using Dung’s extensions with logic-based argu-
ments are not always rational according to the attack relation and the semantic chosen.
This drawback of Dung’s proposal for structured arguments was a motivation for me to
develop new approaches for reasoning about these arguments (see Sections 5.b and 6.b).

The notion of approximate argument is independent of the logic used:

Definition 26 (approximate arguments [45, 126])
An approximate argument is a pair 〈S, ϕ〉 where S ⊆ L and ϕ ∈ L .

In other words, an approximate argument is simply a pair (support,claim) and when
the support is a minimal proof of the claim this argument is called a logical argument.
Note that an approximate argument does not need to have a consistent support S and it
is not required that its conclusion ϕ is a logical consequence of S. In order to be able to
deal with arguments that have incomplete support or incompletely developed conclusion
we first defined an incomplete argument and then extend the enthymeme formalization
proposed by Black and Hunter in [55].

Definition 27 (incomplete argument) An incomplete argument is a pair 〈S, ϕ〉 where
S ⊆ L and ϕ ∈ L (i.e., 〈S, ϕ〉 is an approximate argument) such that:{

(1) S 0 ϕ
(2) ∃ψ ∈ L s.t. 〈S ∪ {ψ}, ϕ〉 is a logical argument

In this definition, the first condition expresses the fact that the argument is strictly
incomplete, i.e., the support is not sufficient to infer the conclusion. The second one
imposes that it is possible to complete it in order to obtain a logical argument. Logical
or incomplete arguments are particular distinct cases of approximate arguments. Note
that the support of an incomplete argument should be consistent or else adding any
formula to it would still give an inconsistent support (hence violate condition (2) for
logical arguments). Moreover S should be consistent with ϕ. Our definition is a slight
variation of Hunter’s concept of precursor, which he defines as an approximate argument
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〈S, ϕ〉 such that S 0 ϕ and S 0 ¬ϕ. Hence an “incomplete argument” is a “precursor”
but the converse is false. The small difference lays in the fact that a completed precursor
may not be minimal, for instance 〈{a, b, a∧ b}, c〉 is a “precursor” and not an “incomplete
argument” since any completion would have a non minimal support (i.e., in Definition
26, (4) will not hold).

Example 16 In [173], Schopenhauer gives the following example (in order to explain the
extension stratagem3) “I asserted that the English were supreme in drama. My opponent
attempted to give an instance to the contrary, and replied that it was a well-known fact
that in music, and consequently in opera, they could do nothing at all”. The argument
of Schopenhauer’s opponent is an incomplete argument. Indeed, “in music (m), and
consequently in opera (o), English are not supreme (¬s)” maybe transcribed into the
following approximate argument: a = 〈{m → ¬s}, o → ¬s〉. And by adding the formula
o → m to its support we obtain the following logical argument: b = 〈{m → ¬s, o →
m}, o→ ¬s〉.

There are two ways to “complete” an argument: either by adding premises, then
the support should be strictly included in the completed support or by specifying the
conclusion, then it should be inferred by the union of the completed conclusion and
support but should differ from the previous conclusion.

Definition 28 (enthymeme) Let α = 〈S, ϕ〉 and α′ = 〈S′, ϕ′〉 being approximate ar-
guments, 〈S′, ϕ′〉 completes 〈S, ϕ〉 iff{

(1) S ⊂ S′ and ϕ = ϕ′ or
(2) S ⊆ S′ and {ϕ′} ∪ S′ ` ϕ and ϕ 6= ϕ′

α is an enthymeme for α′ iff α′ is a logical argument and α′ completes α.

Our definition extends the definition of [55] in the sense that it allows to cover ar-
guments whose conclusion is an implicit claim requiring implicit support (the following
example would not be considered as an enthymeme by [55]).
Example 16 (continued): We may build an infinity of logical arguments decoding an
incomplete argument. For instance, α is an enthymeme for the logical argument β but
also for the logical argument: γ = 〈{m→ ¬s, o→ m, o, o→ d},¬(d→ s)〉.

The following function gives the set of logical arguments that can be built from a
knowledge base Σ and that are enthymemes for a given argument.

Definition 29 (Decode) Let Σ ⊆ L and 〈S, ϕ〉 ∈ AArg, DecodeΣ(〈S, ϕ〉) = {〈S′, ϕ′〉 ∈
Arg such that S′\S ⊆ Σ, ϕ′ ∈ Σ and 〈S, ϕ〉 is an enthymeme for 〈S′, ϕ′〉}.

In the previous example, it holds that β, γ ∈ DecodeL (α).
3This stratagem consists in extending what the adversary has said in order to invalidate the general-

ization obtained.

62



Logical, approximate, and enthymeme arguments are usually called logic-based ar-
guments, and are often used for a reasoning task, in Section 5.b we have proposed a
persuasion dialog protocol in which the agents exchange this kind of arguments.

In this chapter we have presented two ways to model arguments. The second one
is using a structured description of arguments. This structure is used to evaluate them
with respect to the current knowledge, the precise content of an argument is described
under a logical formalism which facilitates the evaluation.

In contrary, in an abstract argumentation system the evaluation depends only on the
attack relation which is supposed to be given. This implies to use this model carefully
in applications, since the attacks between arguments should be in accordance with the
definitions of acceptable sets of arguments (called extensions): for instance an argument
acceptable with regard to the definition of the “stable semantics” should belong to a set
of arguments that are attacking every other argument.

Moreover it has been shown by Amgoud and Besnard in [5] that the combination of
logic-based arguments with Dung’s semantics may give counter-intuitive results. Further-
more, when dealing with logic-based argumentation the attack notion is not necessary
since arguments can be evaluated by themselves, this is why the second approach did
not integrate this attack notion at all.

However the attack relation between arguments may enable a graphic representation
of conflicts under the form of a digraph which is in general a visual user friendly rep-
resentation. The different tasks that can be achieved within these formalisms will be
described in the two next Chapters.

63



Chapter 4

Change in abstract argumentation
systems

[64] C. Cayrol, F. Dupin de Saint-Cyr, and M.-C. Lagasquie-Schiex. Revision of an Argumentation
System. In International Conference on Principles of Knowledge Representation and Reasoning (KR),
pages 124–134. AAAI Press, 2008
[65] C. Cayrol, F. Dupin de Saint-Cyr, and M.-C. Lagasquie-Schiex. Change in Abstract Argumentation
Frameworks: Adding an Argument. Journal of Artificial Intelligence Research, 38:49–84, 2010
[47] P. Bisquert, C. Cayrol, F. Dupin de Saint-Cyr, and M.-C. Lagasquie-Schiex. Change in argumenta-
tion systems: exploring the interest of removing an argument. In International Conference on Scalable
Uncertainty Management (SUM), number 6929 in LNAI, pages 275–288. Springer-Verlag, octobre 2011
[48] P. Bisquert, C. Cayrol, F. Dupin de Saint-Cyr, and M.-C. Lagasquie-Schiex. Duality between
Addition and Removal: a Tool for Studying Change in Argumentation. In International Conference on
Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU), volume
297 of Communications in Computer and Information Science, pages 219–229. Springer, juillet 2012
[49] P. Bisquert, C. Cayrol, F. Dupin de Saint-Cyr, and M.-C. Lagasquie-Schiex. Characterizing change in
abstract argumentation systems. In Trends in Belief Revision and Argumentation Dynamics, volume 48
of Studies in Logic, pages 75–102. College Publications, 2013
[50] P. Bisquert, C. Cayrol, F. Dupin de Saint-Cyr, and M.-C. Lagasquie-Schiex. Enforcement in Ar-
gumentation is a kind of Update. In International Conference on Scalable Uncertainty Management
(SUM), number 8078 in LNAI, pages 30–43. Springer-Verlag, 2013
[94] F. Dupin de Saint-Cyr, P. Bisquert, C. Cayrol, and M.-C. Lagasquie-Schiex. Argumentation Update
in YALLA (Yet Another Logic Language for Argumentation). under submission to IJAR, 2015

During my PhD and later on, I had acquired a scientific culture in belief-change the-
ory, meanwhile Claudette Cayrol and Marie-Christine Lagasquie had developed studies
on the topic of abstract argumentation. We decided to focus on what those two domains
could bring to each other, it appeared to be a good idea, since this domain now called
“dynamic of argumentation” is very flourishing nowadays... At the beginning, we wanted
to know how the extensions of an argumentation system evolve with the arrival of a new
information. The natural idea was to take into account the arrival of a new argument.
But in fact, at start, this idea didn’t seduce the community since argumentation was
exactly made to be a non-monotonic principle hence adding an argument was simply
viewed as a part of an arguing process. However, we had the idea to show some proper-
ties that could hold for the extensions after an argument addition, without being obliged
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to recompute precisely those extensions. This was the subject of Aurore Miquel’s Master
2 internship [152] and the subject of Pierre Bisquert PhD [46], it gave birth to several
developments:

• we first proposed 4 kinds of minimal operations that can be done to an argumen-
tation system: adding one argument with its interactions, removing an argument,
adding one attack between existing arguments, removing one attack.

• we proposed a typology of the possible kinds of changes that could be produced by
such operations

• we tried to characterize the changes of this typology w.r.t. some conditions about
the initial argumentation system and about the operation (this was done only for
addition and removal of one argument)

• we made a parallel between performing operations on an argumentation system
and update

• we have provided a tool for computing the necessary operations to obtain a given
property in an argumentation system.

At start we had only considered the addition of an argument, and we had called this
change “a revision” in [64], however we had received several critics against this name,
because revision is related with consistency while in argumentation this notion does not
exist. However, now this term has been adopted by many people it is a pity since we
have discovered later that the changes we were speaking of is more related to update
than revision. In [65], we studied the properties that hold on a system after adding an
argument w.r.t. to some conditions about that argument.

Due to the way natural argumentation is done, examples of additions were very easy
to find. It was not so obvious for removal, we were the first to study it, and during
the PhD of Pierre Bisquert we were able to find some examples of suppression, and to
study what are the properties of removal (see [47]). A typical example of the need to
remove an argument is when an objection is accepted during a trial, since the objected
argument should be removed from the reports about the trial, hence from its associated
argumentation system.

In the following we detail the typology of the change properties, the characterizations
that were obtained, the link with update and the tool, all these results can be found in
Pierre Bisquert’s PhD [46].

4.a A typology of change properties

When we started to work on argumentation dynamics we first tried to define a typology
of the possible changes in [65]. But since it was done with the point of view of change
generated by adding one argument, we have generalized it in [47].
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Given an elementary operation among adding/removing one argument together with
its set of interactions, adding/removing one attack, we may face different changes con-
cerning the extensions of the initial argumentation system. Note that we consider that
the “semantics” does not change.

This typology aims at distinguishing the possible impacts of the changes on three
levels by comparing things “before” (i.e., in the initial system whose set of extensions
is called E and one of them1 is called E) and “after” the change (i.e., in the resulting
system, its set of extensions is denoted by E′ and one of them is denoted E ′):

• the set of extensions: the number of extensions may increase (the change is called
extensive, denoted e), may decrease (it is a restrictive change, denoted r) or may
remain constant (denoted c). We refine these criteria by taking into account the
particular cases where there is no extension (denoted 0), only one empty (denoted
1v), only one non-empty extension (denoted 1nv), several extensions (denoted k or
j with j representing a number lower than k). For the constant case, we refine the
classification as follows: a c-expansive (respectively c-narrowing) change concern
a set of extensions in which each extension strictly increases (resp. decreases).
If the set of extensions remains the same the change is called c-conservative (c-
cons for short) , finally all other constant changes are called c-altering. This first
classification is described in Table 4.1.

Final System
Initial
System

E′ = ∅ E′ = {∅} E′ = {E ′}, E ′ 6= ∅ |E′| > 1

E = ∅ c-cons × e∅−1ne e∅−k

E = {∅} × c-cons c1e−1ne e1e−k

E = {E},
E 6= ∅

r1ne−∅ r1ne−1e

c-cons, if E = E′

c-expansive, if E ⊂ E ′
c-limitative, if E ′ ⊂ E
c-altering, else

e1ne−k

|E| > 1 rk−∅ rk−1e rk−1ne

ej−k, if |E| < |E′|
c-cons, if E = E′

c-expansive, if |E| = |E′| and (1)
c-limitative, if |E| = |E′| and (2)
c-altering, if |E| = |E′| and (3)
rk−j , if |E| > |E′|

×: impossible case.
(1): ∀E ∈ E,∃E ′ ∈ E′ s.t ∅ 6= E ⊂ E ′ and ∀E ′ ∈ E′, ∃E ∈ E s.t ∅ 6= E ⊂ E ′
(2): ∀E ∈ E,∃E ′ ∈ E′ s.t ∅E ′ ⊂ E and ∀E ′ ∈ E′,∃E ∈ E s.t ∅ 6= E ′ ⊂ E
(3): E 6= E′ and not (1) and not (2)

Table 4.1: Classification of change wrt extensions set

• the extensions themselves: we have defined several change properties capturing the
monotony of the acceptability of sets of arguments, they are described in Table 4.2.

1when there is one
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For instance expansive monotony amounts to have a change such that every set of
arguments that were conjointly accepted before change are still accepted conjointly
after.

