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Chapter 1

Introduction

Agents in the societies can be either human agents or artificial agents. The focus of
my present and past research is both on: (i) the present society in which human agents
interact with the support of ICT through social networks and media, and (ii) future
society with mixed interactions between human agents and artificial systems such as
autonomous agents and robots. Indeed, new technologies will come for future society
in which such artificial systems will play a major role, so that humans will necessarily
interact with them in their daily lifes. This includes autonomous cars and other ve-
hicles, robotic assistants for rehabilitation and for the elderly, robotic companions for
learning support.

The general aim of my research is to provide formal models of social interaction
between cognitive agents. I have mainly worked in the area of artificial intelligence
(AI) with strong interaction with other disciplines such as economics, philosophy and
cognitive sciences.

There are two main general observations underlying my research project. The first
is that interaction plays a fundamental role in existing information and communica-
tion technologies (ICT) and applications (e.g., Facebook, Ebay, peer-to-peer systems)
and will become even more fundamental in future ICT. The second is that the cogni-
tive aspect is crucial for the design of intelligent systems that are expected to interact
with human agents (e.g., embodied conversational agents, robotic assistants, etc.). In
these situations the system must be endowed with a psychologically plausible model
of human reasoning and human cognition in order to be able to understand the human
agent’s needs and to predict her behaviour.

Formal methods have been widely used in AI for modelling intelligent systems as
well as different aspects of social interaction between artificial and/or human agents
such as robots in a team interacting between them (e.g., Robocup) or virtual agents
interacting with humans (e.g., tutoring agents). In my research work I have mainly
used logic and game theory as formal tools for building models of interaction between
cognitive agents. On the methodological side, I have been interested both in the expres-
sivity aspect and in the computational aspects of formal models of interaction. On the
one hand, my aim is to develop formal languages that are sufficiently expressive to rep-
resent interesting aspects of social interaction such as the trust and power relationships
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between the agents in a group, the epistemic aspect, as well as the emotions involved in
social interaction. On the other hand, I am interested in studying the mathematical and
computational properties of the formal languages I develop including axiomatizability,
completeness, decidability and complexity.

My past research has been organized along the three different axes represented in
Figure 1.1:

• Actions,

• Mind

• Collectives

Mind
Actions

Collectives

Figure 1.1: Three axes of my research

Let me briefly discuss the content of each axis.

Actions A general theory of social interaction between cognitive agents requires a
clear understanding of the concepts of individual and joint action, in particular:

• how the actions of different agents can positively and negatively interfere be-
tween each other, in the sense that what an agent can achieve by her acting might
depend on what the others decide to do;

• how an agent’s responsibility for a given outcome depends either on what the
agent causes by her acting (responsibility for action) or on what the actual out-
come would have been, if the agent had made a different choice (responsibility
for omission);

• how the actions of different agents can be executed in different ways, e.g., in
parallel or sequentially;
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• how the achievement of an agent’s goal may depend on what another agent will
decide to do.

This is exactly the issue of the axis “Actions” of my research projet.
In the recent years, I have been working on the constructions of different logics

and formal systems based on a game-theoretic semantics elucidating the subtle aspects
of the structure of interaction. I have mainly worked in the context of propositional
dynamic logic (PDL) [68] and STIT logic (the logic of “Seeing To It That”) [16, 78]
in connection with some existing logics of strategic reasoning such as Coalition Logic
(CL) [108], Coalition Logic of Propositional Control (CL-PC) [157], Alternating-time
Temporal Logic (ATL) [3] and Dynamic Logic of Propositional Assignments (DL-PA)
[9, 146]. The reason why I am interested in formal systems and logics of action based
on a game-theoretic semantics is that game theory offers a powerful and relatively
simple framework for describing the structure of interaction both in a static setting
(games in normal form) and in a dynamic setting (games in extensive form).

I have also proposed several applications of these logics to the theory of power, to
the theory of social influence, to the theory of responsibility, to the theory of institu-
tional action and to the theory of delegation and social dependence.

More details about my research in this axis are given in Chapter 2.

Mind Cognitive agents are, by definition, endowed with a variety of mental atti-
tudes such as beliefs, desires, preferences and intentions that provide input for prac-
tical reasoning and decision-making, trigger action execution, and generate emotional
responses. The axis of my research “Mind”, which is described in detail in Chapter
3, has been devoted to develop formal models of interaction between cognitive agents
that:

• clarify the relationship between intention and action and the role of intention in
practical reasoning;

• explain how moral attitudes such as standards, ideals and moral values influence
decision-making and how preferences are formed;

• elucidate how mental attitudes including beliefs, desires and intentions trigger
emotional responses, and how emotions retroactively influence decision-making
and mental attitudes by triggering belief revision, desire change and intention
reconsideration;

• clarify the role of trust in belief dynamics;

• predict how the agents will behave and what they will choose depending on their
preferences, their beliefs about the others’ future choices and the choice criteria
they adopt (e.g., expected-utility maximization, minimization of the highest pos-
sible loss and maximization of the highest possible gain, satisficing criterion).

On the methodological side this part of my research has taken advantage of two
modeling tools widely used in artificial intelligence (AI), multi-agent systems (MAS)
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and economics: logic and game theory.1 Specifically, the two main modelling tools
used in this part of my research have been: (i) logics of mental states and their evo-
lution, including epistemic logic and dynamic epistemic logic [48, 158], BDI (belief,
desire, intention) logics [75, 115, 131, 167], logics of preference and preference change
[153], theories and logics of belief revision [137, 11], and (ii) epistemic game theory
[109], i.e., the branch of game theory [107] that studies the epistemic and rationality
conditions behind solution concepts (e.g., the epistemic and rationality conditions that
are necessary and/or sufficient for players in a game to play a Nash equilibrium).

Collectives Human and artificial societies are formed not only by individuals but also
by collective entities such as groups, teams, corporations, organizations, institutions,
etc. The part of my research on “Collectives” has been devoted to understand what such
collective entities are, how they relate with individual agents, how they are formed and
how they evolve over time. I have been working on two central issues in this area,
namely collective decision-making and collective attitudes.

As for collective decision-making, I have developed formal theories of pro-social
behavior and social preferences, i.e., the kind of behavior that is driven not only by the
to goal of maximizing one’s welfare, but also by the goal of maximizing the welfare of
others. I have been working on the logical formalization of different kinds of pro-social
motivations including fairness and reciprocity. Also, I have investigated the concept of
team-directed reasoning, i.e., the mode of reasoning that people use when they take
themselves to be acting as members of a group or a team. In contrast with existing
models of team reasoning, I have proposed a formal model of social ties that well
explains how much an agent is willing to act in favour of the collective benefit for the
group, depending on how much she is tied to the other members of the group. I have
used different methodologies in this part of my research project ranging from game
theory and modal logic to empirical validation through experiments.

Collectives attitudes such as joint intention, group belief, group goal, collective
acceptance and joint commitment have been widely explored in the area of collective
intentionality, the domain of social philosophy that studies how agents function and
act at the group level and how institutional facts relate with physical (brute) facts (cf.
[96, 147] for a general introduction of the research in this area). My research in the area
of collective attitudes has been devoted to develop a number of logical theories that
explain: (i) how collective attitudes such as collective acceptance or common belief
are formed either through aggregation of individual attitudes or through a process of
joint perception, (ii) how institutional facts are grounded on collective attitudes and,
in particular, how the existence and modification of institutional facts depend on the
collective acceptance of these facts by the agent in the society and on the evolution of
this collective acceptance.

More details about my research in this axis are given in Chapter 4.

Method of presentation I have tried to be as much concise as possible and to offer
a unified view of my research. Each chapter starts with a general introduction on
the research area and on the conceptual background underlying my work in this area,

1For an overview of the use of logic and game theory in MAS see [132].
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followed by a short summary of my contributions to it. Sometimes I zoom in on the
details of my work in order to offer a better understanding and a more concrete idea
of the concepts and of the formalization tools I have been using. Chapter 5 discusses
some perspectives for my future research.

The list of my publications is given in Annex A at the end of the document and
is kept separated from the bibliography. In the text, I use the special tag [my papers:
] to refer to my papers as listed there. I will only refer to a strict subset of all my
publications, as some of them are general overview articles that do necessarily fit the
specific topics discussed in each chapter.

In order to help the reader to have a more in-depth view of my work, the present
document is complemented by the following selection of articles which are somehow
representative of my research in each axis:

• For Axis 1 “Actions”:

– Lorini, E. (2013). Temporal STIT logic and its application to normative
reasoning. Journal of Applied Non-Classical Logics, 23(4), pp. 372-399.

– Lorini, E., Sartor, G. (forthcoming). A STIT logic for reasoning about
social influence. Studia Logica.

• For Axis 2 “Mind”:

– Lorini, E., Schwarzentruber, F. (2011). A logic for reasoning about coun-
terfactual emotions. Artificial Intelligence, 175(3-4), pp. 814-847.

– Lorini, E. (2016). A minimal logic for interactive epistemology. Synthese,
193(3), pp. 725-755.

• For Axis 3 “Collectives”:

– Lorini, E., Longin, D., Gaudou, B., Herzig, A. (2009). The logic of ac-
ceptance: grounding institutions on agents’ attitudes. Journal of Logic and
Computation, 19(6), pp. 901-940.

– Attanasi, G., Hopfensitz, A., Lorini, E., Moisan, F. (forthcoming). Social
connectedness improves co-ordination on individually costly, efficient out-
comes. European Economic Review.

The previous articles are included at the end of the document and are also briefly
discussed in the next three chapters.

Let me finally remark that when I talk of ‘we’, this means ‘the authors, including
me, of the research or the publication discussed here’. This ‘we’ is a constantly shifting
quality and quantity. It can also be just me.
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Chapter 2

Actions

Interacting agents perform actions that change the environment. In a multi-agent con-
text agents act together either in parallel or sequentially in a such a way that the conse-
quence of the action of a certain agent depends on what the other agents decide to do.
Consequently, in order to describe social interaction in a formal way, it is necessary
to have a representation language that allows to describe, at the same time, the causal
relations between the actions and their effects, the agents’ action repertoires and capa-
bilities as well as the effects of the joint actions of the agents in the system. Actions of
agents also occur in time and have a duration. Thus, a comprehensive logical theory of
interaction requires a clear understanding of the relationship between actions and time.

One of the logics that has been largely used to represent the concepts of individual
and joint actions is Propositional Dynamic Logic (PDL) [68]. PDL has been introduced
in theoretical computer science about thirty years ago in order to represent the concept
of program and the basic operations on programs (e.g., sequential composition, non-
deterministic choice, iteration, test). Its semantics is based on the concept of labelled
transition system, that is to say, a graph whose vertices represent possible states of the
system and whose edges are labelled with actions of agents. These edges represent
transitions between states that are determined by the joint execution of a set of actions
by the agents in the system. In PDL actions are abstract entities in the sense that their
semantics is just specified in terms of state transitions.

A concrete variant of PDL, called DL-PA (Dynamic Logic of Propositional As-
signments) [9, 146], has been proposed in the field of theoretical computer science.
Differently from PDL, in DL-PA atomic programs are concrete. Specifically, they are
assignments of propositional variables (i.e., the action of a certain agent consists in
setting to either > or ? the value of a given propositional variable p).

This notion of action, viewed as a propositional assignment, is shared with other
formal systems proposed in the recent years in AI and in the area of multi-agent sys-
tems such as boolean games and the Coalition Logic of Propositional Control (CL-PC).
CL-PC was introduced by [157] as a formal language for reasoning about capabilities
of agents and coalitions in multiagent environments. In this logic the notion of capabil-
ity is modeled by means of the concept of control. In particular, it is assumed that each
agent i is associated with a specific finite subset Atmi of the finite set of all atomic
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propositions Atm . Atmi is the set of propositions controlled by the agent i. That is,
the agent i has the ability to assign a (truth) value to each proposition Atmi but cannot
affect the truth values of the propositions in Atm \Atmi. It is also assumed that control
over propositions is exclusive, that is, two agents cannot control the same proposition
(i.e., if i 6= j then Atmi \ Atmj = ;). Moreover, it is assumed that control over
propositions is complete, that is, every proposition is controlled by at least one agent
(i.e., for every p 2 Atm there exists an agent i such that p 2 Atmi).

Boolean games [69, 21] share with CL-PC the idea that an agent’s action consists
in affecting the truth values of the variables she controls. Boolean games are games
in which each player wants to achieve a certain goal represented by a propositional
formula: they correspond to the specific subclass of normal form games in which agents
have binary preferences (i.e., payoffs can be either 0 or 1). They have been proved to
provide a useful and natural abstraction for reasoning about social interaction in multi-
agent systems.

An alternative approach to the logical formalization of actions in multi-agent do-
mains is the logic STIT (the logic of “seeing to it that”) introduced for the first time
in the philosophical area [16, 78] and become popular in computer science in the re-
cent years. This logic is well-suited to represent the concept of causality (whether an
agent brings about a certain state of affairs as a result of her current choice) as well
as social concepts such as the concepts of responsibility, guilt, delegation and social
influence that are of primary importance in modelling social relations between human
and artificial agents. Two variants of STIT have been studied in the literature which
differ at the syntactic level: an atemporal version and a temporal version. The tem-
poral version of STIT is a combination of temporal operators of temporal logic for
expressing temporal properties of facts (e.g., whether a given fact ' will be true in the
future) and operators of agency that allow to express the consequences of the choice
of an agent or group of agents. The language of atemporal STIT is nothing but the
language of temporal STIT restricted to the agency operators which does not include
the temporal operators. Differently from PDL, whose mathematical and computational
properties are well-known, the mathematical and computational properties of STIT are
less far studied and understood. Moreover, STIT has been shown to more complex
than PDL. For instance, while the satisfiability problem is EXPTIME-complete for
PDL and PSPACE-complete for its concrete variant DL-PA, the satisfiability problem
for the variant of STIT with agents and groups of agents (group STIT) is undecidable
[74].

Other logical systems have been proposed in the recent years which move from
the concept of action to the game-theoretic concept of strategy. Informally speaking,
a strategy for a certain agent specifies, for every state of the system characterized by a
tree or by a transition system, what the agent is expected to do at this state of the system.
The most representative example of strategy logics is Alternating-time Temporal Logic
(ATL) [3] which can be seen as the strategic variant of Coalition Logic (CL) by [108]
and which allows to formally represent the consequences of the strategy of a certain
player or coalition of players.1

1Differently from STIT, CL can only represent the consequences of the choice of a certain player or
coalition players, a choice being the restriction of a strategy to the current state of the system.
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My research work in the area of logics of action has been organized along the
following axes:

• study of the computational and mathematical properties of STIT both in its atem-
poral variant and its atemporal variant and systematic comparison of existing
formal semantics for STIT [my papers: A11,A17];

• study of the formal relationships between different logics of action including
the relationships between atemporal STIT, CL-PC and DL-PA [my papers:
A7,B6,C19];

• development of a general logical theory, called Ockhamist Propositional Dy-
namic Logic (OPDL) unifying existing logics of action and time including STIT,
Coalition Logic (CL), Propositional Dynamic Logic PDL and Full Computation
Tree Logic CTL⇤ [my papers: A19,A22,C17];

• development of a variant of ATL with explicit actions in the style of PDL [my
papers: C14];

• application of STIT, in its atemporal and temporal variants, to the formalization
of social concepts including delegation, responsibility, commitment, power and
social influence [my papers: A2,A8,A14,A17,C4,C10,C35,C36,C47,C54,C56];

• application of DL-PA to the formalization of social and normative concepts such
as the concept of segregation, the distinction between practical ability and legal
permissibility and the distinction between physical action and institutional action
[my papers: C22,C24,C28,C29];

• application of boolean games to the formalization of the concept of social power
[my papers: C11].

In the next three sections, I will focus on the previous first, third and fifth items.
In particular, I will present my works on: (i) the axiomatization of a temporal variant
of STIT called TSTIT, (ii) Ockhamist Propositional Dynamic Logic (OPDL), and (iii)
the application of the logic STIT to the formalization of the concept of social influence.

What unifies TSTIT and OPDL is the their common Ockhamist conception of time,
that is, the idea that in a branching-time structure describing all possible evolutions of
the system, one can always identify a path or history describing the actual evolution of
the system.

The reason why I present the application of STIT to social influence is that it natu-
rally follows the presentation of the syntax and semantics of TSTIT.

2.1 Temporal STIT
STIT logic (the logic of seeing to it that) by Belnap et al. [16] is one of the most
prominent formal accounts of agency. It is the logic of sentences of the form “the agent
i sees to it that ' is true”. Different semantics for STIT have been proposed in the
literature (see, e.g., [16, 30, 166, 125]). The original semantics of STIT by Belnap
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et al. [16] is defined in terms of BT+AC structures: branching-time structures (BT)
augmented by agent choice functions (AC). A BT structure is made of a set of moments
and a tree-like ordering over them. An AC for an agent i is a function mapping each
moment m into a partition of the set of histories passing through that moment, a history
h being a maximal set of linearly ordered moments and the equivalence classes of the
partition being the possible choices for agent i at moment m.

In [my papers: A11], we have proposed a new Kripke-style semantics for STIT.
On the conceptual side, the main difference between this Kripke semantics for STIT
and Belnap et al.’s BT+AC semantics is that the former takes the concept of world as a
primitive instead of the concept of moment and defines: (i) a moment as an equivalence
class induced by a certain equivalence relation over the set of worlds, (ii) a history as a
linearly ordered set of worlds induced by a certain partial order over the set of worlds,
and (iii) an agent i’s set of choices at a moment as a partition of that moment. The main
advantage of the Kripke semantics for STIT over Belnap et al.’s original semantics in
terms of BT+AC structures is that the former is a standard multi-relational semantics
commonly used in the area of modal logic [20], whereas the latter is non-standard.

It is worth noting that, at the semantic level, temporal STIT can be conceived as
logic of action interpreted over infinitely repeated games. This highlights the connec-
tion between STIT and game theory.

The Kripke semantics of STIT is illustrated in Figure 2.1, where each moment m1,
m2 and m3 consists of a set of worlds represented by points. For example, moment
m1 consists of the set of worlds {w1, w2, w3, w4}. Moreover, for every moment there
exists a set of histories passing through it, where a history is defined as a linearly
ordered set of worlds. For example, the set of histories passing through moment m1 is
{h1, h2, h3, h4}. Finally, for every moment, there exists a partition which characterizes
the set of available choices of agent 1 in this moment. For example, at moment m1,
agent 1 has two choices available, namely {w1, w2} and {w3, w4}. Note that an agent’s
set of choices at a certain moment can also be seen as a partition of the set of histories
passing through this moment. For example, we can identify the choices available to
agent 1’s at m1 with the two sets of histories {h1, h2} and {h3, h4}. Following [78],
the Kripke semantics for STIT also account for collective choices of groups of agents.
Specifically, the choice of a group coincides with the intersection of the choices of the
agents in the group. For instance, in Figure 2.2, the individual choices of agents 1 and
2 are, respectively, {w1, w2, w5, w6} and {w1, w2, w3, w4}, while the collective choice
of group {1, 2} is {w1, w2}.

Clearly, for every moment m in a Kripke semantics for STIT, one can identify the
set of histories passing through it by considering all histories that contain at least one
world in the moment m. Moreover, an agent i’s set of choices available at m can also
be seen as as a partition of the set of histories passing through m. At first glance, an
important difference between Belnap et al.’s semantics and Kripke semantics for STIT
seems to be that in the former the truth of a formula is relative to a moment-history
pair m/h, also called index, whereas in the latter it is relative to a world w. However,
this difference is only apparent, because in the Kripke semantics for STIT there is a
one-to-one correspondence between worlds and indexes, in the sense that: (i) for every
index m/h there exists a unique world w at the intersection between m and h, (ii) and
for every world w there exists a unique index m/h such that the intersection between
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m and h includes w.
In the Kripke semantics for STIT the concept of world should be understood as a

‘time point’ and the equivalence class defining a moment as a set of alternative con-
comitant ‘time points’. In this sense, the concept of moment captures a first aspect of
indeterminism, as it represents the alternative ways the present could be. A second
aspect of indeterminism is given by the fact that moments are related in a (tree-like)
branching time structure. In this sense, the future could evolve in different ways from
a given moment. In the Kripke semantics for STIT these two aspects of indeterminism
are related, as illustrated in Figure 2.1. Indeed, if two distinct moments m2 and m3 are
in the future of moment m1, then there are two distinct worlds in m1 (w1 and w3) such
that a successor of the former (w5) is included in m2 and a successor of the latter (w7)
is included in m3.
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Figure 2.1: Illustration of Kripke semantics of STIT
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Figure 2.2: Kripke semantics of STIT with groups

In [my papers: A11], we have focused on the following language of temporal
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STIT (TSTIT), i.e., the variant of STIT with tense operators:

' ::= p | ¬' | ' ^  | [i stit]' | [Agt stit]' | 2' | G' | H'

where p ranges over an infinite set of atomic propositions Atm and i ranges over a
finite set of agents Agt .

The previous TSTIT language allows us to talk about time. Specifically, it includes
the future tense operator G and the past tense operator H, where G' and H', respec-
tively, stand for “' will always be true in the future” and “' has always been true in
the past”. For example, the formula G¬p is true at world w1 in Figure 2.1. Indeed, it
is the case that p is false at all future worlds of w1. Moreover, the formula Hp is true
at world w5 since it is the case that p is true at all past worlds of w5. In [my papers:
A2,C10], we have studied a variant of temporal STIT with discrete time which includes
the ‘next’ operator X (where X' stands for “' is going to be true in the next world”) and
the ‘yesterday’ operator Y (where Y' stands for “' was true in the previous world”).

The previous TSTIT language also includes the so-called ‘historical necessity’ op-
erator 2 which allows us to represent those facts that are necessarily true, in the sense
of being true at every point of a given moment or, equivalently, at every history passing
through a given moment. For example, the formula 2p is true at world w1 in Figure
2.1 since p is true at every point of moment m1 including world w1. As expected, the
‘historical possibility’ operator 3 is defined to be the dual of 2.

STIT logic provides for different concepts of agency, all characterized by the fact
that an agent acts only if she sees to it that a certain state of affairs is the case. In the
previous TSTIT language, the so-called Chellas STIT operator [i stit], named after its
proponent [35], is taken as a primitive. According to the STIT semantics, an agent
i Chellas-sees-to-it that ', denoted by formula [i stit]', at a certain world w if and
only if, for every world v, if w and v belong to the same choice of agent i then '
is true at world v. For example, in Figure 2.1, agent 1 Chellas-sees-to-it that p at
world w1 because p is true both at world w1 and at at world w2. The previous TSTIT
language also includes the Chellas STIT operator [Agt stit] for the group of all agents,
called the ‘grand coalition’. For example, suppose Agt = {1, 2}. Then, in Figure 2.2,
group {1, 2} Chellas-sees-to-it that p at world w1 because {w1, w2} corresponds to the
collective choice of group {1, 2} at w1, and p is true both at world w1 and at at world
w2.

A more sophisticated operator of agency is the deliberative STIT [79] which is
defined as follows by means of the Chellas STIT operator and the historical necessity
operator 2:

[i dstit]'
def
= [i stit]' ^ ¬2'

In other words, deliberative STIT satisfies the same positive condition as Chellas STIT
plus a negative condition: an agent i deliberately-sees-to-it that ', denoted by formula
[i dstit]', at a certain world w if and only if: (i) agent i Chellas-sees-to-it that ' at w,
that is to say, agent i’s current choice at w ensures ', and (ii) at w agent i could make a
choice that does not necessarily ensure '. Notice that the latter is equivalent to say that
there exists a world v such that w and v belong to the same moment and ' is false at v.
For example, in Figure 2.1, agent 1 deliberately sees to it that q at world w1 because q
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is true both at world w1 and at world w2, while being false at world w3. In other terms,
while the truth of [i stit]' only requires that i’s choice ensures that ', the truth of
[i dstit]' also requires that i had the opportunity of making an alternative choice that
would not guarantee that ' would be the case. Deliberative STIT, we would argue,
captures a fundamental aspect of the concept of action, namely, the idea that for a state
of affairs to be the consequence of an action (or for an action to be the cause of a state of
affairs), it is not sufficient that the action is a sufficient condition for that state of affairs
to hold, it is also required that, without the action, the state of affairs possibly would not
hold. In this sense, while [i stit]' at w is consistent with (and is indeed entailed by) the
necessity of ' at w, [i dstit]' at w is incompatible with the necessity of ' at w, since it
requires that at w also ¬'was an open possibility. Consequently, the deliberative STIT
is more appropriate than the Chellas STIT to describe the consequences of an agent’s
action, as incompatibility with necessity is a requirement for any reasonable concept of
action.2

In [my papers: A11], we provided a sound and complete axiomatization for the
previous TSTIT language with respect to the Kripke semantics illustrated above. It is
summarized in Figure 2.3.

This includes all tautologies of classical propositional calculus (PC) as well as
modus ponens (MP). Moreover, we have all principles of the normal modal logic S5 for
every operator [i stit], for the operator [Agt stit] and for the operator 2, all principles
of the normal modal logic KD4 for the future tense operator G and all principles of the
normal modal logic K for the past tense operator H. That is, we have Axiom K for
each operator: (⌅' ^ ⌅(' !  )) ! ⌅ with ⌅ 2 {2,G,H, [Agt stit]} [ {[i stit] |
i 2 Agt}. We have Axiom D for the future tense modality G: ¬(G' ^ G¬'). We
have Axiom 4 for 2, G, [Agt stit] and for every [i stit]: ⌅' ! ⌅⌅' with ⌅ 2
{2, [Agt stit],G} [ {[i stit] | i 2 Agt}. Furthermore, we have Axiom T for 2,
[Agt stit] and for every [i stit]: ⌅' ! ' with ⌅ 2 {2, [Agt stit]} [ {[i stit] | i 2
Agt}. We have Axiom B for 2, [Agt stit] and for every [i stit]: ' ! ⌅¬⌅¬' with
⌅ 2 {2, [Agt stit]}[ {[i stit] | i 2 Agt}. Finally we have the rule of necessitation for
each modal operator: '

⌅' with ⌅ 2 {2, [Agt stit],G,H} [ {[i stit] | i 2 Agt}.
(2 ! i) and (AIA) are the two central principles in Xu’s axiomatization of the

Chellas’s STIT operators [i stit] [168]. According to Axiom (2 ! i), if ' is true
regardless of what every agent does, then every agent sees to it that '. In other words,
an agent brings about those facts that are inevitable.3 According to Axiom (i ! Agt),
all agents bring about together what each of them brings about individually.

We have principles for the tense operators and for the relationship between time
and action. (ConnectedG) and (ConnectedH) are the basic axioms for the linearity of
the future and for the linearity of the past [59]. (ConvG,H) and (ConvH,G) are the basic
interaction axioms between future and past of minimal tense logic according to which

2The classical argument against the use of Chellas STIT for modeling action is that, according to Chel-
las STIT, an agent brings about all tautologies and that it is counterintuitive to say that a tautology is a
consequence of an agent’s action.

3Xu considers a family of axiom schemas (AIAk) for independence of agents of the form (3[1 stit]'1^
. . . ^ 3[k stit]'k) ! 3([1 stit]'1 ^ . . . ^ [k stit]'k) that is parameterized by the integer k. As pointed
out by [16], (AIAk+1) implies (AIAk). Therefore, as Agt is finite, in OPDL the family of axiom schemas
can be replaced by the single axiom (AIA).
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PC All tautologies of classical propositional calculus
S5(i) All S5-principles for the operators [i stit]
S5(2) All S5-principles for the operator 2
S5(Agt) All S5-principles for the operator [Agt stit]
KD4(G) All KD4-principles for the operator G
K(H) All K-principles for the operator H
(2 ! i) 2'! [i stit]'

(i ! Agt) ([1 stit]'1 ^ . . . ^ [n stit]'n) ! [Agt stit]('1 ^ . . . ^ 'n)

(AIA) (3[1 stit]'1 ^ . . . ^3[n stit]'n) ! 3([1 stit]'1 ^ . . . ^ [n stit]'n)

(ConvG,H) '! GP'

(ConvH,G) '! HF'

(ConnectedG) PF'! (P' _ ' _ F')

(ConnectedH) FP'! (P' _ ' _ F')

(NCUH) [Agt stit]G'! G2'

(MP) ', '!  

 

(IRR) (2¬p ^2(Gp ^ Hp)) ! '

'

, provided p does not occur in '

Figure 2.3: Axiomatization of TSTIT
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“what is, will always have been” and “what is, has always been going to be”.
Axiom (NCUH) corresponds to so-called property of ’no choice between undivided

histories’ which is implicit in the Kripke semantics for STIT illustrated above: if in
some future world ' will be possible then the actual collective choice of all agents will
possibly result in a state in which ' is true.

(IRR) is a variant of the well-known Gabbay’s irreflexivity rule that has been
widely used in the past for proving completeness results for different kinds of tem-
poral logic in which time is supposed to be irreflexive (see, e.g., [54, 170, 120, 162]).
The idea is that the irreflexivity for time, although not definable in terms of an axiom,
can be characterized in an alternative sense by means of the rule (IRR). This rule is
perhaps more comprehensible if we consider its contrapositive: if p does not occur in
' and ' is TSTIT consistent, then 2¬p ^2(Gp ^ Hp) ^ ' is TSTIT consistent.

2.2 Ockhamist Propositional Dynamic Logic OPDL
The distinction between the ‘Ockhamist’ semantics and the ‘Peircean’ semantics for
branching-time temporal logic was proposed by Prior in his seminal work on the logic
of time [112] (see also [145]). According to the ‘Peircean’ view the truth of a temporal
formula should be evaluated with respect either to some history or all histories starting
in a given state. According to the ‘Ockhamist’ view, which is assumed in the context of
the STIT semantics illustrated in the previous section, a formula should be evaluated
with respect to an actual course of events of a certain branching-time structure. In
particular, according to the ‘Ockhamist’ view, the truth of a temporal formula should be
evaluated with respect to a particular actual history starting in a given state or moment.

While the branching-time temporal logic CTL⇤ [119] is compatible with the Ock-
hamist conception of time, the semantics for PDL in terms of labelled transition sys-
tems is closer to the Peircean view than to the Ockhamist view since it does not consider
a notion of actual history or actual path in a transition system.

In [my papers: C17], we introduced a new logic, called Ockhamist Propositional
Dynamic Logic (OPDL), as a variant of PDL based on the Ockhamist view of time.
Specifically, OPDL is a variant of PDL in which the truth of a formula is evaluated
with respect to a given actual history. In previous work [my papers: A19,A22], we
have studied less expressive fragments of OPDL that only deal with one-step actions
and the next time point.