Expansive Monotony Restrictive Monotony
Simple ∀E ∈ E,∃E ′ ∈ E′ s.t E ⊆ E ′ ∀E ′ ∈ E′,∃E ∈ E s.t E ′ ⊂ E

Credulous
⋃

E∈E E ⊆
⋃

E′∈E′ E ′
⋃

E′∈E′ E ′ ⊆
⋃

E∈E E
Skeptical

⋂
E∈E E ⊆

⋂
E′∈E′ E ′

⋂
E′∈E′ E ′ ⊆

⋂
E∈E E

Table 4.2: Classification of changes wrt extensions monotonicity

• the arguments: we have defined several changes that can be considered wrt the
status of one particular argument, say x. They are described in Table 4.3 where
Ex (resp. E′x) is the set of the extensions that contain x before (resp. after) change.
For instance, Total Acceptability Establishment consists in making x belong to all
extensions after the change while it was not accepted before.

Final System
Initial
System E′x = ∅ 0 ⊂ E′x ⊂ E′ ∅ ⊂ E′x = E

Ex = ∅ Reject Conservation Partial Acceptability
Establishment

Total Acceptability
Establishment

∅ ⊂ Ex ⊂ E
Removal of
Credulous

Acceptability

Credulous
Acceptability
Conservation

Global
Establishment of
Acceptability

∅ ⊂ Ex = E
Skeptical

Acceptability
Removal

Acceptability
Reduction

Skeptical
Acceptability
Conservation

Table 4.3: Classification of changes wrt the argument x acceptability

The previous typology is a kind of catalog of the possible change properties in argu-
mentation. Some changes may be considered as useful according to the role of the user,
e.g. a debate moderator may be interested in focusing or enlarging the dialog depending
on the remaining time, while an orator may have dialog strategies and may want to focus
on particular arguments. Let us review some of these properties:

• A “decisive” change (e.g. c1e−1ne) is useful to lower ignorance since after this change
one and only one extension remains. It can be used by a moderator for concluding
the debate.

• An “expansive” change (e.g. c-expansive) increases the accepted arguments while
conserving those already accepted, it can also be used by a moderator or by an
orator in order to convince a larger audience about the current view of the debate.

• A “conservative” change (e.g. c-conservative) may be a more neutral attitude that
can be adopted by a moderator or an orator that does not want to deliver new
information but wants to participate (very useful political waffle).
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• “Monotony” allows us to focus on some particular arguments and may be used
strategically by an orator.

• “Questioning” change (e.g. ej−k ) and “destructive” change (e.g. rk−1e ) are in-
creasing ignorance either by augmenting the possible views or by destroying any
coherent view, they may be used desperately by a strategical orator/manager that
wants to forbid any decision to be made.

• An “altering” change (e.g. c-altering) allows to completely change the point of view,
it may also be done to reverse the course of the debate.

4.b Characterizations

Once we have defined the framework in which change properties can be classified, we
can address the important issue of providing characterizations for these properties: i.e.,
conditions on the argumentation system and on the change operation that are necessary
or sufficient to guarantee that the properties are satisfied.

We have obtained characterization results either by a direct proof [48] or by using an
indirect proof based on other results about the dual operation (addition being the dual
of removal) [49]. The following proposition is an example of characterization:
Characterization 15 of [49] : Let G = (A,R) be an argumentation system, and E its
grounded extension. For any operation o of the form 〈⊕, z,Rz〉 executable by an agent
on G, for any argument x ∈ A ∪ {z}, if @y ∈ A such that (y, z) ∈ R and {z} indirectly
defends x and x 6∈ E then x ∈ E ′ where E ′ denotes the grounded extension of G′ = o(G).

This proposition established in [49] is a characterization of a change that sets up
the acceptability of an argument. Indeed it concerns the goal of “enforcement” of the
argument x (as we will see in Section 4.c). Thanks to this characterization, we know
(without requiring a new computation of the extensions) that if an operation adds an
argument z, such that z is not attacked and indirectly defends another argument x which
was not accepted under the grounded semantics, then x will become accepted.

Our characterizations can be considered as a guide for selecting the change operation
to perform in order to obtain a desired property on an argumentation system and they
may also be used as a tool for predicting the result of a change operation in a given
context.

4.c Axioms (belief change)

In the literature, the operation to perform on an argumentation system in order to
ensure that a given set of arguments is accepted given a set of authorized changes is
called “enforcement” [35]. This enforcement may be done more or less easily, since it may
involve more or less changes (costs to add/remove arguments may be introduced).

Example 17 For instance, suppose that a lawyer knows the current state of knowledge
of the jury (under the form of an argumentation system) and suppose she wants to make
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the audience to accept a set of arguments. In order to achieve this goal, she has to make a
change to the audience argumentation system, either by adding an argument or by making
an objection about an argument that was uttered before (in order to remove it). The aim
of the speaker will be to find the least expensive change to perform.

This example is a particular case of a more general enforcement operator. Since we
could consider cases where the agent does not know exactly the argumentation system
on which she must make a change but knows only some information about it (e.g. some
arguments that are accepted or that are present in the system). In this more general
case, the idea is to ensure that the argumentation system after change satisfies a given
property (that maybe different from the acceptability of a precise argument) whatever
the initial system was.

The key idea that we have developed in [50] is the parallel between belief update
theory [200, 136] and enforcement in argumentation. Enforcement consists in searching
for the argumentation systems that are closest to some given starting argumentation sys-
tems, in a set of argumentation systems in which some target arguments are accepted.
This gives us the parallel with preorders on worlds in belief update. Hence worlds corre-
spond to argumentation systems while formulas should represent knowledge about these
argumentation systems. In classical enforcement this knowledge is expressed in terms of
a description of an initial argumentation system and a set of arguments that one wants
to see accepted. This is why we have proposed to introduce a propositional language in
which this kind of information may be expressed. This language called YALLAU has been
described in Section 3.a and had enabled us to generalize enforcement with a broader
expressiveness.

Note that we rather face an update problem, since an agent wants to change an
argumentation system in order to satisfy a particular goal. A revision approach would
apply to situations in which the agent learns some information about the initial argu-
mentation system and wants to correct its knowledge about it. This would mean that
the argumentation system has not changed but the awareness of the agent has evolved.

We have established the representation theorem for a generalized update operator
(i.e., operator with a set of authorized transitions), in order to capture generalized en-
forcement operators. We have proven that a generalized enforcement is a kind of update
with transition constraints that capture “authorized operations” on argumentation sys-
tems. Indeed some operations may be allowed or not according to the knowledge (encoded
by an argumentation system) of the user and according to the target argumentation sys-
tem on which he wants to act.

The axioms that are verified by an enforcement operator are the postulates U1, E3,
U4, E5, E8, U9. Those postulates are not specific of argumentation systems they only
characterized an update operator satisfying transition constraints. This is why we needed
to refine our representation theorem with properties that are adapted to argumentation
system, hence that take into account the attack relations and the definitions of exten-
sions. A result of our research, presented in [94], was the idea to use the characterizations
as specific update postulates for argumentation, by translating them into a formula of
YALLAU with an update operator inside. More precisely we have provided two proposi-
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tions (one for the addition and one for the removal of an argument) which are kinds of
argumentation postulate builder, allowing to build a generalized enforcement postulate
corresponding to every result already established by a characterization.

Example 18 Let us suppose that the lawyer thinks that the jury’s knowledge may be rep-
resented by two argumentation systems GJ1 and GJ2 that are equally possible. Translated
in YALLA, they are the two models of the formula ϕ = ΦU (GJ1) ∨ ΦU (GJ2).

a3

a7 a4 a1 a0

GJ1

a3 a2

a7 a4 a1 a0

GJ2

Given the knowledge of the lawyer:
a6 a3 a2

a7 a4 a1 a0

She wants to have a0 accepted under the grounded semantics. Let us suppose that she
is only authorized to perform an elementary change (because the judge left her only one
word to add) and we can also assume that she is not allowed to object against arguments
that are not present and not able to add arguments that she does not know: let us denote
Tl this set of authorized transitions. Among this set of elementary changes Tl, she prefers
addition to removal. Then it means that she should find if the following formula2 has
some models:

[ϕ �Tl (∃p,G(p) ∧ ({a0} ⊆ p))]

Here are some operations for the lawyer, the first level is the preferred ones, the second
is less preferred, the third level contains operation that are not authorized.

(⊕, a2, {(a2, a1)}) (⊕, a2, {(a2, a1), (a3, a2)})
(⊕, a6, {(a6, a1)})
(	, a0,∅) (	, a1,∅)
(	, a3,∅) (	, a4,∅)
(	, a7,∅)

(	, a2,∅) (⊕, a5, {(a5, a1)})
· · ·

Hence she can operates the two changes: (⊕, a2, {(a2, a1)}) and (⊕, a6, {(a6, a1)}).

Note that (⊕, a6, {(a6, a1)}) could have been obtained directly by using Characterization
15 of [49] (see Section 4.b) where a6 play the role of z.

2In this formula, G(p) is a shortcut for the formula in YALLAU that expresses that p is the grounded
extension.

70



4.d Tool

Several software tools have already been designed for helping a user to reason with
arguments. They are meant to be cognitive assistants (see for instance [190, 184]) or they
focus on a particular domain (e.g. [22, 2] in the domain of case-based legal reasoning). Our
proposal presented in [51] was more at a strategical level since it aimed at helping the user
to persuade an audience, hence our tool was made to provide means to do it (arguments
that could be added, or objection that could be done). More precisely, the tool developed
by Pierre Bisquert[51] is able to produce as output the list of actions executable by the
agent in order to achieve its goal. This software uses the characterizations presented in
Section 4.b. The software can handle three semantics, the grounded, the preferred and
stable semantics. In addition, at the current stage, the software handles only some types
of change (addition and removal of arguments only).

The tool is organized around two modules: an argumentation system (AS for short)
handler, and an inference engine (for computing the change operations), see Figure 4.1.
The outputs of Module 1 are inputs for Module 2.

Argumentation
System

Argumentation
System

Computation
Engine

Agent
- Arguments
- Attacks

Target
- Arguments
- Attacks

CharacterizationsGoal

Operations Charac. used

Module 1

Module 2

Figure 4.1: Architecture of the tool.

The first module encoded in Python may handle the creation of various AS, defined
by giving a set of arguments and a set of attacks, hence in accordance with our theoretical
framework, the tool makes it possible to create one AS for the agent and one for its target.
Moreover, the semantics used in the target system is also specified (it will be used to
check the achievement of the goals of the agent). The two AS as well as the extensions
of the target, are then transmitted to the second module.

The second module encoded in Prolog computes the change operations. More pre-
cisely, it allows to answer to the question “What are the operations executable by the
agent on the target system that can achieve her goal?”. This module requires a goal and a
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set of characterizations. The characterizations translate naturally into logical rules (this
is what gave us the idea to develop the logical language YALLA), and the mechanism of
unification allows us to generate and easily filter the operations wrt the AS and the goal
of the agent.

We have presented a theoretical framework and a tool able to find a change operation
which achieves a goal given a target AS and given arguments and attacks from a “source”
AS (representing the knowledge of an agent). An important issue about knowledge
dynamics is the establishment of a set of axioms that characterize rational changes.
Hence it was important to situate our framework in the field of belief change theory. We
first have generalized classical update postulates in order to take into account a set of
authorized transitions (see Section 2.c). Since the update approach is based on classical
propositional logic, we have defined a logical language (called YALLAU in Section 3.a)
for representing argumentation systems. Then we have shown that the change operations
on argumentation systems are update operations. Moreover due to previous works about
dynamics in argumentation we have been in position to provide a set of new postulates
(based on change characterizations) that are specific of argumentation update.

The tool that we have provided could be used as a cognitive assistant for human agents
and may also help to locate gaps of characterization. We have studied the behavior of
this tool by means of two experimental protocols used for generating benchmarks made
of random AS and random goals.

We can see the characterizations as guides to decide about the action to perform
on a target graph. This decision should be done according to the nature of the desired
change (given by our typology), according to the difficulty to check if the condition of the
characterization holds, and according to the typicality of the property to show (which
relates to an estimation of the risk associated to the action).

Since computing the extensions after change is very expensive (in spite of the progress
made in [146]), one perspective is to show that our approach is less expensive. This
will require to determine the computational complexity of the tests required to check
the applicability of some characterizations. Indeed, some characterizations use complex
concepts: for example the indirect defense of an argument by a set.

It seems necessary to extend our trial example in order to allow for a real interaction
between the prosecutor and the lawyer. In a more general way, this implies to study the
changes operated by an agent on its own system when another agent carries out a modi-
fication of the target AS. In other words it means to study the revision of argumentation
systems.

The main difficulty in this work appeared to be the abstract argumentation theory
itself, since in order to study the evolution of extensions, the first step was to find
examples where extensions are natural, then make the system evolve. I have been stroken
by the fact that it is very difficult to find examples where Dung’s extensions are solutions
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of a problem (see more details in Section 6.a). This could be seen as a drawback since
it is important to show that an approach is applicable for real problems. However,
although all our characterizations were done for Dung’s semantics, our results are usable
with any kind of characterization e.g. that could rely on other definitions of accepted
argument. This is due to our definition of the logical language YALLAU which allows
us to go beyond Dung’s classical semantics, since it may capture any definition of an
acceptable set of arguments. Nevertheless, this difficulty incited me to design new models
for argumentation especially in the context of persuasion dialogs and group decision (see
Sections 5.b and 6.b).
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Chapter 5

Dialogs

Argumentation plays a central role in the domain of dialog systems. Indeed natural
argumentation involves a discussion between at least two agents (it may be restricted to
only one agent when she is deliberating with herself, but in that case she is playing two
distinct roles). A dialog system is built on three main components: i) a communication
language specifying the locutions that will be used by agents during a dialog, ii) a protocol
specifying the set of rules governing the dialog such as who is allowed to say what and
when? and iii) agents’ strategies for selecting their moves at each step in a dialog.