The Ockhamist semantics of OPDL is illustrated in Figure 2.4. As in the STIT se-
mantics defined above, we have moments defined as equivalence classes over worlds.
For instance, the initial moment is defined by the set of worlds {w1, w2, w3, w4}. This
moment is followed by the two moments {w5, w6} and {w7, w8}, and so on. There is
also a temporal ordering over the worlds. Specifically, for every world we can identify
a successor. For example, the successor of world w1 is world w5, the successor of
world w5 is world w9, and so on. Similarly to the STIT semantics illustrated above, a
sequence of worlds ordered by this successor relation identifies a history. In the OPDL
semantics, transitions between worlds are labelled with non-empty sets of atomic ac-
tions. For example, in Figure 2.4, the actions a and c are responsible for the transition
from the state w1 to the state w5, while the actions b and c are responsible for the
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w1

a,c

w2 w3 w4

w5 w6 w7 w8

w9 w10 w11 w12

a,c b,c b,c

b,c d c c,d

a,b a,b b,c b

p p p p

q q

Figure 2.4: An OPDL model

transition from the state w3 to the state w7.
At the syntactic level, the language of OPDL includes the basic boolean construc-

tions and the dynamic operator [[↵]], whose dual is hh↵ii, where ↵ ranges over a set
of programs including: (i) the standard PDL programs: atomic programs (a, b, . . .),
sequential composition (;), non-deterministic choice ([), iteration (⇤) and test (?), and
(ii) the special ‘history quantifier’ program ⌘. The special program ⌘ allows us to
move from a world to an alternative world included in the same moment or, alterna-
tively, from a history to an alternative history passing through the same moment. For
instance, at world w1, the formula [[⌘]]p is true since p is true at every world in the
moment {w1, w2, w3, w4}. The special program ⌘ can be combined with the other
program constructions to express, for example, what is true along those histories that
are labelled with certain atomic programs. For instance, formula [[⌘; b]]q is true at world
w1 since q is true at the successor world along all histories whose initial transition is
labelled with the atomic program b (i.e., worlds w7 and w8). It is worth mentioning
that in OPDL atomic programs are assumed to be linear. This means that if the atomic
program a is going to be executed and ' will be true after a’s execution then, for every
atomic program b, if b is going to be executed then ' will be true after b’s execution.
This is expressed by the following OPDL validity:

hhaii'! [[b]]'

The interesting aspect of OPDL is that it unifies different logics of action and
branching time including propositional dynamic logic PDL, Full Computation Tree
Logic CTL⇤, Coalition Logic CL and the discrete-time and bounded-choice variant of
temporal STIT.4 Indeed, we have provided polynomial embeddings of these logics into

4With bounded-choice variant of STIT, I mean the variant of STIT in which the number of choices
available to an agent at a given moment is bounded by some integer k.
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OPDL. In [my papers: C17], we have also proved that the satisfiability problem of
OPDL is decidable.

2.3 An example of application to social reality: social
influence

In [my papers: A2,C4,C10] we have proposed a STIT logic analysis of the concept
of social influence that starts from a general view about the way rational agents make
choices. Specifically, our assumption is that an agent might have several choices or al-
ternatives available defining her choice set at a given moment, and that what the agent
does is determined by her actual choice, which is in turn determined by the agent’s
choice context including her preferences and beliefs and the composition of her choice
set. Our analysis of social influence expands this view by assuming that the agent’s
choice context determining the agent’s actual choice might be determined by external
causes. Specifically, the external conditions in which an agent finds herself or the other
agents with whom the agent interacts may provide an input to the agent’s decision-
making process in such a way that a determinate action should follow. Specifically,
influence consists in determining the voluntary action of an agent by modifying her
choice context, so that a different choice becomes preferable to the influencee on com-
parison to what would be her preferred option without this modification. This may
happen, for instance:

• by expanding the available choices (influence via choice set expansion), or

• by restricting the available choices (influence via choice set restriction) or

• by changing the payoffs associated to such choices, as when rewards or punish-
ments are established (influence via payoff change).

The reason why we have decided to formalize influence in STIT is that this logic is
capable of: (i) capturing the temporal aspect of influence, namely the fact that the influ-
encer’s choice must precede the influencee’s action,5 and (ii) addressing the strategic
aspect of influencing relationships through extensive form games.

To illustrate the concept of social influence, let me consider an example about in-
fluence via choice set restriction. The example is illustrated in Figure 2.5. It represents
a situation where there are three fruits on a table, an apple, a banana and a pear. The
actions at issue consist in bringing about that the apple is eaten (ap), the banana is eaten
(ba) or the pear is eaten (pe). Let me assume that agent 2 has certain preferences that
remain constant along the tree structure. In particular, at all moments agent 2 prefers
eating apples to bananas to pears. Let me also assume that 2 is rational, in the mini-
mal sense that she acts in such a way as to achieve the outcome she prefers. Rational
choices of agent 2 are depicted in grey. By choosing to eat the apple at w1, 1 generates
a situation where, given her preferences, 2 will necessarily eat the banana, rather than
the pear. Indeed, although at moment m2, 2 has two choices available, namely, the

5The term ‘influencer’ refers to the agent who exerts influence, whereas the term ‘influencee’ refers to
the agent being influenced.
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choice of eating the banana and the choice of eating the pear, only the former is ratio-
nal, in the sense of being compatible with 2’s preferences. In this sense, by deciding
to eat the apple at w1 and removing this option from 2’s choice set, 1 influences 2 to
decide to eat the banana at w7.

Figure 2.5: Example of influence via choice restriction

As an example of influence via payoff modification, consider the case of agent 1
reliably promising assassin 2 to pay him the reward r if 2 kills 3. The alternative at
issue for 2 consists in 2 seeing to it that 3 is killed (k ) or doing nothing (so that ¬k
holds). Let me assume that 2 prefers k ^ r to ¬k ^ ¬r and prefers ¬k ^ ¬r to k ^ ¬r
(as killing may be unpleasant and involves some risk, so that it would not be preferred
without the reward). Under these assumptions, agent 1’s choice to reliably promise the
reward at moment m1 leads to a moment m2 where agent 2 has the choice between
producing k^r or ¬k^¬r, rather than to a moment m3 where agent 2 would have had
the choice between k ^ ¬r or ¬k ^ ¬r (no compensation been given for the action of
killing). Given the preferences of 2, his rational choice at m2 is to commit the omicide,
while at m3 it would have been not to commit it. Thus we may say that at moment m1

agent 1, by promising the reward, influences agent 2 into killing.
As an example of influence via choice set expansion, consider a cases were agent 1

gives a gun to agent 2, who desired to kill 3, but was unable to do since he did not have
an appropriate weapon. In this case, 1 makes the choice of killing available to 2, who
does it according to his preferences. Also in this case, it appears that 1 has influenced
2 into killing.

These examples led us to the following informal definition of social influence:

An agent i influences another agent j to perform a certain (voluntary) action if
and only if, i sees to it that that every rational choice of j will lead j to perform
the action.

In order to formalize the previous concept of social influence, we extended STIT
logic with special ‘rational’ STIT operators of the form [i rdstit]. The formula [i rdstit]'
has to be read “if agent i’s current action is the result of a rational choice of i, then i
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deliberately sees to it that '”. We adopted a minimal concept of rationality, which
was sufficient for our purpose: we assumed that the choices of an agent are ranked
according to the agent’s preferences, and an agent is rational as long as she implements
her preferred choices. The [i rdstit] operator is interpreted relatively to STIT branch-
ing time structures, like the ones illustrated in Section 2.1. Specifically, the formula
[i rdstit]' is true at a certain world w if and only if, if the actual choice to which world
w belongs is a rational choice of agent i then, at world w agent i deliberately sees to it
that ', in the sense of deliberative STIT discussed in Section 2.1. For example, at the
world w7 in Figure 2.5, the formula [2 rdstit]ba is true since the actual choice to which
world w7 belongs is a rational choice of agent 2 and at w7 agent 2 deliberately sees to
it that ba is the case.

To capture the idea of social influence, we introduced the following social influence
operator based on the concept of deliberative STIT:

[i sinfl j]'
def
= [i dstit]X[j rdstit]'.

In other words, we shall say that an agent i influences another agent j to make ' true,
denoted by [i sinfl j]', if and only if i deliberately sees to it that if agent i’s current
choice is rational then i is going to deliberately see to it that '. The reason why the
operator [i dstit] is followed by the temporal operator X is that influence requires that
the influencer’s choice precedes the influencee’s action. On the contrary, we did not
require [j rdstit] to be followed by X since in STIT the concept of action is simply cap-
tured by the deliberative STIT operator which does not necessarily need to be followed
by temporal modalities. In order to illustrate the meaning of the influence operator, let
me go back to the example of Figure 2.5. Since agent 2 prefers eating bananas to pears,
her only rational choice at moment m2 is {w7}. From this assumption, it follows that
formula [1 sinfl 2]ba is true at world w1. Indeed, at world w1 agent 1 deliberately sees
to it that, in the next world, if agent 2’s choice is rational then 2 deliberately sees to it
that ba is the case. Similarly, as assassin 2 prefers killing and getting the reward (k^r)
to not killing and not getting it (¬k ^ ¬r), instigator 1, by choosing to provide the
reward, induces the assassin to commit the crime. This is a deliberate choice, as had
the instigator chosen differently (had she not provided the reward), the rational choice
for the assassin would have been a different one, namely, not to kill victim 3.

Note that [i sinfl j]' just says that the influencee i would realize ' is she were
choosing rationally, but it does not assume that i chooses rationally, and therefore it
does not entail that ' would be realized. The notion of successful influence also re-
quires that in the next world along the actual history, the influencee chooses rationally,
as specified by the following abbreviation:

[i succsinfl j]'
def
= [i sinfl j]' ^ X rati.

where [i succsinfl j]' has to be read “agent i successfully influences agent j to make
' true”. The expression rati means that agent i’s current choice is rational. It is an
abbreviation, adopted for notational convenience, of ¬[i rdstit]?, a formula that is
satisfied only when i acts rationally in the current word.

This operator of successful influence clearly implies that in the next world along
the actual history the influencee performs the action for which she has been influenced.
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This is expressed by the following valid formula:

[i succsinfl j]'! X[j dstit]'.

In [my papers: A2] we also provided a complete axiomatization for our STIT logic
of social influence.
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Chapter 3

Mind

Since the seminal work of [37] aimed at implementing Bratman’s philosophical theory
of intention [26], many formal logics for reasoning about mental attitudes of agents
such as beliefs, desires and intentions have been developed. Among them we should
mention the logics developed by [75, 84, 102, 103, 115, 131, 136, 159, 167].

The general term used to refer to this family of logics is agent logics. A subfamily
is the family of BDI logics whose most representative example is the modal logic by
[115] whose primitive constituents are the the concepts of belief (B), desire (D) and
intention (I) which are expressed by corresponding modal operators. Another well-
known agent logic is the so-called KARO framework developed by [102]. KARO
is a multi-modal logic framework based on a blend of dynamic logic with epistemic
logic, enriched with modal operators for modeling mental attitudes such as beliefs,
desires, wishes, goals and intentions. More recently, the KARO framework has been
used to model emotions of cognitive agents. In particular, in the KARO framework
each emotion type is represented with a special predicate, or fluent, in the jargon of
reasoning about action and change, to indicate that these predicates change over time.
For every fluent a set of effects of the corresponding emotions on the agent’s planning
strategies are specified, as well as the preconditions for triggering the emotion in terms
of mental attitudes of agents. The latter correspond to generation rules for emotions.
For instance, in [101] generation rules for four basic emotions are given: joy, sadness,
anger and fear, depending on the agent’s plans.

Generally speaking, agent logics are nothing but formal models of rational agency
whose aim is to explain how an agent endowed with mental attitudes makes decisions
on the basis of what she believes and of what she wants or prefers. In this sense, the
decisions of the agent are determined by both the agent’s beliefs (the agent’s epistemic
states) and the agent’s preferences (the agent’s motivational states). The output of the
agent’s decision-making process is either a choice about what to do in the present,
also called present-directed intention, or a choice about what to do in the future, also
called future-directed intention. As emphasized in the literature in philosophy [26, 100]
and AI [29], a future-directed intention is the element of a partial or a complete plan
of the agent: an agent may have the intention to perform a sequence of actions later
(e.g., the action of going to the train station in two hours followed by the action of
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taking the train from Paris to Bruxelles at 10 am) in order to achieve a certain goal
(e.g., the goal of being in Bruxelles at the European Commission at 2 pm). A present-
directed intention is a direct motivation to perform an action when the time point of
the planned action execution is attained. The idea that the behavior of an agent can
be explained by attributing mental states to the agent and by having a sophisticated
account of the relationship between her epistemic states and her motivational states
and of the influence of these on the agent’s decision-making process is shared by many
disciplines including philosophy of mind [43], cognitive sciences [113], psychology
[118] and artificial intelligence [32].

Furthermore, the idea of describing rational agents in terms of their epistemic and
motivational attitudes is something that agent logics share with classical decision the-
ory and game theory. In particular, classical decision theory accounts for the criteria
and principles (e.g., expected utility maximization) that a rational agent should apply
in order to decide what to do on the basis of her beliefs and preferences. Game theory
generalizes decision theory to the multi-agent case in which agents’ decisions are inter-
dependent and agents’ actions might interfere between them so that: (i) the possibility
for an agent to achieve her goals may depend on what the other agents decide to do, and
(ii) agents form beliefs about the future choices of the other players and, consequently,
their current decisions are influenced by what they believe the others will do. More
generally, game theory involves a strategic component that is not considered by classi-
cal decision theory whose object of analysis is a single agent who makes decisions and
acts in an environment she does not share with other agents. The formal representation
of mental attitudes of rational agents is even more explicit in epistemic game theory
[109], i.e., the branch of game theory that studies the epistemic and rationality assump-
tions behind solution concepts (e.g., the epistemic and rationality conditions that are
necessary and/or sufficient for players in a game to play a Nash equilibrium).

Classical decision theory and game theory provide a quantitative account of individ-
ual and strategic decision-making by assuming that agents’ beliefs and preferences can
be respectively modeled by subjective probabilities and utilities. In particular, while
subjective probability captures the extent to which a fact is believed by a certain agent,
utility captures how much a certain state of affairs is preferred by the agent. In other
words, subjective probability is the quantitative counterpart of the concept of belief,
while utility is the quantitative counterpart of the concept of preference.

Qualitative approaches to individual and strategic decision-making have been pro-
posed in AI [22, 81] to characterize criteria that a rational agent should adopt for mak-
ing decisions when she cannot build a probability distribution over the set of possible
events and her preference over the set of possible outcomes cannot be expressed by
a utility function but only by a qualitative ordering over the outcomes. For example,
going beyond expected utility maximization, qualitative criteria such as the maxmin
principle (choose the action that will minimize potential loss) and the maxmax prin-
ciple (choose the action that will maximize potential gain) have been studied and ax-
iomatically characterized [23, 24].

In the years of my research activity I have actively contributed to the formal analysis
of cognitive and affective phenomena by developing new agent logics and by using
tools and techniques from logic and epistemic game theory to formalize a variety of
mental attitudes and concepts, and to build theories of interaction between cognitive
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agents.
In the next three sections, I will discuss my research on different topics related

with the representation of mental attitudes and interaction between cognitive agents:
(i) the cognitive processing leading from goal generation to action (Section 3.1), (ii)
the role in decision-making of rationality and beliefs about other agents’ future actions
(Section 3.2), and (iii) the representation of the cognitive structure of emotions and of
their influence on behaviour (Section 3.3).

3.1 Mental attitudes
The conceptual background underlying my research in the area of mental attitudes is
summarized in Figure 3.1. The cognitive architecture represents the process leading
from generation of desires and moral values and formation of beliefs via sensing to
action performance.

Desires Moral values

Preferences and 
goals

Preference
and goal

generation

Decision Present-directed
intentions

Action

Environment
Mind

Sensing

Desire activation Norm internalization

Beliefs Future-directed
intentions

Figure 3.1: Cognitive architecture

The origin of beliefs, desires and moral values An important and general distinc-
tion in philosophy of mind is between epistemic attitudes and motivational attitudes.
This distinction is in terms of the direction of fit of mental attitudes to the world. While
epistemic attitudes aim at being true and their being true is their fitting the world,
motivational attitudes aim at realization and their realization is the world fitting them
[110, 4, 80]. Searle [126] calls “mind-to-world” the first kind of direction of fit and
“world-to-mind” the second one.

There are different kinds of epistemic and motivational attitudes with different
functions and properties. Examples of epistemic attitudes are beliefs, knowledge and
opinions, while examples of motivational attitudes are desires, preferences, moral val-
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ues and intentions. However, the most primitive and basic forms of epistemic and
motivational attitudes are beliefs, desires and moral values.

Beliefs are mental representations aimed at representing how the physical, mental
and social worlds are. Indeed, there are beliefs about natural facts and physical events
(e.g., I believe that tomorrow will be a sunny day), introspective beliefs (e.g., I believe
that I strongly wish that tomorrow will be a sunny day), and beliefs about mental at-
titudes of other agents (e.g., I believe that you believe that tomorrow will be a sunny
day). Following the Humean conception, a desire can be viewed as an agent’s attitude
consisting in an anticipatory mental representation of a pleasant state of affairs (rep-
resentational dimension of desires) that motivates the agent to achieve it (motivational
dimension of desires). The motivational dimension of an agent’s desire is realized
through its representational dimension, in the sense that, a desire motivates an agent to
achieve it because the agent’s representation of the desire’s content gives her pleasure.
For example when an agent desires to be at the Japanese restaurant eating sushi, she
imagines herself eating sushi at the Japanese restaurant and this representation gives
her pleasure. This pleasant representation motivates her to go to the Japanese restau-
rant in order to eat sushi.

Moral values, and more generally moral attitudes (ideals, standards, etc.), originate
from an agent’s capability of discerning what from her point of view is (morally) good
from what is (morally) bad. If an agent has a certain ideal ', then she thinks that the
realization of the state of affairs ' ought to be promoted because ' is good in itself.
Differently from desires, moral values do not necessarily have a hedonistic and somatic
component: their fulfillment does not necessarily give pleasure and their transgression
does not necessarily give displeasure ‘felt’ from the body.

There are different ways to explain the origin of beliefs, desires, moral values. Be-
liefs are formed either via direct sensing from the external environment (e.g., I believe
that there is a fire in the house since I can see it), communication (e.g., I believe that
there is a fire in the house since you told me this and I trust what you say) and infer-
ence (e.g., I believe that there is a fire in the house since I already believe that smoke
comes out from the house and if there is smoke coming out from the house then there
is fire). One might argue that belief formation via direct sensing is more primitive
than belief formation via communication and that the latter can be reduced to the for-
mer. Indeed, in the context of communication, the hearer first perceives the speaker’s
utterance, which is nothing but the performance of a physical action (e.g., uttering a
certain sound, performing a certain gesture, emitting a certain light signal, etc.) and
forms a belief about what the speaker has uttered. Then, she infers the meaning of the
speaker’s utterance (i.e., what the speaker wants to express by uttering a certain sound,
by performing a certain gesture, by emitting a certain light signal, etc.). Although this
is true for communication between humans and between artificial systems situated in
the physical environment such as robots, it is not necessarily true for communication
in an artificial domain in which there is no precise distinction between an utterance and
its meaning. In the latter situation, the speaker may transmit to the hearer is a message
(e.g., a propositional formula) with a precise and non-ambiguous meaning.

The concept of trust plays a fundamental role in belief formation via direct sensing
and via communication. Indeed, the hearer will not believe what the speaker says un-
less she believes that the speaker is a reliable source of information, thereby trusting
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the speaker’s judgment. Similarly, for belief formation via direct sensing, an agent will
not believe what she sees unless she believes that her perceptual apparatus works prop-
erly, thereby trusting it. The issue whether trust is reducible to other mental attitudes
is relevant here. My favorite approach is to conceive communication-based trust as a
belief about the reliability of a source of information, where “reliable” means that, in
the normal conditions, what the source says about a certain issue is true.

As for the origin of desires, the explanation adopted in Figure 3.1 is that they are
activated under certain conditions. In the case of human agents, these conditions might
be physiological or epistemic. For example, the desire of drinking a glass of water
could be activated by the feeling of thirst (physiological condition) and the desire of
going outside for a walk might be activated by the belief that it is a sunny day (epistemic
condition). In the case of artificial agents, conditions of desire activation should be
specified by the system’s designer. For example, a robotic assistant who has to take
care of an old person could be designed in such a way that, every day at 4 pm, the
desire of giving a medicine to the old person is activated in its mind.

As for the origin of moral values, social scientists (e.g., [6]) have defended the idea
that there exist innate moral principles in humans such as fairness which are the product
of biological evolution. Other moral values, as highlighted in Figure 3.1, have a cultural
and social origin, as they are the product of the internalization of some external norm.
A possible explanation is based on the hypothesis that moral judgments are true or
false only in relation to and with reference to one or another agreement between people
forming a group or a community. More precisely, an agent’s ideals are simply norms of
the group or community to which the agent belongs that have been internalized by the
agent. This is the essence of the philosophical doctrine of moral relativism (see, e.g.,
[20]). For example, suppose that an agent believes that in a certain group or community
there exists a norm (e.g., an obligation) prescribing that a given state of affairs should
be true. Moreover, assume that the agent identifies herself as a member of this group
or community. In this case, the agent will internalize the norm, that is, the external
norm will become a moral value of the agent and will affect the agent’s decisions. For
example, suppose that a certain person is (and identifies herself as) citizen of a given
country. As in every civil country, it is prescribed that citizens should pay taxes. Her
sense of national identify will lead the person to adopt the obligation by imposing the
imperative to pay taxes to herself. When deciding to pay taxes or not, she will decide to
do it, not simply in order to avoid being sanctioned and being exposed to punishment,
but also because she is motivated by the moral obligation to paying taxes.

From desires and moral values to preferences According to contemporary theories
of human motivation both in philosophy and in economics (e.g., [129, 71]), preferences
of a rational agent may originate either (i) from somatically-marked motivations such
as desires or physiological needs and drives (e.g., the goal of drinking a glass of water
originated from the phisiological drive of thirst), or (ii) from moral considerations and
values (e.g., the goal of helping a poor person originated from the moral value of taking
care of needy people). More generally, there exists desire-dependent preferences and
desire-independent ones originated from moral values. This distinction allows us to
identify two different kinds of moral dilemmas. The first kind of moral dilemma is
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the one which is determined by the logical conflict between two moral values. The
paradigmatic example is the situation of a soldier during a war. As a member of the
army, the soldier feels obliged to kills his enemies, if this is the only way to defend his
country. But, as a catholic, he thinks that human life should be respected. Therefore,
he feels morally obliged not to kill other people. The other kind of moral dilemma is
the one which is determined by the logical conflict between desires and moral values.
The paradigmatic example is that of Adam and Eve in the garden of Eden. They are
tempted by the desire to eat the forbidden fruit and, at the same time, they have a moral
obligation not to do it.

According to the cognitive architecture represented in Figure 3.1, desires and moral
attitudes of an agent are two different parameters affecting the agent’s preferences. This
allows us to draw the distinction between hedonistic agents and moral agents. A purely
hedonistic agent is an agent who acts in order to maximize the satisfaction of her own
desires, while a purely moral agent is an agent who acts in order to maximize the
fulfillment of her own moral values. In other words, if an agent is purely hedonistic,
the utility of an action for her coincides with the personal good the agent will obtain by
performing this action, where the agent’s personal good coincides with the satisfaction
of the agent’s own desires. If an agent is purely moral, the utility of an action for her
coincides with the moral good the agent will promote by performing this action, where
the agent’s promotion of the moral good coincides with the accomplishment of her own
moral values. Utility is just the quantitative counterpart of the concept of preference,
that is, the more an agent prefers something, the higher its utility. Of course, purely
hedonistic agents and purely moral agents are just extremes cases. An agent is more
or less moral depending on whether the utility of a given option for her is more or less
affected by her moral values. More precisely, the higher is the influence of the agent’s
moral values in evaluating the utility of a given decision option, the more moral the
agent is. The extent to which an agent’s utility is affected by her moral values can be
called degree of moral sensitivity.1

Goals The reason why, in Figure 3.1, preferences and goals are included in the same
box is that I conceive goals as special kinds of preferences. In particular, I conceive
goal as a special kind of preference that satisfies two properties. An agent has ' as a
goal (or wants to achieve ') if and only if: (i) the agent prefers ' to be true to ' to be
false, and (ii) the agent considers ' a possible state of affairs. The second property is
called realism of goals by philosophers (cf.[26, 42, 99]). It is based on the idea that an
agent cannot reasonably pursue a goal unless she thinks that she can possibly achieve
it, i.e., there exists at least one possible evolution of the world (a history) that the agent
considers possible along which ' will eventually become true. The first property is
about the motivational aspect of goals. For ' to be a goal, the agent should not be
indifferent between ' and ¬' in the sense that, for every situation she envisages, she
prefers ' to be true in this situation than ' to be false, that is, all other things being
equal, the agent prefers ' to be true than ' to be false. This property also defines Von

1This degree can be conceived as a personality trait. In the case of human agents, it is either culturally
acquired or genetically determined. In the case of artificial agents, it is configured by the system designer.
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Wright’s concept of “preference of ' over ¬'” [163].2
However not all goals have the same status. Certain goals have a motivating force

while others do not have it. Indeed, the fact that the agent prefers ' to be true to ' to be
false does not necessarily imply that the agent is motivated to achieve a state in which
' is true and that she decides to perform a certain action in order to achieve it. For '
to be a motivating goal, for every possible situation that the agent envisages in which
' is true and for every possible situation that the agent envisages in which ' is false,
the agent has to prefer the former to the latter. In other words, there is no way for the
agent to be satisfied without achieving '.

An example better clarifies this point. Suppose Mary wants to buy a reflex camera
Nikon and, at the same time, she would like to spend less than 300 euros. In other
words, Mary has two goals in her mind:

• G1: the goal of buying a reflex camera Nikon, and

• G2: the goal of spending less than 300 euros.

She goes to the shop and it turns out that all reflex cameras Nikon cost more than 300
euros. This implies that Mary believes that she cannot achieve the two goals at the
same time, as she envisages four situations in her mind but only three are considered
possible by her: the situation in which only the goal G1 is achieved, the situation in
which only the goal G2 is achieved and the situation in which no goal is achieved. The
situation in which both goals are achieved is considered impossible by Mary. This is
not inconsistent with the previous definition of goal since Mary still believes that it is
possible to achieve each goal separately from the other. Figure 3.2 clearly illustrates
this: the full rectangle includes all worlds that Mary envisages, so-called information
set, while the dotted rectangle includes all worlds that Mary considers actually possible,
so-called belief set.3

More details about the distinction between information set and belief set will be
given in Section 3.2.

Mary decides to save her money and not to buy anything since the goal G2 is a
motivating one, while the goal G1 is not. Indeed, every situation that Mary envisages
in which the goal G2 is satisfied (w3 and w4) is preferred to every situation that Mary
envisages in which the goal G2 is not satisfied (w1 and w2). Thus, on the basis of
what she believes, Mary concludes that she can only achieve her goal G2 by saving her
money and by not buying anything in the shop.

From preferences and beliefs to actions As the cognitive architecture in Figure
3.1 highlights, beliefs and preferences are those mental attitudes which determine the
agent’s choices and are responsible for the formation of new intentions about present
actions (present-directed intentions) and future actions (future-directed intentions). In

2Von Wright presents a more general concept of “preference of ' over  ” which has been recently
formalized in a modal logic setting by [152].

3Mary’s information set includes all worlds that, according to Mary, are compatible with the laws of
nature. For instance, Mary can perfectly envisage a world in which she is the president of French republic
even though she considers this actually impossible.
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Figure 3.2: Example for goals

particular, decision is determined by beliefs, preferences and a general rationality cri-
terion stating what an agent should do on the basis of what she believes and what she
prefers. As emphasized above, different kinds of rationality criteria have been stud-
ied in the areas decision and game theory ranging from expected utility maximization,
maxmin and maxmax to satisficing [135]. Once the choice has been made by the agent
and the corresponding intention has been formed, the action is performed right after-
wards or later. Specifically, an agent forms the intention to perform a certain action
at a given point in time and, once the time of the planned action execution is attained,
the agent performs the action unless before attaining it, she has reconsidered her prior
intention.

My work on the logical formalization of mental attitudes Since my PhD thesis,
I have been interested in the logical analysis of the cognitive processing leading from
the formation of beliefs, desires and moral values to action execution via formation
of preferences and generation of intentions. Specifically, we have developed a logical
theory of the connection between intention and action via the concept of attempt [my
papers: A25,C53,C57]. The theory is based on a combination of a modal logic of
mental attitudes, propositional dynamic logic (PDL) and propositional linear temporal
logic (PLTL). The concept of attempt corresponds to what in philosophy of action is
called ‘volition’, namely the mental action or process of ‘starting the execution of a
given action’.

We have also studied the problem of intention change by developing a logic of
which supports reasoning about intention formation and intention reconsideration op-
erations [my papers: C33,C37]. The logic, which exploits methods and techniques
from dynamic epistemic logic (DEL) [158], allows to describe the consequences of
such operations on an agent’s mental setting.
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We have developed a logical theory of the relationship between desires, moral
values and preferences which clearly distinguishes desire-dependent preferences and
desire-independent ones originating from an agent’s moral values [my papers: A6].
The theory also focuses on the connection between beliefs, preferences, goals and
choices.

More recently, we have focused on the formalization of concept of desire in the
framework of possibility theory and modal logic [my papers: C7,C12,C16]. The
aim of this work is to study both the static properties and the dynamic properties of
desires including: (i) how the strength of the conjunction of two desires should be
computed on the basis of the strengths of the individual desires; (ii) the basic postulates
characterizing desire change in relation with the basic postulates characterizing belief
change [2].

We have extensively worked on the topic of trust by proposing a logic of trust based
on Castelfranchi & Falcone’s socio-cognitive theory of trust [33] and providing a sound
and complete axiomatization for this logic [my papers: A20,A21,B7,B14,B18,C38,C45].
The logic adopts Castelfranchi & Falcone’s reduction of trust to the more primitive
concepts of belief, goal, capability and opportunity. It offers a formal and more refined
version of Castelfranchi & Falcone’s definition of trust by distinguishing two general
types of trust: occurrent trust and dispositional trust. The former is the one studied
by Castelfranchi and Falcone, and it is the trust in the occurrence of an action ↵ of
the trustee here and now with respect to a current goal of the truster. The latter is the
truster’s belief that she will possibly have a certain goal ' in the future and, whenever
she will have such a goal and certain conditions will obtain, the trustee will perform ↵

and thereby will ensure '. In this sense, the truster is disposed to trust the trustee. An
example of this kind of trust is dispositional trust in the context of trade: the truster 1
believes it to be possible that in the future she will have the goal to receive a certain
product from agent 2, and believes that whenever she will have this goal and will pay
the product to 2, then 2 will send the product to 1 so that she will receive the product. In
[my papers: C43,C49,C50] we have applied the logic to security and to the theory of
communication: (i) by studying the relationship between the concept trust and security
properties such as privacy and integrity, and (ii) by formalizing the concepts of trust in
information sources and trust in communication systems.