We first describe a general Agent Communication Language (ACL) based on com-
mitments and penalties, in which everything that is said commits either the speaker or
the hearer. Then we focus on persuasion dialogs. Persuasion concerns two (or more)
agents who disagree on a state of affairs, they engage in the dialog in order to persuade
the others to change their minds either in public, i.e., in presence of an audience (e.g.
[58, 63, 139]) or in private (e.g. [18, 164, 204]). Private persuasion is more concerned by
the evolution of the argumentation systems when adding arguments received from the
other party: an agent becomes persuaded of a claim if this claim becomes supported by
its argumentation system. In general, I have been more interested in public persuasion
like e.g. a political debate where both candidates are trying to rather convince the voters
than their adversary.

At the time of our study, while there were numerous works on dialog protocols (e.g,
whether a dialog terminates, or whether turn shifts equally between agents etc), no work
had been done on criteria for evaluating the dialogs generated. In real life, two people
listening to the same political debate may disagree on the “winner” and have different
feelings about the dialog itself. Hence, it seems important to be able to compare objec-
tively the quality of different dialogs. Such a comparison may help to design protocols
that enforce agents to produce better dialogs w.r.t. chosen criteria. This is the object of
the second section of this chapter.

Enabling agents to use approximate arguments in persuasion dialogs makes more
room for strategies and generalizes the dialog setting. Our third contribution concerns
the definition of an ACL enabling enthymemes in which we have characterized the notion
of common knowledge and designed a protocol enforcing agents to converge towards more
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agreements.
Our last contribution in this domain is an axiomatisation of logic-based argumentative

persuasion dialog systems which is very different from the one defined for logic-based
argumentative reasoning systems. It led us to claim that the two domains should be
dealt with different mechanisms.

5.a Commitment and penalties

[12] L. Amgoud and F. Dupin de Saint-Cyr. Measures for persuasion dialogs: A preliminary investigation.
In Computational models of argument (COMMA), pages 13–24. IOS Press, 2008
[11] L. Amgoud and F. Dupin de Saint-Cyr. A new semantics for ACL based on commitments and
penalties. International Journal of Intelligent Systems, 23(3):286–312, 2008
[10] L. Amgoud and F. Dupin de Saint-Cyr. Towards ACL semantics based on commitments and
penalties. In European Conference on Artificial Intellige, pages 235–239. IOS Press, 2006
[9] L. Amgoud and F. Dupin de Saint-Cyr. A Semantics for Agent Communication Languages based on
commitments and penalties. In International Workshop on Computational Logic in Multi-Agent Systems
(CLIMA), pages 28–39. Springer, 2005

In complex multi agent systems, the agents may be heterogeneous and possibly de-
signed by different programmers. Thus, the importance of defining a standard framework
for ACL with a clear semantics has been widely recognized. The definition of an ACL
from a syntactic point of view amounts to list the different speech acts [23, 175] that
agents can perform, the semantic definition defines the conditions under which a given
speech act can be played. It should be verifiable, i.e., it should be possible to check
whether a system conforms to a particular ACL or not, clear and practical [201]. Al-
though a number of significant agent communication languages have been developed, at
the time of our study, obtaining a suitable formal semantics for ACLs which satisfies the
above objectives was remaining one of the greatest challenges of multi-agent theory.

Indeed, most classical proposals fail to meet these objectives. For instance, mentalistic
semantics (e.g. KQML [111] and FIPA [112]) based on the mental states (beliefs and
intentions) of the interacting agents are not verifiable as shown in [201] since they assume,
more or less explicitly, that agents are “sincere” and “cooperative”. The most popular
category of semantics is the social one. In this kind of approach, as developed in [67, 180,
181], primacy is given to the interactions among the agents. The semantics is based on
social commitments. A commitment is an engagement taken by an agent towards a set
of agents. Commitments are induced by uttering speech acts. For example, by affirming
a data, the agent commits on the truth of that data. After a promise, the agent is
committed to carrying it out. While this approach had overcame the limitation of the
mentalistic approach by being verifiable, at the time of our study, it was still suffering
from some weak points, in particular, the concept of commitment was ambiguous.

In our proposal developed in [12, 11, 10, 9], we defined a formal semantics which is
social in nature. Our main contribution was to give a translation of each possible speech
act in terms of a commitment for the sender or for the receiver (without referring to
the mental state of the agent) translated in terms of penalty to be paid by the agent
who has not fulfill its commitment. Indeed when a question is uttered, a commitment
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for giving an answer is created, and the debtor is the hearer. Note that this does not
mean that the hearer should necessarily give an answer. A dialogue protocol may impose
such a condition, but the problem of dealing with protocols was beyond the scope of our
research, our aim was to give a clear and verifiable meaning to each speech acts..

Formally, let A = {a1, . . . , an} be a set of variables denoting agents identifiers. Each
agent is assumed to have a role allowing it to have the control over a subset of formulas
in L . By having a control over a formula, we mean that the agent is allowed to alter
the truth value of that formula, formally: Role : A 7−→ 2L . The roles are supposed to
be visible to all the agents. Thus, each agent is aware about the formulas that it can
control, and about the formulas under the control of the other agents. Let S denote the
set of speech acts. A move m is a tuple (s,R, act, x) where s and R are agents and set
of agents (the sender and the receiver(s) respectively), act is a speech act (denoted by
Act(m)) and x, denoted by Content(m), is either a consistent formula of L or a logical
argument of Arg(L ) (see Definition 23). When the sender (Sender(m)) and receiver
are not important or implicit we denote the move by act:x. Let M denote the set of all
the possible moves based on S. An example of a move is (a1, {a2}, Question:ϕ) where
ϕ encodes “the sky is blue”. This move means that a1 asks to a2 whether the sky is blue
or not. Here Question is a speech act and ϕ is a propositional formula.

In the proposal developped with Leila Amgoud [11], we used the following set S of
basic speech acts based on the proposal of Searle [174] that are commonly used in the
literature (for instance [18, 19, 121, 159, 163, 204]) for modling the different types of
dialogues identified by Walton and Krabbe [195]:

S = {Assert, Argue, Declare, Question, Request, Challenge, Promise}.

Our purpose was to show that we were able to represent each of them in terms
of commitments. Indeed, for each of these speech acts, Table 5.1 show its syntax, its
meaning, the induced commitment and an example of content.

In addition to the above speech acts, we have considered another act called Retract

which does not belong to the different categories of speech acts defined by Searle [174]. It
can be seen as a meta-level act allowing agents to withdraw commitments already made.
Allowing such a move makes it possible for the agents to have a kind of non-monotonic
behavior (i.e., to change their points of view, to revise their beliefs, etc.) without being
sanctioned. Syntactically, Retract:m is a meta-move with m being itself a move (i.e.,
m ∈M ).

We have proposed to store the various moves uttered during a dialogue in commitment
stores (as in [150]) which are visible to all agents. Hence, contrarily to the mental states
of an agent that are private the commitments of an agent are visible to all the agents.
For instance if an agent ai makes a request r to another agent aj , the request (r) is
stored in the commitment store of aj . Hence, aj is said committed to answer to it.
Formally, a commitment store CSi associated with ai is a pair CSi = 〈Ai, Oi〉 with: Ai ⊆
{m ∈M |Act(m) ∈ {Assert, Argue, Declare, Promise}}: it contains the commitments
that the agent has willingly taken, and Oi ⊆ {m ∈M | Act(m) ∈ {Question, Request,
Challenge}} which contains the commitments required to her by the others.
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Syntax Meaning Commitment Example
Assert:x,
x ∈ L

inform that x holds sender should defend x
against opposite argument

“this article can be pub-
lished”

Argue:a,
a ∈ Arg(L )

support a claim by
an argument

sender should defend it
against attacks

“articles revealing private
information cannot be
published, hence this arti-
cle cannot be published.

Declare:x,
x ∈ L

make x hold sender should have the
right to do it (i.e., the
right “role”)

“John and Mary are hus-
band and wife”

Question:x,
x ∈ L

ask if x holds receiver should answer
(give an argument for x
or for ¬x)

“John and Mary are mar-
ried” (?)

Request:x,
x ∈ L

ask to make x hold receiver should act to
make x hold

“a2 is paid” (when a2 asks
for being paid)

Challenge:x,
x ∈ L

ask for an explana-
tion (argument) for
x

receiver should present an
argument for x

“this article can be pub-
lished” (why?)

Promise:x,
x ∈ L

commit oneself to
make x true in the
future

sender should do it (one
day)

“a2 is paid” (for saying
that a2 will be paid)

Table 5.1: The speech acts and their commitments

A commitment store is supposed to be empty at the beginning of a dialogue. Then,
each move uttered during a dialogue is stored in a commitment store except the move
retract. Indeed, this last does not commit neither its sender nor its receiver to anything.

We have introduced a function PROP that computes the set of formulas representing
the state of the world according to what has been uttered during the dialogue. Note that
Questions, Challenges and Requests are not considered in the definition of this function
since they don’t describe the state of the world while formulas that appear in assertions
and arguments are directly taken into account. However, things are different with the
formulas related to a move Declare. Indeed, by definition, after Declare:x the world
evolves in such a way that x becomes true. Consequently, one has to update the whole set
of propositions previously uttered (in this work we did not precise the update operator
to be used this had been left outside the scope of this framework).

Now, it is natural to associate with each commitment a penalty that sanctions agents
when the commitment is violated. The need of cumulating sanctions when several vi-
olations have occurred is a reason for using a penalty based framework which is built
on additivity. For this purpose we have adapted the penalty logic framework, that we
had proposed in [102] for handling inconsistency in knowledge bases: the penalties as-
sociated to the violated commitments in the CS were assumed to depend only on the
corresponding speech act. Each speech act in S is supposed to have a cost which is a
strictly positive integer or the infinity: Cost : S 7−→ N?∪{+∞}. This captures the idea
that some speech acts are more important than others. For instance, violating a promise
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may be more costly than not answering a question. Since a commitment store is empty
at the beginning of a dialogue, its initial penalty is equal to 0. In [11], we have described
the conditions of violations of the different speech acts, together with the place where
they are stored and their associated penalty.

For instance, an Assert move is violated if it is possible to build an argument whose
conclusion is opposed to it from the set of propositions uttered by the agent, i.e., if the
agent is self-contradictory. When, a commitment is fulfilled or withdrawn the penalty of
the commitment store decreases.

Example 19 Let us consider the following dialog (assuming that the moves are allowed
by a given protocol), we give the evolution of CS1:
Give me a nail please: (a2,{a1},Request,a2n)

A1 O1

∅ Request:a2n
c(CS1) = Cost(Request)

(where a2n stands for “a2 can have the nail”)
No. : (a1,{a2},Assert,¬a2n)

A1 O1

Assert:¬a2n Request:a2n
c(CS1) = 0

Why not?: (a2,{a1},Challenge,¬a2n)
A1 O1

Assert:¬a2n Request:a2n
Challenge:¬a2n

c(CS1) = Cost(Challenge)

Because I want to hang a mirror (hm) and thus I need this nail (nn). I cannot give you
a nail if I need it.: (a1,{a2},Argue, ({hm, hm→ nn, nn→ ¬a2n}, ¬a2n))

A1 O1

Assert:¬a2n Request:a2n
Argue:({hm, hm→ nn, nn→ ¬a2n}, ¬a2n) Challenge:¬a2n

c(CS1) = 0

In this dialogue the agent a1 has an exemplary behavior since after each move, the
penalties associated with its commitment store are canceled. It means that a1 does not
contradict itself (regarding the properties she has used in assertions and arguments), and
that a1 has answered to all the requests (negatively but she did it) and to the challenge
made by a2.

We have shown that the proposed semantics satisfies some desirable properties.
Namely, the semantics sanctions only bad behaviors of agents, and any bad behavior
is sanctioned i.e., if the commitment store has a strictly positive cost then it means
that there is a violated move in the commitments, and conversely if there is a violated
move then the commitment store will have a strictly positive cost. An important result
is the fact that if the total penalty of part Ai is null then all the stated information is
consistent.

Based on the formalization of the notion independence of propositional formulas1

by Lang et al. in [141] we have defined a notion of Independence between two moves
1Let ϕ, φ be two propositional formulas, and Σ a set of formulas, ϕ is new for φ w.r.t. Σ iff:
• ∃ (S, φ) ∈ Arg(Σ ∪ {ϕ}) and (S, φ) 6∈ Arg(Σ), or
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given a dialogue. Roughly speaking, two moves are independent if the formulas in the
content of the first move are independent from the ones of the second move given all the
propositions already uttered. This notion allows us to capture the fact that sometimes
the content of a move maybe of no interest with respect to the current state of knowledge
when this speech act is answering a question or a challenge. It also allowed us to show
that the violation status does not change when an independent move is uttered (provided
that this move is not a Declare since in that case the update operator has to be, what
we called, “Independence compatible”). We have also shown that if two formulas are
independent w.r.t. the formulas of a commitment store, then the penalty of two moves
conveying these formulas is decomposable.

The contribution of this approach can be summarized as follows: we have clarified the
origin of each commitment induced from a speech act. We have proposed a new semantics
in terms of commitments associated to violation penalties. All the violation criteria are
based on what has been exchanged (and not on the knowledge bases of agents). This
makes the semantics verifiable. Contrarily to existing social semantics that focus only on
speech acts isolated from the context of the dialog, our semantics is defined on the basis
of moves uttered during a dialog which ensures that it is practical. Note that in order to
add a new speech act, one needs simply to define a new violation criterion and a penalty
associated with it.

With our ACL, one does not need to specify the different moves allowed after each
move in the protocol itself. Agents only need to minimize the penalty to pay at the
end of the dialog. This give birth to very flexible protocols and consequently, the agent’s
strategies become very rich. Besides, the notion of penalty may play a key role in defining
agent’s reputation and trust degrees. It is clear that an agent that pays a lot of penalties
during dialogues may lose its credibility, and will no longer be trusted. Examining more
deeply penalties can help to figure out agents profiles: cooperative agent, consistent
agent, thoughtful agent (i.e., agent that respects its promises)...

5.b Persuasion dialogs with Enthymemes and limited time

[93] F. Dupin de Saint-Cyr. Handling enthymemes in time-limited persuasion dialogs. In International
Conference on Scalable Uncertainty Management (SUM), number 6929 in LNAI, pages 149–162. Springer-
Verlag, 2011
[92] F. Dupin de Saint-Cyr. A first attempt to allow enthymemes in persuasion dialogs. In DEXA
International Workshop: Data, Logic and Inconsistency (DALI), pages 332–336. IEEE Computer Society
- Conference Publishing Services, 2011
[25] J. Balax, F. Dupin de Saint-Cyr, and D. Villard. DebateWEL: An interface for Debating With
Enthymemes and Logical formulas. In European Conference on Logics in Artificial Intelligence (JELIA),
volume 7519 of Lecture Notes in Computer Science, pages 476–479. Springer, 2012

As said in introduction of this chapter, persuasion dialog models have already been
widely developed in the literature but as far as I know the dialog persuasion systems that

• ∃ (S,¬φ) ∈ Arg(Σ ∪ {ϕ}) and (S,¬φ) 6∈ Arg(Σ)

ϕ is said to be independent from φ w.r.t. Σ otherwise.
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have been developed either did not define what is an argument or were always assuming
that an argument is a “perfect” minimal proof of a formula, no formal persuasion dialog
system able to handle enthymemes had yet been defined at the time of my work on this
subject. This is why in [93, 92, 25] my purpose was to develop a dialog system in which
it is possible to use “approximate argument” (as defined in Section 3.b) hence to take
into account implicit information. Indeed in enthymeme handling, it may be interesting
to focus on what is missing. We have seen in Example 16 that some stratagems given by
Schopenhauer for taking victory in a dialog are based on the use of enthymemes.

The ACL that I have defined in this study, is specific for handling enthymemes in a
persuasion dialog involving two agents, denoted a and a. The specificity comes from the
facts that imperfect arguments should be dealt differently: the hearer can agree: it means
that he recognizes the link, or can ask for a completion in order to see the link and so
on. Hence the speech acts that were allowed differ from the one of the previous section. I
have considered a set of eleven speech acts (they are described precisely with their three
associated effects (locutionary, illocutionary and perlucotionary [23]) in [93]). Although
some speech acts are “assertive” (according to Searle [174]) namely Assert and Argue, as in
the previous Section we claim that they are “commissives” in the sense that they commit
the utterer to avoid to contradict them. While Close is clearly a “declarative” speech act
(for ending the dialog), it is less obvious for Retract, Dismantle (that retract an argument)
since they are not only “declarative” but also “assertive” (because the retracted formulas
or dismantled arguments correspond to assertion of the form “I assert neither ϕ nor ¬ϕ”
“I assert neither that S is a valid proof for ϕ nor that it is not”) and “commissive” (since
they are assertive).

The commitments induced by the different speech acts during a dialog are transcribed
into a commitment store (CS) as previously. This structure is different since we had to
store (approximate) arguments separately from formulas since, because of their imper-
fection, approximate arguments are not expressible in terms of formulas. Moreover, I
have added a common knowledge store that contains all the mutually agreed contents of
moves (see an example on Figure 5.1). It gives a tuple (Fa, Aa, Ra, F ◦, A◦, Fa, Aa, Ra)
representing respectively, formulas asserted by a, arguments said by a, requests towards
a, common formulas, common arguments, formulas asserted by a, arguments said by a
and requests toward a.

In [93], I have described the effects and preconditions of each move done by agent a
towards the other agent denoted a. For instance, the move Argue is used with a content
which is an approximate argument: 〈S, ϕ〉. The agent a has the right to do it if the
following preconditions hold: 〈S, ϕ〉 /∈ A◦ ∪ Aa ∪ Aa and S ∪ {ϕ} ∪ Fa ∪ form(Aa) ∪ F ◦
consistent. It means that the argument should not have already been uttered either by
a or a (hence it should not belong to common knowledge arguments nor to the set of not
yet agreed arguments uttered by a or a). Moreover the formulas of this argument should
be consistent with the formulas that have been used by a or that are in the common
knowledge.

The post-conditions of this move are: 〈S, ϕ〉 ∈ Aa and (Challenge ϕ) /∈ Ra and (Agree
〈S, ϕ〉) ∈ Ra. It means that the effects of doing this Argue move are commitments to a
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Figure 5.1: Commitment store (screen shot of the tool described in [25])

and a, namely this argument is added to the set of arguments of a (a is then committed
to not contradict it in the future unless a dismantles it). If there was a current Challenge
done by a on the formula ϕ then a is no more committed to answer to it. a is now
committed to Agree with this argument before the end of the dialog, unless it manages
to make a dismantle it.

Another example is the Quiz move: Quiz(S, ϕ) can be done by an agent a only if there
is no logical argument completing (S, ϕ) that can be built from the common knowledge
and the formulas already asserted by a. In other words, the agent cannot understand
the argument a (at least in what she has said, nothing shows that the agent can do it).

After defining the ACL we have defined a protocol which is a Boolean function that
checks if a move is acceptable at a given stage of the dialog. We have proposed to define
this function on the basis on the content of the commitment store. The protocol defines
what is a persuasion dialog wrt an initial common knowledge (F,A) (where F and A are
possibly empty sets of formulas and approximate arguments assumed to be consistent).
In our definition, it is a sequence of moves such that there is a sequence of states of
the CS that have good properties wrt to this sequence of moves. For instance at start
CS1 = (∅,∅,∅, F,A,∅,∅,∅), and at each step, the preconditions of the movemi should
hold in CSi and the post-conditions are applied to CSi in order to obtain a new state
CSi+1 except if the move is Close (which should be allowed in this stage, i.e., it requires
that all the commitments of the agent are fulfilled) and that the other agent has already
closed his participation to the dialog. If these “ending conditions” are not possible then
the dialog has no end.

81



Example 16 (continued): Let us consider the following persuasion sub-dialog

D =


(Schopenhauer, Assert, d→ s ),
(Adversary, Argue, α1 = 〈{m→ ¬s}, o→ ¬s〉 ),
(Schopenhauer, Argue, α2 = 〈{d↔ t ∨ s},m→ ¬d〉 ),
(Adversary, Agree, α2 )


Suppose that common knowledge is the following: F ◦ = {o → m, o} meaning that

“opera is music” and that “opera exists”. Table 5.2 describes the commitment stores of
each participants.

After these moves the dialog is not finished since two requests are not yet answered.
Schopenhauer has to options either (1) to agree with α1 (since it is consistent with com-
mon knowledge) then he would have no more commitments and his adversary will be
obliged either to accept the first claim or to provide another argument against it or
(2) he may ask his adversary to precise the link that argument α1 has with the for-
mulas already asserted. In that case the adversary would not be able to Replace his
argument since the logical argument that completes α1 and related to the subject is c
(〈{m → ¬s, o → m, o, o → d},¬(d → s)〉) whose support is now inconsistent with the
common knowledge (see Table 5.2).

Since a persuasion dialog may be infinite, in [93], we have introduced a particular
persuasion dialog where the speaking time is restricted. This notion has required to
define the duration of the moves (all moves were associated to a duration of 1 except
for Assert, Argue, Replace in which the size of their content was taken into account).
Now, the time-limited persuasion dialog wrt to an initial common knowledge (F,A) and
a total duration T , is a variant of a persuasion dialog where the CS are equipped with
two integers for counting the remaining time of each agent, the starting condition is
then: CS1 = (∅,∅,∅, T, F,A,∅,∅,∅, T ) and at each step the duration is taken into
account by checking in the precondition if the duration of the moves does not overlap the
remaining time of the agent, the CS after a move is updated in a way that the remaining
time of the agent is decreased by the duration of the move he has just uttered. The
termination condition for the dialog has changed because it can stop because the agents
have no more speaking time.

We have shown that a time-limited persuasion dialog is finite. This last property is
important due to enthymemes, the requests for completion of arguments can sometimes
be infinite depending on common knowledge... We have shown that when a dialog is
closed by the two participants then they have fulfilled all their commitments. We have
also shown that common knowledge is increasing after the persuasion dialog and can be
used as initial common knowledge for future dialogs.

Our proposal was a first attempt to handle enthymemes in persuasion dialogs. The
ambition was to handle incomplete information both in the premises and in the claim of
an argument. The latter is more difficult to handle and has required to introduce a new
speech act Quizlink allowing to ask for an insight about what is hiding behind the claim.
In some cases, one may agree with an argument that is not related with the subject but
when he understands the underlying implication he wants to reject it.
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After the third move
Schopenhauer Common knowledge Adversary

Form. Args Requests Form. (F ◦) Args (A◦) Form. Args Requests
d→ s α2 (Agree α1) o→ m α1 (Accept d→ s)

o (Agree α2)

After the fourth move
d→ s (Agree α1) o→ m α2 α1 (Accept d→ s)

o
d↔ t ∨ s
m→ ¬d

If the move (Schopenhauer,Quizlink, α1) is done
Then the move (Adversary,Dismantle, α1) should be done, leading to:

d→ s o→ m α2 (Accept d→ s)
o

d↔ t ∨ s
m→ ¬d

If the Adversary has no other argument linked with the subject, then he is forced to do
the move (Adversary,Accept, d→ s) in order to be authorized to close the dialog:

o→ m α2

o
d↔ t ∨ s
m→ ¬d
d→ s

Schopenhauer Common knowledge Adversary

Table 5.2: Commitments stores of Schopenhauer and his Adversary

In our two proposals of ACL we have only represented what is publicly uttered,
since we have considered that we do not have access to the agent’s mind. This way to
apprehend the public statements is also done for instance by [118], a public utterance is
called “grounded” in their framework. Their approach allows to deal with inconsistent
assertions (which is not allowed in our second framework)considering that it is up to the
other agent to detect and denounce inconsistency by asking to its adversary to “resolve”
it. Dealing with possible inconsistent assertions is a challenge for further developments
of our second approach, however we could argue that what is public should be consistent
in order to be civilized and respectful of the audience and of the debate quality.

During the dialogs the public utterances are stored and may evolve when arguments
are retracted or replaced, in my opinion it is a more natural view of argumentation than
the classical “static view of argument” introduced by Dung (see Section 6.a), in which
an argument is not allowed to be changed by its utterer when it is attacked since all
arguments are kept together with the attacks among them.

A very appealing development of this framework concerns the strategical part, we
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plan to translate our protocol rules into the Game player project language GDL2 [186],
indeed in GDL2 it is possible to handle games with imperfect information. After this
translations strategies coming from game theory and strategies dedicated to dialog games
(e.g. [17]) could be compared. Moreover, an important perspective would be to take into
account the duration of the moves for choosing the strategy to achieve the persuasion
goal.

5.c Persuasion Dialog quality

[14] L. Amgoud and F. Dupin de Saint-Cyr. On the quality of persuasion dialogs. Studies in Logic,
Grammar and Rhetoric, Argument and Computation, 23(36):69–98, 2011
[13] L. Amgoud and F. Dupin de Saint-Cyr. Extracting the core of a persuasion dialog to evaluate its
quality. In European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU), volume LNAI 5590, pages 59–70. Springer-Verlag, 2009
[11] L. Amgoud and F. Dupin de Saint-Cyr. A new semantics for ACL based on commitments and
penalties. International Journal of Intelligent Systems, 23(3):286–312, 2008

In [14, 13, 11] we have investigated objective criteria for analyzing already generated
logic-based argumentative persuasion dialogs whatever the protocol and the strategies that
are used. We place ourselves in the role of an external observer who tries to evaluate
a dialog, we have proposed three points of view: measures that evaluate the quality of
exchanged arguments, measures that analyze the behavior of each participating agent,
measures of the global properties of the dialog itself.

In what follows, a persuasion dialog is considered as an exchange of logic-based ar-
guments2 between two or more agents. We had assumed that each agent involved in a
dialog recognizes any logic-based argument of Arg(L ) and any attack in RL (an un-
specified binary relation s.t. RL ⊆ Arg(L )×Arg(L )). This assumption does not mean
that each agent is aware of all the arguments. But, it means that agents use the same
logical language and the same definitions of argument and attack relation. The subject
of such a dialog is an argument and its aim is to determine the status of that argument.
Since only arguments are exchanged, it means that the speech act is systematically an
Argue, hence the moves are reduced to triple 〈s,R, α〉 where s and R are respectively the
sender and the Receiver as in Section 5.a, and α is a logic-based argument (α ∈ Arg(L ))
referred as the content of the move (Content(m)). Formally, the kind of persuasion di-
alog D studied here is a finite3 sequence of n moves: 〈m1, . . . ,mn〉. built under a given
protocol. A sub-dialog of D is a sub-sequence 〈m1, . . . ,mi〉, i ≤ n. In the framework
studied, an argumentation system (ASD) is associated to D in order to evaluate the status
of its subject (which is the first argument uttered: Subject(D) = Content(m1)) under
the grounded extension. ASD is a pair (Args(D),R(D)) where Args(D) is the set of
arguments uttered and R(D) the attacks between them according to RL .