More recently, we have been interested in the concept of trust-based belief change,
that is, belief change that depends on the degree of trust the receiver has in the source
of information [my papers: C9]. We have proposed a logic which supports reasoning
about different kinds of trust-based belief change policies including an additive policy,
that cumulates information received by different information sources, and a compen-
satory policy that, in case different sources provide conflicting information, balances
them depending on how much they are trustworthy. At the technical level, the logic
consists in extending the static modal logic of belief and trust by Liau [89] in three dif-
ferent directions: (i) a generalization of Liau’s approach to graded trust, (ii) its exten-
sion by modal operators of knowledge and by modal operators of graded belief based
on Spohn’s theory of uncertainty [137], and (iii) by a family of dynamic operators in
the style of dynamic epistemic logic (DEL). The latter allows for the representation of
the consequences of a trust-based belief change operation while the second enables to
handle iterated belief change. We have provided a sound and complete axiomatization
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for the variant of the logic that implements the additive policy and compensatory policy
for trust-based belief change.

3.2 Rationality and decision
The fundamental concept of game theory is the concept of solution which is, at the
same time, a prescriptive notion, in the sense that it prescribes how rational agents in
a given interaction should play, and a predictive one, in the sense that it allows us to
predict how the agents will play. There exist many different solution concepts both for
games in normal form and for games in extensive form (e.g., Nash Equilibrium, iter-
ated deletion of strongly dominated strategies, iterated deletion of weakly dominated
strategies, correlated equilibrium, backward induction, forward induction, etc.) and
new ones have been proposed in the recent years (see, e.g., [66]). A major issue we
face when we want to use some solution concept in order either to predict human be-
havior or to build some practical applications (e.g., for computer security or for multi-
agent systems) is to evaluate its significance. Some of the questions that arise in these
situations are, for instance: given certain assumptions about the agents such as the as-
sumption that they are rational (e.g., utility maximizers), under which conditions will
the agents converge to equilibrium? Are these conditions realistic? Are they too strong
for the domain of application under consideration? There is a branch of game theory,
called epistemic game theory, which can help to answer these questions (cf. [109] for
a general introduction to the research in this area). Indeed, the aim of epistemic game
theory is to provide an analysis of the necessary and/or sufficient epistemic conditions
of the different solution concepts, that is, the assumptions about the epistemic states of
the players that are necessary and/or sufficient to ensure that they will play according
to the prescription of the solution concept. Typical epistemic conditions which have
been considered are, for example, the assumption that players have common belief (or
common knowledge) about the rationality of every player,4 the assumption that every
player knows the choices of the others,5

Epistemic game theory shares concepts and methods with what Aumann calls inter-
active epistemology [5]. The latter is the research area in logic and philosophy which
deals with formal models of knowledge and belief when there is more than one rational
agent or “player” in the context of interaction having not only knowledge and beliefs
about substantive matters, but also knowledge and beliefs about the others’ knowledge
and beliefs. The concept of rationality corresponds either to the optimality criterion ac-
cording to which an agent should choose an action which guarantees the highest utility,
given what she believes the other agents will do, or the prudential criterion according
to which an agent should not choose an action which ensures the lowest utility, given
what she believes the other agents will do. An example of the former is expected utility
maximization, while an example of the latter is weak rationality in the sense of [151]
(cf. also [104, 18]), according to which an agent should not choose an action which is

4This is the typical condition of iterated deletion of strongly dominated strategies (also called iterated
strong dominance).

5This condition is required in order to ensure that the agents will converge to a Nash equilibrium.
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strongly dominated by another action, given what the agent believes the other agents
will do.

Much of the work in the field of epistemic game theory is based on a quantita-
tive representation of uncertainty and epistemic attitudes. Notable examples are the
analysis of the epistemic foundations for forward induction and for iterated admis-
sibility based on Bayesian probabilities [138, 67], conditional probabilities [14] or
lexicographic probabilities [25]. There are also few examples of qualitative models
of epistemic attitudes and uncertainty which have been used in the field of epistemic
game theory. For instance, Baltag et al. [12] have proposed an analysis of the epis-
temic foundation for backward induction based on a purely qualitative notion of plau-
sibility. The distinction between quantitative and qualitative approaches to uncertainty
has been widely discussed in the AI literature (cf. [60]). While in quantitative ap-
proaches belief states are characterized by classical probabilistic measures or by alter-
native numerical accounts, such as lexicographic probabilities or conditional probabili-
ties [14], qualitative approaches do not use any numerical representation of uncertainty
but simply a plausibility ordering on possible worlds structures inducing an epistemic-
entrenchment-like ordering on propositions.

My interest in epistemic game theory is a natural consequence of my general inter-
est in the theory mental attitudes. I believe that epistemic game theory offers the right
framework to clarify how agents’ mental attitudes influence behaviours of agents in a
social setting. In particular, it allows us to understand the subtle connection between
beliefs, preferences and decision, as represented in Figure 3.1, under the assumption
that the agents’ decisions are interdependent, in the sense they are affected by what
they believe the others will choose.6

My work in the area of epistemic game theory and interactive epistemology has
been devoted to develop a number of logics for epistemic game theory based on a qual-
itative representation of epistemic individual and collective attitudes including knowl-
edge, belief, strong belief, common knowledge and common belief. The main motiva-
tion for this work is to show that interesting results about the epistemic foundation for
solution concepts in game theory can be proved in a qualitative setting, without nec-
essarily exploiting the complex machinery of probability theory. I have also worked
on the connection between logical models of epistemic states based on Kripke seman-
tics and formal models of epistemic states based on the concept of type space. While
the former have been mainly proposed by logicians in AI [48] and philosophy [140],
the latter have been proposed by game theorists in economics [72]. The main moti-
vation for this work lies in the possibility of building a bridge between two research
communities that study the same concepts and phenomena from different perspectives.

6As observed in Section 3.1, epistemic game theory and, more generally, game theory share with Figure
3.1 the concepts of belief and preference. However, they do not provide an account of the origin of beliefs,
desires and moral values and of the connection between desires, moral values and preferences. Moreover, the
concept of future-directed intention is not included in the conceptual apparatus of game theory and epistemic
game theory. The same can be said for goals: the concept of goal is somehow implicit in the utility function
but is not explicitly modeled.
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My work on qualitative epistemic game theory and on the connection between
Kripke semantics and type space semantics In [my papers: A18], which extends
and improves over [my papers: C39], we have proposed some variants of a multi-
modal logic of joint action, preference and knowledge that support reasoning about
epistemic games in strategic form. We have given sound and complete axiomatizations
of these logics as well as some complexity results for the satisfiability problem. We
have considered both games with complete information and games with incomplete
information. In particular, we have provided syntactic derivations of some well-known
theorems in the epistemic game theory literature that specify some sufficient epistemic
conditions of equilibrium notions such as Nash equilibrium and “iterated deletion of
strongly dominated strategies” (IDSDS). Furthermore, we have provided a proof of
Harsanyi’s famous claim that all uncertainty about the structure of a game can be re-
duced to uncertainty about utilities [72].

In [my papers: A16], we have presented a branching-time epistemic temporal
logic which supports reasoning about interacting agents in the context of extensive
form games. The semantics of the logic is bidimensional as it quantifies over both
strategies and vertices within a game tree. The logic is used to give a Hilbert-style syn-
tactic derivation of Aumann’s famous theorem that states the following: “for any non
degenerate game of perfect information, common knowledge of rationality implies the
backward induction solution” [6]. The interesting aspect of syntactic derivations is that
they allow us to offer an in-depth formal analysis of the hypotheses that are needed to
prove some well-known theorems in the epistemic game theory literature, as they make
them explicit in the proofs. Specifically, while Aumann used the epistemic logic S5n
to prove his theorem, thanks to our syntactic derivation, we have been able to show that
the notion of belief formalized by the modal logic system KD45n is sufficient to prove
this theorem. Moreover, we have shown that the characterization of epistemic condi-
tions of IDSDS does not require introspection properties for belief and knowledge, as
the modal logic systems KTn or KDn are both sufficient for this characterization.

In [my papers: A12], we have presented a combination of van Benthem et al.’s
variant of PDL which gives an epistemic interpretation to programs [154] with Spohn’s
theory of uncertainty and belief change [137]. We have shown that the logic allows us
to describe both the static and the dynamic properties of different kinds of individual
and collective epistemic attitudes including knowledge, belief, graded belief, robust
belief and common belief which provide the epistemic foundations of different solution
concepts in game theory.

In [my papers: A3] we have dealt with the connection between two families of for-
mal semantics for knowledge and belief used in the area of interactive epistemology,
those based on Kripke semantics, mainly used by logicians in AI and philosophical
logic, and those based on type spaces, widely used by game theorists. We have pro-
vided a formal comparison between the two and a statement of semantic equivalence
with respect to three different logical systems: a doxastic logic for belief, an epistemic-
doxastic logic for belief and knowledge and a logic of probabilistic beliefs and knowl-
edge. Moreover, we have provided sound and complete axiomatizations of these logics
with respect to the two equivalent Kripke semantics and type space semantics.

To better illustrate my contribution in the area of epistemic game theory, in the next
paragraph I will discuss in more detail my most recent work in this area.
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Figure 3.3: Prisoner’s dilemma (with player 1 being the row player and player 2 being
the column player).

Epistemic foundation of DWDS2-IDSDS In [my papers: A5] we have developed
a minimal logic for epistemic game theory and shown that the logic is sufficiently ex-
pressive to provide epistemic foundations for various game-theoretic solution concepts
including “two rounds of iterated deletion of weakly dominated strategies followed
by iterated deletion of strongly dominated strategies” (DWDS2-IDSDS). The logic is
“minimal” in the sense we make as few assumptions as possible about the representa-
tion of epistemic states. The only assumption we make is that players in a game are
capable of ordering the situations they envisage according to their plausibility, without
necessarily being capable of assigning a numerical value to them. We have provided a
complete axiomatization for this logic as well as a complexity result for its satisfiability
problem.

DWDS2-IDSDS is an interesting solution concept as it is tightly related with the
concept of forward induction. The latter has been used to explain some empirical
evidences and to justify the behavior of rational players in the context of extensive
games such as the well-known “battle of the sexes with outside option” [39].

The formal semantics of the logic presented in [my papers: A5] is based on the
concept of epistemic game model (EGM). EGMs extend multi-relational Kripke mod-
els commonly used by logicians and computer scientists to model epistemic concepts
with a choice component. They provide a purely qualitative representation of knowl-
edge and belief as no notion of probability is involved or other numerical representa-
tion of the strength of belief. A graphical representation of an EGM for the well-known
Prisoner’s Dilemma (PD) of Figure 3.3 is given in Figure 3.4. PD is a two-player game
in which each player can decide either to cooperate (action C) or to defect (action D)
and has an incentive to defect. Indeed, it is assumed that, if an agent defects, she gets
a reward that is higher than the reward obtained in the case of cooperation, no matter
what the other agent decides to do. In other words, cooperation is strongly dominated
by defection. The social dilemma lies in the fact that mutual defection, the only Nash
equilibrium of the game, ensures a utility for each agent that is lower than the utility
obtained in the case of mutual cooperation.

EGMs require that that every player in a game has only two kinds of epistemic
attitudes: (i) each player envisages a set of worlds or states (also called epistemic al-
ternatives) that defines the player’s information set, and (ii) among these epistemic
alternatives the player can distinguish possible alternatives, that define the player’s be-
lief set, from impossible ones. Moreover, every world in a EGM is associated with a
unique action profile where each player chooses exactly one action. Two additional
constraints are given in the definition of EGM: (i) an ex-interim condition according to

33



which an agent chooses a certain action if and only if she knows this, and (ii) a cau-
tiousness condition according to which every player must envisage all possible choices
of the other players. The latter condition excludes that if there exists a correlation be-
tween a player’s choice and the choices of the others, then the player rules out from
her information set all choices of the others that are not correlated with her current
choice. For instance, in Figure 3.4, full ellipses and rectangles represent, respectively,
the information sets of player 1 and of player 2, while dotted ellipses and rectangles
represent, respectively, the belief sets of player 1 and of player 2. At world w player 1
believes that player 2 will cooperate since for all worlds in her belief set at w player 2
chooses action C. Notice that the ex-interim condition is satisfied as, if a certain player
chooses a certain action then she chooses the same action in all worlds in her informa-
tion set. Notice also that the cautiousness condition is satisfied as, the information set
of a certain player is sufficiently rich to include all possible choices of the other player.
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Figure 3.4: Example of EGM with two players

The basic logical language interpreted over EGMs includes standard Boolean con-
structions plus:

• choice constants of the form pl(J, sJ) that has to read “coalition J plays (or
chooses) the action profile sJ”,

• modal operators for knowledge of the form Ki, whose dual is denoted by bKi,
where Ki' has to read “agent i knows that ' is true”,

• modal operators for belief of the form Bi, whose dual is denoted by bBi, where
Bi' has to read “agent i believes that ' is true”,

• modal operators for common knowledge and common belief of the form CK and
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CB where CK' and CB' have to read, respectively, “the agents have common
knowledge that ' is true” and “the agents have common belief that ' is true”.

For example at world w in the EGM of Figure 3.4 the formula B1pl(2, C) and
B1K2pl(2, C) are both true.

It is shown that the logic can express the concept of ‘strong belief’, denoted by
the symbol SBi, which is crucial to characterize the epistemic conditions of DWDS2-
IDSDS. Specifically, SBi' means that all worlds that player i envisages in which ' is
true are strictly more plausible than the worlds that player i envisages in which ' is
false. For example, at world w, not only player 1 believes that player 2 will cooperate
(B1pl(2, C)), but also she strongly believes this (SB1pl(2, C)), as all worlds in 1’s
information set at w in which 2 cooperates are strictly more plausible than the worlds
in which 2 defects.

Different concepts of rationality are defined in the logic ranging from weak ra-
tionality in the sense of [151] to the lexicographic notion of perfect rationality. In
particular:

• weak rationality: a player is weakly rational if and only if she chooses an action
which is not strongly dominated within her belief set;

• strong rationality: a player is strongly rational if and only if she chooses an
action which is not weakly dominated within her belief set;

• perfect rationality: a player is perfectly rational if and only if she chooses an
action which is not weakly dominated within her belief set and not weakly dom-
inated within her information set, after having discarded all weakly dominated
strategies within her belief set.

It is shown that the concept of perfect rationality is essential to provide the epis-
temic foundation of DWDS2-IDSDS. Specifically, the following theorem of the logic
is proved:

Theorem 1 Let

ComplAss
def
=

^

i2Agt

^

s�i2S�i:s�i2SDWDS2�IDSDS
�i,1

bKi(pl(�i, s�i) ^ AllPRat�i).

Then:

|= CB(ComplAss ^ AllPRatAgt ^
^

i2Agt

SBiAllPRat�i) !
_

s2SDWDS2�IDSDS

pl(Agt , s)

The theorem states the following. Assume that the players have common belief
that, for every player i and for every non-weakly dominated strategy of the other play-
ers, there must be a world envisaged by i in which this strategy is played and the other
players are perfectly rational. This is called ‘completeness assumption’ and is repre-
sented by the formula ComplAss. Then, under this assumption, the common belief that
every player is perfectly rational and has a robust belief about the perfect rationality of
the other players is a sufficient condition for DWDS2-IDSDS.
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The converse of the previous theorem is also proved stating that for every strategy
profile that survives DWDS2-IDSDS we can find an epistemic game model in which
this strategy profile is played and the players have common belief that the completeness
assumption ComplAss holds and that every player is perfectly rational and has a robust
belief about the perfect rationality of the other players.

Theorem 2 Let s 2 S. Then, if s 2 S

DWDS2�IDSDS then there exists an epistemic
game model M and a world w in M such that the formula pl(Agt , s)^CB(ComplAss^
AllPRatAgt ^

V
i2Agt SBiAllPRat�i) is true at w in M .

The two Theorems 1 and 2 together provide a characterization of the epistemic
conditions of DWDS2-IDSDS.

3.3 Emotion
In the recent years, emotion has become a central topic in AI. The main motivation
of this line of research lies in the possibility of developing computational and formal
models of artificial agents who are expected to interact with humans. To ensure the
accuracy of a such formal models, it is important to consider how emotions have been
defined in the psychological literature. Indeed, in order to build artificial agents with
the capability of recognizing the emotions of a human user, of anticipating the emo-
tional effects of their actions on the human, of affecting the user’s emotions by the
performance of actions directed to her emotions (e.g. actions aimed at reducing the
human’s stress due to his negative emotions, actions aimed at inducing positive emo-
tions in the human), such agents must be endowed with an adequate model of human
emotions.

The most popular psychological theory of emotion in AI is the so-called appraisal
theory (cf. [124] for a broad introduction to the developments in appraisal theory).
This theory has emphasized the strong relationship between emotion and cognition,
by stating that each emotion can be related to specific patterns of evaluations and in-
terpretations of events, situations or objects (appraisal patterns) based on a number
of dimensions or criteria called appraisal variables (e.g. goal relevance, desirability,
likelihood, causal attribution). Appraisal variables are directly related to the mental
attitudes of the individual (e.g. beliefs, predictions, desires, goals, intentions). For in-
stance, when prospecting the possibility of winning a lottery and considering ‘I win the
lottery’ as a desirable event, an agent might feel an intense hope. When prospecting the
possibility of catching a disease and considering ‘I catch a disease’ as an undesirable
event, an agent might feel an intense fear.

Most appraisal models of emotions assume that explicit evaluations based on eval-
uative beliefs (i.e. the belief that a certain event is good or bad, pleasant or unpleas-
ant, dangerous or frustrating) are a necessary constituent of emotional experience. On
the other hand, there are some appraisal models mostly promoted by philosophers
[127, 61] in which emotions are reduced to specific combinations of beliefs and de-
sires, and in which the link between cognition and emotion is not necessarily medi-
ated by evaluative beliefs. Reisenzein [118] calls cognitive-evaluative the former and
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cognitive-motivational the latter kind of models. For example, according to cognitive-
motivational models of emotions, a person’s happiness about a certain fact ' can be
reduced to the person’s belief that ' obtains and the person’s desire that ' obtains. On
the contrary, according to cognitive-evaluative models, a person feels happy about a
certain fact ' if she believes that ' obtains and she evaluates ' to be good (desirable)
for her.

The popularity of appraisal theory in logic and AI is easily explained by the fact that
it perfectly fits with the concepts and level of abstraction of existing logical and com-
putational models of cognitive agents developed in these areas. Especially cognitive-
motivational models use folk-psychology concepts such as belief, knowledge, desire
and intention that are traditionally used in logic and AI for modelling cognitive agents.

The conceptual background underlying my view of appraisal theory is depicted in
Figure 3.5 which is nothing but the cognitive architecture of Figure 3.1 extended with
an emotion component.

Desires Moral values

Preferences and 
goals

Preference
and goal

generation

Decision Present-directed
intentions

Action

Environment
Mind

Sensing

Desire activation Norm internalization

Beliefs Future-directed
intentions

Emotion

Figure 3.5: Cognitive architecture extended with emotions

Figure 3.5 highlights the role of mental attitudes in emotion. In particular, it high-
lights the fact that mental attitudes of different kinds such as belief, desires, prefer-
ences, goals, moral values and (present-directed or future-directed) intentions deter-
mine emotional responses. For example, as emphasized above, the emotional response
of happiness is triggered by a goal and the certain belief that the content of one’s goal
is true. On the contrary, the emotional response of sadness is triggered by a goal and
the certain belief that the content of one’s goal is false. The emotional response of
hope is triggered by a goal and the uncertain belief that the content of one’s goal is
true. On the contrary, the emotional response of fear is triggered by a goal and the
uncertain belief that the content of one’s goal is false. This view is consistent with a
famous appraisal model, the so-called OCC psychological model of emotions [106],
according to which, while joy and distress are triggered by actual consequences, hope
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and fear are triggered by prospective consequences (or prospects). [63] interpret the
term ‘prospect’ as synonymous of ‘uncertain consequence’ (in contrast with ‘actual
consequence’ as synonymous of ‘certain consequence’).

Moral guilt and reproach are examples of emotion which are triggered by moral val-
ues. While moral guilt is triggered by the belief of being responsible for the violation
of a moral value, reproach is triggered by the belief that someone else is responsible
for the violation of a moral value. In other words, guilt is triggered by self-attribution
of responsibility for the violation of a moral value, while reproach is triggered by attri-
bution to others of responsibility for the violation of a moral value. Intentions as well
might be responsible for triggering certain kinds of emotional response. For instance,
as emphasized by psychological theories of anger (e.g., [85, 106, 122]), a necessary
condition for an agent 1 to be angry towards another agent 2 is the agent 1’s belief that
agent 2 has performed an action that has damaged her, that is, 1 believes that she has
been kept from attaining an important goal by an improper action of agent 2. Anger
becomes more intense when agent 1 believes that agent 2 has intentionally caused the
damage. In this sense, an agent 1’s belief about another agent 2’s intention may have
implications on the intensity of agent 1’s emotions.

Figure 3.5 also represents how emotions retroactively influence mental states and
decision either (i) through coping or (ii) through anticipation and prospective thinking
(i.e., the act of mentally simulating the future) in the decision-making phase.

Coping is the process of dealing with emotion, either externally by forming an
intention to act in the world (problem-focused coping) or internally by changing the
agent’s interpretation of the situation and the mental attitudes that triggered and sus-
tained the emotional response (emotion-focused coping) [85]. For example, when feel-
ing an intense fear due to an unexpected and scaring stimulus, an agent starts to recon-
sider her beliefs and intentions in order to update her knowledge in the light of the new
scaring information and to avoid running into danger (emotion-focused coping). Then,
the agent forms an intention to go out of danger (problem-focused coping). Another
agent can try to discharge her feeling of guilt for having damaged someone either by
forming the intention to repair the damage (problem-focused coping) or by reconsider-
ing the belief about her responsibility for the damage (emotion-focused coping). The
coping process as well as its relation with appraisal is illustrated in Figure 3.6.

The influence of emotion on decision-making has been widely studied both in psy-
chology and in economics. Rick & Loewenstein [121] distinguish the following three
forms of influence:

• Immediate emotions: real emotions experienced at the time of decision-making:

– Integral influences: influences from immediate emotions that arise from
contemplating the consequences of the decision itself,

– Incidental influences: influences from immediate emotions that arise from
factors unrelated to the decision at hand (e.g., the agent’s current mood or
chronic dispositional affect);

• Anticipated emotions: predictions about the emotional consequences of de-
cision outcomes (they are not experienced as emotions per se at the time of
decision-making).
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Figure 3.6: Appraisal and coping cycle

An example of integral influence of an immediate emotion is given by the following
example.

Example 1 Paul would like to eat some candies but her mother Mary has forbidden
him to eat candies without her permission. Paul’s fear of the sanction influences Paul’s
decision not to eat candies without asking permission.

The following example illustrates incidental influence of an immediate emotion.

Example 2 Mary has quarreled with her colleague Paul. At the end of the day she
goes back home after work and on the metro a beggar asks her for money. Few hours
after the quarrel with Paul, Mary is still in a bad mood and because of her current
disposition she refuses the beggar’s request.

The following example illustrates the influence of anticipated emotions on decision.

Example 3 Peter has to decide whether to leave her job as a researcher at the uni-
versity of Paris and to accept a job offer as a professor at a university in the U.S. She
decides to accept the job offer because she thinks that, if she refuses it, she will likely
regret her decision.

One of the most prominent theory of the integral influence of emotion on deci-
sion is Damasio’s theory of the somatic marker [41]. According to this theory, deci-
sion between different courses of actions leads to potentially advantageous (positive)
or harmful (negative) outcomes. These outcomes induce a somatic response used to
mark them and to signal their danger or advantage. In particular, a negative somatic
marker ‘signals’ to the agent the fact that a certain course of action should be avoided,
while a positive somatic marker provides an incentive to choose a specific course of
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action. According to Damasio’s theory, somatic markers depend on past experiences.
Specifically, pain or pleasure experienced as a consequence of an outcome are stored
in memory and are felt again when the outcome is envisaged in the decision-making
process. The following example clearly illustrates this.7

Example 4 Mary lives in Toulouse and has to decide whether to go to Paris by plane
or by train. Last time she traveled by plane she had a painful experience because of
turbulence. Mary envisages the possibility of incurring again in a turbulence and gets
frightened, thereby deciding to travel by train.

Several works aimed at extending the classical expected utility model to incorporate
anticipated emotions which are related to our uncertainty about the future, such as
hopefulness, anxiety, and suspense [31]. Some economic models of decision-making
consider how the anticipation of a future regret might affect a person’s current decision
[94]. In particular, according to these models, if a person believes that after choosing a
certain action she will likely regret for having made this choice, she will be less willing
to choose the action (than in the case in which she does not believe this). These models
agree in defining regret as the emotion which stems from the comparison between the
actual outcome deriving from a given choice and a counterfactual better outcome that
might have been had one chosen a different action [52, 82, 171]. More recently, some
economists have studied the influence of strategic emotions such as interpersonal guilt
and anger on decision [13, 34, 77]. Following psychological theories of interpersonal
guilt [15, 144], models developed in this area assume that the prototypical cause of
guilt is the infliction of harm, loss, or distress on a relationship partner. Moreover, they
assume that if people feel guilty for hurting their partners and for failing to live up to
their expectations, they will alter their behavior (to avoid guilt) in ways that seem likely
to maintain and strengthen the relationship.

My work on the logical formalization of emotions Since my PhD, I have been
working on the formalization of emotions using the tools and techniques of logic and
game theory. I have mainly adopted appraisal theory as the conceptual basis of my
work.

The emotion I have started with is surprise. Surprise is the simplest emotion that
is triggered by the mismatch between an expectation that an event will possibly occur
and an incoming input (i.e., what an agent perceives). We have a provided a formal the-
ory of surprise that clarifies two important aspects of this cognitive phenomenon [my
papers: A26,A27,B16,B19]. First, it addresses the distinction between surprise and
astonishment, the latter being the emotion triggered by something an agent could not
reasonably expect. The crucial difference between surprise and astonishment is that the
former necessarily requires an explicit expectation in the agent’s mind, while the latter
does not. One can be astonished by something since, at the moment she perceives it,

7Positive and negative somatic markers can operate either at a conscious level or at a uncon-
scious/automatic level. This corresponds to Ledoux’s distinction between explicit memory and implicit
memory and between two possible elaborations of a stimulus inducing an emotional response [86]: con-
scious elaboration vs. automatic elaboration.
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she realizes that it was totally unpredictable, without having formulated an expectation
in advance. For example, suppose Mary is working in her office. Suddenly, someone
knocks the door and enters into Mary’s office. Mary sees that the person is a police-
man. She is astonished by this fact even though, before perceiving it, she did not have
explicit in her mind the expectation that “a policeman will not enter into the office”.
Secondly, the theory clarifies the role of surprise in belief change by conceiving it as a
basic mechanism which is responsible for triggering belief reconsideration. The formal
theory of surprise we have developed exploits methods and techniques from Dynamic
Epistemic Logic (DEL). The latter is particularly suited to account for the dynamics of
epistemic attitudes which is a crucial component of the surprise phenomenon.

A simplified version of the theory has been implemented in a computational archi-
tecture [my papers: C32,C55] by extending the classical BDI (Belief, Desire, Inten-
tion) cycle [?] with surprise. Surprise plays a specific role in the cognitive architecture,
as it is responsible for triggering the process of belief revision. This is particularly im-
portant in the perspective of designing realistic non-omniscient cognitive agents who
are situated in complex environments where many tasks must be solved. Since accu-
rate belief revision and update require time and considerable computational costs, such
agents need some mechanism which is responsible for signaling the global inconsis-
tency of their belief bases with respect to an incoming input and for the revision of
their beliefs and expectations. One of the adaptive functions of surprise is exactly this:
it signals to the agent when her beliefs and expectations should be reconsidered.

More recently we have been working on the logical formalization of counterfac-
tual emotions, that is, those emotions that are based on counterfactual reasoning about
agents’ choices [my papers: A17,B15,C47]. The prototypical counterfactual emotion
is regret. Other examples are rejoicing, disappointment, and elation. We have pro-
posed an epistemic extension of atemporal STIT logic (cf. Section 2.1) which allows
to capture the cognitive structure of regret and, in particular, the conterfactual belief
which is responsible for triggering this emotion, namely the belief that a counterfac-
tual better outcome might have been, had the agent chosen a different action. We have
also studied the mathematical as well as the computational aspects of this epistemic
extension of atemporal STIT including axiomatics and complexity of the satisfiability
problem. This work has been included in François Schwarzentruber’s PhD thesis that
I have co-supervised with other colleagues from IRIT.

In [my papers: A8], we have extended our STIT logical analysis of counterfactual
emotions to moral emotions. The latter involve counterfactual reasoning about respon-
sibility for the transgression of moral values. In particular, the proposed formalization
accounts for the attribution of responsibility for the violation of a moral value either to
the self or to the other. This is a fundamental constituent of moral emotions such as
guilt, reproach, moral pride and moral approval. For example, according to the analysis
we propose, guilt is triggered by the belief that one is responsible for having behaved
in a morally reprehensible way. We have also proposed a game-theoretic account of
moral guilt [my papers: C5,C18], in parallel with the STIT logical analysis of moral
emotions.

We have also worked on the problem of emotion intensity by proposing a logical
theory of the intensity of hope, fear, joy and sadness [my papers: B13,C23,C26]. Fol-
lowing existing psychological models of emotion based on appraisal theory, intensity
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of these emotions is defined as a function of two cognitive parameters, the strength of
the expectation and the strength of the desire which are responsible for triggering the
emotional response. For instance, the intensity of hope that a certain event will occur
is a monotonically increasing function of both the strength of the expectation and the
strength of the desire that the event will occur. The theory also considers the behavioral
aspects of such emotions: how the execution of a certain coping strategy depends on
the intensity of the emotion generating it. Specifically, it is assumed that: (i) an agent is
identified with a numerical value which defines her tolerance to the negative emotion,
and (ii) if the intensity of the negative emotion (e.g., fear) exceeds this value then the
agent will execute a coping strategy aimed at discharging the negative emotion.

In a related work [my papers: C25,C30,C31], we have merged speech act theory
and emotion theory in order to study the expressive aspect of emotions. Specifically,
we have proposed a logical formalization of expressive speech acts, that is, speech acts
that are aimed at expressing a given emotion (e.g. to apologize, to thank, to reproach,
etc.). This work on expressive speech acts has been included in Nadine Guiraud’s PhD
thesis that I have co-supervised with other colleagues from IRIT.
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Chapter 4

Collectives

Agents in a society are not only individual entities sensing from the environment and
acting in the pursuit of their individual goals and with the aim of satisfying their indi-
vidual desires but also members of groups, teams, organizations, institutions, etc. In
many circumstances, agents reason, act and think as group members and their reason-
ing, acting and thinking as group members radically differ from their reasoning, acting
and thinking as individuals. This is typical in team sports like soccer and volleyball in
which agents in the team act in the pursuit of the common goal of winning the match
and they necessarily have to collaborate with the other team members in order to make
the team performance optimal. It is well-known that sport teams in which agents in the
team play individualistically are generally less performant than sport teams in which
agents in the team play collaboratively. But this is also typical in our everyday life
in which our behaviours are often determined by the goals, desires and preferences of
others. When deciding what to do, we often take into account the consequences of
our choices on the well-being of the others, we help the others because we empathize
with them. We prefer to cut the cake in equal pieces without taking the biggest piece
because we have been educated to do so, because we are sensitive to justice and averse
to inequity thereby thinking that dividing the cake in equal parts between the members
of our group is the right thing to do.