2Note that in [18], other kinds of moves (like questions, assertions) may be exchanged in a persuasion
dialog it is also the case in our proposal with enthymemes (see Section 5.b).

3We assume that the dialog D is finite, this assumption is not too strong since a main property of
any protocol is the termination of the dialogs [187].
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Example 20 Let D1 be a dialog between two agents a1 and a2 with D1 = 〈〈a1, {a2}, α1〉,
〈a2, {a1}, α2〉, 〈a1, {a2}, α3〉, 〈a1, {a2}, α4〉, 〈a2, {a1}, α1〉〉. The subject of D1 is the ar-
gument α1. Let us assume the following attacks among some of these arguments.

α1α2α3

α4

Thus, Args(D1) = {α1, α2, α3, α4} and R(D1) = {(α2, α1), (α3, α2), (α4, α2)}.

The output of a dialog is the status of the argument under discussion (i.e., the sub-
ject). In example 20, the grounded extension of ASD1 is the set {α1, α3, α4}. Thus, the
output is an acceptation.

During a dialog, agents utter arguments that may have different weights. A weight
may highlight the quality of information involved in the argument in terms, for instance,
of certainty degree. It may also be related to the cost of revealing an information. In [6],
several definitions of arguments’ weights have been proposed, and their use for comparing
arguments has been studied. It is worth noticing that the same argument may not have
the same weight from one agent to another. In what follows, a weight in terms of a
numerical value is associated to each argument. The greater this value is, the better the
argument.

weight : Arg(L ) −→ IN∗

On the basis of arguments’ weights, it is possible to compute the weight of a dialog D as
follows:Weight(D) =

∑
α∈Args(D) weight(α) and the contribution of an agent to a dialog:

Contr(ai, D) of an agent ai to the dialog D is the weight of what she has said over the
global weight of the dialog.

It is clear that the Weight measure is (non strictly) monotonic wrt dialog increasing4

contrarily to Contr. However the contribution of the agent who will present the next
move will never decrease.
Example 20 (continued): Da1

1 = {α1, α3, α4} and Da2
1 = {α2}. Suppose that an ex-

ternal agent who wants to analyze this dialog assigns the following weights to arguments:
weight(α1) = 1, weight(α2) = 4, weight(α3) = 2 and weight(α4) = 3. The contribu-
tions of the two agents are respectively Contr(a1, D1) = 6/10 and Contr(a2, D1) = 4/10.

The behavior of an agent in a given persuasion dialog may be analyzed on the basis
of three main criteria: i) its degree of aggressiveness in the dialog, ii) the source of its
arguments, i.e., whether it builds arguments using its own formulas, or rather the ones
revealed by other agents, and finally iii) its degree of coherence in the dialog.

The first criterion, i.e., the aggressiveness Agr(ai, aj , D) of an agent ai in a dialog
D against agent aj , measures to what extent an agent was attacking arguments sent by

4Note that due to the definition of the weight of a dialog, if an agent says several times the same
argument it is only counted once.
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the other agent(s), i.e., the number of arguments attacking the ones of the other agents
wrt to its total number of arguments uttered. An aggressive agent prefers to destroy
arguments presented by other parties rather than presenting arguments supporting her
own independent point of view.

Example 21 Let D2 be a persuasion dialog between the agents a1 and a2. Assume
that Args(D2) ={α1, α2, β1, β2}, Da1

2 = {α1, α2}, Da2
2 = {β1, β2} and the conflicts are

depicted in the figure below.

α1 α2

β1 β2

The aggressiveness degrees are Agr(a1, a2, D2) = 0 and Agr(a2, a1, D2) = 1/2.

The second criterion concerns the way arguments are built either from the agent’s own
knowledge base, or by using formulas revealed by other agents. In [17], Leila Amgoud
and Nicolas Maudet have argued that it is interesting to turn out an agent’s argument
against itself in order to weaken its position, it minimizes the risk of being attacked
subsequently. The degree of loan Loan(ai, aj , D) of an agent ai wrt agent aj is tho ratio
of the formula owned by aj that have been used by ai over all the formulas it has used,
where a formula is owned by an agent if it is revealed for the first time by that agent.

The third criterion concerns the coherence of an agent. There are two kinds of self
contradiction: explicit contradiction when an agent presents an argument and a counter-
argument in the same dialog, and an implicit contradiction appearing in a “complete”
version of the agent ai’s argumentation system denoted CAS(Dai). This complete argu-
mentation system takes into account not only the set of arguments which are explicitly
expressed in a dialog by an agent, i.e., Args(Dai), but also all the arguments that may be
built from the set of formulas involved in the arguments of Args(Dai). Due to the mono-
tonic construction of arguments, for any set A of arguments, A ⊆ Arg(Formulas(A)) but
the reverse is not necessarily true. We have defined a measure of incoherence of an agent
in a dialog as the ratio of the number of effective attacks inside its arguments in her CAS
over the Cartesian product of these arguments.

We have shown that if an agent is aggressive towards itself, then it is incoherent but
the converse is not always true (since aggressiveness is not computed on the complete
argumentation system). Similarly, we showed that if agent ai is aggressive towards agent
aj and if all the formulas of ai are borrowed from aj , then aj is for sure incoherent.
Note that incoherence is not necessarily a bad behavior, it depends on the aim of the
participants: the goal may either be to win the debate whatever the other says or to
discuss and take into account new information. In the last case, changing its opinion is
a self-contradiction but may be a constructive attitude.

It is very common that a dialog contains redundancies or useless moves since agents
may deviate from the subject of the dialog. Thus, only some arguments may be useful
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for computing the output of the dialog. We have characterized the useful moves in a
dialog by identifying the ideal version of a dialog. Formally, if there exists a path from
the argument presented by the agent towards the argument representing the subject in
the graph of the argumentation system associated to the dialog, in that case the move
is said relevant. If the path is a directed one the move is said useful : useful moves are
those that have a direct influence on the status of the subject.
Example 21 (continued): Assume that Subject(D2) = α1. It is clear that α2, β1 are
relevant while β2 is not and β1 is useful while α2 is not.

We defined a measure, called Relevance(D), that computes the percentage of moves
that are relevant in a dialog D. In Example 21, Relevance(D) = 3/4. It is clear that
the greater this degree is, the better the dialog. When the relevance degree of a dialog
is equal to 1, this means that agents did not deviate from the subject.

Inspired by works on proof procedures [7] that were proposed in the argumentation
theory in order to check whether an argument is accepted or not, we have computed and
characterized a sub-dialog, called ideal, of the original one that is concise. The closer a
dialog is to its ideal sub-dialog, the better is its quality. In order to compute an ideal
sub-dialog, we build a tree, called Dialog tree denoted by Dt, which is a finite tree with
the subject of the persuasion dialog as root and the branches are all the possible dialog
branches that can be built from D. A dialog branch is a kind of partial sub-graph of ASD
in which the nodes contain arguments and the arcs represent inverted attacks. Note that
arguments that appear at even levels are not allowed to be repeated. Moreover, these
even levels arguments should attack (without being attacked by) the preceding argument.
Such a branch should be maximal.

We have shown that each persuasion dialog has exactly one corresponding dialog tree
and that the status of the subject of the original persuasion dialog D is exactly the same
in both argumentation systems ASD and ASDt (where ASDt is the argumentation system
whose arguments are all the arguments that appear in the dialog tree Dt and whose
attacks are obtained by inverting the arcs between those arguments in Dt).

Example 22
Let us consider D3 whose subject is
α1 and whose graph is the following:

α11 α10 α8 α4

α9 α7 α6 α2

α5 α3 α1 α12

The dialog tree associated to this dialog is:

α1 α2 α4

α3 α5

α6 α7 α9

α8 α10 α11

Note that the argument α12 does not belong to the dialog tree.

In order to compute the status of the subject of a dialog, we can consider the dialog
tree as an And/Or tree. This distinction between nodes is due to the fact that under
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the grounded extension, an argument is accepted if it can be defended against all its
attackers. A dialog tree can be decomposed into one or several trees called canonical
trees that are sub-trees of Dt with root Subject(D) and which contains all the arcs
starting from an even node and exactly one arc starting from an odd node.

We have shown that a canonical tree which branches are all of even-length is sufficient
to reach the same outcome as the original dialog in case the subject is accepted, the
smallest of these canonical trees (in terms of number of nodes) is called ideal. When the
subject is rejected, the whole dialog tree is necessary to ensure the outcome, this tree is
the ideal tree in that case.
Example 22 (continued):
The subject α1 of dialog D3 is accepted since there is a canon-
ical tree whose branches are of even length (it is the canonical
tree on the right in the next Example). It can also be checked
that α1 is in the grounded extension {α1, α4, α5, α8, α9,
α11} of ASD3 .
The dialog D3 has the canonical tree shown on the right which
is ideal.

α5 α3 α1

α4

α2

Note that the ideal dialog exists but is not always unique (in Example 20 two ideal
dialogs can be defined either with arguments {α3, α2, α1} or {α4, α2, α1}). It is clear
that the closer (in terms of set-inclusion of the exchanged arguments) the dialog from its
ideal version, the better the dialog.

Generally speaking, protocols are the high level rules that govern a dialog, these
rules should ensure “correct” dialogs, i.e., dialogs that terminate and reach their goals.
However, they do not say anything on the quality of the dialogs. In our papers [14, 13, 11],
we have argued that there are criteria for measuring this quality. Indeed, under the same
protocol, different dialogs on the same subject may be generated, and some of them
may be judged better than others. We have given three kinds of reasons for such a
judgement (arguments used, agent behaviors and conciseness of the dialog) each one has
been translated into a quality measure.

From our results, it seems natural that a protocol penalizes irrelevant and not useful
moves (until there is a set of arguments that relate them to the subject). Note that in
our proposal, the only thing that matters in order to obtain a conclusion is the final set
of interactions between the exchanged arguments. But the criteria of being relevant to
the previous move or at least to a move not too far in the dialog sequence could be taken
into account for analyzing dialog quality.

Furthermore, it may be the case that from the set of formulas involved in a set of
arguments, new arguments may be built. This gives birth to a new set of arguments and
to a new set of attack relations called complete argumentation system CAS associated
with a dialog. Hence, it could be interesting to define dialog trees on the basis of the
CAS. However, some arguments of the CAS may require formulas owned by other agents,
it would mean that an ideal but practicable dialog would require the agents to utter their
arguments in an efficient sequence (each agent should be able to build each argument at
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each step). This address a kind of collaborative planning problem.

5.d Axioms for persuasion dialogs compared with reasoning

[15] L. Amgoud and F. Dupin de Saint-Cyr. An axiomatic approach for persuasion dialogs. In IEEE
International Conference on Tools with Artificial Intelligence (ICTAI), pages 618–625. IEEE Computer
Society, novembre 2013

An increasing number of systems supporting public persuasion dialogs, including some
that we have developed, are using (abstract or structured) argumentation theories that
were initially developed for non-monotonic reasoning. In our study published in [15],
we have considered logic-based instantiations of Dung’s framework [90], namely those
based on deductive logics [4]5 and we have proposed some basic postulates for persuasion
dialogs. We have shown that these postulates are incompatible with the ones proposed
for non-monotonic reasoning [3].

In this section, we refer to a dialog system by DS. For the purpose of our study,
and without loss of generality, we had focused on persuasion dialogs between two agents
P and C. Each of them is equipped with a knowledge base Σk (with k ∈ {P,C})
and an argumentation system Tk = (Ak,Rk). In order to stay in a general setting we
consider arguments grounded on a Tarskian logic (based on a pair (L ,CN) where CN is a
consequence relation) which is the language shared by the two agents. In the considered
argumentation systems, arguments are evaluated using any Dung’s semantics [90] (see
Section 3.a Definition 19), the set of extensions of an argumentation system T is denoted
Ext(T ).

A persuasion dialog is a valid sequence of moves based on a set of speech acts S ,
i.e., a sequence that satisfies the rules of a given protocol (unspecified in this study).
The only restriction on S is that it should contain at least two kinds of speech acts,
namely “Argue” whose content is an argument and “Assert” whose content is a formula
of L . Apart from the agents argumentation systems, a third argumentation system is
associated to each persuasion dialog in order to evaluate the exchanged arguments (with
Argue moves). Defining the corresponding attack relation is more tricky since the agents
may use different relations (for instance, P may use the “undercut relation” [162] whereas
C “assumption attack” [109]). They may also choose distinct semantics for the evaluation
of arguments. In what follows, we assume the existence of a third relation denoted R
which results from a merging of the two relations RP and RC using an operator ⊗ not
specified in this paper. Thus, R = RP ⊗RC . More precisely, the argumentation system
associated with a dialog D contains the arguments Args(D) that were either uttered by
Argue moves, or that are arguments {({x}, x) built from Assert : x moves. The attacks
R(D) are defined by R restricted to Args(D). The outcome of a persuasion dialog D is
the status of its subject wrt ASD = (Args(D),R(D)) i.e., Output(ASD).

We propose a minimum number of postulates that any persuasion dialog system
should satisfy. The first postulate concerns the finiteness of the generated dialogs. This

5Note that the results of our study hold also in case of rule-based systems.
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requirement is already known in the literature. In [131], protocols should ensure termi-
nation. Here, we require finiteness not only for the number of moves but also for the
content of each move. For instance, it is not allowed to assert x ∧ x ∧ . . ..

Finiteness: For all persuasion dialog D generated by a dialog system DS, size(D) ∈ N
where size(D) =

∑
m∈D sizemove(m) with sizemove(m) is the number of atoms

used in the content of m plus 1.

The second important postulate concerns the formalism that is used for computing
the outcomes of dialogs. In our context, Dung’s system should ensure sound results.
Namely, extensions (under any semantics) represent various positions in a dialog. Thus,
they should be coherent. This leads to a consistency postulate.

Consistency: For all persuasion dialog D generated by a dialog system DS, for all
E ∈ Ext(ASD), {Conc(a) | a ∈ E} is consistent.

In persuasion dialogs, agents try to convince other parties to accept some assertion
by putting forward arguments. These latter are intended to justify the assertion. Thus,
it is unacceptable to justify an assertion by itself. Consequently atomic arguments are
forbidden. Similarly, tautologies are not allowed in dialogs.

Non triviality: For all persuasion dialog D generated by a dialog system DS, for all
α ∈ {Content(m) | m ∈ D, Act(m) = Argue}, α is not atomic and Conc(α) is not
a tautology (i.e., Conc(α) /∈ CN(∅)).

The aim behind building systems for persuasion dialogs is to automate such dialogs
and to conduct efficient ones. These systems should capture as much as possible natural
dialogs, it is thus important for a dialog system to capture the two classical forms of
attacks, namely “rebuttal” and “assumption attacks” (see Definition 25). The following
postulate ensures this by constraining the attack relation R.

Expressivity: For all persuasion dialog D generated by a dialog system DS, for all
α, β ∈ Args(D), if α rebuts β then (α, β) ∈ R, and if α assumption-attacks β then
(α, β) ∈ R.

The next postulate is also about expressive power since for any non-trivial subject,
it constrains the dialog system to be able to generate at least one dialog in which this
subject is accepted and one dialog in which it is not.

Non-determinism: For all formula x ∈ L , s.t. x 6∈ CN(∅) and CN({x}) 6= L , there
exist at least two dialogs D1 and D2 generated by a dialog system DS, such that
Subject(D1) = Subject(D2) = x and Output(D1) 6= Output(D2).

Note that if the set of non-trivial formulas of L (i.e., without considering tautologies
and contradictions) is infinite then any dialog system satisfying non-determinism can
generate an infinite number of dialogs. Another requirement that seems important for a
dialog system is to allow dissimulation, indeed each agent should be able to dissimulate
information.
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Dissimulation: For any agent k, such that Σk contains at least two non trivial distinct
formulas, then for any x ∈ Σk s.t. x 6∈ CN(∅), there exists a dialog D generated
by a dialog system DS, such that x 6∈ Output(AS(D)).

We have shown that the persuasion dialog postulates can be satisfied all together by
a dialog system with an exception: consistency is not compatible with expressivity. But
this exception is due to Dung’s framework which cannot be instantiated by symmetric
attack relations [4]. Thus, the non compatibility of consistency and expressivity does not
mean that the two postulates are not required for dialog systems.

We have investigated whether the set of postulates defined for reasoning systems are
suitable for dialog systems and vice versa. Indeed, a set of postulates for argumentative
reasoning systems was proposed in [3]. The postulates can be satisfied all together.
The first one ensures that each extension supports consistent conclusions. The second
postulate concerns the closure of its output under the consequence operator CN. The
third postulate concerns sub-arguments (see Section 3.b). It ensures that the acceptance
of an argument should imply also the acceptance of all its sub-parts.

Consistency : Let T = (A,R) be an AS over a base Σ. For all E ∈ Ext(T ),⋃
α∈E{Conc(α)} is consistent.

Closure under CN : Let T = (A,R) be an AS over a base Σ. For all E ∈ Ext(T ),⋃
α∈E{Conc(α)} = CN(

⋃
α∈E{Conc(α)}).

Closure under sub-arguments : Let T = (A,R) be an AS over a base Σ. For all
E ∈ Ext(T ), if α ∈ E , then Sub(α) ⊆ E .

We have shown that the three postulates of the reasoning system cannot be satisfied
by a dialog system since in this latter the set of exchanged arguments is not complete
(due to the finiteness of dialogs and also to the fact that in dialogs, some arguments
are considered as trivial and thus do not need to be exchanged). Similarly, we have
shown that four postulates of the dialog system cannot be satisfied by the argumentation
system. Moreover, we have established that the outcome of a dialog system can be
different from the outcome that should be obtained by a reasoning system that would
use a knowledge base containing all the formulas exchanged during the dialog. Note that
our study holds for any other logic-based instantiation of the abstract framework of Dung
[90], like ASPIC system [71].

Since early nineties, there is an increasing number of works trying to formalize di-
alogs in which agents may exchange arguments. Persuasion and negotiation dialogs have
received particular attention from AI community. Several systems were developed for
each of them. In those systems arguments are exchanged in order to support claims in
persuasion dialogs and offers in a negotiation context. The arguments are then evaluated
using “classic” argumentation systems that were originally developed for non-monotonic
reasoning or for reasoning about inconsistent information.

Our study has revealed that a dialog system needs particular argumentation systems
for evaluating its outcomes. Those systems should obey the nature of dialog. This work
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can be extended in different ways. The first one consists of defining argumentation sys-
tems that are more suitable for public persuasion dialogs and that ensure the postulates
discussed in this paper. Another future work consists of defining new postulates for
dialogs, namely for capturing manipulation in dialogs.

In this chapter we have seen several aspect of dialog handling, the language, the
protocol, the quality of the dialog, the axioms that are required for dialog systems. In
all these works it appears that Dung’s framework is not well adapted. In the following
chapter we have proposed to use a new kind of argumentation system (already presented
in Section 6.b) in a framework of collective decision making. This system could be seen
as a very particular dialog where the agents are only allowed to speak once and at the
same time, this is not a dialog but a kind of vote in which we wanted to lower the risk
of manipulation...
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Part III

Work in progress and projects
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In this part, I am exposing my current subjects of work and also the long term
perspectives that seems appealing for me. They are gathered in the next chapter.

I start by explaining why I don’t see much interest in going on working on Dung’s
abstract argumentation theory.

Then I focus on a new structure called BLA on which I am currently working with
Romain Guillaume. This structure is designed for argumentative group decision mak-
ing, it offers many perspectives that I describe briefly as for instance group preferences
elicitation.

Third, I describe a new approach that belongs to my long term project to go beyond
classical rationality and incorporate more human-being practical abilities for reason-
ing and deciding in our systems. This approach developped with Pierre Bisquert and
Madalina Croitoru is an attempt to encode S1-S2 reasoning of Tversky and Kahneman.

The notion of association that is used in S1-reasoning deserve a deep study in order
to be used for aprehending the reasoning about analogical arguments.
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Chapter 6

Perspectives

6.a Why Dung’s framework does not suit me ?

After several years of work on abstract argumentation, I am more and more convinced
that practical intuition is lacking behind the framework introduced by Dung. Indeed
all Dung’s theory about how to reason with arguments [90] was introduced in order to
encompass both non-monotonic reasoning and logic programming in a general theory, and
the two applications provided by Dung were far from argumentation namely n-person
games imputations and the stable marriage problem. The theory is based exclusively
on a graph structure that represents directed attacks between arguments. The fact that
graphs are structures that computer scientists appreciate a lot is not sufficient to justify
the use of Dung’s theory as the unique way to see argumentation. Indeed, in my opinion,
Dung’s theory is not related intuitively to everyday life argumentation. Here is a more
precise list of critics:

• There is no definition of what is an argument, an abstract argument is simply a
vertex in a graph. Attacks between arguments are neither constrained. The lack
of constraints on these definitions is problematic since some information is missing
to understand and validate arguments and their relationship. It seems important
to be able to say that some entities are not arguments and that the attacks should
be related to the nature of the arguments involved in it. In Dung’s framework, any
graph is acceptable for representing relations between arguments (while symmetric
attacks, cycles, self-attacked arguments may translate very different situations that
should be dealt with care).

• Moreover the idea that arguing does not modify the arguments previously uttered
and the related attacks is far from real argumentation where after a counter-
argument, the attacked argument is often either amended/precised by its utterer
or removed (these completions or retractions were the subject of my proposal of
persuasion dialog protocol with enthymemes see Section 5.b). Hence in real de-
bates no argument remains attacked: either it disappears or it is corrected and the
attack disappears. In that sense, Dung’s framework could be seen as a “static view
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of argumentation”, not in the sense that nothing might be added, but in the sense
that flawed arguments stay in the system and cannot be improved.

• Inference in abstract argumentation is defined by the selection of a set of vertices
in the graph, called extensions, that together have good properties. This notion
of group of arguments as well as the defense notion (which allows to consider as
accepted an argument that has been attacked but such that each of its attackers
are attacked) is related to the “static view of argumentation”. The defense notion is
debatable since if the argument has been attacked it means that something is wrong
with it, unless the attack does not hold. The only case considered is that the attack
may not hold (since there is no other information about the argument). But the
attack being unrelated to other information, what is assumed in this framework is
that the attack does not hold if the attacker is not acceptable (leading to a recursive
definition of defense).

• Dung’s framework has already been criticized in the particular case of logic-based
arguments with attack relations built from the logic-based information inside the
arguments. Leila Amgoud and Philippe Besnard have shown [5] that “stable, semi-
stable and preferred semantics either lead to counter-intuitive results or provide no
added value w.r.t. naive semantics” (where only non-attacked arguments are consid-
ered as acceptable). They have also established that “ideal and grounded semantics
either coincide and generalize the free consequence relation developed by Benfer-
hat, Dubois and Prade in 1997, or return arbitrary results. Consequently, Dung’s
framework seems problematic when applied over deductive logical formalisms”.

• More generally, I think that Dung’s framework is not only badly adapted for logic-
based arguments but also very difficult to implement in general, i.e., it is very
difficult to give a meaning to the vertices of the graph and to the arrows in terms
of natural argumentation (with both the ideas of conflict and preference) in order
that the set of accepted arguments according to Dung mean something intuitive
(except with the naive semantics). During Pierre Bisquert thesis we have even tried
to find an implementation outside the scope of argumentation, e.g. arguments are
allocation pairs and attacks are preferences between conflicting allocations. In
this implementation of Dung’s framework, the intuitive meaning of an extension is
not very salient but may nevertheless be considered. Indeed, the grounded exten-
sion corresponds to a strict envy-free part of a possible affectation, the preferred
extensions are partial envy-free affectations and the stable extensions are partial
affectation such that any modification of an allocation in this affectation is strictly
worst. So, a direction of research could be to find useful implementations of Dung’s
framework outside argumentation, following the ideas of Dung himself in his paper.

All these drawbacks (including the result stating that using Dung’s framework in
Dialog is not suitable see Section 5.d) led me to work on different proposals aiming at
capturing natural argumentation. I have already made a first proposal for dealing with
persuasion dialogs with enthymemes (which was outside the scope of Dung’s framework
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see Section 5.b). I am currently working with Romain Guillaume on formalizing precisely
the notion of argument, attack, validity of an argument in the context of decision making.
Moreover, when speaking of natural argumentation, it comes immediately to mind that
the syntactic aspect of what is said is not the only thing that impacts the argument
acceptation. This is why together with Pierre Bisquert and Madalina Croitoru, we have
proposed (see Section 6.d.1) to take extra-information into account such as e.g. the
source, the cognitive engagement of the receiver, etc.

In those proposals, the idea to consider more precise definitions of argument enables
us to evaluate the arguments individually, bypassing the concept of “defense”.

6.b Arguments for decision making

[28] F. Bannay and R. Guillaume. Towards a transparent deliberation protocol inspired from supply
chain collaborative planning. In International Conference on Information Processing and Management
of Uncertainty in Knowledge-based Systems (IPMU). Springer, juillet 2014
[29] F. Bannay and R. Guillaume. Qualitative deliberation based on bipolar leveled sets of arguments
under incomplete distributed knowledge. under submission to JAIR, 2015

The fact that an argumentation system is a structure that can encode generic information

is used here with a completely distinct point of view. Indeed in this new setting, generic
information is encoded under the form of an argument viewed as an association between
a reason and the goal that is achieved when this reason holds. And in this model, factual
information is a way to validate the arguments that are applicable in some given context.

The structure that gathers these arguments is called a BLA (Bipolar Leveled set
of Arguments) and is dedicated to decision making, this framework was proposed with
Romain Guillaume in [28, 29]. We have been able to give a clear and well-founded
semantics of a decision argument. Indeed as seen in the introduction of this part, a first
aim is to be able to give a clear meaning to arguments and attacks and to integrate these
definitions in the process to decide if the argument is acceptable or not.

Given a set C of candidates1 about which some knowledge is available, an argument
is viewed as a reason for believing that, by default, a given goal can be achieved by se-
lecting a candidate c. This relation between beliefs and preferences (in terms of goals)
comes from the fact that in decision problem, arguments should encode a kind of ex-
pected utility notion. More precisely, we have considered two distinct languages LF (a
propositional language based on a vocabulary VF ) representing information about some
features that are believed to hold for a candidate and LG (based on a distinct vocabulary
VG) representing information about the achievement of some goals when a candidate is
selected. The idea to have distinct languages is both to differentiate beliefs and desires
for sake of clarity but also for the purpose of avoiding manipulation since one language
will be used by the voters while the other will not be accessible during the vote. A
decision argument α is a pair (ϕ, g) where ϕ ∈ LF and g ∈ LITG.