With the term “collective decision-making” I refer to assuming a group-oriented
perspective in the decision-making phase, that is, deciding what to do (i) by taking into
account the consequences of our choices on the well-being of both us and the others, (ii)
by caring about social preferences, that is, not only about what we prefer but also about
what the others prefer and, in more extreme cases, (iii) by identifying us and the others
as members of the same group or team. Collective decision-making can be opposed to
individual decision-making in which an agent only considers the consequences of her
choices on her own well-being without caring about the preferences of the others.

Decision-making is not the only dimension along which “individual” can be op-
posed to “collective”. Another important distinction, which has been deeply investi-
gated in recent years in the philosophical area of collective intentionality [96, 147],
is between individual attitudes and collective attitudes. As highlighted in Section 3.1,
individual attitudes coincide with the psychological or mental states of an individual.
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They can be either individual attitudes of epistemic type such as knowledge and belief
or individual attitudes of motivational type such as desire, goal and moral value. While
individual attitudes are attitudes of individual agents, collective attitudes are attitudes
of collective entities such as groups, teams and institutions. As for individual attitudes,
one can distinguish collective attitudes of epistemic type from collective attitudes of
motivational type. Typical examples of the former are shared belief, common knowl-
edge, common belief, group belief and collective acceptance. Typical examples of the
latter are group goals, collective preferences and joint intentions.

In the next two sections, I will discuss in more detail the topic of collective attitudes
and the topic of collective decision-making, and I will present my past research on these
two topics.

4.1 Collective attitudes
Collectives such as groups, teams, coorporations, organizations, etc. do not have
minds. However, we frequently ascribe intentional attitudes to them in the same way
as we ascribe intentional attitudes to individuals. For example, we may speak of what
our family prefers, of what the goal of a coorporation or organization is, of what the
scientific community think about a certain issue, and so on.

Aggregate vs. common attitudes An important distinction in the theory of collective
attitudes is between aggregate attitudes and common attitudes. As emphasized by [91]
“...an aggregate attitude (of a collective) is an aggregate or summary of the attitudes
of the individual members of the collective, produced by some aggregation rule or
statistical criterion...”. A typical example of aggregate attitude produced by a statistical
criterion is shared belief, namely the fact that all agents (or most of the agents) in a set
of agents believe that a certain proposition p is true. An example of aggregate attitude
produced by an aggregation rule is the collective judgment of a jury about a given
proposition p obtained by majority voting: the jury believes that the proposition p is
true if and only if the majority of the members of the jury has expressed the individual
opinion that p is true. Aggregate attitudes produced by aggregation rules are the objects
of analysis of social choice theory and jugement aggregation, two important research
areas in social sciences and artificial intelligence. Differently from common attitudes,
aggregate attitudes do not require a level of common awareness by the members of the
group. That is, a group can hold an aggregate attitude even though the members of
the group do not necessarily believe so. For example, the fact that two agents share
the belief that p is true does not necessarily imply that they individually believe that
they share this belief. As emphasized by [91] “...a common attitude (of a collective) is
an attitude held by all individual members of the collective, where their holding it is a
matter of common awareness”, where the term “common awareness” refers to the fact
that every member of the group believes that the group has the common attitude, that
every member of the group believes that every member of the group believes that the
group has the common attitude, and so on. A typical example of common attitude is
common belief: every agent in the group believes that p is true, every agent in the group
believes that every agent in the group believes that p is true, and so on ad infinitum.
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Functions of collective attitudes Collective attitudes play a crucial role in the so-
ciety as: (i) they provide the basis of our common understanding through commu-
nication, (ii) they ensure coordination between agents, (iii) they are fundamental con-
stituents of collaborative activities between agents acting as members of the same team.

In linguistic, the concept of common ground in a conversation is typically con-
ceived as the common knowledge that the speaker and the hearer have about the rules of
the language they use and about the meaning of the expressions uttered by the speaker
[139]. Indeed, language use in conversation is a form of social activity which requires
a certain level of coordination between what the speaker means and what the addressee
understands the speaker to mean. Any utterance of the speaker is in principle ambigu-
ous because the speaker could use it to express a variety of possible meanings. Com-
mon ground — as a mass of information and facts mutually believed by the speaker and
the addressee — ensures coordination by disambiguating the meaning of the speaker’s
utterance. For example, suppose two different operas, “Don Giovanni” by Mozart and
“Il Barbiere di Siviglia” by Rossini, are performed in the same evening at two differ-
ent theaters. Mike goes to see Don Giovanni and the next morning sees Mary and
asks “Did you enjoy the opera yesterday night?”, identifying the referent of the word
“opera” as Don Giovanni. In order to be sure that Mary will take “opera” as referring
to Don Giovanni and not to Il Barbiere di Siviglia, Mike has to believe that the night
before Mary too went to see Don Giovanni, that Mary believes that Mike too went to
see Don Giovanni, that Mary believes that Mike believes that Mary too went to see
Don Giovanni, and so on.

Moreover, since the seminal work by David Lewis [88], the concept of common
belief has been show to play a central role in the formation and emergence of social
conventions.

Finally, collective attitudes such as common goal and joint intention are tradition-
ally used in in the philosophical area and in AI to account for the concept of collab-
orative activity [27, 64, 44, 45]. Notable examples of collaborative activity are the
activities of painting a house together, dancing together a tango, or moving a heavy
object together. Two or more agents acting together in a collaborative way need to
have a common goal and need to form a shared plan aimed at achieving the common
goal. In order to make collaboration effective, each agent has to commit to her part in
the shared plan and form the corresponding intention to perform her part of the plan.
Moreover, she has to monitor the behaviors of the others and, eventually, to reconsider
her plan and adapt her behavior to the new circumstances.

The origin of collective attitudes Where do collective attitudes come from? How
are they formed? There is no single answer to these questions, as collective attitudes
can originate in many different ways.

As explained above, aggregate attitudes are the product of aggregation procedures
like majority voting or unanimity (cf. [92]). The agents in a certain group decide to
use a certain aggregation rule. Then, every agent expresses her opinion about a certain
issue p and the aggregation rule is used to determine what the group believes or what
the group accepts. Examples of collective attitudes originating from the aggregation of
individual attitudes are group belief and collective acceptance.
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Collective attitudes, such as shared belief and common belief, can also be formed
through communication. A source of information announces to all agents in a group
that a certain proposition p is true. Under the assumption that every agent perceives
what the information source says and that every agent in the group trusts the informa-
tion source’s jugement about p, the agents will share the belief that p is true as a result
of the announcement. Creation of common belief through communication requires
satisfaction of certain conditions that are implicit in the concept of public announce-
ment, as defined in the context of public announcement logic (PAL) [111], the simplest
logic in the family of dynamic epistemic logics (DEL). Specifically, to ensure that an
announcement will determine a common belief that the announced fact is true, every
agent in the group has to perceive what the information source says, every agent in
the group has to perceive that every agent in the group perceives what the informa-
tion source says, and so on. The latter is called co-presence condition in the linguistic
literature [36].

The concept of co-presence becomes particularly relevant in the perspective of de-
signing artificial systems situated in a physical environment that need to acquire com-
mon belief of certain facts in order to achieve coordination and to make collaboration
effective. For example, imagine two robots moving in the physical environment. A
source of information signals to them that there is a danger. It does this by emitting a
red light. The robots will be able to form different levels of mutual belief about this
fact depending on: (i) their spatial positions and the orientation of their sensors with
respect to the source of information, and (ii) the perception of the other robots’ spatial
positions and of the orientations of the other robots’ sensors with respect to the source
of information. The concept of co-presence applies not only to agents interacting in
a physical environment but also to agents interacting in a virtual environment (e.g.,
virtual characters of a videogame).

Collective acceptance and institutions The problem of understanding what institu-
tions are and how they work has been addressed both in social sciences, in philosophy
and in legal theory. Computer scientists working in the area of multi-agent systems
have been interested in devising artificial institutions, modeling their dynamics and the
different kinds of rules and norms of an institution that agents have to deal with. Fol-
lowing [105, p. 3], artificial institutions can be conceived as “the rules of the game in a
society or the humanly devised constraints that structure agents’ interaction”. In some
models of artificial institutions norms are conceived as means to achieve coordination
among agents and agents are supposed to comply with them and to obey the authori-
ties of the system [47]. More sophisticated models of institutions leave to the agents’
autonomy the decision whether to comply or not with the specified rules and norms of
the institution [1, 95]. However, all previous models abstract away from the legislative
source of the norms of an institution, and from how institutions are created, maintained
and changed by their members.

What these models of artificial institutions neglect is the fundamental relationship
between institutions and the collective attitudes of their members and, in particular, the
fact that the existence and the dynamics of an institution (norms, rules, institutional
facts, etc.) are determined by the collective attitudes of the agents which identify them-
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selves as members of the institution. This aspect is emphasized in the following quote
from [97, p. 77]:

“only because institutions are anchored in peoples minds do they ever be-
come behaviorally relevant. The elucidation of the internal aspect is the
crucial step in adequately explaining the emergence, evolution, and effects
of institutions.” [Emphasis added].

Prominent philosophical theories of institutional reality conceives collective ac-
ceptance as the collective attitude on which institutions are grounded [128, 149]. The
relationship between acceptance and institutions has also been emphasized in the philo-
sophical doctrine of Legal Positivism [73]. According to Hart, the foundations of an
institution consist of adherence to, or acceptance of, an ultimate rule of recognition by
which the validity of any rule of the institution may be evaluated. 1

A property that clearly distinguishes collective acceptance from common belief is
that common belief implies shared belief, while collective acceptance does not: when
there is a common belief in a group of agents C that a certain proposition p is true
then each agent in C individually believes that p is true, while it might be the case that
there is a collective acceptance in C that p is true, and at the same time one or several
agents in C do not individually believe that p is true. For example, the members of a
Parliament might collectively accept (qua members of the Parliament) that launching
a military action against another country is legitimate because by majority voting the
Parliament decided so, even though some of them — who voted against the military
intervention — individually believe the contrary. This difference is due to the fact
that collective acceptance is a kind of aggregate attitude which can be formed through
aggregation procedures others than unanimity.

Another important difference between collective acceptance and common belief is
the irreducibility of collective acceptance to the individual level. In particular, it has
been emphasized that, while common belief is strongly linked to individual beliefs and
can be reduced to them, collective attitudes such as collective acceptance cannot be re-
duced to a composition of individual attitudes. This aspect is particularly emphasized
by Gilbert [56] who follows Durkheim’s non-reductionist view of collective attitudes
[46]. According to Gilbert, any proper group attitude cannot be defined only as a label
on a particular configuration of individual attitudes, as common belief is. In [57, 150]
it is suggested that a collective acceptance of a set of agents C is based on the fact that
the agents in C identify themselves as members of a certain group, institution, team,
organization, etc. and recognize each other as members of the same group, institu-
tion, team, organization, etc. Common belief and common knowledge, as traditionally
defined in epistemic logic [48], do not entail this aspect of mutual recognition and
identification with respect to the same group, institution, team, organization, etc.

My work on the logical formalization of collective attitudes In the recent years I
have been interested in the logical theory of collective attitudes by focusing on the three
aspects discussed above, namely the relationship between collective acceptance and

1In Hart’s theory, the rule of recognition is the rule which specifies the ultimate criteria of validity in a
legal system.
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institutions, the perceptual origin of common belief and the formalization of common
ground.

We have proposed a modal logic of collective acceptance in accordance with exist-
ing with philosophical theories of this notion [my papers: A24,B2,C42,C46,C48,C51].
In the logic, collective acceptance is conceived as the collective attitude that some
agents have qua members of the same institution. In particular, a collective acceptance
held by a set of agents C qua members of a certain institution x is the kind of accep-
tance the agents in C are committed to when they are “functioning together as members
of the institution x”, that is, when the agents in C identify and recognize each other as
members of the institution x. For example, in the context of the institution Greenpeace
agents (collectively) accept that their mission is to protect the Earth qua members of
Greenpeace. The state of acceptance qua members of Greenpeace is the kind of accep-
tance these agents are committed to when they are functioning together as members
of Greenpeace, that is, when they identify and recognize each other as members of
Greenpeace. The logic accounts for different kinds of aggregation procedures that the
members of an institution may adopt in order to build a collective acceptance of a given
fact. This includes unanimity, majority and a criterion based on leadership according
to which what the members of an institution collectively accept coincides with the ac-
ceptance of the legislator of the institution. Moreover, the logic clearly distinguishes
collective acceptance from common belief, by emphasizing the fact that, while com-
mon belief is reducible to individual beliefs, collective acceptance cannot be reduced
to individual attitudes of the members of an institution. The fact that collective ac-
ceptance is not reducible to individual attitudes is reflected in the formal semantics of
the logic. While in epistemic logic common belief is commonly represented by means
of the transitive closure of the union of the accessibility relations for the individual
beliefs, the accessibility relation for collective acceptance is not definable in terms of
the accessibility relations for individual beliefs or individual acceptances. Moreover,
collective acceptance entails the notion of “group identification” that is not reducible
to the individual level. We have provided a complete axiomatization for the logic of
collective acceptance and a decidability result for its satisfiability problem. Following
the idea of some prominent philosophical theories of institutions [128, 149] according
to which institutional reality only exists in relation with the collective acceptance of
institutional facts by the members of the institution. We have provided a systematic
analysis of institutional concepts in the context of this logic. This includes the con-
cepts of weak permission, strong permission, obligation and constitutive rule. We have
also proposed a dynamic extension of the logic with the aim of modelling institutional
change in the logic [my papers: A23,C44]. The idea is that institutional change is a
consequence of the evolution of collective acceptance.

This work on the logic of collective acceptance has been included in Benoit Gau-
dou’s PhD thesis that I have co-supervised with other colleagues from IRIT.

I have also been interested in the study of the the perceptual origin of common
belief since the time of my PhD. The original idea was to extend the logic of com-
mon belief with a perceptual component in order to formally capture the concept of
co-presence [my papers: C59]. More recently, we have developed a logic of attention-
based announcements reflecting the intuition that an agent changes her beliefs due to
an announcement only if she pays attention to the source of the announcement [my pa-
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pers: A4,C15]. Thus, an announcement is public insofar as every agent pays attention
to the source of the announcement and the agents have common belief about this. At
the technical level, the update semantics of the logic corresponds to a specific type of
event model in the sense of [10]. However, its interesting aspect is that it allows to rep-
resent the update operation is a more compact way that in the traditional event model
semantics à la Baltag & Moss. A complete axiomatization for this logic has been given
as well as a complexity result and a tableau method for its satisfiability problem.

As for the concept of common ground, we have recently proposed a logical account
of the distinction between direct and indirect common belief [my papers: B5]. The
distinction relates to the way a common belief is generated. A common belief that p is
direct when it is an immediate consequence of an event e that is manifest to all those
sharing the prior common belief that perceiving e entails the truth of p. A common
belief that p is indirect when it is generated by what may be called a “shared inference”
of the agents in the group. The inference is “constructive” in the sense that it does not
presuppose the prior common belief that perceiving e entails the truth of p. This kind
of shared inference is often in place in linguistic communication to guarantee that the
speaker and the hearer achieve common belief about the meaning expressed by a given
utterance of the speaker, relying on their mutually shared background information in
the common ground.

4.2 Collective decision-making
In recent times, several experiments have demonstrated that people are often driven
by other-regarding motivations, and by social preferences. For instance, it has been
shown that in the one-shot version of the Prisoner’s Dilemma represented in Figure
3.3 played with material incentives people often exhibit mutual cooperation [123], i.e.,
they choose the strategy profile (C,C). This is apparently in contrast with what game
theory prescribes, as the only Nash equilibrium in this game is mutual defection, i.e.,
the strategy profile (D,D). Consequently, the classical game-theoretic framework has
been extended in order to incorporate new important concepts such as fairness, inequity
aversion, altruism and reciprocity.

Several models of other-regarding motivations and social preferences have been
developed in recent years not only in economics [50], but also in sociology [98], so-
cial psychology [93] and artificial intelligence [55]. These models show that that the
phenomena observed in experiments with humans can be explained in a rigorous and
tractable manner. Some models assume that people are only concerned about the dis-
tributional consequences of their acts but they do not care about the intentions that lead
their opponents to choose these acts. For example, according to [49], human agents
could be inequity averse and care about how much material resources are allocated
to other agents. Other models assume that the behavior of a person during social in-
teraction depends on the person’s beliefs and expectations about the intention of the
opponent. For example, according to Rabin’s model of reciprocity [114], a person is
willing to be kind with another person if she believes that the other has been kind to
her. On the contrary, a person has a desire to retaliate, if she believes that the other
person wanted to hurt her.
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Social preferences Following [58], we can distinguish self-regarding agents, or agents
motivated by individual preferences, from other-regarding agents, or agents motivated
by social preferences. A self-regarding agent is an agent who acts in order to achieve
her private interests and to maximize the personal benefit she gets in a given situation.
On the other hand, an other-regarding agent is an agent who is also concerned about
the benefit other agents derive from a given situation. In other words, if an agent is
self-regarding, the utility of a given state for her coincides with the personal benefit
she will get in this state. If the agent is other-regarding, the utility of a given state for
her also depends on the benefit the other agents will get in this state. In this sense, her
utility might differ from her own personal benefit.

The notion of self-regarding agent should not be confused with the rationality as-
sumption of classical game theory: according to classical game theory, individuals are
rational in the sense that they maximize their utility. The notions of self-regarding
agent and other-regarding agent are not in contradiction with this assumption. We can
safely say that an other-regarding agent acts to maximize her utility even though she
does not act to maximize her personal benefit (as she also cares about the benefit for
the other agents). For example, Peter may decide to lend his bike to Mary in order
to satisfy agent Mary’s desire to go for a bike ride in the countryside (suppose Mary
does not have a bike). In this situation, the utility of a given action for agent Peter
depends on the extent to which this action promotes the satisfaction of agent Mary’s
desires. Therefore, Peter’s act is other-regarding even though agent Peter is still acting
to maximize his utility.

The concept of social preference is also compatible with the cognitive architecture
illustrated in Figure 3.1. Nevertheless, it is worth noting that the architecture leads two
different possible interpretations of this concept. According to the first interpretation,
an other-regarding agent is an agent who is motivated by the desire of satisfying the
other agents’ desires or of distributing the material payoffs in a fair/equitable/impartial
manner between the agents in the society. According to the second interpretation, an
other-regarding agent is an agent who is motivated by the moral value of satisfying
the other agents’ desires or of distributing the material payoffs in a fair/equal/impartial
way between the agents in the society. In other words, the origin of social preferences
differ in these two views. While according to the first interpretation social preferences
derive from desires and have an endogenous origin, according to the second one social
preferences derive from moral values and could be the result of the internalization
of some exogenous social norm. The latter view is compatible with the idea that an
agent is sensitive to fairness norms, norms of justice or equity because these norms
are part of the cultural and social environment in which the agent lives and have been
internalized by the agent. These two views also have different implications on emotion
analysis. While according to the first interpretation, an other-regarding agent behaving
in a unfair/inequitable/partial manner should feel sad or frustrated, according to the
second interpretation, an other-regarding agent in the same circumstances should feel
guilty.

Team reasoning The game in Figure 4.1, called the Hi-Lo Matching game, has re-
ceived quite a lot of attention in recent times.
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H L

H 2,2 0,0

L 0,0 1,1

Figure 4.1: Hi-Lo

If both players choose the option H (the action “high”), each gains two units; if
both choose L (the action “low”), each gains one unit; otherwise neither gains anything.
There are two Nash equilibria in this game: the situation in which both players choose
H (H,H), and the situation in which they both choose L (L,L). Hi-Lo is similar to a pure
coordination game: the interests of the players are perfectly aligned and there are two
Nash equilibria. But, differently from a pure coordination game, in Hi-Lo one of the
two Nash equilibria is strictly better than the other, as it yields a higher utility to both
players. In this case, we say that (H,H) utility-dominates (L,L). This is the reason why
the coordination problem in the Hi-Lo seems trivial. It is clear that the players should
coordinate on the preferred equilibrium (H,H). These intuitions have been confirmed by
experiments with humans playing the Hi-Lo game with material payoffs: for instance it
is shown in [8] that a very large majority of people choose the option H and coordinate
on the preferred equilibrium (H,H).

The Hi-Lo game presents a fundamental problem for the best-response reasoning
assumed in classical game theory (i.e., agents choose their best response to what they
expect the others will do) and, consequently, for the notion of self-regarding agent we
have discussed above. In fact, from the assumptions that the players are self-regarding
and that they know the other players’ choices, we cannot deduce that each player will
choose H.2 All we can say is that if a player expects that the other player will choose
H then it is rational for her to choose H. But exactly the same can be said about L:
if a player expects that the other player will choose L then it is rational for her to
choose L. Theories of social preferences too fail to explain why people coordinate on
the preferred equilibrium in the Hi-Lo game. Consider for instance a notion of social
preference based on Harsany’s criterion of distributive justice [70]:

The social welfare of a given alternative is equal to the sum of the individ-
ual utilities.

Assume that a certain agent is other-regarding if she is motivated by the goal of
maximizing social welfare. From the assumptions that the players are other-regarding
and that they know what the other players choose, we cannot deduce that each player
will choose H. All we can say is that if an other-regarding player expects that the other
player will choose H then it is rational for her to choose H (since 2 + 2 > 0 + 0). But
exactly the same can be said about L: if an other-regarding player expects that the other
player will choose L then it is rational for her to choose L (since 1+ 1 > 0+ 0). Thus,

2The same deduction cannot be made even assuming that the players are self-regarding and that they have
common knowledge of this.
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the notion of other-regarding agent does not help to solve the problem presented by the
Hi-Lo game.

In order to solve this problem some economists such as Michael Bacharach [7, 8]
and Robert Sugden [142, 141] have studied a new mode of reasoning, called team
reasoning, by which players can arrive at the conclusion that they ought to choose
the option H when facing a Hi-Lo game. Team reasoning is the kind of reasoning that
people use when they take themselves to be acting as members of a group or team [141].
That is, when an agent i engages in team reasoning, she identifies herself as a member
of a group of agents C and conceives C as a unit of agency acting as a single entity
in pursuit of some collective objective. A team reasoning agent acts for the interest of
her group by identifying a strategy profile that maximizes the collective utility of the
group, and then, if the maximizing strategy profile is unique, by choosing the action that
forms a component of this strategy profile. As pointed out by Sugden [142], an agent
has reason to act as a team member and to choose the action that forms a component
of the strategy profile maximizing collective utility, conditional on assurance that the
other agents also act as team members. That is, to act as a member of a team, one
must be confident that the other agents act as members too. For example, in the case of
the Hi-Lo, the unique profile that maximizes group utility is (H,H). Therefore, a team
reasoner has an incentive to play his component in this profile, assuming that the other
player will do the same.

Team-directed forms of reasoning have been studied not only by economists but
also by philosophers [150, 57, 117] and social psychologists [38]. For instance, the
philosopher Raimo Tuomela [150] distinguishes the ‘we-mode’ perspective from the
‘I-mode’ perspective. ‘We-mode’ is the mental attitude of identifying oneself as a
team member and of framing the situation as a problem for the team, whereas ‘I-mode’
is the mental attitude of framing the problem as a classical decision-making problem
that leads to maximization of (individual) expected utility. (See [65] for a comparison
between Tuomela’s concept of ‘we-mode’ and Bacharach’s concept of team reasoning.)

My work on collective decision-making One of the limitations of existing theories
of team reasoning is the assumption that a person in a given strategic setting can be
either in the ‘I-mode’ or in the ‘we-mode’, but cannot be at the same time in the ‘I-
mode’ and in the ‘we-mode’. In other words, existing theories of team reasoning do
not contemplate the possibility that a person can be partially tied with a given group
or team so that she is motivated by two concomitant goals: (i) the goal of maximizing
individual benefit, and (ii) the goal of maximizing the benefit for the group.

Consider, for example, the game in Figure 4.2 that represents a variant of the well-
known dictator game [51]. In this game the row player has total control of the game, in
the sense that the outcome of the game only depends on his choice.

Existing theories of team reasoning envisage only two possibilities in this game.
If the row player is in the ‘I-mode’, he will certainly choose the first option (A), as
this is the one that guarantees the maximal utility for him. On the contrary, if the row
player is in the ‘we-mode’, she will certainly choose the second option (B), as this is
the one that guarantees the maximal social welfare. In fact, any reasonable measure
of social welfare, including Harsanyi’s utilitarian criterion of distributive justice based
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A 8,0

B 6,8

C 7,3

Figure 4.2: Dictator game with three actions

on maximization of the sum of individual utilities [70] and Rawls’ criterion of fairness
based on maximization of the minimum of individual utilities [116] (so-called maximin
criterion), would prescribe that option B should be preferred to options A and C.

According to existing theories of team reasoning, option C will never be chosen by
the row player. This is clearly counterintuitive, as the row player could be concerned,
at the same time, with individual welfare and with social welfare, thereby preferring
option C over options A and C. Indeed, option C can be seen as a fair compromise
between promoting individual welfare (‘I-mode’) and promoting social welfare (‘we-
mode’).

To overcome this limitation, we have recently proposed model of social ties that
integrates the concept of partial identification with a group or team [my papers:
A9,A10]. The model assumes that an agent will balance the goal of maximizing in-
dividual welfare with the goal of maximizing social welfare, depending on how much
the agent is tied with the group. The model has been experimentally validated in col-
laboration with experimental economists from Toulouse School of Economics (TSE)
[my papers: A1].

This work on social ties has been included in Frédéric Moisan’s PhD thesis that I
have co-supervised with other colleagues from IRIT.

My research on collective-decision making has also been devoted to the develop-
ment a modal logic of social preferences in which different concepts such as fairness,
inequity aversion and reciprocity can be formally represented as well as solution con-
cepts for games in normal form corresponding to these concepts [my papers: A15].3
The interesting aspect of the logic is that it allows to characterize the epistemic con-
ditions that are necessary and/or sufficient for the agents in a game to play what a
certain solution concept prescribes, depending on their types which include the self-
interested type, the fair type and the reciprocator type. This is tightly related with my
work on epistemic game theory discussed in Section 3.2. An example of theorem we
have proved in the logic is the following one:

If all agents are reciprocators, every agent knows the choices of the others,
every agent knows that every agent knows the choices of the others, then
the agents will select a strategy profile which is either a social-welfare
equilibrium or a Nash equilibrium.

3This work extends and improves over my previous work on the logical formalization of the concept of
altruism [my papers: B21].
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where social-welfare equilibrium is the collective counterpart of the concept of Nash
equilibrium: a strategy profile s is a social-welfare equilibrium if and only if, for every
agent i, the action si is for the entire group of agents a best response to the other agents’
joint action s�i.
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Chapter 5

Perspectives

The concepts and logical theories illustrated in the previous chapters constitute the
past and the present of my research. I plan to refine, improve and complete them in
the coming years. For instance, there are number of open issues that I would like to
address such as: (i) decidability and complexity results for the satisfiability problem of
both temporal STIT and Ockhamist Propositional Dynamic Logic OPDL illustrated in
Chapter 2, (ii) a complete axiomatization of OPDL, (iii) decidability and complexity
results for the modal logic of trust-based belief change briefly illustrated in Section
3.1, (iv) the application of the minimal logic for interactive epistemology illustrated in
Section 3.2 to other solution concepts.

In this last chapter I am going to discuss some new perspectives for future research
that go beyond the concepts and logical theories illustrated in the previous chapters. I
do not pretend to be exhaustive. My aim is just to briefly sketch some new ideas I have
recently started to elaborate.

Resource-bounded reasoning As emphasized in Section 3.1, some beliefs originate
through inference. In order to formally characterize inference-based beliefs, it is nec-
essary to drop the assumption that agents are omniscient, in the sense that: (i) their
beliefs are closed under conjuction or under known implication, i.e., if ' is believed
and  is believed then ' ^  is believed and if ' is believed and ' !  is believed
then  is believed; (ii) their explicit beliefs are closed under logical consequence (alias
valid implication), i.e., if ' is believed and ' logically implies  , i.e., ' !  is valid,
then  is believed as well; (iii) they believe valid sentences or tautologies; (iv) they
have introspection over their beliefs, i.e., if ' is believed then it is believed that ' is
believed. As pointed out by [76, 87], relaxing the assumption of logical omniscience
allows for a resource-bounded agent who might fail to draw any connection between
' and its logical consequence  and, consequently, to believe any valid sentence and
who might need time to infer and form new beliefs from her existing knowledge and
beliefs.

We have recently started to study inference-based beliefs by proposing a logic
which supports reasoning about the formation of beliefs through inference and through
perception in non-omniscient resource-bounded agents [my papers: C3]. The logic
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distinguishes the concept of explicit belief from the concept of background knowl-
edge. This distinction is reflected in its formal semantics and axiomatics: (i) we use a
non-standard semantics putting together a neighbourhood semantics for explicit beliefs
and relational semantics for background knowledge, and (ii) we have specific axioms
in the logic highlighting the relationship between the two concepts. Mental operations
of perceptive type and inferential type, having effects on epistemic states of agents, are
primitives in the object language of the logic. At the semantic level, they are modelled
as special kinds of model-update operations, in the style of dynamic epistemic logic
(DEL). We have provided results about axiomatization, decidability and complexity
for this logic.

My future work will be devoted to the application of this logic to epistemic game
theory. Existing analysis of the epistemic foundations of solution concepts rely on
the assumption that players are omniscient and perfect reasoners. For example, the
characterization of the epistemic foundation for “iterated deletion of strongly domi-
nated strategies” (IDSDS) in terms of common knowledge (or common belief) of weak
rationality only works under this assumption: if we drop it, common belief of weak
rationality in the sense of [151] does not imply anymore that the agents will play a
strategy profile which survives IDSDS. The logic will help to answer questions such as
these: under which conditions will non-omniscient and imperfect reasoners converge
to the strategy profiles prescribed by IDSDS? which beliefs are required? which kind
of inference? I believe that moving from omniscient players to non-omniscient ones is
an interesting move, as it allows my work on epistemic game theory to get closer to the
social reality that is populated by imperfect human reasoners.

Resource-bounded reasoning is also relevant for the concept of intention. Indeed,
Bratman’s theory of intention [26, 28], one of the most prominent philosophical theo-
ries of intention nowadays, emphasizes that forming future-directed intentions enable
agents to extend the influence of their deliberations beyond the present moment and
that this is important given the limited cognitive capacities and time for deliberation of
human agents. Specifically, it may be the case that at the time t an agent will have less
time to deliberate and think through the options, or she may be distracted. For example,
I may decide now what to do during the weekend since I know that I will have a busy
week at work and will have no time to make my plan for the weekend. Existing logical
accounts of the concept of intention neglect this aspect, as they assume that an agent
holding an intention is a perfect reasoner with unlimited reasoning capabilities and un-
limited time for deliberation. My future work will be devoted to extend the logic of
beliefs for resource-bounded agents, we recently proposed in [my papers: C3], with a
concept of intention. The objective is to come up with a satisfactory logical account of
Bratman’s idea that future-directed intentions only make sense from the perspective of
designing agents with limited reasoning capabilities and limited time for deliberation.1

I also plan to extend the conceptual apparatus of epistemic game theory with the
concept of intention in order to model resource-bounded players who need to plan their

1Notice that future-directed intention are not justified by the uncertainty of the future. Indeed, if an agent
has unlimited time for deliberation, she does not need to decide in advance what to do in the future, even
if the future is uncertain. At any moment, she is able to make the optimal decision about what to do in the
present.
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future actions in advance in an extensive game setting, since they have limited cognitive
capacities and limited time for deliberation. But this is more a long-term perspective.