Example 23 If the candidates are people applying for a job then the argument (unmo-
tivated, not efficient for the job) could be understood as “if the candidate is unmotivated

1Candidates are also called alternatives in the decision literature.
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then a priori the goal to have an efficient person for the job is failed”.

A BLA gathers the set of possible arguments which may be used in order to evaluate
the admissibility of a given candidate. Moreover, the BLA is structured in order to
represent some key notions that are involved in argumentative decision making, namely
beliefs and goals (which are inside the arguments), levels of importance of the arguments,
polarities wrt the goal and attacks.

• the level l(α) of each argument α depends both on the importance of the goal
and on the “credibility” of the argument, This level is supposed to be given by the
decision makers. Note that the precise value of the level of an argument is not
meaningful, only the rank ordering of the levels is taken into account.

• the polarity pol(α) depends only on the goal (Conc(α)), if the fact that the achieve-
ment of the goal is either wished, then pol(α) = ⊕, or dreaded, denoted pol(α) = 	.
It is also supposed to be given for each goal in LITG.

• the attack relation R is defined between two conflicting arguments (i.e., arguments
with opposite goals) of the same level. The attack is directed from the argument
whose conclusion holds when both reasons are present. This direction is supposed
to be given by the decision makers. Indeed it requires extra-information: either
one argument α attacks the other one β (when agents have agreed that when
K ` Supp(α) ∧ Supp(β) the goal Conc(α) is achieved where K will represent the
common knowledge about features that hold) or there is a symmetric attack (when
the agents have agreed that when K ` Supp(α) ∧ Supp(β) we don’t know which
goal among {Conc(α), Conc(β)} is achieved. Note that the latter is a case where
the arguments destroy each other.

Example 24 Figure 6.1 illustrates the BLA corresponding to a recruitment example
where the features are: eb (educational background), gp (good personality), i (introverted
candidate), jhop (job hopper), lpe (long professional experience), spe (professional ex-
perience in the specialty of the job) and u (unmotivated candidate). The goals are: ap
(anti-social personality), ej: (efficient for the job), et (easy to train), st (a stable person).

We can explain the attack from (u,¬ej) to (eb, ej) and (pe, ej) by the fact that when
a candidate is unmotivated, even if she has a good professional experience or a good
educational background, the goal “efficient for the job” will not be achieved by hiring this
candidate.

Specificity may be used to justify the attack between (jhop∧¬spe∧ lpe, et) and (jhop∧
lpe,¬et) since a job hopper that has a long professional experience is generally not easy
to train but if this experience was not in the specialty of the job, it means that this person
has a good adaptability hence will be easy to train.

The realization of the goal of an argument (which could be viewed as similar to the
“admissibility of an argument” in abstract argumentation theory) is possible only if this
argument is not attacked (it corresponds to the so-called “naive” semantics).
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⊕ 	
(jhop ∧ ¬spe ∧ lpe, et) (jhop ∧ lpe,¬et)

(eb, ej)

(spe, ej)

(u,¬ej)

(lpe,¬ap)

(gp,¬ap)

(jhop ∧ lpe, ap)

(i, ap)

(jhop ∧ ¬spe ∧ lpe,¬st)

1

0.5

Figure 6.1: Recruitment BLA

The BLA defines all possible information required to make a decision. Unfortunately,
in an uncertain context, only little information maybe available. In this section we
propose a method for analyzing the acceptability of a candidate w.r.t. a BLA. First,
we present the available information and the notion of instantiated BLA, called valid
BLA. Then, we define thresholds for acceptability and study their relations with classical
decision rules of qualitative bipolar decision making.

The BLA structure is meant to be a common language for enabling several agents to
make a consensual decision about a candidate to choose, it is used as a kind of qualitative
collective utility function for group decision making. Once this BLA is established the
decision makers can use it in order to check if a candidate is acceptable. The main
interest of the structure is that it differentiates clearly the goals to achieve from the
practical facts concerning a candidate. Indeed a decision maker is only allowed to use
the language of facts hence to describe features that the candidate possesses but he is
not allowed to express her opinion about this candidate. The common opinion should be
derived from the BLA.

More precisely, given a candidate c ∈ C , and a consistent knowledge base Kc, Kc ⊆
LF , representing the knowledge of a decision maker about the candidate c, and given a
formula ϕ describing a configuration of features (ϕ ∈ LF ), the decision maker has three
possibilities, ϕ holds for candidate c (denoted Kc ` ϕ), or not (denoted Kc ` (¬ϕ) or
the feature ϕ is unknown for c (denoted Kc 0 ϕ and Kc 0 ¬ϕ).

6.b.1 Validity of arguments, admissibility of candidates

From a knowledge bate K we have defined the validity of an argument, simply by the
fact that this argument can be used in the context (since its premise holds): an argument
a = (ϕ, g) is valid according to K if K ` ϕ. A valid BLA consists of a restriction of a
BLA to its valid arguments.

Example 25 Let us consider that we know that a candidate has the features eb, lpe and
jhop (see Example 24), the Valid BLA is represented in Figure 6.2.
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⊕ 	

(eb, ej)

(jhop ∧ lpe,¬et)

(lpe,¬ap) (jhop ∧ lpe, ap)

Figure 6.2: A Valid BLA

We have simply defined the notion of realized goal as the conclusion of a valid ar-
gument not attacked by any other valid argument. This means that the only thing to
check is the existence of attacks on arguments: the defense notion is not useful for our
purpose.

Example 26 According to the valid BLA of Example 25, the goal ej is realized since there
is only one argument, namely (eb, ej), concerning this goal in the Valid BLA. Similarly,
the goal ¬et is realized, hence et is failed. The goal ap is also realized since the argument
(jhop ∧ lpe, ap) attacks the argument (lpe,¬ap). The goal ph is not realized since there
is no argument concerning this goal that is valid (i.e., whose reasons are known) in our
context.

From the status of a goal, we have defined an admissibility status for a candidate
c ∈ C given a Valid BLA 〈A, l, pol,R〉 for this candidate. For instance, a necessary
admissible candidate has positive arguments with goals of maximum importance that are
realized (i.e., unattacked) and all the negative goals of the same importance are failed. A
possibly admissible candidate has at least one unattacked positive argument of maximum
importance. An indifferent candidate has no unattacked arguments (positive or negative),
while a controversial candidate is both supported and criticized by unattacked arguments
of maximum importance.

Example 27 The candidate described by the arguments given in the valid BLA of Exam-
ple 25 is controversial, since at the most important level we have both a realized positive
goal, namely ej and a realized negative goal: ¬et.

We have shown that these admissibility status are rational wrt the decision rules
defined by [57], since an inadmissible candidate cannot be preferred to an admissible
candidate wrt these decision rules.

6.b.2 Possibilistic reading of a BLA

We have proposed a possibilistic reading of a BLA that justifies this structure in the
qualitative decision theory by using a possibility measure [87], Π on the beliefs language
LF and a degree µ(x) ∈ [0, 1] (where 1 is the most important level) associated to the
goals. These two measures have allowed us to define formally the arguments, the levels
and the attacks. Indeed an argument is viewed as a kind of default rule saying that by
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default when the reason holds the goal is realized, (i.e., an argument (ϕ, g) is encoded in
a possibilistic setting [84] by: Π(ϕ∧ g) ≥ Π(ϕ∧¬g)). Moreover the level of an argument
depends on the possibility of observing ϕ and g that hold together (denoted Π(ϕ∧g)) and
on the importance of the goal (denoted µ(g)). More precisely, it can be interpreted as a
risk/opportunity level since it is the aggregation of a chance measure (here the possibility
measure) and a utility measure (here a qualitative utility degree µ).

The attack definition depends on extra-information which can also be based on a
possibility measure. Intuitively α attacks β if they are conflicting and at the same level,
and when the reasons of α and β hold together, the goal of α is more plausibly realized
than the one of β. More precisely the attack αRβ with α = (ϕα, g) and β = (ϕβ,¬g)
when l(α) = l(β), can be interpreted as: Π(ϕα ∧ ϕβ ∧ g) ≥ Π(ϕα ∧ ϕβ ∧ ¬g). We
also interpret a path in the BLA as a constraint linking all the reasons present in the
arguments of the path with the realization of the goal of the first argument.

Note that the users are not at all obliged to precise possibility degrees or utilities,
but once the BLA is given (levels of arguments and attack relations) it is possible to
estimate these measures, hence a BLA formalizes how human beings integrates a belief
measure with a preference degree in a given context.

6.b.3 Group decision with a BLA

We have shown that some multi-criteria decision situations (such as the existence of veto
argument, or of compensation between several arguments compared to only one) can be
captured by specific BLAs.

Finally, we have shown that in a context of multi-agent decision the BLA is well
protected against manipulation. This was done by proposing two basic strategies in
which the agents do not necessarily reveal all the information they know depending on
their private opinion about the candidate. It appeared that the use of strategies cannot
lead to make accepted a candidate that would have been rejected if all the information
had been revealed i.e., decision makers cannot betrayed the consensual properties and
goals expressed by the BLA.

6.b.4 Related work

Our proposal of decision argument is not a logic-based argument since there is no explicit
deductive link between the reason and the goal. Those arguments could be viewed as
enthymemes (see Section 3.b) but with the precision that the support and the conclusion
are of different nature, namely based respectively on beliefs and preferences. Moreover
the decision argument is itself a more or less objective link between the reason and the
goal realized: this gives more freedom to the decision makers for building the arguments,
hence we do not impose a complex definition based on a value-based transition system like
in the work of Black and Atkinson [54] (in which they impose a deductive link between
conditions, actions and goals).

In the domain of multi-criteria decision, Dubois and Fargier [82, 83] have proposed
a qualitative bipolar approach in which a candidate is associated with two distinct sets
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of positive “arguments” (pros) and negative “arguments” (cons). The arguments are not
structured they are just labelled as positive or negative w.r.t. the decision goal without
attack relation between them. A function π assesses the level of importance of each
argument for the decision maker. In the same domain, Amgoud and Prade [20] have
proposed a bipolar argumentation-based approach for decision and distinguish two types
of arguments: the epistemic arguments and the practical arguments. The epistemic
arguments are used to deal with inconsistent knowledge and the practical arguments
[166] are in favor or against a decision. Practical argumentation [201, 8, 194] consists
in answering the question “what is the right thing to do in a given situation”. This
question is clearly related to a decision problem and several works are using argumentative
approaches to tackle it: for instance Bonet and Geffner [56] have a very similar view of
what we call arguments, since they use defeasible rules in favor or against a given action.
However, in this kind of approach there is no attack relation defined between two practical
arguments, while we only consider these attacks in our framework and are not interested
in dealing with inconsistency problems.

Our need to have arguments for making a decision on the ground of factual reasons
could be related to the notion of argument for reasoning about actions and values of Fox
and Parsons [113]. In their approach an argument is a triplet of the form (claim, ground,
value) the claim can be either a sentence or an action and the value can correspond to
a confidence degree or an expected utility. The authors define inference mechanism on
this kind of triplets according to the nature of the claim and value. While this process
seems very interesting to study, our aim is less ambitious, namely we do not handle
inconsistency, nor actions, but we focus on interactions between conflicting decisions
about the same goal and on how to decide if a goal will be achieved when some facts are
true.

6.c Elicitation of Preferences and Beliefs of a Group

To sum up, a BLA is a new framework for decision making under incomplete and dis-
tributed knowledge. The BLA is established between voters before the vote and it de-
scribes the priorities among goals, the importance level of arguments and the contra-
dictions among them. The voters will give the features corresponding to the current
candidate, then the BLA will be instantiated and it will automatically lead to an ad-
missibility decision determined by the instantiated BLA (by checking the non attacked
arguments in favor or against the candidate).

This framework can be used by only one human agent in order to decide whether a
candidate is admissible. This agent can use the BLA to clarify and express its criteria and
then to decide accordingly. But the BLA demonstrates the full extent of its usefulness in
the case where knowledge is distributed over several agents who have personal preferences
but who want to collaborate in order to make a good decision for the group. The
group of human agents can vote by giving the features that concern the candidate, by a
simultaneous vote.

A first benefit of the BLA is its visual aspect allowing to be easy to read and to
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create, a second benefit is that it provides a neutral process to compute a group decision.
In the following Sections we present several directions of future work.

6.c.1 Zoom/Unzoom on Multi-layered BLA

[104] F. Dupin de Saint-Cyr and S. Loiseau. Alignement cognitif de symboles. In Journées Francophones
Modèles Formels de l’Interaction (MFI), pages 249–254. Cépaduès Editions, mai 2003

The zoom/unzoom reasoning is grounded on the fact that visualization is very im-
portant: the ability to access to a global and focused view is an interesting feature that
I had study in a preliminary work about cognitive alignment of symbols [104, 72]. This
study could be extended in order to build efficient and interactive tools for visualizing
and manipulating arguments.

It would be interesting to consider a more complex structure, namely a multi-layered
BLA, on which it would be possible to zoom/unzoom on the features (thanks to the use
of an ontology) or on the links (due to defeasibility properties for instance) or on the
goals (a filtering procedure could show only the goals without their reasons, and their
conflicts relations and levels, it could also be possible to integrate a decomposition into
sub-goals).

Another visualization of a BLA could be done by projecting it according to the differ-
ent domains to which the goals or reasons are referring to, it may underline independent
parts and may help to decompose the decision according to separate independent fields.
Moreover we could introduce a filtering operation which could delete some arguments
concerning either information that is not allowed or goals that are not relevant. This
kind of operation should be studied in order to determine whether deleting some ar-
gument may induce changes upon the levels or the attacks: this means to be able to
update/revise BLAs according to different points of view.

6.c.2 Interactive Elicitation

As said with the possibilistic reading of a BLA, knowing how people rank order decision
arguments and how they solve the conflicts between those arguments may enable us to
compute associated utility and plausibility functions. My project is to provide tools to
allow people to play with the levels and attacks of a BLA in order to show them what
are the hided meaning of their choices and conversely if they want to impose some utility
values to some features, the tool could show how it impacts the decisions.

This is why I would like to work on the development of softwares for handling the
creation/modification of a BLA, the vote about a candidate, and the decision process. We
could start from tools already existing in the argumentative decision support technology.
Indeed, in this domain, many interactive argumentation platforms have been developed :
Walton and Reed’s platform [197] called “Araucaria”, Baldwin and Price’s “Debategraph”
[27], van Gelder’s [190] “Rationale” are examples of those tools. Karacapidilis and Pappis
in [135] have proposed a platform called “Hermes” that allows a group of users to converge
towards a common specification of the solution of the decision problem in terms of criteria
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and ideal solution. Then the system is able to apply similarity measures in order to
provide the candidate that is closer to the ideal solution. Introne and Iandoli [129] have
used the PENDO platform to demonstrate that an argumentative formulation is more
user-friendly than mathematical formulation and that the decision-making performance
is enhanced by the use of an argumentative tool.

Hence, the studies in decision support technology domain are well in accordance
with our intuition, since a BLA is a visual representation of arguments. However our
definitions are done in a restricted formal language with a clear semantics, this is not
the case in those works that allow for natural language arguments that maybe related
by several kinds of links (more or less easy to establish or validate). Nevertheless, the
techniques that may help a group to communicate and converge towards a common
general knowledge about the decision to make, could be very useful for constructing the
initial BLA.

6.c.3 From individual beliefs and preferences to collective BLAs

Building a BLA with a group of people is a complex task since it involves a collaborative
aspect. I would like to study protocols that would help people to express their own
preferences, together with their preference as group members (as in the study of social
ties done by Frédéric Moisan [153]).

Moreover, two directions maybe explored considering the aggregation of individual
beliefs and preferences in order to create a collective BLA:

• either aggregate beliefs and preferences at an individual level in order to create an
individual BLA and then merge them in a common BLA

• or merge the beliefs and aggregate the preferences independently then create the
common BLA.

The fusion and aggregation mechanisms are to be defined. Moreover, in order to
design those mechanisms, we could have a look in the decision support system area,
where the fact that the knowledge is incomplete and distributed is well apprehended. A
recent proposal by Ouerdane & al. [158] could also help us to build a collective BLA,
indeed a BLA may correspond to their defeasible “cognitive artifact” (i.e., the formulation
of the decision problem and the evaluation model). This approach can be viewed as a
protocol to build a BLA, it is an iterative non-monotonic process encoded in a logic-
based argumentation framework based on the proposal of Kakas and Moraitis [133]. This
framework is based on several argumentation schemes (among which the one that says
that a claim holds when enough supportive reasons can be provided and no exceptionally
strong negative reason is known, this kind of idea is related to our definition of “realized”
goal). Hence the collective decision model is built by exchanging arguments (that are
not of the same nature as our decisive arguments), this process may be a starting point
for my own project.

Moreover, since the BLA is a kind of common knowledge, an idea of protocol could in-
volve two-person persuasion debates in which the result is the common agreed knowledge
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as in Section 5.b. It would be interesting to study how to organize a series of two-person
debates inside a group of people. The way those debates are organize e.g. the structure
of the graph of debates (balanced tree, or “comb” structure...) may completely change
the final resulting common knowledge. This study could take into account the credulous
or skeptical profile of the agents, i.e., the will to accept argument. This kind of research
is related to the social choice theory domain.

How does this collective building relates to fairness division ? I would like to study
this aspect with researchers in social choice theory and also with psychologists in order
to build practical experiments on an argumentation support software, this could provide
benchmarks that will be helpful for studying strategies, manipulation properties, and
fairness feelings.

Note that in our initial vision of a BLA (coming from the collaborative spirit of supply
chain management domain), the BLA should represent the aggregation of the individual
preferences of the voters when they forget their individual interests i.e., it should result
in aggregating the individual preferences as group member of each voter. However non-
cooperative attitudes are interesting to study: for instance how to take into account the
fact that some individual preferences or some beliefs may not be expressible since they
are taboo or confidential. Another aspect is the importance of arguments, we could take
inspiration from the work of Bonzon et al. [59]. They propose to consider what they call
“coalition of arguments” which are set of arguments that can be valid together. They
provide some preferences over arguments and attacks and they compute a Shapley value
according to the potential set in which the argument can be. This measure represents
the potential impact of the argument. It could be interesting to integrate this kind of
impact measure in our work, either for building a BLA or for choosing to reveal or not
some information that can activate an argument.

6.d Decrypting persuasion

6.d.1 Appreciative Argument Evaluation

[53] P. Bisquert, M. Croitoru, and F. Dupin de Saint-Cyr. Towards a dual process cognitive model for
argument evaluation. In SUM, 2015. under submission
[52] P. Bisquert, M. Croitoru, and F. Dupin de Saint-Cyr. Four ways to evaluate arguments according
to agent’s engagement. In Brain Intelligence, 2015. under submission

A natural claim is that the syntactic content of arguments are not the only thing
to take into account in order to understand human persuasion. The intended meaning,
the personality of the speaker, her eloquence etc. have an impact. Moreover in order to
capture the fact that some syntactic information are implicit it is important to see the
syntactic content of an argument as a kind of default rule (which can also implicitly refer
to other default information).

I have started to work on this subject with Pierre Bisquert and Madalina Croitoru [53,
52]. More precisely we have proposed to formalize the evaluation process of an argument
by a human agent. We have focused on appreciative arguments: it is an argument that
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contains the expression of an agent opinion about something. An appreciation is a pair
(formula, flag) where the flag is in {+,−, ?} meaning favorable, negative and neutral
respectively. An appreciative argument is a quadruplet (s, h, w, (c, f)) representing the
source s of the argument, its support h that is divided into beliefs and appreciations, an
optional warrant w (which is a kind of rule that allows to infer new opinions from old
opinions and beliefs, it is called an a-rule), and a conclusion which is an appreciation
(c, f).

We have proposed two systems for evaluating arguments, the system is chosen accord-
ing to the cognitive availability of the hearer with respect to the subject of the argument.
Our two systems are inspired by the highly influential work of Tversky and Kahnemann
[188], the first system (called S1) deals with quick and instinctive thoughts and is based
on associations such as cause-effect, resemblance, valence, etc. The second system (called
S2) is used as little as possible and is a slow and conscious process that deals with what
we commonly call reason.

We have used a hash-table in order to encode the S1 system, the entries are formulas
and the cells contains an appreciative flag and a stack of formulas (such that the top
element corresponds to what comes immediately to mind). Reasoning with such a hash-
table simply consists in following the associative links until a frank opinion is obtained
about the formula.

We have formalized the rational reasoning by using a default logic (contextual en-
tailment [41]) for the belief part and a unification method for the opinion part. More
precisely, the agent has a knowledge base which contains on the one hand a set of de-
fault rules and a set of facts for the beliefs, and on the other hand a set of appreciation
pairs for representing its opinions, together with a set of a-rules. Evaluating rationally
an argument amounts to check if the knowledge expressed in the support is believable
(thanks to a default reasoning), and if the appreciations expressed in the argument are
compatible with what can be obtained by the a-rules of the knowledge base, and finally if
the conclusion of the argument is well related to the premise part thanks to a unification
with the (maybe implicit) warrant.

We have proposed four level of engagement: unconcerned, quiescent, engaged, enthu-
siastic: the more the agent is engaged in the evaluation of the argument the more the
agent uses a rational reasoning instead of an associative reasoning. We plan to integrate
more graduality hence to provide a mechanism that integrates the associative reasoning
S1 into the rational system S2. Furthermore a more general extension could gradually
integrate an even more rational system, that could provide meta-inferences about the
inference system itself, generate new heuristics or even new inference mechanisms...

The logic that we have proposed for encoding the S2 system has to be further studied,
it is related both to decision theory and practical reasoning and more research is required
in order to see if some proposal already exist for handling our “a-rules”.

6.d.2 Analogical arguments

I plan to work on analogical arguments, I would like to build a system for decoding ana-
logical arguments. My idea is to use the notion of substitution to check if by substituting
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analogous objects no inconsistency occur in the knowledge base. More precisely in the
analogy a : b :: c : d, expressing that a is to b what c is to d, in order to check if this
analogy holds it would be interesting to see what happens when substituting a to c and
b to d in the knowledge base, the stronger the inconsistency it triggers the weaker the
analogy.

Moreover there is a kind of enthymemes in the field of analogical arguments, since
sometimes they are incomplete. For instance the comparison may be done purposely on
something that is commonly rejected, hence the implicit information is that the argument
is about rejecting something.

Some incomplete analogies are called metaphors, like “Federer is the Mozart of tennis”,
they imply two computations: first to complete the analogy then to check if it is correct.
Moreover some analogies are more accurate than others, it seems that there is a graduality
in the fit of analogies, I would like to explore how this kind of imprecision of analogies
can be captured in a defeasible setting.

Incomplete analogies when there are not poetic maybe used as satire or more generally
as jokes. Hence studying analogical arguments may be a first step towards understanding
and modeling laughter. Laughter is another intelligent ability since it requires inference
mechanisms and also implies the laugher to adopt an appropriate distance wrt the subject
of the joke.
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Conclusion

Let us come back to the control loop of a rational agent proposed by Wooldridge and
already evoked in Introduction. This time we give Wooldridge’s elaborated version [201]
(see Algorithm 2). In this version, after the determination of a plan to achieve her goals,
the agent executes its actions sequentially and after each of them, she evaluates their
impact and can deliberate again about her intentions (depending on a function called
reconsider which evaluates roughly the necessity to reconsider the goals). This algo-
rithm is a good overview of the tasks to develop in order to have a better representation of
human reasoning, which is important for understanding and predicting human behavior
and thus for designing artificial rational agents that could help human beings to reason
and decide.

1 B := B0 ; /* initial beliefs */
2 I := I0 ; /* initial intentions (options to achieve) */
3 while true do
4 get_next_percept(p);
5 B := belief_integrate(B, p) ; /* current beliefs */
6 D := options(B, I) ; /* options generation */
7 I := filter(B,D, I) ; /* choice of options to achieve */
8 π :=plan(B, I) ; /* compute a sequence of actions for achieving I */
9 while not (empty (π) or succeeded (I,B) or impossible (I,B)) do

10 a := pop(π) ; /* unstack the first action of π */
11 execute(a);
12 get_next_percept(p);
13 B := belief_integrate(B, p);
14 if reconsider(I,B) then D := options (B, I); I := filter (B,D, I);
15 if not sound(π, I, B) then π := plan (B, I);
16 end
17 end

Algorithm 2: Rational Agent Elaborated Control Loop

The first line concerns the initialisation of beliefs. I have explored this aspect when
dealing with common knowledge and generic information: it is the subject of Chapter
1. The second line is about intentions (that are viewed as preferences on states of the
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world). I am not an expert of preference representation but I have started recently to
work on it, namely for decision making (in which preferences are integrated to beliefs see
Section 6.b) and when dealing with appreciative arguments (in Section 6.d.1).

I have already worked a lot on the function belief_integrate, which relates to belief
revision and update (see Chapter 2 and Chapter 4 in the framework of argumentation).
As alluded in footnote 1, intelligence can be seen as an ability to “perceive well” the
world, i.e., to direct our perception in order to obtain the most relevant information for
our purpose. This is why the function get_next_percept is worth mentioning, because it
can be directed towards a better “comprehension” of the world. It can be done by taking
into account more parameters, which is what I intend to do for instance concerning
argumentation, in which I would like to incorporate perlocutionary aspects.

The two functions options and filter are crucial for rational decision making.
Computing the options relates to the predictive aspect and is linked to the ideas of
laws and rules (plausible beliefs), the filtering aspect is also linked to beliefs but also to
social conventions and preferences. Indeed the first one gives an extent of the possibilities
that the agent may consider and the second one enables the agent to choose the best
goals according to its preferences. It seems important for a rational agent to be able to
generate as many possible options in order to be able to find the best ones and be aware
of the other ones. It is also important that the filter function should make a good
balance between idealism and pragmatism, i.e., should find a rational threshold between
freedom and respect of the laws (social or natural laws); in other words, the classical
exploration-exploitation dilemma.

Even if this algorithm is sequential, it seems that often, for efficiency matters, peo-
ple intertwine the five steps 4, 5, 6, 7, 8 i.e., perception, integration, computation
of the opportunities, filtering and planning. The ability to do all these steps together
when it is well done is very interesting and could be called clear-sightedness or fore-
sight. For this purpose, an interesting function to study is reconsider: it translates
the tendency/ability to adapt someone’s intentions in regard of new opportunities, or
new failures. In the view proposed by Wooldridge, what is very appealing is that this
function should be very efficient, since it is only a glimpse about the necessity of a precise
re-computation. This kind of problem relates to my zoom/unzoom reasoning project (see
Section 6.c.1), and to the aim to finding the good focal distance in order to be able to
reason and decide correctly.

Lastly, there is no explicit account of the social aspect of rationality in this algorithm,
but it should be integrated in most of the functions (see my proposals in Chapter 5), and
for sure the desires and intentions are not only individual but also social (see e.g. my
project about the BLA Section 6.c).
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