“Mentalizing” logics of actions In the future I intend to fill an existing gap in my
past and present research, namely the gap between my work on the logic of action,
illustrated in Chapter 2, and my work on the logic of mental attitudes, illustrated in
Chapter 3. The expected plan to fill this gap will consist in “mentalizing” the temporal
STIT logic presented in Chapter 2. First of all, I plan to enrich temporal STIT with an
explicit representation of both the agents’ beliefs and the agents’ preferences over his-
tories. Secondly, I plan to provide a sophisticated account of the connection between
beliefs, preferences and choices, the latter being primitive elements in the STIT seman-
tics. This connection will be based on the the rationality criteria studied in epistemic
game theory and illustrated in Section 3.2. More generally, it is based on the idea that,
in a multi-agent setting, an agent’s choice is determined by the agent’s preferences over
the possible courses of action and by her beliefs about the choices of the others.

I plan to compare the Kripke semantics of this “mental” extension of temporal
STIT with semantics that are traditionally used in the area of epistemic game theory to
represent beliefs of players in extensive form games and that are based on the concept
of type space (see [109] for a general introduction to these semantics). This work will
be a natural evolution of my past research, that I have briefly illustrated in Section 3.2,
on the comparison between Kripke semantics and type space semantics for a variety of
epistemic logical languages.

The possibility of “mentalizing” temporal STIT will also allow me to greatly im-
prove the work on social influence I have presented in Section 2.3 by:

• capturing the subtle relationship between influence on beliefs and influence on
actions, namely the fact that an agent can induce another agent to behave in
a certain way by changing his beliefs, since beliefs are the input of decision-
making and provide reasons for deciding and for acting,

• distinguishing mere influence from the more specific concept of manipulation,
in the sense of influencing someone to do something by lying and by providing
false information.

Influence-based opinion diffusion As emphasized in Section 4.1, collective atti-
tudes such as collective acceptance, shared belief and common belief can originate in
different ways. I have mentioned aggregation of individual attitudes and communica-
tion as two possible ways of forming collective attitudes.

In recent times, I have been interested in the formation of collective attitudes through
influence-based opinion diffusion.

Influence is the process which consists in forming an opinion about a given issue
or proposition on the basis of the opinions expressed by the other individuals in the
society. It ensures that opinions can spread in a society. Specifically, by expressing
her opinions, an agent affects the opinions of other agents who in turn will affect the
opinions of other agents, and so on. This generates a propagation of individual opinions
in the society (a sort of cascade) that can lead to the formation of a shared belief (or
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consensus) about a given issue. This kind of influence process is mediated by trust, as
for an agent to be affected by the expressed opinions of another agent, she has to trust
his judgment.

Recently, I have got interested in the epistemic, dynamic and strategic aspects of
influence-based opinion diffusion. My plan is to develop a number of logics and formal
theories that clarify:

• how the influence process works by changing beliefs on the basis of the ex-
pressed opinions of other agents in the society;

• how certain structural properties of the trust relations (e.g., whether the trust
network induced by the trust relations between the agents is acyclic or has hubs)
guarantee convergence of opinions or stabilization to consensus in the long run;

• how disclosure of opinions has a strategic component that affects stabilization to
consensus in the long run either by promoting it or by hindering it.

Some preliminary results in this direction are presented in [my papers: C4,C8] in
which methods and techniques from judgment aggregation [90, 62] are applied to the
analysis of opinion diffusion and stabilization to consensus in social networks. I plan to
improve this work by exploiting methods and techniques from dynamic epistemic logic
(DEL) in order to enrich the representation of the agents’ opinions and, in particular, to
represent high-order opinions, i.e., opinions about other agents’ opinions.

Also, less recently, I have focused on the problem of representing information
sources explicitly in epistemic logic [my papers: C27]. This allows to keep track of
the evidences obtained from the social environment that are responsible for influence
and, consequently, for belief formation. I plan to pursue further this line of research in
the coming years.

Grounding of mental attitudes Most of existing logics of mental attitudes and their
evolution are “ungrounded” in the sense that their formal semantics are based on ab-
stract notions such as the concept of Kripke model or the notions of envisaged world
and possible world, as illustrated in Section 3.1, which are not built from the agents’
primitive mental states and perceptual data. The grounding problem becomes particu-
larly relevant for AI practitioners, when moving from theory to practice. When design-
ing an artificial intelligent agent, we normally start from an explicit representation of
the agent’s mental states including her perceptual data base (i.e., all facts that the agent
can see), her belief base (i.e., all facts that the agent believes) and her goal base (i.e.,
all states of affairs that the agent wants to achieve). From this perspective, the concepts
of undistinguishability and possible world only make sense if they are built on the top
of them and are grounded on them.

I have recently started to work on grounded semantics for logics of mental attitudes.
Specifically, in [my papers: B4,C2,C6] we have developed a logic of visibility-based
knowledge, which generalizes previous work by [155, 156]. This logic is a simple
variant of epistemic logic in which knowledge of agents is grounded on the concept of
visibility: an agent knows that a certain fact p is true if and only if p is true and the truth
value of p is “visible” to her. Its interesting aspect is that it supports reasoning about
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high-order visibility, namely the fact that an agent 1 sees that another agent 2 sees the
truth value of p or that an agent 1 sees that another agent 2 sees that another agent 3
sees the truth value of p, and so on. An agent’s high-order knowledge about what the
other agents know depends on the agent’s high-order visibility of what the other agents
can see. For example, an agent 1 knows that another agent 2 knows that a certain fact
p is true if and only if agent 1 knows that p is true and can see that agent 2 can see
the truth value of p. In [my papers: C1], we have applied the logic to the analysis of
strategic contexts in which agents can have epistemic goals, change what other agents
can see and act in order to change the epistemic states of other agents.

I plan to pursue further this line of research by integrating spatial aspects in the log-
ics of mental attitudes I have considered so far. This choice is justified by the objective
of implementing such logics in robots interacting in a physical environment. In order
to use such logics for robotic implementations, their semantics have to be grounded on
space. Specifically, a logic is required that explains how epistemic states of the robots
are determined from what the robots perceive from the physical environment. To this
aim, existing epistemic logics and dynamic epistemic logics need to incorporate the
concept of perception, and to provide an explicit representation of the space in which
the robots’ actions and perceptions are situated.

Conventions The last concept I want to discuss is convention, a concept that has
been widely studied in economics [143], philosophy [19, 148] and computer science
[164, 161, 133, 130], given the fundamental role it plays in the regulation of both
human and artificial societies.

Eating manners, the kind of clothes we wear in office, and the side of the road on
which we drive are mundane examples of convention. Roughly, a social convention
is a customary, arbitrary and self-enforcing rule of behavior that is generally followed
and expected to be followed in a group or in a society at large [88]. When a social
convention is established, everybody behaves in an agreed-upon way even if they did
not in fact explicitly agree to behave in this way. A social convention can thus be seen
as a kind of tacit agreement that has evolved out of a history of previous interactions
[143, 148].

Since the seminal contribution by David Lewis [88], the modern approach to con-
ventions is rooted both in epistemic logic and in evolutionary game theory. The epis-
temic approach to the study of conventions has focused on the characterization of the
kind of mutual beliefs and expectations that are required for a group to adopt a cer-
tain convention [40, 134, 160] and on the distinction between the epistemic conditions
of conventions in contrast with the epistemic conditions of social norms [17]. For in-
stance, according to the well-known definition of convention by David Lewis [88, pp.
76], a given regularity of behavior R is a convention for a population of agents P at a
recurrent situation S, only if the agents in the population P mutually expect everyone
in P to conform to the regularity R in the situation S (and commonly believe so). The
evolutionary approach to the study of conventions has focused on the conditions under
which a certain convention can emerge on a given population of agents depending on
the agents’ learning capabilities. Notable examples of this approach are the models
by Kandori et al. [83] and Young [169] which make predictions about the conditions
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under which agents converge to equilibrium in a certain coordination game by learning
the others’ play and adjusting their strategies over time. For instance, Kandori et al.’s
model investigates the dynamic process that leads the agents to converge to the risk
dominant equilibrium in a repeated 2⇥ 2 coordination game.

I have always been interested in the topic of convention since the time of my PhD.
I believe it is a fascinating topic at the intersection of the three axes of my research: ac-
tions, mind and collectives. I believe I have now acquired the conceptual and technical
skills to clearly understand it and to be able to address it formally.

One of the challenges of my future research is to develop a formal model of conven-
tion which is able to reconcile the epistemic approach and the evolutionary approach
to the study of conventions. Indeed, none of the existing evolutionary models of con-
ventions deals with the epistemic aspect of conventions, as they do not assume agents
to be cognitive and only consider a simplified notion of convention as a mere regularity
of behavior. I would like my model of conventions to be able to clarify how the agents’
reasoning and learning capabilities as well as the structure of the environment (e.g.,
who can see whom, whether actions of agents are public or private) and the communi-
cation network (e.g., who can communicate with whom) can either promote or hinder
the formation of a system of mutual expectations about each other’s behavior in a cer-
tain population of cognitive agents. As emphasized above, such a system of mutual
expectations provides the epistemic foundation of the Lewisian concept of convention.
Thus, the main innovation of my research project on convention will be to go beyond
existing models of the emergence of conventions that completely neglect the epistemic
aspect of the concept of convention, which is of paramount importance according to
the Lewisian tradition.

At the technical level, the development of this model will require the combination
of methods and techniques from epistemic logic and dynamic epistemic logic (DEL)
with methods and techniques from the areas of evolutionary game theory and the theory
of learning games [53, 165]. I am not new to them. In a recent work [my papers: C5],
we have used them to develop a game-theoretic model of guilt and the evolution of
fairness norms.

Relevance for the local research community Before concluding this document, I
would like to emphasize that the perspectives for my future research perfectly fit the
objectives of the LILaC (Logique, Interaction, Langue, et Calcul) team at the Institut
de Recherche en Informatique de Toulouse (IRIT), the research team in which I have
spent the last ten years of my professional activity and in which I plan to spend the
coming years. My research project is at the core of the four axes of LILaC, namely
logic, interaction, language and computation. The combination of logic and game the-
ory, the two methodologies of my research, has opened new research avenues that are
currently explored at the team level and that, I believe, will lead to interesting results in
the future. Moreover, each perspective is expected to lead to fruiful collaborations with
the other members of the LILaC team. Perspective “Resource-bounded reasoning” is
currently explored in collaboration with with Philippe Balbiani and David Fernandez-
Duque, whereas the work on intention will be a follow-up of my joint work with An-
dreas Herzig and Laurent Perrussel. I am currently co-supervising with them the PhD
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thesis of Zhanhao Xiao on the topic of intention. Perspectives “Mentalizing logics of
actions” and “Grounding of mental attitudes” will directly involve Philippe Balbiani,
Olivier Gasquet and Andreas Herzig given their interest in the grounding problem and
their expertise in logical modelling of mental attitudes and in logics of space. I am
currently co-supervising with Andreas Herzig the PhD thesis of Faustine Maffre on the
logic of visibility-based knowledge. Perspective “Influence-based opinion diffusion”
is currently explored in collaboration with Umberto Grandi and Laurent Perrussel. We
plan to involve Dominique Longin in the work. Indeed, there is an interesting connec-
tion between our work on influence-based opinion and Dominique’s previous work on
emotional contagion and emotion dynamics at the population level. Andreas Herzig
and Dominique Longin will also be directly involved in the perspective “Convention”,
given their interest in the logic of collective attitudes and their dynamics.

I am currently involved in a project coordinated by Astrid Hopfensitz, an exper-
imental economist from Toulouse School of Economics (TSE). I have collaborated
with her in the past on collective decision-making (cf. Section 4.2) and we have
co-supervised together with Andreas Herzig the PhD thesis of Frédéric Moisan. The
project is on the general topic of social intelligence. Given the relevance of the concept
of convention for the project, I plan to collaborate with Astrid on the empirical vali-
dation of the formal model of convention that I intend to develop during the next few
years.
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Temporal STIT logic and its application to normative reasoning

Emiliano Lorini∗

IRIT-CNRS, Toulouse, France

I present a variant of STIT with time, called T-STIT (Temporal STIT), interpreted in
standard Kripke semantics. On the syntactic level, T-STIT is nothing but the extension
of atemporal individual STIT by: (i) the future tense and past tense operators, and (ii)
the operator of group agency for the grand coalition (the coalition of all agents). A
sound and complete axiomatisation for T-STIT is given. Moreover, it is shown that
T-STIT supports reasoning about interesting normative concepts such as the concepts
of achievement obligation and commitment.

Keywords: STIT logic; temporal logic; axiomatisation; deontic logic

1. Introduction
STIT logic (the logic of Seeing to it That; Belnap, Perloff, & Xu, 2001) is one of the most
prominent formal accounts of agency. It is the logic of sentences of the form ‘the agent i
sees to it that ϕ is true’. Horty (2001) extends the STIT logic of Belnap et al. (2001) with
operators of group agency in order to express sentences of the form ‘the group of agents C
sees to it that ϕ is true’. Following Lorini and Schwarzentruber (2011), one might use the
terms ‘individual STIT logic’ and ‘group STIT logic’ to designate respectively the STIT
logic of Belnap et al. (2001) (in which only the actions of agents are described) and Horty’s
(2001) variant of STIT logic (in which both actions of agents and joint actions of groups
are represented).

The original semantics for STIT given by Belnap et al. (2001) is defined in terms
of BT+AC structures: branching-time structures (BT) augmented by agent choice func-
tions (AC). A BT structure is made of a set of moments and a tree-like ordering over
them. An AC for a certain agent i is a function mapping each moment m into a parti-
tion of the set of histories passing through that moment, a history h being a maximal
set of linearly ordered moments and the equivalence classes of the partition being the
possible choices for agent i at moment m. As shown by Balbiani, Herzig, and Troquard
(2008), Lorini and Schwarzentruber (2011), and Herzig and Schwarzentruber (2008), how-
ever, both ‘atemporal individual STIT’ (i.e., individual STIT without tense operators in the
object language) axiomatised by Belnap et al. (2001, Chapter 17), and ‘atemporal group
STIT’ (i.e., group STIT without tense operators) can be ‘simulated’ in standard Kripke
semantics. A similar idea is proposed by Kooi and Tamminga (2008), who introduce the
concept of ‘consequential model’. Consequential models are equivalent to the Kripke
atemporal group STIT models used by Herzig and Schwarzentruber (2008) and Lorini
and Schwarzentruber (2011), in which the authors abstract away from the branching-time
account of STIT.
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The present article goes beyond previous work on atemporal STIT by presenting a
variant of STIT logic with time interpreted in standard Kripke semantics and by providing
a sound and complete axiomatisation for this logic. I call this variant of STIT logic T-STIT
(Temporal STIT). On the syntactic level, the logic T-STIT is nothing but the extension of
atemporal individual STIT by: (i) the future tense and past tense operators, and (ii) the
operator of group agency in Horty’s (2001) sense for the grand coalition (the coalition of
all agents).

The main motivation of this work is that past research on the mathematical properties
of STIT (e.g., completeness and decidability) has mainly focused on atemporal STIT, while
extensions of STIT by tense operators are far less well studied and understood. The interest
of studying them is that they offer valuable formal languages for representing a variety of
normative concepts such as commitment (Bentahar, Moulin, Meyer, & Chaib-draa, 2004;
Desai, Narendra, & Singh, 2008; Singh, 2008) and achievement obligation (i.e., the obliga-
tion to perform a given action at some point in the future; Broersen, Dastani, & van der Torre,
2003; Governatori & Rotolo, 2010) that have an intrinsic temporal nature. These concepts
are fundamental for understanding normative relationships between individuals in a society
and have become useful abstractions for the design of multi-agent systems since they can
be used to model a variety of interactive situations like contracts, agreements, negotiation,
dialogue, and argumentation.

The rest of the article is organised as follows. In Section 2, the logic T-STIT is presented
and a complete axiomatisation for this logic is given. An application of T-STIT to the
formalisation of normative concepts such as achievement obligation and commitment is
given in Section 3. It is shown that that T-STIT allows us to capture subtle temporal
properties of these normative concepts such as persistence (i.e., the conditions under which
a commitment persists over time). In Section 4, related work on STIT logic is discussed.

2. A STIT logic with time
This section presents the syntax and a Kripke-style semantics for T-STIT (Subsections 2.1
and 2.2). An axiomatisation of T-STIT is provided in Subsection 2.3, while in Subsection
2.4 it is proved that this axiomatisation is sound and complete with respect to the given
semantics.

In the logic T-STIT, the so-called Chellas’s STIT operators (Chellas, 1992) are taken as
primitive operators of agency. As pointed out by Xu (1998) and Horty and Belnap (1995),
so-called deliberative STIT operators and Chellas’s STIT operators are interdefinable and
just differ in the choice of primitive operators.

2.1. Syntax
Assume a countably infinite set of propositional atoms denoting basic facts Atm = {p, q, . . .}
and a finite set of agents Agt = {1, . . . , n}.

The language LT-STIT(Atm, Agt) of the logic T-STIT is the set of formulas defined by
the following BNF:

ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | [Agt]ϕ | !ϕ | Gϕ | Hϕ

where p ranges over Atm and i ranges over Agt. The other Boolean constructions ⊤, ⊥, ∨,
→ and ↔ are defined from ¬ and ∧ in the standard way.

Operators of the form [i] are Chellas’s STIT operators. The formula [i]ϕ captures the
fact that ϕ is guaranteed by a present action of agent i , and has to be read ‘agent i sees to
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374 E. Lorini

it that ϕ regardless of what the other agents do’. I shorten the reading of [i]ϕ to ‘agent i
sees to it that ϕ’. The crucial aspect of STIT theory is that an agent i’s action is described in
terms of the result that agent i brings about by her acting. For example, i’s action of killing
another agent j is described by the fact that i sees to it that j is dead. I define the dual of
the operator [i] as follows: ⟨i⟩ϕ def= ¬[i]¬ϕ.

[Agt] is a group STIT operator which captures the fact that ϕ is guaranteed by a present
choice of all agents, and has to be read ‘all agents see to it that ϕ by acting together’. The
dual of the operator [Agt] is defined as expected: ⟨Agt⟩ϕ def= ¬[Agt]¬ϕ. The modal operator
[Agt] will be fundamental in Section 2.2 in order to axiomatise a basic property relating
action and time studied in STIT: the so-called property of no choice between undivided
histories (Belnap et al., 2001, Chapter 7).

!ϕ stands for ‘ϕ is true regardless of what every agent does’ or ‘ϕ is true no matter
what the agents do’ or simply ‘ϕ is necessarily true’. I define the dual of ! as follows:
♦ϕ def= ¬!¬ϕ. Note that the operators [i] and ♦ can be combined in order to express what
agents can do: ♦[i]ϕ means ‘agent i can see to it that ϕ’. Moreover, the operators [i] and
! can be combined in order define the deliberative STIT operators [i dstit: ] studied by
Horty and Belnap (1995): [i dstit: ϕ] def= [i]ϕ ∧ ¬!ϕ.

Finally, G and H are tense operators that are respectively used to express facts that are
always true in the strict future and facts that are always true in the past. Gϕ means ‘ϕ will
always be true in the future’ and Hϕ means ‘ϕ has always been true in the past’. I define
the dual of the future tense operator G as follows: Fϕ def= ¬G¬ϕ. Fϕ means ‘ϕ will be
true at some point in the future’. Moreover, I define the dual of the past tense operator H as
follows: Pϕ def= ¬H¬ϕ. Pϕ means ‘ϕ has been true at some point in the past’.

The following abbreviations will also be convenient:
G∗ϕ def= ϕ ∧ Gϕ;
F∗ϕ def= ¬G∗¬ϕ.

G∗ϕ stands for ‘ϕ is true in the present and will always be true’, whereas F∗ϕ stands
for ‘ϕ is true in the present or will be true at some point in the future’.

2.2. A Kripke semantics for STIT logic with time
The basic notion in the semantics is the notion of a temporal Kripke STIT model that is
nothing but a multi-relational Kripke model with special constraints on the accessibility
relations. For notational convenience, in what follows I am going to use the following
abbreviations. Given a set of elements W , an arbitrary binary relation R on W and an
element w in W , let R(w) = {v ∈ W |(w, v) ∈ R}. Moreover, given two binary relations
R1 and R2 on W let R1 ◦ R2 be the standard operation of composition between binary
relations. Temporal Kripke STIT models can be seen as extensions of Zanardo’s (1996)
Ockhamist frames by a choice component, i.e., by accessibility relations for the individual
choices of the agents and an accessibility relation for the collective choice of the grand
coalition Agt.

Definition 1 (Temporal Kripke STIT model). The class of temporal Kripke STIT models
includes all tuples M = (W,R!, {Ri |i ∈ Agt},RAgt,RG,RH,V) where:

• W is a nonempty set of possible worlds;
• R!, every Ri and RAgt are equivalence relations between worlds in W such that:

(C1) Ri ⊆ R!;
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(C2) for all u1, . . . , un ∈ W : if (ui , u j ) ∈ R! for all i, j ∈ {1, . . . , n} then⋂
1≤i≤n Ri (ui ) ̸= ∅;

(C3) for all w ∈ W : RAgt(w) = ⋂
i∈Agt Ri (w);

• RG and RH are binary relations between worlds in W such that RG is serial and
transitive, RH is the inverse relation of RG (i.e., RH = R−1

G = {(w, v)|(v,w)

∈ RG}), and:
(C4) for all w, v, u ∈ W : if v, u ∈ RG(w) then u ∈ RG(v) or v ∈ RG(u) or

u = v;
(C5) for all w, v, u ∈ W : if v, u ∈ RH(w) then u ∈ RH(v) or v ∈ RH(u) or

u = v;
(C6) RG ◦ R! ⊆ RAgt ◦ RG;
(C7) for all w ∈ W : if v ∈ R!(w) then v ̸∈ RG(w);

• V : Atm −→ 2W is a valuation function for atomic formulas.

The valuation function V is used to identify those states in a model in which a given
atomic proposition is true. Specifically, w ∈ V(p) means that p is true at world w.

R!(w) is the set of worlds that are alternative to the world w. Following the Ockhamist’s
view of time (Prior, 1967; Thomason, 1984; Zanardo, 1996), I call the equivalence classes
induced by the equivalence relation R! moments.1 The set of all moments in the model M
is denoted by Mom and the elements in Mom are denoted by m, m′, . . ..

RG(w) defines the set of worlds that are in the strict future of world w, where the strict
future does not include the present. RH(w) defines the set of worlds that are in the past of
world w. The Constraint C7 ensures that if two worlds belong to the same moment then one
of them cannot be in the future of the other. Since the relation R! is reflexive, the Constraint
C7 implies the irreflexivity of the relation RG, i.e., for all w ∈ W we have w ̸∈ RG(w).
The fact that the relation RG is transitive and irreflexive just means that it is a strict partial
order on the set W . The Constraint C4 ensures that time is connected towards the future,
while the Constraint C5 ensures that time is connected towards the past.

Let T (w) = RH(w) ∪ {w} ∪ RG(w) be the set of worlds that are temporally related
with world w. The fact that the relation RG is irreflexive and transitive together with the
Constraints C4 and C5 ensure that RG is a strict linear (or total) order on the set T (w). For
every world w in W , I call the linearly ordered set (T (w),RG) the history going through
w. For notational convenience, I write hw instead of (T (w),RG). Note that, because of the
seriality of the relation RG, every history hw is infinite.

This highlights that there is a one-to-one correspondence between worlds and histories,
as for every world w there exists a unique history going through it. In other words, one can
interchangeably use the term ‘world’ and ‘history going through a certain world’ without
lost of generality.As every world in a model is identified with a unique history going through
it, the equivalence relation R! can also be understood as an equivalence relation between
historic alternatives: (w, v) ∈ R! means that the history going through v is alternative to
the history going through w.

From the temporal relation RG over worlds in W , we can define the following relation <

over moments in Mom, where m < m′ means that moment m′ is in the strict future of moment
m.

Definition 2 (Ordering of moments). For all m, m′ ∈ Mom: let m < m′ if and only if
there are w ∈ m and v ∈ m′ such that (w, v) ∈ RG.

For every world w, the set Ri (w) identifies agent i’s actual choice at w, that is to
say, the set of all alternatives that is forced by agent i’s actual choice at w. Because of the
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376 E. Lorini

one-to-one correspondence between worlds and histories, one can also identify agent i’s
actual choice at w with the set of histories {hv : v ∈ Ri (w)}. In other words, in T-STIT an
agent chooses among different sets of histories.

Constraint C1 in Definition 1 just means that an agent can only choose among possible
alternatives. This constraint ensures that, for every world w, the equivalence relation Ri
induces a partition of the set R!(w). An element of this partition is a choice that is possible
(or available) for agent i at w.

Constraint C2 expresses the so-called assumption of independence of agents or inde-
pendence of choices: if R1(u1) is a possible choice for agent 1, R2(u2) is a possible choice
for agent 2,…, Rn(un) is a possible choice for agent n, then their intersection is nonempty.
More intuitively, this means that agents can never be deprived of choices due to the choices
made by other agents.

For every world w, the set RAgt(w) identifies the actual choice of group Agt at w –
that is to say, the set of all alternatives that is forced by the collective choice of all agents at
w. Constraint C3 just says that the set of alternatives that is forced by the collective choice
of all agents at w is equal to the pointwise intersection of the sets of alternatives that are
forced by the individual choices of the agents in Agt at w. In other words, the choice of a
group corresponds to the intersection of the choices of the individuals in the group. This
corresponds to the notion of joint action proposed by Horty (2001), where the joint action
of a group is described in terms of the result that the agents in the group bring about by
acting together.

The Constraint C6 expresses a basic relation between action and time: if v is in the future
of w and u and v are in the same moment, then there exists an alternative z in the collective
choice of all agents at w such that u is in the future of z. This constraint corresponds to the
property of no choice between undivided histories given in STIT logic (Belnap et al., 2001,
Chapter 7). It captures the idea that if two histories come together in some future moment
then, in the present, each agent does not have a choice between these two histories. This
implies that if an agent can choose between two histories at a later stage then she does not
have a choice between them in the present. The Constraint C6 is crucial in order to prove
that the relation < defined above is a tree-like ordering of the moments in Mom.

Proposition 3. The relation < satisfies the following four properties for all m, m ′, m′′ ∈
Mom:
(Irreflexivity) m ≮ m;
(Transitivity) if m < m′ and m′ < m′′ then m < m′′;
(Asymmetry) if m < m′ then m′ ≮ m;
(No backward branching) if m′ < m and m′′ < m then m′ < m′′ or m′′ < m′ or m′ = m′′.

Proof. The irreflexivity of < follows from the Constraint C7. Indeed, suppose that m < m.
This implies that there are w, v ∈ W such that (w, v) ∈ R! and (w, v) ∈ RG. But this is
in contradiction with the Constraint C7.

Transitivity of< follows from the transitivity of the relationRG and from the Constraints
C1, C3 and C6. Suppose that m < m′ and m′ < m′′. Therefore, for some arbitrary
worlds w1, w2, w3, w4 we have w1 ∈ m, w2, w3 ∈ m′, w4 ∈ m′′, w2 ∈ RG(w1) and
w4 ∈ RG(w3). By the Constraint C6, it follows that there is w5 ∈ RAgt(w1) such that
w3 ∈ RG(w5). The Constraints C1 and C3 together imply that RAgt ⊆ R!. Hence, there
is w5 ∈ m such that w3 ∈ RG(w5). Thus, by the transitivity of RG, there is w5 ∈ m such
that w4 ∈ RG(w5). It follows that m < m′′.

The asymmetry of < follows from its irreflexivity.
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No backward branching follows from the Constraints C5 and C6. Suppose that m ′ < m
and m′′ < m. Therefore, for some arbitrary worlds w1, w2, w3, w4 we have w1, w2 ∈ m,
w3 ∈ m′, w4 ∈ m′′, w3 ∈ RH(w1) and w4 ∈ RH(w2). By the Constraint C6, it follows that
there is w5 ∈ RAgt(w3) such that w5 ∈ RH(w2). Thus, since RAgt ⊆ R!, there is w5 ∈ m′

such that w5 ∈ RH(w2). Moreover, by the Constraint C5 and the fact that w4 ∈ RH(w2), it
follows that there is w5 ∈ m′ such that w5 ∈ RH(w4) or w4 ∈ RH(w5) or w4 = w5. Since
w4 ∈ m′′, the latter implies that m′ < m′′ or m′′ < m′ or m′ = m′′. #

Another interesting property of temporal Kripke STIT models that follows from the
Constraints C6 and C7 is the so-called property of past isomorphism (PI), which is similar
to the property of past isomorphism of Zanardo’s (1996) Ockhamist frames.

Proposition 4. For all w, v ∈ W , if (w, v) ∈ R! then there exists an order-isomorphism
f between RH(w) and RH(v) such that, for all u ∈ RH(w), (u, f (u)) ∈ RAgt .2

Proof. First of all note that, by Constraints C1 and C3, RAgt ⊆ R!.
Assume (w, v) ∈ R!. By Constraint C7 and the fact that RAgt ⊆ R!, every world has

at most one RAgt-equivalent in any history and, hence, by Constraint C6, every world u
such that u ∈ RH(w) has exactly one RAgt-equivalent in RH(v). Therefore, the restriction
of RAgt to the set RH(w) × RH(v) is an order-preserving bijective function. #

Given a temporal Kripke STIT model M = (W,R!, {Ri |i ∈ Agt},RAgt,RG,RH,V),
a world w and a formula ϕ, I write M, w |= ϕ to mean that ϕ is true at world w in M . The
truth conditions of formulas are then defined as follows:

M, w |= p ⇐⇒ w ∈ V(p)

M, w |= ¬ϕ ⇐⇒ M, w ̸|= ϕ

M, w |= ϕ ∧ ψ ⇐⇒ M, w |= ϕ and M, w |= ψ

M, w |= !ϕ ⇐⇒ ∀v ∈ R!(w) : M, v |= ϕ

M, w |= [i]ϕ ⇐⇒ ∀v ∈ Ri (w) : M, v |= ϕ

M, w |= [Agt]ϕ ⇐⇒ ∀v ∈ RAgt(w) : M, v |= ϕ

M, w |= Gϕ ⇐⇒ ∀v ∈ RG(w) : M, v |= ϕ

M, w |= Hϕ ⇐⇒ ∀v ∈ RH(w) : M, v |= ϕ

Example 5. Figure 1 provides an example that clearly illustrates the semantics of
T-STIT. At world w in the temporal Kripke STIT model M represented in the figure, agent
2 sees to it that p is true (i.e., M, w |= [2]p). Indeed, p holds at every world in agent 2’s
choice at w. Moreover, at w agent 1 sees to it that p or q is true (i.e., M, w |= [1](p ∨ q))
because either p or q hold at every world in agent 1’s choice at w. Finally, at w the group
{1, 2} sees to it that q will be true at some point in the future (i.e., M, w |= [{1, 2}]Fq)
because q holds at some future point of every history in the group {1, 2}’s choice at w.

Given a T-STIT formula ϕ, I say that ϕ is T-STIT valid, denoted by |=T-STIT ϕ, if and
only if for every temporal Kripke STIT model M and for every world w in M we have
M, w |= ϕ. I say that ϕ is satisfiable in T-STIT if and only if ¬ϕ is not T-STIT valid.

The following proposition provides an example of interesting T-STIT validities.

Proposition 6. The following two formulas are T-STIT valid:

G♦G∗ϕ → ⟨Agt⟩Gϕ
G♦(G∗ϕ ∧ F∗ψ) → ⟨Agt⟩(Gϕ ∧ Fψ)
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378 E. Lorini

Figure 1. Example of temporal Kripke STIT model.
Note: The world w is the actual world. Choices of agent 1 are represented by columns whereas choices
of agent 2 are represented by rows. Choices of the group {1, 2} are represented by dotted rectangles.
The temporal relation RG is represented by the arrows.

Proof. I only prove the first validity, as the second one can be proved in a similar way. I
prove its contrapositive, namely I prove that [Agt]Fϕ → F!F∗ϕ is T-STIT valid. Suppose
M, w |= [Agt]Fϕ. This means that:

(A) for all v ∈ RAgt(w) there is u ∈ RG(v) such that M, u |= ϕ.

Let

Aϕw =
{
u|M, u |= ϕ and ∃v ∈ RAgt(w) such that u ∈ RG(v)

}

and let

PAϕw =
{
ū ∈ RG(w)|∃u ∈ Aϕw such that (ū, u) ∈ R!

}
.

Moreover let

NBϕw = RG(w) \
⋃

ū∈PAϕw

RG(ū).

I am going to show that NBϕw ̸= ∅. Suppose NBϕw = ∅. Thus, there exists ū ∈ PAϕw such
that RG(w) = RG(ū). Hence, by Constraint C5, there exists ū ∈ PAϕw such that w = ū.
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The latter implies that there exists ū ∈ RG(w) such that w = ū, which is in contradiction
with the fact that RG is irreflexive.

Take any world z ∈ NBϕw. Clearly, z ∈ RG(w). I am going to show that

(B) for all v ∈ R!(z) either M, v |= ϕ or there is u ∈ RG(v) such that M, u |= ϕ.

Suppose v ∈ R!(z). From z ∈ RG(w), by Constraint C6 and the previous observation
(A), we have that there are z′, v′ such that z′ ∈ RAgt(w), v ∈ RG(z′), v′ ∈ RG(z′) and
M, v′ |= ϕ. Moreover, by Constraint C4, v′ ∈ RG(v) or v ∈ RG(v′) or v = v′. I am going
to show that v = v′ or v′ ∈ RG(v) by reductio ad absurdum.

Suppose v ∈ RG(v′). Clearly, v′ ∈ Aϕw. From z′ ∈ RAgt(w), v ∈ R!(z), z ∈ RG(w),
v ∈ RG(z′), v′ ∈ RG(z′) and v ∈ RG(v′), by Proposition 4, it follows that there exists
v̄′ ∈ RG(w) such that v′ ∈ RAgt(v̄

′) and z ∈ RG(v̄′). Since RAgt ⊆ R! and v′ ∈ Aϕw,
the latter implies that there exists v̄′ ∈ RG(w) such that v̄′ ∈ PAϕw, v′ ∈ RAgt(v̄

′) and
z ∈ RG(v̄′). v̄′ ∈ PAϕw and z ∈ RG(v̄′) together imply that z ̸∈ NBϕw. But this is in
contradiction with the initial hypothesis that z ∈ NBϕw.

By the previous item (B), we have that M, z |= !F∗ϕ. Since z ∈ RG(w), M, w |=
F!F∗ϕ. #

2.3. Axiomatisation
Figure 2 contains a complete axiomatisation with respect to the class of temporal Kripke
STIT models.

Figure 2. Axiomatisation of T-STIT.
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380 E. Lorini

This includes all tautologies of classical propositional calculus (PC) as well as modus
ponens (MP). Moreover, we have all the principles of the normal modal logic S5 for every
operator [i], for the operator [Agt] and for the operator !, all principles of the normal
modal logic KD4 for the future tense operator G and all principles of the normal modal
logic K for the past tense operator H. That is, we have Axiom K for each operator: (#ϕ∧#
(ϕ → ψ)) → #ψ with # ∈ {!, G, H, [Agt]} ∪ {[i]|i ∈ Agt}. We have Axiom D for the
future tense modality G: ¬(Gϕ∧G¬ϕ). We have Axiom 4 for !, G, [Agt] and for every [i]:
#ϕ → ##ϕ with # ∈ {!, [Agt], G} ∪ {[i]|i ∈ Agt}. Furthermore, we have Axiom T for
!, [Agt] and for every [i]: #ϕ → ϕ with # ∈ {!, [Agt]}∪ {[i]|i ∈ Agt}. We have Axiom B
for !, [Agt] and for every [i]: ϕ → #¬#¬ϕ with # ∈ {!, [Agt]} ∪ {[i]|i ∈ Agt}. Finally
we have the rule of necessitation for each modal operator: ϕ

"ϕ with # ∈ {!, [Agt], G, H}∪
{[i]|i ∈ Agt}. In what follows, I write ⊢T-STIT ϕ if ϕ is a T-STIT theorem. Moreover, I say
that ϕ is T-STIT consistent if ̸⊢T-STIT ¬ϕ.

(! → i) and (AIA) are the two central principles in Xu’s (1998) axiomatisation of
the Chellas’s STIT operators [i]. According to Axiom (! → i), if ϕ is true regardless of
what every agent does, then every agent sees to it that ϕ. In other words, an agent brings
about those facts that are inevitable.3 According to Axiom (i → Agt), all agents bring about
together what each of them brings about individually.

We have principles for the tense operators and for the relationship between time and
action. (ConnectedG) and (ConnectedH) are the basic axioms for the linearity of the future
and the linearity of the past (Goldblatt, 1992). (ConvG,H) and (ConvH,G) are the basic
interaction axioms between future and past of minimal tense logic according to which
‘what is, will always have been’ and ‘what is, has always been going to be’.

Axiom (NCUH) establishes a fundamental relationship between action and time and
corresponds to the semantic constraint of ‘no choice between undivided histories’ over
temporal Kripke STIT models (Constraint C6): if in some future world ϕ will be possible
then the actual collective choice of all agents will possibly result in a state in which ϕ is true.

(IRR) is a variant of the well-known Gabbay’s irreflexivity rule that has been widely
used in the past for proving completeness results for different kinds of temporal logic in
which time is supposed to be irreflexive (see, e.g., Gabbay, Hodkinson, & Reynolds, 1994;
Reynolds, 2003; von Kutschera, 1997; Zanardo, 1996). The idea is that the special kind of
irreflexivity for the relation RG expressed by the Constraint C7 in Definition 1, although
not definable in terms of an axiom, can be characterised in an alternative sense by means of
the rule (IRR). This rule is perhaps more comprehensible if we consider its contrapositive:
if p does not occur in ϕ and ϕ is T-STIT consistent, then !¬p∧!(Gp∧Hp)∧ϕ is T-STIT
consistent.

Theorem 7. The set of T-STIT validities is completely axiomatised by the principles given
in Figure 2.

2.4. Proof of Theorem 7
It is a routine task to show that the axioms given in Figure 2 are valid with respect to the
class of temporal Kripke T-STIT models and that the rules of inference preserve validity.
Thus, if ϕ is a T-STIT theorem then ϕ is T-STIT valid.

I am going to prove that if ϕ is T-STIT consistent then ϕ is T-STIT satisfiable. The proof
is divided into two steps.

First of all, I introduce the class of superadditive temporal Kripke STIT models. While
in the temporal Kripke STIT models the collective choice of the grand coalition is equal
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to the pointwise intersection of the individual choices, in superadditive temporal Kripke
STIT models the collective choice of the grand coalition is merely included in the pointwise
intersection of the individual choices. I prove that the logic T-STIT does not distinguish
the semantics in terms of temporal Kripke STIT models from the more ‘liberal’ semantics
in terms of superadditive temporal Kripke STIT models. That is to say, the set of validities
with respect to the class of temporal Kripke STIT models is equal to the set of validities
with respect to the class of superadditive temporal Kripke STIT models (Lemma 9).

Secondly, I prove that the set of validities in the class of superadditive temporal Kripke
STIT models is completely axiomatised by the principles given in Figure 2 (Lemma 10).

Theorem 7 directly follows from Lemma 10 and Lemma 9.
Let me define the class of superadditive temporal Kripke STIT models.

Definition 8 (Superadditive temporal Kripke STIT model). The class of superadditive
temporal Kripke STIT models includes all tuples M = (W,R!, {Ri |i ∈ Agt},RAgt,RG,

RH,V) where:

• W is a nonempty set of possible worlds;
• R!, every Ri and RAgt are equivalence relations between worlds in W such that:

(C1) Ri ⊆ R!;
(C2) for all u1, . . . , un ∈ W : if (ui , u j ) ∈ R! for all i, j ∈ {1, . . . , n} then⋂

1≤i≤n Ri (ui ) ̸= ∅;
(C3∗) for all w ∈ W : RAgt(w) ⊆ ⋂

i∈Agt Ri (w);
• RG and RH are binary relations between worlds in W such that RG is serial and

transitive, RH is the inverse relation of RG, and:
(C4) for all w, v, u ∈ W : if v, u ∈ RG(w) then u ∈ RG(v) or v ∈ RG(u) or

u = v;
(C5) for all w, v, u ∈ W : if v, u ∈ RH(w) then u ∈ RH(v) or v ∈ RH(u) or

u = v;
(C6) RG ◦ R! ⊆ RAgt ◦ RG;
(C7) for all w ∈ W : if v ∈ R!(w) then v ̸∈ RG(w);

• V : Atm −→ 2W is a valuation function for atomic formulas.

The only difference between the class of temporal Kripke STIT models and superadditive
temporal Kripke STIT models is in the Constraint C3∗.

Lemma 9. Let ϕ be a formula in LT-STIT(Atm, Agt). Then, ϕ is satisfiable in the class
of temporal Kripke STIT models if and only if it is satisfiable in the class of superadditive
temporal Kripke STIT models.

Proof. (⇒) The left-to-right direction of the equivalence is obvious as the class of temporal
Kripke STIT models is included in the class of superadditive temporal Kripke STIT models.

(⇐)As to the right-to-left direction, I am going to show how to transform a superadditive
temporal Kripke STIT model into a temporal Kripke STIT model without affecting the
satisfiability of a formula. The technique used here is inspired by Vakarelov (1992).

Consider a superadditive temporal Kripke STIT model M = (W,R!, {Ri |i ∈ Agt},
RAgt,RG,RH,V) and a world w in M such that M, w |= ϕ. I am going to define a temporal
Kripke STIT model M ′ = (W ′,R′

!, {R′
i |i ∈ Agt},R′

Agt,R
′
G,R′

H,V ′) that satisfies ϕ.
For every i ∈ Agt, let

#i = {Ri (w)|w ∈ W }
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382 E. Lorini

be the partition of W induced by the equivalence class Ri . Elements of #i are called i’s
choices. Moreover, let

# = {δ ∈
∏

i∈Agt
#i |

⋂
i∈Agt

δi ̸= ∅}

be the set of collective choices. Elements of# are denoted by δ, δ′, . . .. For every δ ∈ #, δi
denotes the element in the vector δ corresponding to the agent i . Furthermore, for notational
convenience I write δw to denote the collective choice in# that includes the world w. That
is, δw is the collective choice in # such that w ∈ ⋂

i∈Agt δ
w
i .

For every δ ∈ #, let

%δ = {RAgt(w)|w ∈
⋂

i∈Agt
δi }

be the set of RAgt-equivalence classes that are included in
⋂

i∈Agt δi .
For every δ ∈ #, let

kδ : [1, . . . , card(%δ)] −→ %δ

be a bijection associating every integer between 1 and card(%δ) to a unique element of %δ .
In the sequel I write %n

δ to indicate the element kδ(n) for every 1 ≤ n ≤ card(%δ).
For every w ∈ W let

TCw = {δ ∈ #|∃v ∈
⋂

i∈Agt
δi such that v ∈ T (w)}

be the set of collective choices that are temporally related with w, with T (w) = RH(w) ∪
{w} ∪ RG(w).

Moreover, let

PCw = {δ ∈ #|∃v ∈
⋂

i∈Agt
δi such that v ∈ RH(w)}

be the set of collective choices that are in the past of w.
Finally, let

FCw = {δ ∈ #|∃v ∈
⋂

i∈Agt
δi such that v ∈ RG(w)}

be the set of collective choices that are in the future of w. Note that:
(A1) if v ∈ T (w) then TCw = TCv;
(A2) if v ∈ R!(w) then PCw = PCv (because of Proposition 4. in Section 2.2);
(A3) if v ∈ RAgt(w) then δw = δv and PCw = PCv (because of (A2)).

Moreover, let &w be the set of all total functions f : TCw −→ Zn that satisfy the
following constraint:

• for all δ ∈ TCw and for all −→x ∈ Zn , if f (δ) = −→x then there exists v ∈ T (w) such
that v ∈ %'xi ∈{x1,...,xn }xi

δ ,

where Z is the set of integers and −→x = ⟨x1, . . . , xn⟩. I write fi (δ) to denote the i-element
in the vector f (δ), with 1 ≤ i ≤ n.

Because of the Constraint C7, we have that for all w ∈ W and for all −→x ∈ Zn :

(B) if v ∈ T (w) and v ∈ %'xi ∈{x1,...,xn }xi

δw then w = v.
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Furthermore, because of Proposition 4 in Section 2.2, we have that for all w, v ∈ W
and for all −→x ∈ Zn :

(C) if v ∈ R!(w) then there exists u1 ∈ RH(w) such that u1 ∈ %'xi ∈{x1,...,xn }xi

δ if and

only if there exists u2 ∈ RH(v) such that u2 ∈ %'xi ∈{x1,...,xn }xi

δ .

From the previous item (C) it follows that for all w, v ∈ W :

(D) if f ∈ &w and v ∈ R!(w) then there exists f ′ ∈ &v such that, for all δ ∈ PCw,
f ′(δ) = f (δ).

Moreover, from the previous item (A1), for all w, v ∈ W we have that:

(E) if f ∈ &w and v ∈ T (w) then there exists f ′ ∈ &v such that, for all δ ∈ TCw,
f ′(δ) = f (δ).

I am now able to define the model M ′ = (W ′,R′
!, {R′

i |i ∈ Agt},R′
Agt,R

′
G,R′

H,V ′):

• W ′ = {w f |w ∈ W and f ∈ &w};
• for all w f , v f ′ ∈ W ′,

(w f , v f ′) ∈ R′
! iff (w, v) ∈ R! and f (δ) = f ′(δ) for all δ ∈ PCw;

• for all i ∈ Agt and for all w f , v f ′ ∈ W ′,
(w f , v f ′) ∈ R′

i iff δwi = δvi , fi (δ
w) = f ′

i (δ
v) and f (δ) = f ′(δ) for all δ ∈ PCw;

• for all w f , v f ′ ∈ W ′,
(w f , v f ′) ∈ R′

Agt iff δw = δv , f (δw) = f ′(δv) and f (δ) = f ′(δ) for all δ ∈ PCw;
• for all w f , v f ′ ∈ W ′,

(w f , v f ′) ∈ R′
G iff (w, v) ∈ RG and f (δ) = f ′(δ) for all δ ∈ TCw;

• for all w f , v f ′ ∈ W ′,
(w f , v f ′) ∈ R′

H iff (v f ′ , w f ) ∈ R′
G;

• for all p ∈ Atm, V ′(p) = {w f ∈ W ′|w ∈ V(p)}.
It is a routine task to check that the mapping f : w f 9→ w defines a bounded morphism

from M ′ to M (Blackburn, De Rijke, & Venema, 2001, Definition 2.12). Indeed, it follows
from the definitions of R′

!, R′
i , R′

Agt,R
′
G and R′

H that for all w f , v f ′ ∈ W ′:

• (w f , v f ′) ∈ R′
i implies (w, v) ∈ Ri ;

• (w f , v f ′) ∈ R′
Agt implies (w, v) ∈ RAgt ;

• (w f , v f ′) ∈ R′
! implies (w, v) ∈ R!;

• (w f , v f ′) ∈ R′
G implies (w, v) ∈ RG;

• (w f , v f ′) ∈ R′
H implies (w, v) ∈ RH.

For instance, suppose that (w f , v f ′) ∈ R′
i . By definition of R′

i the latter implies that
δwi = δvi and w ∈ δwi and v ∈ δvi . The latter implies that (w, v) ∈ Ri .

Now, suppose that (w f , v f ′) ∈ R′
Agt . This implies that δw = δv and f (δw) = f ′(δv). By

the previous observation (B), it follows that w, v ∈ % f1(δ
w)+...+ fn(δw)

δw . Thus, (w, v) ∈ RAgt .
The other way around we have that for all w f ∈ W ′:

• if ( f (w f ), v) ∈ R! then there is v f ′ such that (w f , v f ′) ∈ R′
!;

• if ( f (w f ), v) ∈ Ri then there is v f ′ such that (w f , v f ′) ∈ R′
i ;

• if ( f (w f ), v) ∈ RAgt then there is v f ′ such that (w f , v f ′) ∈ R′
Agt ;

• if ( f (w f ), v) ∈ RG then there is v f ′ such that (w f , v f ′) ∈ R′
G;

• if ( f (w f ), v) ∈ RH then there is v f ′ such that (w f , v f ′) ∈ R′
H.

Let me prove the previous items. The first item is trivial and I do not prove it here.
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384 E. Lorini

Suppose that w f ∈ W ′ and ( f (w f ), v) ∈ Ri . This implies that (w, v) ∈ Ri . Therefore,
Ri (w) = Ri (v) as Ri is an equivalence relation. Hence, δvi = δwi . It follows that
(w f , v f ′) ∈ R′

i where the function f ′ is defined as follows: (i) f ′
i (δ

v) = fi (δ
w) and all

f ′
j (δ

v) with j ̸= i are such that v ∈ % f ′
1(δ

v)+...+ f ′
n(δv)

δv ; (ii) for all δ ∈ PCw, f ′(δ) = f (δ);

(iii) for all δ ∈ FCv , f ′(δ) is such that there exists u ∈ RG(v) with u ∈ %
f ′
1(δ)+...+ f ′

n(δ)

δ .
This function f ′ is guaranteed to exist because of the observation (D) above and the fact
that Ri ⊆ R!.

Suppose that w f ∈ W ′ and ( f (w f ), v) ∈ RAgt . This implies that (w, v) ∈ RAgt .
Therefore, RAgt(w) = RAgt(v) as RAgt is an equivalence relation. Hence, δv = δw. It
follows that (w f , v f ′) ∈ R′

Agt where the function f ′ is defined as follows: (i) f ′(δv) =
f (δw); (ii) for all δ ∈ PCw, f ′(δ) = f (δ); (iii) for all δ ∈ FCv , f ′(δ) is such that there
exists u ∈ RG(v) with u ∈ % f ′

1(δ)+...+ f ′
n(δ)

δ . This function f ′ is guaranteed to exist because
of the observation (D) above and the fact that RAgt ⊆ R!.

Suppose that w f ∈ W ′ and ( f (w f ), v) ∈ RG. This implies that (w, v) ∈ RG.
It follows that (w f , v f ′) ∈ R′

G where the function f ′ is such that, for all δ ∈ TCw,
f ′(δ) = f (δ). This function f ′ is guaranteed to exist because of the observation (E) above.
Thus, (w f , v f ′) ∈ R′

G.
Finally, suppose that w f ∈ W ′ and ( f (w f ), v) ∈ RH. This implies that (w, v) ∈ RH

which is equivalent to (v,w) ∈ RG. It follows that (v f ′ , w f ) ∈ R′
G where the function f ′

is such that, for all δ ∈ TCv , f (δ) = f ′(δ). This function f ′ is guaranteed to exist because
of the observation (E) above. Thus, (w f , v f ′) ∈ R′

H.
As f is a bounded morphism it holds that M, w |= ϕ if and only if M ′, w f |= ϕ. Thus,

M ′, w f |= ϕ for all w f ∈ W ′.
In order to terminate the proof we also need to be sure that M ′ is a temporal Kripke

STIT model in the sense of Definition 1. It is a routine task to show that R′
i , R′

Agt and R′
!

are equivalence relations, that the model transformation preserves transitivity and seriality
for the relation R′

G, and that the model M ′ satisfies the Constraints C1, C2, C4, C5 and C7.
Let me prove that it also satisfies Constraints C3 and C6.

v f ′ ∈ ⋂
i∈Agt R′

i (w f ) if and only if (i) δwi = δvi and fi (δ
w) = f ′

i (δ
v) for all i ∈ Agt;

and (ii) f (δ) = f ′(δ) for all δ ∈ PCw. The latter is equivalent to δw = δv , f (δw) = f ′(δv)
and f (δ) = f ′(δ) for all δ ∈ PCw, which in turn is equivalent to v f ′ ∈ R′

Agt(w f ). This
proves that the model M ′ satisfies the Constraint C3.

Now suppose that v f ′ ∈ R′
G(w f ) and u f ′′ ∈ R′

!(v f ′). It follows that: (i) f (δ) = f ′(δ)
for all δ ∈ TCw; and (ii) f ′(δ) = f ′′(δ) for all δ ∈ PCv . Moreover, since the model M
satisfies the Constraint C6, there exists z ∈ W such that z ∈ RAgt(w) and u ∈ RG(z).
Let f ′′′ ∈ &z be the function that for all δ ∈ TCz , f ′′(δ) = f ′′′(δ). It follows that
u f ′′ ∈ R′

G(z f ′′′). I am going to prove that z f ′′′ ∈ R′
Agt(w f ). From the previous conditions

(i) and (ii) it follows that f (δ) = f ′′(δ) for all δ ∈ TCw ∩ PCv . Since v ∈ RG(w),
TCw ∩PCv = PCv . Hence, f (δ) = f ′′(δ) for all δ ∈ PCv . Furthermore, f (δ) = f ′′(δ) for
all δ ∈ PCw∪{δw}, because v ∈ RG(w). From the latter and the fact that f ′′(δw) = f ′′′(δz)

for all δ ∈ TCz , it follows that f (δw) = f ′′′(δz) for all δ ∈ TCz ∩ (PCw ∪ {δw}). Since z ∈
RAgt(w), by the previous observation (A3), it follows that δw = δz and f (δw) = f ′′′(δz)

for all δ ∈ PCw ∪ {δw}. Hence, f (δw) = f ′′′(δz) and f (δ) = f ′′′(δ) for all δ ∈ PCw.
Thus, z f ′′′ ∈ R′

G(w f ′). This proves that the model M ′ satisfies the Constraint C6. #
The following lemma provides an axiomatisation result for the class of superadditive

temporal Kripke STIT models.
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Lemma 10. The set of T-STIT formulas that are valid in the class of superadditive
temporal Kripke STIT models is completely axiomatised by the principles given in Figure 2.

Proof. In order to prove Lemma 10, I use a technique similar to the one used by Gabbay,
Hodkinson and Reynolds (1994) for proving completeness of linear temporal logic and of
logic of historical necessity by means of a slightly different variant of the irreflexivity rule
(IRR).

Let me start with the following standard definition of canonical model for T-STIT.

Definition 11 (Canonical model for T-STIT). The canonical model Mc for T-STIT is the
tuple Mc = (W c,Rc

!, {Rc
i |i ∈ Agt},Rc

Agt,R
c
G,Rc

H,Vc) where:

• W c is the set of all maximal consistent sets of T-STIT formulas (MCSs);
• Rc

!,Rc
i ,R

c
Agt,R

c
G and Rc

H are respectively the canonical relations for !, [i],
[Agt], G and H, that is:

− for all %,# ∈ W c, (%,#) ∈ Rc
! iff for all formulas ψ , ψ ∈ # implies

♦ψ ∈ %;
− for all %,# ∈ W c and for all i ∈ Agt, (%,#) ∈ Rc

i iff for all formulas ψ ,
ψ ∈ # implies ⟨i⟩ψ ∈ %;

− for all %,# ∈ W c, (%,#) ∈ Rc
Agt iff for all formulas ψ , ψ ∈ # implies

⟨Agt⟩ψ ∈ %;
− for all %,# ∈ W c, (%,#) ∈ Rc

G iff for all formulas ψ , ψ ∈ # implies
Fψ ∈ %;

− for all %,# ∈ W c, (%,#) ∈ Rc
H iff for all formulas ψ , ψ ∈ # implies

Pψ ∈ %;
• Vc is the valuation defined by Vc(p) = {% ∈ W c|p ∈ %} for all p ∈ Atm.

Furthermore, let me introduce the notion of ‘diamond’-saturation for maximal consistent
sets of T-STIT formulas.

Definition 12 (Diamond saturated set of MCSs). Given a set X of maximal consistent
sets of T-STIT formulas, I say that X is a diamond saturated set of MCSs if and only if for
each % ∈ X the following five conditions are satisfied:

• for each formula ♦ϕ ∈ % there is # ∈ X such that (%,#) ∈ Rc
! and ϕ ∈ #;

• for each formula ⟨i⟩ϕ ∈ % there is # ∈ X such that (%,#) ∈ Rc
i and ϕ ∈ #;

• for each formula ⟨Agt⟩ϕ ∈ % there is # ∈ X such that (%,#) ∈ Rc
Agt and ϕ ∈ #;

• for each formula Fϕ ∈ % there is # ∈ X such that (%,#) ∈ Rc
G and ϕ ∈ #;

• for each formula Pϕ ∈ % there is # ∈ X such that (%,#) ∈ Rc
H and ϕ ∈ #.

The following truth lemma is provable in the standard way by induction on ϕ (see
Blackburn et al., 2001, Lemma 4.70).

Lemma 13 (Truth Lemma). Let X be a diamond saturated set of MCSs. Then for any
% ∈ X and for any formula ϕ, Mc|X ,% |= ϕ if and only if ϕ ∈ %, where Mc|X is the
submodel of the canonical model Mc induced by X.

The next step in the proof consists in defining the notion of IRR theory.
For every atom p, let

name(p)
def= !¬p ∧ !(Gp ∧ Hp).

The formula name(p) acts as a sort of ‘name’ for a given world that ensures irreflexivity
of the canonical relation Rc

G for the future tense operator G.
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386 E. Lorini

Furthermore, let

( = {$1(ψ1 ∧ $2(ψ2 ∧ . . . ∧ $nψn) . . .) :
$1, . . . ,$n ∈ {♦, ⟨1⟩, . . . , ⟨n⟩, ⟨Agt⟩, F, P} and ψ1, . . . ,ψn ∈ LT-STIT(Atm, Agt)}.

Finally, for every ϕ = $1(ψ1 ∧ $2(ψ2 ∧ . . . ∧ $nψn) . . .) ∈ ( and for every atom p,
let

ϕ(p)
def= $1(ψ1 ∧ $2(ψ2 ∧ . . . ∧ $n(ψn ∧ name(p))) . . .).

A formula of the form ϕ(p) is also used as a ‘name’ for a given world. In particular,
formulas of the form ϕ(p) provide ‘names’ for worlds that are reachable by any zig-zagging
sequence of ♦s, ⟨i⟩s, ⟨Agt⟩s, Fs and Ps.

Definition 14 (IRR theory). An IRR theory is a maximal consistent set of T-STIT formulas
% such that:

• for some p, name(p) ∈ %;
• if ϕ ∈ % ∩( then, for some atom p, ϕ(p) ∈ %.

The set of all IRR theories is denoted by IrrTh.

The following lemma highlights that every consistent T-STIT formula is included in at
least one IRR theory. The rule of inference (IRR) becomes crucial at this point of the proof.

Lemma 15. Let ϕ be a consistent T-STIT formula. Then, there exists an IRR theory %
such that ϕ ∈ %.

(Sketch). The lemma is proved analogously to Lemma 6.2.4 in Gabbay et al. (1994,
Chapter 6). Since the set Atm of propositional atoms is infinite, there exists an infinite
number of atomic formulas p not occurring in ϕ. Therefore, thanks to the (IRR) rule, it is
straightforward to build step-by-step an IRR theory % containing ϕ. #

The following lemma highlights that the set of all IRR theories satisfies the condition
of ‘diamond’-saturation defined above (Definition 12).

Lemma 16 (Existence Lemma).
Let % be an IRR theory. Then:

• if ♦ϕ ∈ %, then there is an IRR theory # such that (%,#) ∈ Rc
! and ϕ ∈ #;

• if ⟨i⟩ϕ ∈ %, then there is an IRR theory # such that (%,#) ∈ Rc
i and ϕ ∈ #;

• if ⟨Agt⟩ϕ ∈ %, then there is an IRR theory # such that (%,#) ∈ Rc
Agt and ϕ ∈ #;

• if Fϕ ∈ %, then there is an IRR theory # such that (%,#) ∈ Rc
G and ϕ ∈ #;

• if Pϕ ∈ %, then there is an IRR theory # such that (%,#) ∈ Rc
H and ϕ ∈ #.

Proof. I only prove the first item. The other items can be proved analogously.
Suppose ♦ϕ ∈ %. Since % is an IRR theory, it follows that ♦(ϕ ∧ name(p)) ∈ %

for some atom p. Let #0 = {ϕ ∧ name(p)} ∪ {ψ |!ψ ∈ %}. I am going to show that
#0 is consistent by reductio ad absurdum. Suppose #0 is not consistent. Then, for some
ψ1, . . . ,ψk ∈ {ψ |!ψ ∈ %}, we have:

⊢ (ψ1 ∧ . . . ∧ ψk) → ¬(ϕ ∧ name(p)),

hence

⊢ !(ψ1 ∧ . . . ∧ ψk) → !¬(ϕ ∧ name(p)),
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and hence!¬(ϕ∧name(p)) ∈ % (because!(ψ1∧. . .∧ψk) ∈ %). But this is in contradiction
with ♦(ϕ ∧ name(p)) ∈ %.

Now, I turn to define an increasing sequence of consistent extensions (#n)n≥0 such that
#n ⊆ #n+1 for all n.

Assume #n ⊆ #n+1 has been defined and is consistent. Then, either #n ∪ {χn} is
consistent or #n ∪ {¬χn} is consistent.

Case 1: #n ∪ {¬χn} consistent. Take #n+1 = #n ∪ {¬χn}.
Case 2a: #n ∪ {¬χn} not consistent, #n ∪ {χn} consistent and χn ̸∈ (. Take #n+1 =

#n ∪ {χn}.
Case 2b: #n ∪ {¬χn} not consistent, #n ∪ {χn} consistent and χn ∈ (. We have that:

♦((ϕ ∧ name(p)) ∧
∧

ψ∈#n\#0
ψ ∧ χn) ∈ %.

For, otherwise,

!(((ϕ ∧ name(p)) ∧
∧

ψ∈#n\#0
ψ) → ¬χn) ∈ %

and hence, by definition of #0, ((ϕ ∧ name(p)) ∧ ∧
ψ∈#n\#0

ψ) → ¬χn ∈ #n .
Hence, since ((ϕ ∧ name(p)) ∧ ∧

ψ∈#n\#0
ψ) ∈ #n , ¬χn ∈ #n .

This is in contradiction with the fact that #n ∪ {χn} is consistent.
Thus, since % is an IRR theory, for some atom q , we have

♦((ϕ ∧ name(p)) ∧
∧

ψ∈#n\#0
ψ ∧ χn(q)) ∈ %.

It follows that#n ∪ {χn}∪ {χn(q)} is consistent. For, otherwise, for someψ1, . . . ,ψk ∈
{ψ |!ψ ∈ %}, we have:

⊢ (ψ1 ∧ . . . ∧ ψk) → ¬((ϕ ∧ name(p)) ∧
∧

ψ∈#n\#0
ψ ∧ χn(q)),

hence

⊢ !(ψ1 ∧ . . . ∧ ψk) → !¬((ϕ ∧ name(p)) ∧
∧

ψ∈#n\#0
ψ ∧ χn(q)),

and hence !¬((ϕ∧name(p))∧∧
ψ∈#n\#0

ψ∧χn(q)) ∈ % (because !(ψ1∧. . .∧ψk) ∈ %).
But this is in contradiction with ♦((ϕ ∧ name(p)) ∧ ∧

ψ∈#n\#0
ψ ∧ χn(q)) ∈ %.

Let #n+1 = #n ∪ {χn} ∪ {χn(q)}.
Thus, the sequence (#n)n≥0 is defined and, clearly, # = ⋃

n≥0#n is the desired IRR
theory such that (%,#) ∈ Rc

! and ϕ ∈ #. #
The last part of the proof consists in proving that the submodel of the canonical model

for T-STIT including all IRR theories, i.e., the model Mc|IrrTh, is indeed a superadditive
temporal Kripke STIT model. The following two propositions ensure that Mc|IrrTh satisfies
the Constraints C2 and C6.

Proposition 17. Let%1, . . . ,%n be IRR theories such that for all 1 ≤ i, j ≤ n, (%i ,% j ) ∈
Rc

!. Then, there exists an IRR theory # such that (%1,#) ∈ Rc
1, . . . , (%n,#) ∈ Rc

n.

Proof. In order to simplify the exposition, let us assume that n = 2. The general case for
any arbitrary n can be proved analogously.
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388 E. Lorini

Suppose %1 and %2 are IRR theories such that for all 1 ≤ i, j ≤ 2, (%i ,% j ) ∈ Rc
!. I am

going to show that there exists an IRR theory# such that (%1,#) ∈ Rc
1 and (%2,#) ∈ Rc

2.
Since %1 and %2 are IRR theories, there exists name(p1) ∈ %1 and name(p2) ∈ %2 for

some atoms p1, p2.
Let#0 = {name(p1)} ∪ {name(p2)} ∪ {ψ |[1]ψ ∈ %1} ∪ {ψ |[2]ψ ∈ %2}. I am going to

show that #0 is consistent by reductio ad absurdum.
Suppose #0 is not consistent. Then, for some ψ1, . . . ,ψk ∈ #0, we have:

⊢ (ψ1 ∧ . . . ∧ ψk) → ⊥.

Let Y denote the set {ψ1, . . . ,ψk}. Moreover, let Y1 = {ψ ∈ Y |[1]ψ ∈ %1 or
ψ = name(p1)} and Y2 = {ψ ∈ Y |[2]ψ ∈ %2 or ψ = name(p2)}. Clearly, Y = Y1 ∪ Y2
and:

(A) [1]∧ψ∈Y1
ψ ∈ %1.

The previous item (A) follows from these two facts: (i) for every ψ ∈ Y1 such that
ψ ̸= name(p1), [1]ψ ∈ %1 (becauseψ is of the form [1]χ and [1]χ → [1][1]χ is a T-STIT
theorem); and (ii) [1]name(p1) ∈ %1 (because name(p1) → [1]name(p1) is a T-STIT
theorem). Likewise, we have:

(B) [2]∧ψ∈Y2
ψ ∈ %2.

From the definition of the accessibility relation Rc
! and the fact that (%1,%2) ∈ Rc

!,
it follows that ♦[2] ∧

ψ∈Y2
ψ ∈ %1. Moreover, by the T-STIT theorem ⊢ [1]ψ → ♦[1]ψ ,

we have ♦[1] ∧
ψ∈Y1

ψ ∈ %1. By the Axiom (AIA), it follows that ♦([1] ∧
ψ∈Y1

ψ ∧
[2]∧ψ∈Y2

ψ) ∈ %1. Hence, by Lemma 16, there is an IRR theory# such that (%1,#) ∈ Rc
!

and ([1]∧ψ∈Y1
ψ∧[2]∧ψ∈Y2

ψ) ∈ #. Hence, byAxiom T for [i], there is an IRR theory#
such that (%1,#) ∈ Rc

! and (
∧
ψ∈Y1

ψ ∧ ∧
ψ∈Y2

ψ) ∈ #. The latter implies that
∧
ψ∈Y ψ

is consistent. Hence, ̸⊢ (ψ1 ∧ . . . ∧ ψk) → ⊥.
The rest of the proof proceeds in the same way as the proof of Lemma 16. Specifically, I

turn to define an increasing sequence of consistent extensions (#n)n≥0 such that#n ⊆ #n+1
for all n.

Assume #n ⊆ #n+1 has been defined and is consistent. Then, either #n ∪ {χn} is
consistent or #n ∪ {¬χn} is consistent.

Case 1: #n ∪ {¬χn} consistent. Take #n+1 = #n ∪ {¬χn}.
Case 2a: #n ∪ {¬χn} not consistent, #n ∪ {χn} consistent and χn ̸∈ (. Take #n+1 =

#n ∪ {χn}.
Case 2b: #n ∪ {¬χn} not consistent, #n ∪ {χn} consistent and χn ∈ (. We have that:

⟨1⟩(name(p1) ∧
∧

ψ∈#n\#0
ψ ∧ χn) ∈ %1.

For, otherwise,

[1]((name(p1) ∧
∧

ψ∈#n\#0
ψ) → ¬χn) ∈ %1

and hence, by definition of #0, (name(p1) ∧ ∧
ψ∈#n\#0

ψ) → ¬χn ∈ #n . Hence, since
(name(p1) ∧ ∧

ψ∈#n\#0
ψ) ∈ #n , ¬χn ∈ #n . This is in contradiction with the fact that

#n ∪ {χn} is consistent.
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Therefore, for some atom q ,

⟨1⟩(name(p1) ∧
∧

ψ∈#n\#0
ψ ∧ χn(q)) ∈ %1.

It follows that #n ∪ {χn} ∪ {χn(q)} is consistent. For, otherwise, for some
ψ1, . . . ,ψk ∈ {ψ |[1]ψ ∈ %1}, we have:

⊢ (ψ1 ∧ . . . ∧ ψk) → ¬(name(p1) ∧
∧

ψ∈#n\#0
ψ ∧ χn(q)),

hence
⊢ [1](ψ1 ∧ . . . ∧ ψk) → [1]¬(name(p) ∧

∧
ψ∈#n\#0

ψ ∧ χn(q)),

and hence [1]¬(name(p1)∧
∧
ψ∈#n\#0

ψ∧χn(q)) ∈ %1 (because [1](ψ1∧. . .∧ψk) ∈ %1).
But this is in contradiction with ⟨1⟩(name(p1) ∧ ∧

ψ∈#n\#0
ψ ∧ χn(q)) ∈ %1.

Let #n+1 = #n ∪ {χn} ∪ {χn(q)}.
Thus, the sequence (#n)n≥0 is defined and, clearly, # = ⋃

n≥0#n is the desired IRR
theory such that (%1,#) ∈ Rc

1 and (%2,#) ∈ Rc
2. #

Proposition 18. Let #,% and %′ be IRR theories such that (#,%) ∈ Rc
G and (%,%′) ∈

Rc
!. Then, there exists an IRR theory #′ such that (#,#′) ∈ Rc

Agt and (#′,%′) ∈ Rc
G.

Proof. Suppose#,% and %′ are IRR theories such that (#,%) ∈ Rc
G and (%,%′) ∈ Rc

!.
It follows that name(p) ∈ # for some atom p. Hence, by definition of Rc

H, Pname(p) ∈ %.
By definition of Rc

!, it follows that ♦Pname(p) ∈ %′. We have the following T-STIT
theorem:

⊢ ♦Pϕ → P⟨Agt⟩ϕ. (1)

The following is the Hilbert-style proof:

1. ⊢ ♦H[Agt]ϕ → HF♦H[Agt]ϕ.

By Axiom(ConvH,G).

2. ⊢ HF♦H[Agt]ϕ → H⟨Agt⟩FH[Agt]ϕ.

By Axiom(NCUH),Axiom K and necessitation for H.

3. ⊢ H⟨Agt⟩FH[Agt]ϕ → H⟨Agt⟩[Agt]ϕ.

By Axiom(ConvH,G),Axiom K and necessitation for H and agt.

4. ⊢ H⟨Agt⟩[Agt]ϕ → Hϕ.

By T-STIT theorem ⊢ ⟨Agt⟩[Agt]ϕ → ϕ,Axiom K and necessitation for H.

5. ⊢ Pϕ → !P⟨Agt⟩ϕ.

From 1–4.

6. ⊢ ♦Pϕ → ♦!P⟨Agt⟩ϕ.

By 5, Axiom K and necessitation for !.

7. ⊢ ♦!P⟨Agt⟩ϕ → !P⟨Agt⟩ϕ.

By T-STIT theorem ⊢ ♦!ϕ → !ϕ.

8. ⊢ !P⟨Agt⟩ϕ → P⟨Agt⟩ϕ.

By Axiom T for !.

9. ⊢ ♦Pϕ → P⟨Agt⟩ϕ.

From 6–8.
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390 E. Lorini

Thus, by the previous T-STIT theorem 1, P⟨Agt⟩name(p) ∈ %′. Hence, by
Lemma 16, there exists an IRR theory#′ such that ⟨Agt⟩name(p) ∈ #′ and (#′,%′) ∈ Rc

G.
By the T-STIT theorem ⊢ ⟨Agt⟩name(p) → name(p), the latter implies that there exists
an IRR theory #′ such that name(p) ∈ #′ and (#′,%′) ∈ Rc

G. I am going to show that
(#,#′) ∈ Rc

Agt .
Assume [Agt]ψ ∈ #. We have the following T-STIT theorem:

⊢ (name(p) ∧ [Agt]ψ) → G!H(name(p) → ψ). (2)

The following is the Hilbert-style proof:

1. ⊢ p → ¬name(p).

By definition of name(p) and Axiom T for !.

2. ⊢ name(p) → [Agt](Gp ∧ Hp).

By definition of name(p), Axiom (! → i) and Axiom (i → Agt).
3. ⊢ [Agt](Gp ∧ Hp) → ([Agt]Gp ∧ [Agt]Hp).

By Axiom K for [Agt].
4. ⊢ ([Agt]Gp ∧ [Agt]Hp) → ([Agt]G¬name(p) ∧ [Agt]H¬name(p)).

By 1, Axiom K and necessitation for [Agt], G and H.

5. ⊢ (name(p) ∧ [Agt]ψ) → ([Agt]ψ ∧ [Agt]G¬name(p) ∧ [Agt]H¬name(p)).

From 2–4.

6. ⊢ ([Agt]ψ ∧ [Agt]G¬name(p) ∧ [Agt]H¬name(p)) →
([Agt](¬name(p) ∨ ψ) ∧ [Agt]G(¬name(p) ∨ ψ) ∧ [Agt]H(¬name(p) ∨ ψ)).

By Axiom K and necessitation for [Agt], G and H.

7. ⊢ ([Agt](¬name(p) ∨ ψ) ∧ [Agt]G(¬name(p) ∨ ψ) ∧ [Agt]H(¬name(p) ∨ ψ)) →
[Agt]((¬name(p) ∨ ψ) ∧ G(¬name(p) ∨ ψ) ∧ H(¬name(p) ∨ ψ)).

By Axiom K for [Agt].
8. ⊢ [Agt]((¬name(p) ∨ ψ) ∧ G(¬name(p) ∨ ψ) ∧ H(¬name(p) ∨ ψ)) →

[Agt]GH(¬name(p) ∨ ψ).

By Axiom (ConnectedH), Axiom K and necessitation for [Agt].
9. ⊢ [Agt]GH(¬name(p) ∨ ψ) → G!H(¬name(p) ∨ ψ).

By Axiom (NCUH).
10. ⊢ G!H(¬name(p) ∨ ψ) → G!H(name(p) → ψ).

11. ⊢ (name(p) ∧ [Agt]ψ) → G!H(name(p) → ψ).

From 5–10.

Since [Agt]ψ ∈ # and name(p) ∈ #, by the previous T-STIT theorem 2, we have
G!H(name(p) → ψ) ∈ #. Thus, by definition of Rc

G and the fact that (#,%) ∈
Rc

G, !H(name(p) → ψ) ∈ %. By definition of Rc
! and the fact that (%,%′) ∈ Rc

!,
H(name(p) → ψ) ∈ %′. Finally, by definition of Rc

H and the fact that (%′,#′) ∈ Rc
H,

name(p) → ψ ∈ #′. Since name(p) ∈ #′, it follows that ψ ∈ #′. #
Lemma 19. Mc|IrrTh is a superadditive temporal Kripke STIT model.
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Proof. First of all, it is a routine task to prove that: (i) the canonical relations Rc
!,Rc

i and
Rc

Agt are equivalence relations; (ii) the canonical relation Rc
G is transitive; (iii) the canonical

relation Rc
H is the inverse of the canonical relation Rc

G; and (iv) the canonical model Mc

satisfies the Constraints C1, C3∗, C4 and C5.
Indeed, Axioms T, 4 and B for !, [i] and for [Agt] are canonical for reflexivity,

transitivity and symmetry thereby ensuring that the canonical relations Rc
!,Rc

i and Rc
Agt

are equivalence relations. Axiom 4 for G is canonical for transitivity, thereby ensuring that
the canonical relation Rc

G is transitive. Axiom (ConvG,H) is canonical for the condition
RH ⊆ R−1

G , while Axiom (ConvH,G) is canonical for the condition RG ⊆ R−1
H , thereby

ensuring that Rc
H is the inverse of the canonical relation Rc

G.
Finally, Axioms (! → i), (i → Agt), (ConnectedG) and (ConnectedH) are canonical

respectively for the Constraints C1, C3∗, C4 and C5, thereby ensuring that the canonical
model Mc satisfies them.

Since Mc|IrrTh is a submodel of the canonical model Mc, Mc|IrrTh inherits from Mc all
previous universal properties. Specifically, we have that: (i) the relationsRc

!|IrrTh,Rc
i |IrrTh

and Rc
Agt |IrrTh are equivalence relations; (ii) the relation Rc

G|IrrTh is transitive; (iii) the
relation Rc

H|IrrTh is the inverse of the relation Rc
G|IrrTh; and (iv) the model Mc|IrrTh

satisfies the Constraints C1, C3∗, C4 and C5.
By Propositions 17 and 18, Mc|IrrTh also satisfies Constraints C2 and C6.
It remains to prove that the relation Rc

G|IrrTh is serial and that the model Mc|IrrTh
satisfies the Constraint C7.

Since G⊤ is a T-STIT theorem, every IRR theory contains it. Thus, by Lemma 16, for
every IRR theory % there exists an IRR theory # such that (%,#) ∈ Rc

G. This guarantees
that the relation Rc

G|IrrTh is serial.
Now, suppose that (%,#) ∈ Rc

!|IrrTh. Since # is an IRR theory, name(p) ∈ # for
some atom p. Hence, p ∈ #. Moreover, !G¬p ∈ #. By definition of Rc

!, it follows that
♦!G¬p ∈ %. Thus, by the T-STIT theorem ⊢ ♦!ϕ → !ϕ, !G¬p ∈ %. By Axiom T for
!, it follows that G¬p ∈ %. The latter implies that Fp ̸∈ %. Since p ∈ #, this guarantees
that (%,#) ̸∈ Rc

G|IrrTh. Thus, Mc|IrrTh satisfies the Constraint C7. #
Lemma 10 follows from Lemma 13, Lemma 15, Lemma 16 and Lemma 19. Indeed,

suppose that ϕ is a T-STIT consistent formula. Then, by Lemma 15, there exists an IRR
theory % in the model Mc|IrrTh such that ϕ ∈ %. By Lemma 19, model Mc|IrrTh is a
superadditive temporal Kripke STIT model. Moreover, by Lemma 16, the set of all IRR
theories is diamond saturated. Thus, by Lemma 13, Mc|IrrTh,% |= ϕ. It follows that ϕ is
T-STIT satisfiable. #

Theorem 7 follows from Lemma 9 and Lemma 10.

3. Application to normative reasoning
Many normative concepts such as achievement obligation, obligation with deadline and
social commitment have an intrinsic agentive and temporal nature – that is to say, they
cannot be properly understood without considering their relationships with the concepts
of action and time. The aim of this section is to show that the logic T-STIT is expressive
enough to capture some of these relationships. I focus on the notion of social commitment
and on its relationship with the notion of achievement obligation, postponing the logical
analysis of obligations with deadline in STIT to future work.

According to Singh (1999) and Castelfranchi (1995), a social commitment is a kind of
normative relationship between a debtor and a creditor. The contexts in which commitments
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392 E. Lorini

are undertaken and established are often institutional contexts. For instance, after signing a
contract in the presence of a public notary, a person becomes committed in front of the State
to carry out her part of the contract. In this article, I only consider pragmatic commitments
and I leave aside propositional commitments (also called dialectical commitments). Prag-
matic commitments are about what is to be done whereas propositional commitments are
about what is true. Pragmatic commitments concern promises from a debtor to a creditor to
perform a given action, while propositional commitments are about positions taken during
a dialogue. For example, if i tells to j : ‘I will lend you my car for the weekend!’ then, he
makes a pragmatic commitment to j . On the contrary, if i tells to j : ‘Tomorrow, will be
sunny. I am sure!’ then, he makes a propositional commitment to j .

In order to be able to define social commitment, let us suppose that the set of propositional
atoms Atm contains special atoms of the form vi, j , one for every i, j ∈ Agt such that i ̸= j .
These are similar to the special atoms for violation that are used in the Anderson’s reduction
of deontic logic to alethic logic (Anderson, 1958; Lindahl, 1994). In the semantics, the
special atom vi, j is used to identify those worlds in which agent i does not fulfil her
commitments to agent j . The atom vi, j has to be read ‘in the actual world, agent i does not
fulfil her commitment to agent j’. Special atoms vi, j can be combined with the tense operator
G∗ in order to identify those histories in which agent i will never fulfil her commitment to
agent j . In particular, formula G∗vi, j has to be read ‘in the actual history, agent i will never
fulfil her commitment to agent j’or also ‘in the actual history, agent j is wronged by agent i’.

I say that agent i is committed to agent j to ensure ϕ (denoted by Ci : jϕ) if and only if:
(i) all historic alternatives in which i will never see to it that ϕ, are histories in which agent
i will never fulfil her commitment to agent j ; and (ii) i does not see to it that ϕ. In other
words, i will not fulfil her commitment to j unless i will see to it that ϕ at some point in
the future. For every i, j ∈ Agt, I define:

Ci : jϕ
def= !(¬F∗[i]ϕ → G∗vi, j ) ∧ ¬[i]ϕ.

Let me make three observations about the preceding definition of commitment. First of
all, it is worth noting that it is related to the notion of achievement obligation (Broersen
et al., 2003; Governatori & Rotolo, 2010). The idea is that an agent has an achievement
obligation to bring about ϕ if and only if she has the obligation to bring about ϕ at some point
in the future.4 Thus, commitment can be seen as a specific kind of achievement obligation.
Specifically, it can be conceived as a directed achievement obligation from a bearer to a
counterparty (for some analysis of the notion of directed obligation in deontic logic, see,
e.g., Dignum, 1999; Herrestad & Krogh, 1995; Kanger & Kanger, 1966; Lindahl, 1994;
Makinson, 1986).5 That is to say, agent i is committed to agent j to bring about ϕ if and
only if i has the obligation towards j to bring about ϕ at some point in the future. Secondly,
the component ¬[i]ϕ expresses that i is committed to j to ensure ϕ only if i has not yet
fulfilled her commitment to j by bringing about ϕ. In this sense, the formula [i]ϕ can be
conceived as the discharge condition for commitment. Suppose agent i is committed to
agent j to ensure ϕ. Then, if i sees to it that ϕ, then her commitment to j is discharged and
is no longer active. Finally, according to the preceding definition, the fact that i brought
about ϕ in the past (before being committed to j) is irrelevant. Indeed, the general intuition
is that being committed now to do some action means being obliged to do the action either
in the present or at some point in the strict future. Therefore, while the fact of performing
the action in the present is a sufficient condition for discharging an actual commitment, the
fact of having performed the action in the past is not.
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The following example illustrates the preceding definition of commitment in a concrete
scenario.

Example 20. Agent 2 is the programme chair of a given conference. Agent 2 asks agent 1,
a member of the programme committee, to review some articles submitted for the conference.
Agent 1 accepts agent 2’s request by sending a confirmation e-mail (we suppose that the
communication between 1 and 2 is made through the Easychair system). Consequently,
according to the programme committee of the conference, agent 1 is committed to 2 to
review the articles: C1:2 review. This means that (i) all historic alternatives in which 1 will
never review the articles are histories in which 2 is wronged by 1; and (ii) 1 has not yet
fulfilled her commitment to 2 by reviewing the articles:

!(¬F∗[1]review → G∗v1,2) ∧ ¬[1]review.

Now, let us consider some logical properties of the commitment operator Ci : j .According
to the following T-STIT theorem 3, if i is committed to j to ensure ϕ∧ψ then i is committed
to j to ensure ϕ and to ensure ψ . For every i, j ∈ Agt we have:

⊢T-STIT Ci : j (ϕ ∧ ψ) → (Ci : jϕ ∧ Ci : jψ). (3)

Note that the converse of T-STIT theorem 3 is not valid. Indeed, the fact that i is
committed to j to ensure ϕ and to ensureψ (i.e., Ci : jϕ∧Ci : jψ) does not necessarily imply
that i is committed to j to ensure that ϕ and ψ are true at the same point in the future (i.e.,
Ci : j (ϕ ∧ ψ)). For example, i may be committed to j to lend her a car and to lend her a
motorbike at different points in the future without being committed to lending her a car and
a motorbike at the same point in the future.

The following theorem 4 highlights that an agent cannot be committed to bring about
tautologies:

⊢T-STIT ¬Ci : j⊤. (4)

Indeed, since [i]⊤ is a T-STIT theorem, agent i’s commitment to bring about ⊤ is
always discharged.

The following T-STIT theorem 5 is a weakening principle for commitment. A similar
property of commitment has been isolated by Singh (2008). For every i, j ∈ Agt we have:

⊢T-STIT (Ci : j (ϕ ∧ ψ) ∧ [i]ϕ) → Ci : jψ. (5)

This means that if agent i is committed to agent j to ensure ϕ ∧ ψ and agent i sees to
it that ϕ, then i is committed to j to ensure ψ . So, if an agent is committed to ensuring two
states of affairs ϕ and ψ and her commitment to ensure ϕ is discharged, then the agent is
committed to ensuring ψ .

The following T-STIT theorem 6 clarifies how the previous definition of commitment
behaves in the case of Moore-like sentences of the form ϕ∧¬[i]ϕ: an agent is committed to
ensure that ϕ is true and that she does not see to it that ϕ if and only if the agent is committed
to do something inconsistent:

⊢T-STIT Ci : j (ϕ ∧ ¬[i]ϕ) ↔ Ci : j⊥. (6)

The following T-STIT theorem 7 characterises the relationship between commitments
about logical equivalent formulas:

⊢T-STIT !G∗(ϕ ↔ ψ) → (Ci : jϕ ↔ Ci : jψ). (7)
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394 E. Lorini

This means that if ϕ and ψ are equivalent in all future worlds of every history passing
through the current moment, then agent i is committed to ensuring ϕ if and only if agent i is
committed to ensuring ψ . Note that the formula !G∗ϕ captures a form of future necessity
or, even better, future inevitability. Therefore, theorem 7 captures the idea that if in the
future it is inevitable that ϕ and ψ have the same truth value, then one cannot be committed
to ensuring ϕ without being committed to ensuring ψ , and one cannot be committed to
ensuring ψ without being committed to ensuring ϕ.

The last T-STIT theorem considered here is the following one about the relationship
between time and commitment:

⊢T-STIT Ci : jϕ → F(¬[i]ϕ → Ci : jϕ). (8)

Since the Hilbert-style derivation of this T-STIT theorem is not trivial, I give it here:

1. ⊢ Ci : jϕ
def= !(¬F∗[i]ϕ → G∗vi, j ) ∧ ¬[i]ϕ.

2. ⊢ (!(¬F∗[i]ϕ → G∗vi, j ) ∧ ¬[i]ϕ) →
([Agt](¬F∗[i]ϕ → G∗vi, j ) ∧ [Agt]¬[i]ϕ).

By Axiom (! → i), Axiom (i → Agt) and T-STIT theorem ¬[i]ϕ → [i]¬[i]ϕ.

3. ⊢ ([Agt](¬F∗[i]ϕ → G∗vi, j ) ∧ [Agt]¬[i]ϕ) →
[Agt]((¬F∗[i]ϕ → G∗vi, j ) ∧ ¬[i]ϕ).

By Axiom K for [Agt].
4. ⊢ [Agt]((¬F∗[i]ϕ → G∗vi, j ) ∧ ¬[i]ϕ) ↔

[Agt](([i]ϕ ∨ F[i]ϕ ∨ G∗vi, j ) ∧ ¬[i]ϕ).

5. ⊢ [Agt](([i]ϕ ∨ F[i]ϕ ∨ G∗vi, j ) ∧ ¬[i]ϕ) →
[Agt](F[i]ϕ ∨ G∗vi, j ).

By Axiom K for [Agt].
6. ⊢ [Agt](F[i]ϕ ∨ G∗vi, j ) → [Agt](F[i]ϕ ∨ Gvi, j ).

By Axiom K for [Agt].
7. ⊢ [Agt](F[i]ϕ ∨ Gvi, j ) → F!(F∗[i]ϕ ∨ G∗vi, j ).

By the second T-STIT validity in Proposition 6.

8. ⊢ F!(F∗[i]ϕ ∨ G∗vi, j ) → F!(¬F∗[i]ϕ → G∗vi, j ).

9. ⊢ F!(¬F∗[i]ϕ → G∗vi, j ) →
F(([i]ϕ ∨ ¬[i]ϕ) ∧ !(¬F∗[i]ϕ → G∗vi, j )).

By T-STIT theorem Fϕ → F(⊤ ∧ ϕ).

10. ⊢ F(([i]ϕ ∨ ¬[i]ϕ) ∧ !(¬F∗[i]ϕ → G∗vi, j )) →
F([i]ϕ ∨ Ci : jϕ).

11. ⊢ Ci : jϕ → F(¬[i]ϕ → Ci : jϕ).

From 1–10.

According to the previous T-STIT theorem 8, if agent i is committed to agent j to ensure
ϕ then, at some point in the future, either i will see to it that ϕ or i will remain committed
to j to ensure ϕ. This captures a kind of persistence of commitment over time.6 That is,
a commitment will persist as long as the committed agent does not perform the action to
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which she is committed. Note that this property of commitment relies on the assumption
that there are no ‘external’ actions or processes that may cancel a pre-existent commitment
independently from the fact that the committed agent performs the action for which she
is committed. For instance, getting back to the above example, agent 1’s commitment to
agent 2 to review the articles could be dropped not only because 1 performs the action for
which is committed but also because 2 decides to cancel 1’s commitment by assigning
to a different programme committee member the reviews that were initially assigned
to 1.

4. Related work
The logic T-STIT presented in Section 2 differs in several aspects from the system proposed
by Wölf (2002). First of all, the language of T-STIT contains the operator [Agt] for the
joint action of the grand coalition, while the language of Wölf’s logic does not. I have
shown that the operator [Agt] is fundamental in order to characterise a basic property
relating action and time studied in STIT: the so-called property of no choice between
undivided histories. Moreover, different to the system of Wölf, T-STIT does not have
extra modal operators such as the difference operator ! ̸= taken from de Rijke (1992),
where !̸=ϕ means that ‘ϕ is true in all possible histories that are different from the
actual history’, and the modal operator % taken from Maio and Zanardo (1998), where
%ϕ means that ‘ϕ is true in all possible histories that belong to the current instant’. In this
sense, the language of T-STIT is more minimalistic than the language of Wölf’s logic, as
it contains only those operators which are strictly necessary for talking about tense and
action in an interesting way, while Wölf’s logic contains the preceding two extra modal
operators !̸= and %, which are not necessary for this. Wölf’s system and T-STIT are
also different at the semantic level. Wölf gives two semantics for his temporal variant of
STIT: one based on so-called T × W -based agent frames, which are extensions of T × W -
frames (Thomason, 1984), and the other based on so-called tree-based agent-frames, which
are similar to the BT+AC structures of Belnap et al. (2001). Wölf proves that the two
semantics are equivalent. The advantage of the T-STIT semantics given in Section 2.2,
compared to Wölf’s two semantics, is that the former is closer to the standard semantics
of modal logic (Blackburn et al., 2001), as it is based on the standard notion of Kripke
model with accessibility relations. A comparison between the semantics of T-STIT in
terms of temporal Kripke STIT models and Wölf’s two semantics is deferred to future
work.

T-STIT also differs from the system proposed by Broersen (Broersen, 2008a,b) under
several aspects. First of all, Broersen presents a variant of STIT called XSTIT in which the
temporal dimension and the agency dimension are fused to make up a single modal operator.
In particular, in Broersen’s logic there are primitive operators describing the effects of an
agent’s action in ‘next’ states, where ‘next’ refers to immediate successors of the present
state. On the contrary, in T-STIT, the temporal dimension and the agency dimension are
kept separate. Secondly, different to T-STIT, Broersen’s logic XSTIT does not have a future
tense operator. Thirdly, while the notion of group action used in T-STIT corresponds to the
notion of group action given by Horty (2001), the notion of group action in Broersen’s
XSTIT logic does not. According to Horty’s definition, the set of outcomes that is forced

by the joint action of a coalition is equal to the pointwise intersection of the sets of outcomes
that are forced by the individual actions of the agents in the coalition. In Broersen’s logic
only the left-to-right direction of Horty’s (2001) definition holds (i.e., the set of outcomes
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396 E. Lorini

that is forced by the individual action of an agent in a coalition is included in the set of
outcomes that is forced by the joint action of the coalition).

Another logic that is related to the logic T-STIT presented in Section 2 is
Schwarzentruber’s (2012) variant of STIT with discrete time extended with the tense
operator ‘next’of linear temporal logic (LTL). Schwarzentruber provides complexity results
for this logic without considering the issue of axiomatisation. However, the expressive
power of Schwarzentruber’s temporal variant of STIT is too limited for modelling normative
concepts such as achievement obligation and commitment. Indeed, the tense operator ‘next’
is insufficient to express temporal properties about commitments such as the fact that an
agent is committed to doing something in the future. On the contrary, as I have shown in
Section 3, the tense operator G (henceforth) allows us to express such properties.

5. Conclusion
I have presented in this work a temporal variant of STIT which supports reasoning about the
temporal properties of normative concepts such as achievement obligation and commitment.
A sound and complete axiomatisation for this logic has been given.

Directions of future work are manifold. I defer to future work an extension of the logic
T-STIT by the tense operators until and before of linear temporal logic (LTL; Gabbay et al.,
1980). With these operators it will be possible to provide a definition of commitment based
on the notion of deadline of the following form: agent i is committed to agent j to ensure
ϕ before the deadline ψ if and only if, if i does not see to it that ϕ before ψ becomes true,
then j will be wronged by i .

Another issue that I plan to investigate in future research is a comparison between
the Kripke-style semantics of T-STIT given in Section 2 and an alternative semantics for
T-STIT based on the original notion of the BT+AC structures of Belnap et al. (2001).
Indeed, while the two semantics are clearly equivalent in the case of atemporal individual
STIT and atemporal group STIT, one might wonder whether they lead to two different sets
of validities in the case of T-STIT and, if so, whether the validities differentiating the two
semantics capture interesting and intuitive properties.

Finally, on the technical side, I intend to provide an alternative axiomatisation of T-STIT
which does not make use of the Gabbay-style irreflexivity rule (IRR). Indeed, following
Zanardo (1996, Theorem 6.12), it seems possible to find such an alternative axiomatisation
in which the rule (IRR) is replaced with a set of more complex axiom schemas.

Another issue for future work is decidability of the satisfiability problem of T-STIT. It
has been proved by Herzig and Schwarzentruber (2008) that Horty’s group STIT with group
agency operators for all coalitions is undecidable. However, the logic T-STIT only has the
group agency operator for the grand coalition. Because of this limitation in the expressive
power of T-STIT, I believe that its satisfiability problem is decidable.
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Notes
1. The distinction between the ‘Ockhamist’ view and the ‘Peircean’ view of branching time was

proposed by Prior’s (1967) seminal work on the logic of time. According to the ‘Peircean’ view,
the truth of a temporal formula should be evaluated with respect either to some history or all
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histories passing through a given moment. The ‘Ockhamist’ view considers a notion of actual
course of events. In particular, according to the ‘Ockhamist’ view, the truth of a temporal formula
should be evaluated with respect to a particular actual history passing through a given moment.

2. The function f is an order-isomorphism between RH(w) and RH(v) if and only if f is a bijective
function f : RH(w) −→ RH(v) with the property that for all u, u′ ∈ RH(w), (u, u′) ∈ RH if
and only if ( f (u), f (u′)) ∈ RH.

3. Xu (1998) considers a family of axiom schemas (AIAk ) for independence of agents of the form
(♦[1]ϕ1∧. . .∧♦[k]ϕk) → ♦([1]ϕ1∧. . .∧[k]ϕk) that is parameterised by the integer k.As pointed
out by Belnap et al. (2001), (AIAk+1) implies (AIAk ). Therefore, as Agt is finite, in T-STIT the
family of axiom schemas can be replaced by the single axiom (AIA).

4. The notion of achievement obligation is traditionally opposed to the concept of maintenance
obligation (i.e., the obligation to maintain a given state of affairs ϕ).

5. Starting from Hohfeld (1917), in legal theory it is assumed that a right for j towards i that ϕ is
brought about by i typically correlates with a directed obligation for i towards j to bring about ϕ
(i.e., a duty of i towards j to bring about ϕ).

6. Note that a similar property of persistence characterises the notion of intention (Bratman, 1987)
and has been formally characterised in some logical theories of intention (Cohen & Levesque,
1990; Lorini & Herzig, 2006).
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Abstract

In this paper we propose a method for modeling social influence within the STIT ap-
proach to action. Our proposal consists in extending the STIT language with special op-
erators that allows us to represent the consequences of an agent’s choices over the rational
choices of another agent.

1 Introduction
Both human and artificial societies are based on mutual influence. Agents are dependent on
others for the realization of their goals, and only by influencing others, and obtaining their
cooperation, they can adapt the physical and social world to their needs. Influence may take
place through speech acts, as when one issues a request, an order or an advice, promises a
reward to or threatens a sanction. It may also result from non-communicative behavior that,
intentionally or unintentionally, obstacles or facilitates the performance of an action by another,
as when one consumes a resource or blocks or limits access to a resource.

There have been a number of significant contributions to the logic of social influence (see in
particular [32]) and to the cognitive aspects and computational aspects involved in it [10, 30].
However, at the current stage, there is no logical theory of social influence that is capable
of: (i) capturing the temporal aspect of influence, namely the fact that the influencer’s choice
must precede the influencee’s action,1 and (ii) addressing the strategic aspect of influencing
relationships through extensive-form games. STIT logic (the logic of “seeing to it that”) by
Belnap et al. [3] presents some features which make it most promising for analyzing these two
essential aspects of social influence. In this paper we aim at showing that STIT can provide
indeed a useful framework for modeling influence relationships. For this purpose, however
STIT needs to be integrated with appropriate constructs, which make the influencee’s agency
consistent with the fact that the influencer determines the influencee’s choices.

The paper is organized as follows. In Section 2 we recall the general semantics of STIT,
while in Section 3 we discuss the concept of influence from an informal perspective. Section
4 introduces a variant of STIT logic that will be used in Section 6 to formalize the concept of
social influence informally discussed in Section 3. Our logic, called DR-STIT (STIT with De-
terministic time and Rational choices), extends the basic STIT language with special operators

1The term ‘influencer’ refers to the agent who exerts influence, whereas the term ‘influencee’ refers to the agent
being influenced.
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that allow us to represent the consequences of an agent’s rational choice. An axiomatization of
DR-STIT is given in Section 5. Section 7 is about related work, while Section 9 discusses some
perspectives of future research. The proof of Theorem 1 is included in the technical annex at
the end of the paper.

2 Background on STIT semantics
STIT logic (the logic of seeing to it that) by Belnap et al. [3] is one of the most prominent
formal accounts of agency. It is the logic of sentences of the form “the agent i sees to it that
' is true”. In [18] Horty extends Belnap et al.’s STIT framework with operators of group
agency in order to express sentences of the form “the group of agents J sees to it that ' is
true”. Though also [3] approaches collective (‘joint’) agency, Horty’s variant of group STIT is
the most established today, and it provides the standard combination of agency operators for
the individuals and agency operators for the groups. Different semantics for STIT have been
proposed in the literature (see, e.g., [3, 6, 39, 26, 24, 37]). The original semantics of STIT by
Belnap et al. [3] is defined in terms of BT+AC structures: branching-time structures (BT)
augmented by agent choice functions (AC). A BT structure is made of a set of moments and
a tree-like ordering over them. An AC for an agent i is a function mapping each moment m
into a partition of the set of histories passing through that moment, a history h being a maximal
set of linearly ordered moments and the equivalence classes of the partition being the possible
choices for agent i at moment m.

Following [24], here we adopt a Kripke-style semantics for STIT. On the conceptual side,
the main difference between a Kripke semantics for STIT and Belnap et al.’s BT+AC se-
mantics is that the former takes the concept of world as a primitive instead of the concept of
moment and defines: (i) a moment as an equivalence class induced by a certain equivalence
relation over the set of worlds, (ii) a history as a linearly ordered set of worlds induced by a
certain partial order over the set of worlds, and (iii) an agent i’s set of choices at a moment as
a partition of that moment. The main advantage of the Kripke semantics for STIT over Bel-
nap et al.’s original semantics in terms of BT+AC structures is that the former is a standard
multi-relational semantics commonly used in the area of modal logic [5], whereas the latter
is non-standard. By using the Kripke semantics for STIT we can use methods and techniques
developed in this area to prove results about axiomatics (see Section 5) and decidability (post-
poned to future work). We do not have space here to discuss the differences and similarities
between the two semantics. However, it is worth noticing that the two semantics are equivalent
when considering either atemporal STIT languages (STIT languages without temporal modal
operators) such as the one studied in [1] or a temporal STIT language with temporal operators
’next’ and ’yesterday’ such as the one we will introduce in Section 4. On the contrary, the two
semantics are different when considering richer temporal STIT languages such the one studied
in [24] which includes the future tense operator G (where G' stands for “' will always be
true in the future”) and the past tense operator H (where H' stands for “' has always been
true in the past”) of basic temporal logic [34]. In particular, as clearly shown in [25], when
considering such richer temporal languages, Belnap et al.’s original semantics corresponds to a
full tree semantics for branching time temporal logics while the Kripke semantics corresponds
to a bundled tree semantics. As already observed in the area of branching time temporal logics
(see, e.g., [9, 35]), the full tree semantics has more validities than the bundled tree semantics.

The Kripke semantics of STIT is illustrated in Figure 1, where each moment m1, m2 and
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m3 consists of a set of worlds represented by points. For example, moment m1 consists of
the set of worlds {w1, w2, w3, w4}. Moreover, for every moment there exists a set of histories
passing through it, where a history is defined as a linearly ordered set of worlds. For example,
the set of histories passing through moment m1 is {h1, h2, h3, h4}. Finally, for every moment,
there exists a partition which characterizes the set of available choices of agent 1 in this moment.
For example, at moment m1, agent 1 has two choices, namely {w1, w2} and {w3, w4}. Note
that an agent’s set of choices at a certain moment can also be seen as a partition of the set of
histories passing through this moment. For example, we can identify the choices available to
agent 1’s at m1 with the two sets of histories {h1, h2} and {h3, h4}.

Clearly, for every moment m in a Kripke semantics for STIT, one can identify the set of
histories passing through it by considering all histories that contain at least one world in the
moment m. Moreover, an agent i’s set of choices available at m can also be seen as as a
partition of the set of histories passing through m. At first glance, an important difference
between Belnap et al.’s semantics and Kripke semantics for STIT seems to be that in the former
the truth of a formula is relative to a moment-history pair m/h, also called index, whereas in the
latter it is relative to a world w. However, this difference is only apparent, because in the Kripke
semantics for STIT there is a one-to-one correspondence between worlds and indexes, in the
sense that: (i) for every index m/h there exists a unique world w at the intersection between
m and h, (ii) and for every world w there exists a unique index m/h such that the intersection
between m and h includes w. (This point will become clearer in Section 4.2 in which a Kripke
semantics for our variant of STIT will be specified.)

In the Kripke semantics for STIT the concept of world should be understood as a ‘time
point’ and the equivalence class defining a moment as a set of alternative concomitant ‘time
points’. In this sense, the concept of moment captures a first aspect of indeterminism, as it
represents the alternative ways the present could be. A second aspect of indeterminism is given
by the fact that moments are related in a (tree-like) branching time structure. In this sense, the
future could evolve in different ways from a given moment. In the Kripke semantics for STIT
these two aspects of indeterminism are related, as illustrated in Figure 1. Indeed, if two distinct
moments m2 and m3 are in the future of moment m1, then there are two distinct worlds in m1

(w1 and w3) such that a successor of the former (w5) is included in m2 and a successor of the
latter (w7) is included in m3.
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Figure 1: Illustration of Kripke semantics of STIT

The STIT semantics provides for different concepts of agency, all characterized by the fact
that an agent acts only if she sees to it that a certain state of affairs is the case. In this paper we
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consider two different notions of agency, namely the so-called Chellas STIT, named after its
proponent [11], and the deliberative STIT [19].2

An agent i Chellas-sees-to-it that ', denoted by formula [i stit]', at a certain world w if
and only if, for every world v, if w and v belong to the same choice of agent i then ' is true
at world v. For example, in Figure 1, agent 1 Chellas-sees-to-it that p at world w1 because p is
true both at world w1 and at at world w2.

Deliberative STIT satisfies the same positive condition as Chellas STIT plus a negative
condition: an agent i deliberately-sees-to-it that ', denoted by formula [i dstit]', at a certain
world w if and only if: (i) agent i Chellas-sees-to-it that ' at w, that is to say, agent i’s current
choice at w ensures ', and (ii) at w agent i could make a choice that does not necessarily
ensure '. Notice that the latter is equivalent to say that there exists a world v such that w and v

belong to the same moment and ' is false at v. For example, in Figure 1, agent 1 deliberately
sees to it that q at world w1 because q is true both at world w1 and at world w2, while being
false at world w3. In other terms, while the truth of [i stit]' only requires that i’s choice
ensures that ', the truth of [i dstit]' also requires that i had the opportunity of making an
alternative choice that would not guarantee that ' would be the case. Deliberative STIT, we
would argue, captures a fundamental aspect of the concept of action, namely, the idea that for
a state of affairs to be the consequence of an action (or for an action to be the cause of a state
of affairs), it is not sufficient that the action is a sufficient condition for that state of affairs to
hold, it is also required that, without the action, the state of affairs possibly would not hold (a
similar idea is also included in the logic of “bringing it about” by Pörn, see in particular [33]).
In this sense, while [i stit]' at w is consistent with (and is indeed entailed by) the necessity
of ' at w, [i dstit]' at w is incompatible with the necessity of ' at w, since it requires that
at w also ¬' was an open possibility. Consequently, the deliberative STIT is more appropriate
than the Chellas STIT to describe the consequences of an agent’s action, as incompatibility with
necessity is a requirement for any reasonable concept of action.3

3 The concept of influence
As emphasized by [4], the first prominent philosopher of the twentieth century to provide a
compatibilist solution to the free will problem based on a conditional or hypothetical analysis
is G. E. Moore. According to Moore’s famous analysis [29], one is free in performing an action
if one “could have done otherwise”, but the latter expression has to be understood in a particular
way, namely, as the requirement that “should one have done otherwise if one had chosen to do
so”. In this sense, according to Moore, determinism is compatible with free will insofar as
an agent might have several choices or alternatives available at a given moment defining her
choice set, even though what the agent does is determined by her actual choice, which is in
turn determined by the agent’s choice context including her preferences and beliefs and the
composition of her choice set.

Our analysis of social influence expands Moore’s view by assuming that the agent’s choice
context determining the agent’s actual choice might be determined by external causes. Specifi-
cally, the external conditions in which an agent finds herself or the other agents with whom the

2We shall not consider achievement STIT of [2].
3The classical argument against the use of Chellas STIT for modeling action is that, according to Chellas STIT, an

agent brings about all tautologies and that it is counterintuitive to say that a tautology is a consequence of an agent’s
action.
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agent interacts may provide an input to the agent’s decision-making process in such a way that
a determinate action should follow. Indeed, as Leibniz [22, 383] observed, “precepts, armed
with power to punish and to recompense, are very often of use and are included in the order of
causes which make an action exist”.

We argue that genuine influence consists in determining the voluntary action of an agent by
modifying her choice context, so that a different choice becomes preferable to the influencee on
comparison to what would be her preferred option without this modification. This may happen:

• by expanding the set of the available choices (influence via choice set expansion), or

• by restricting the set of the available choices (influence via choice set restriction),4 or

• by changing the payoffs associated to such choices, as when rewards or punishments are
established (influence via payoff change).

There exists a fourth kind of social influence that cannot be modelled by means of the formal
machinery developed in this paper, namely influence via belief change or persuasion. Indeed, as
classical decision and game theory highlight, an agent’s choice depends not only on the payoffs
associated with the different outcomes but also on what the agent believes the others will do.
A typical example of influence via belief change is the situation of a coordination game, as the
one depicted in Figure 2, in which two rational players, the row player and the column player,
have to choose the same action (either ↵ or �) in order to get a reward. Assume there is a
communication phase before the game is played. During the preplay communication phase, the
row player can induce the column player to believe that she will play action ↵. Consequently,
since he is rational and believes that the row player will choose action ↵, the column player
will choose action ↵. An obvious extension of the present logical theory of influence, to be

1,1

1,1

0,0

0,0

α

β

α β

Figure 2: Coordination game

developed in the future, will consist in adding to our logic the beliefs of agents, and ways of
influencing their action by changing their beliefs. By extending our logical theory with beliefs
of agents, we will also be able to represent the logical relationship between (rational) choices

4With ‘choice set’ we mean all options that an agent takes into consideration when deciding what to do. This
typically coincides with the set of alternatives that the agent believes to be possible means for achieving her goals.
Therefore, an agent can indirectly affect the composition of another agent’s choice set by modifying her beliefs about
what is a possible means for achieving her goals. However, this intermediate step is not explicitly modeled in our
logical analysis of social influence.
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of agents and their beliefs about the choices of the others.5
To illustrate the concept of social influence, let us consider two examples, the first about

influence via choice set restriction and the second one about influence via payoff change. We do
not give an example about influence via choice set expansion, as it is very similar to influence
via choice set restriction. The example of influence via choice restriction is illustrated in Figure
3. The example represents a situation where there are three fruits on a table, an apple, a banana
and a pear. The actions at issue consist in bringing about that the apple is eaten (ap), the banana
is eaten (ba) or the pear is eaten (pe). Let us assume that agent 2 has certain preferences that
remain constant along the tree structure. In particular, at all moments agent 2 prefers eating
apples to bananas to pears. Let us also assume that 2 is rational, in the sense that she acts in
such a way as to achieve the outcome she prefers. Rational choices of agent 2 are depicted in
grey. By choosing to eat the apple at w1, 1 generates a situation where, given her preferences,
2 will necessarily eat the banana, rather than the pear. Indeed, although at moment m2, 2 has
two choices available, namely the choice of eating the banana and the choice of eating the pear,
only the former is rational, in the sense of being compatible with 2’s preferences. In this sense,
by deciding to eat the apple at w1 and removing this option from 2’s choice set, 1 influences 2
to decide to eat the banana at w7.6

Figure 3: Example of influence via choice restriction

The example of influence via payoff change is illustrated in Figure 4. The example repre-
sents a situation where agent 1 has to decide whether to give a monetary incentive to agent 2

5For an extension of a STIT-like framework by agents’ epistemic attitudes (e.g., beliefs and knowledge) and the
formalization of rationality principles connecting choices of agents and their beliefs about choices of the others, see
[27].

6Notice that this sounds like regimentation which, according to [20], consists in forcing or precluding certain
actions. However there is a subtle difference between our concept of ‘influence via choice set modification’ and the
concept of regimentation. On the one hand, regimentation operates on the executability preconditions of an action (i.e.,
whether an action is practically feasible or not). On the other hand, influence operates on an agent’s choice set (i.e.,
whether an action is choosable or not).
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for the purchase of an electric car rather than a diesel car. Let us assume that agent 2 prefers
a diesel car to an electric car without monetary incentive and prefers an electric car to a diesel
car in the presence of a monetary incentive of 3000 euros. At moment m1, agent 2 can decide
either to give the incentive of 3000 euros (in) or not to give it (no). It turns out that if 1 gives the
incentive then in the next moment m2 the only rational choice for agent 2 is to buy an electric
car (el ), whereas if 2 does not give the incentive then in the next moment m3 the only rational
choice for agent 2 is to buy a diesel car (ds). In this sense, by deciding to give an incentive at
w1 and changing the payoffs associated to 2’s choice of buying an electric car, 1 influences 2 to
buy an electric car at w5.

Figure 4: Example of influence via payoff change

These examples lead us to the following informal definition of social influence:

An agent i influences another agent j to perform a certain (voluntary) action if and
only if, i sees to it that that every rational choice of j will lead j to perform the
action.

Before concluding this section, let us emphasize an important aspect about the compatibility
between the STIT semantics and the concept of influence. An important feature of STIT logic is
its being characterized by the notion of independence of choices (see Section 4.2 below for more
details). That is, in STIT choices are taken by each agent independently from the concomitant
choices of the others. From this perspective, STIT semantics and the concept of influence
would seem incompatible. However, our approach is consistent with the STIT semantics, since
we assume that the influencer’s move temporally precedes the influencee’s move, determining
the range of choices available to the latter. In other words, the influencer’s choice at a given
moment determines the influencee’s range of choices at a later moment.

In the next section we present a logic which enables us to formalize the previous concept
of social influence. Specifically, it enables us to represent both aspects of social influence
relations: the influencee’s freedom to select the action she prefers in her choice set, and the
influencer’s ability of determining the influencee’s choice by modifying the influencee’s choice
set.
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4 DR-STIT logic
Our logic is a variant of STIT with discrete time and rational choices interpreted in Kripke
semantics. The name of our logic is DR-STIT, which stands for “STIT with Deterministic
time and Rational choices”. On the syntactic level, DR-STIT is nothing but the extension
of atemporal individual STIT by: (i) the temporal operators ‘next’ (tomorrow) and ‘previous’
(yesterday) of linear temporal logic, (ii) the operator of group agency for the grand coalition
(the coalition of all agents), and (iii) special operators of agency describing the consequences
of an agent’s rational choice. In Section 6 the logic will be used to define the concept of social
influence that we have informally discussed in Section 3.

In DR-STIT the so-called Chellas STIT operators are taken as primitive operators of agency.
As pointed out by [19], deliberative STIT operators and Chellas STIT operators are interde-
finable and just differ in the choice of primitive operators. The language of DR-STIT has
some similarities with the language of the logic XSTIT studied by Broersen [7], as they both
limit themselves to the ‘next’ time operator without considering more complex tense operators.
However, there is an important difference between Broersen’s XSTIT and our logic DR-STIT.
In XSTIT the temporal dimension and the agency dimension are fused to make up a single
modal operator. In particular, in XSTIT there are primitive operators describing the effects of
an agent’s action in ‘next’ states, where ‘next’ refers to immediate successors of the present
state. On the contrary, in DR-STIT the temporal dimension and the agency dimension are kept
separated, as agency operators are distinguished from temporal operators.

The following two sections present the syntax and a Kripke-style semantics for DR-STIT
(Subsections 4.1 and 4.2).

4.1 Syntax
Assume a countable (possibly infinite) set of atomic propositions denoting facts Atm = {p, q, . . .}
and a finite set of agents Agt = {1, . . . , n}.

The language LDR-STIT(Atm,Agt) of the logic DR-STIT is the set of formulae defined by
the following BNF:

' ::= p | ¬' | ' ^ ' | ⇤' | X' | Y' |
[i stit]' | [Agt stit]' | [i rstit]'

where p ranges over Atm and i ranges over Agt . The other Boolean constructions >, ?, _, !
and $ are defined from ¬ and ^ in the standard way.

Operators of the form [i stit] are Chellas STIT operators that have been informally dis-
cussed in Section 2. Formula [i stit]' captures the fact that ' is guaranteed by a present action
of agent i, and has to be read ‘agent i sees to it that ' regardless of what the other agents do’.
We shorten the reading of [i stit]' to ‘agent i sees to it that '’. [Agt stit] is a group STIT
operator which captures the fact that ' is guaranteed by a present choice of all agents, and has
to be read ‘all agents see to it that ' by acting together’. The dual operators of [i stit] and
[Agt stit] are defined in the usual way:

hi stiti' def
= ¬[i stit]¬',

hAgt stiti' def
= ¬[Agt stit]¬'.
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Operators of the form [i rstit] describe the effects of a rational (or preferred) choice of
agent i. Following one of the arguments of Section 3, namely the idea that a choice is rational
if it is consistent with the agent’s preference over her alternative choices, we here conceive the
terms ‘rational choice’ and ‘preferred choice’ as synonyms. Specifically, formula [i rstit]'
has to be read either “if agent i’s current action is the result of a rational choice of i, then i sees
to it that '” or, “if agent i’s current choice is a preferred choice of i, then i sees to it that '”.
So, [i rstit]' is true for every formula ' when agent i’s current choice is not rational.7 The
dual of the operator [i rstit] is defined as follows: hi rstiti' def

= ¬[i rstit]¬'. The formula
hi rstiti> has to be read either “agent i’s current choice is rational” or, “agent i’s current
choice is a preferred choice of i”.8 The formula [i stit]' ^ hi rstiti>, which is logically
equivalent to [i rstit]' ^ hi rstiti>, has to be read either “agent i sees to it that ' as a result
of her rational choice” or, “agent i sees to it that ' as a result of her preferred choice”. Notice
that this concept of preference is binary in the sense that a choice is either preferred or not and
there is no ordering over choices involved.

⇤' stands for ‘' is true regardless of what every agent does’ or ‘' is true no matter what the
agents do’ or simply ‘' is necessarily true’. We define the dual of ⇤ as follows: ⌃' def

= ¬⇤¬'.
Note that the operators [i stit] and ⇤ can be combined in order define the deliberative STIT
operator [i dstit] we have discussed in Section 2:

[i dstit]'
def
= [i stit]' ^ ¬⇤'.

Moreover, the operators [i rstit] and ⇤ can be combined in order define a special kind of
deliberative STIT operator for rational choices:

[i rdstit]'
def
= hi rstiti> ! [i dstit]'.

[i rdstit]' has to be read either “if agent i’s current action is the result of a rational choice of i,
then i deliberately sees to it that '” or, “if agent i’s current choice is a preferred choice of i, then
i deliberately sees to it that '”. The operator [i rdstit] is a conditional form of deliberative
STIT operator which represents the consequences of an agent’s action under the condition that
this action is the result of a rational choice of the agent.

Finally, X and Y are the standard operators ‘next’ (tomorrow) and ‘previous’ (yesterday)
of linear temporal logic. X' and Y' has to be read respectively ‘' is going to be true in the
next world’ and ‘' was true in the previous world’.

Before concluding this section, let us justify the use of the different operators.
In the light of the results presented in [1] the historical necessity operator ⇤ could be omit-

ted, as the formula ⇤' and [i stit][j stit]' are logically equivalent, when i 6= j. So, the
only reason why we decided to add it to the language of the logic DR-STIT is conceptual. We
believe that it is important to have the historical necessity operator as a primitive object in the
formal language, as it captures something conceptually different from ‘agency’, as captured by
the operator [i stit].

7Our notion of “doing something as the result of a rational (or preferred) choice” is synonym of List & Rabinowicz’s
notion of “doing an action with endorsement” [23].

8The formula hi rstiti> looks similar to the formula h'i> of public announcement logic (PAL) [31] meaning that
“the public announcement of ' is executable”.
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As for the grand coalition operator [Agt stit], the reason for having it in the language is
mainly technical. As we will show in Section 5, by means of this operator we can syntactically
express a fundamental property of STIT models, the so-called property of no choice between
undivided histories, capturing the basic connection between action and time (see the next sec-
tion for further details).

Finally, the temporal operators X and Y are used here for several reasons. As for the
operator X, we use it in order to capture the temporal aspect of social influence, namely the
fact that the influencer’s action temporally precedes the influencee’s choice. As for the operator
Y, we have decided to include it both for technical and for conceptual reasons. This operator
allows to syntactically express some basic temporal properties of STIT models such as the fact
that the temporal relation for the past is assumed to be deterministic, i.e., every world has at
most one temporal predecessor (see the next section for more details). A second reason for
having the operator Y in the object language is that we want to stay as close as possible to
the STIT tradition which typically considers temporal STIT languages including both ‘forward
looking’ and ‘backward looking’ operators. For instance, the temporal STIT language studied
by Horty [18] includes both the future tense operator G (with G' meaning “' will always
be true in the future”) and the past tense operator H (with H' meaning “' has always been
true in the past”). Finally, the presence of the operator Y in the object language yields to
interesting perspectives of future research such as the possibility of representing a variant of
social influence based on the concept of achievement STIT à la Belnap & Perloff [2] whose
formal characterization requires a ‘backward looking’ operator such as the operator Y.

4.2 Kripke semantics for DR-STIT
The basic notion in the semantics is the notion of Kripke STIT model with discrete time and
rational choices. For notational convenience, in what follows we are going to use the following
abbreviations. Given a set of elements W , an arbitrary binary relation R on W and an element
w in W , let R(w) = {v 2 W |wRv}. Moreover, given two binary relations R1 and R2 on W

let R1 �R2 be the standard operation of composition between binary relations. If we abstract
away from the notion of rational choice, Kripke STIT models with discrete time and rational
choices are nothing but a subclass of the general class of temporal Kripke STIT models studied
by [24]. The latter can be seen as extensions of Zanardo’s Ockhamist models [41] by a choice
component, i.e., by accessibility relations for individual choices and an accessibility relation
for the collective choice of the grand coalition Agt .

Definition 1 A Kripke STIT model with discrete time and rational choices is a tuple M =
(W,⌘,_,^, {⇠

i

}
i2Agt ,⇠Agt , {RC i

}
i2Agt ,V) where:

• W is a nonempty set of possible worlds;

• ⌘ is an equivalence relation on W ;

• _ is a serial and deterministic relation on W ;

• ^ is the inverse relation of _ (i.e., ^= {(w, v)|v _ w}) and is supposed to be deter-
ministic;

• ⇠Agt and every ⇠
i

are equivalence relations on W ;
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• for all i 2 Agt , RC
i

✓ C
i

with C
i

being the partition of W induced by the equivalence
relation ⇠

i

;

• V : W �! 2Atm is a valuation function for atomic propositions;

and that satisfies the following six constraints:

(C1) for all w, v 2 W : if wFv then w 6⌘ v, with F denoting the transitive closure of the
binary relation _;

(C2) for all i 2 Agt: ⇠
i

✓⌘;

(C3) for all u1, . . . , un

2 W : if u
i

⌘ u

j

for all i, j 2 {1, . . . , n} thenT
1in

⇠
i

(u
i

) 6= ;;

(C4) for all w 2 W and for all i 2 Agt: there exists v 2 W such that w ⌘ v and ⇠
i

(v) 2
RC

i

;

(C5) for all w 2 W : ⇠Agt (w) =
T

i2Agt ⇠i

(w);

(C6) _ � ⌘ ✓ ⇠Agt � _.

Let us explain in detail each component of the preceding definition.
⌘ (w) is the set of worlds that are alternative to the world w. Following the Ockhamist’s

view of time [34, 41], we call the equivalence classes induced by the equivalence relation ⌘
moments. The set of all moments in the model M is denoted by Mom and the elements in
Mom are denoted by m,m

0
, . . .

_ (w) is the set of direct temporal successors of world w, that is to say, w _ v means
that v is in the future of w and there is no third world that is in the future of w and in the past
of v. The fact that _ is serial and deterministic means that every world has exactly one direct
temporal successor. ^(w) defines the set of direct temporal predecessors of world w, that is to
say, v ^ w means that v is in the past of w and there is no third world that is in the past of w
and in the future of v. The fact that ^ is deterministic means that every world has at most one
direct temporal predecessor. We do not assume ^ to be serial because past is not necessarily
endless.

The Constraint C1 in Definition 1 ensures that if two worlds belong to the same moment
then one of them cannot be in the future of the other. (Note that F(w) is the set of worlds
that are in the future of w.) Since the relation ⌘ is reflexive, the Constraint C1 implies that the
relations _, ^ and F are all irreflexive.

Let T (w) = P(w)[{w}[F(w) be the set of worlds that are temporally related with world
w, where P = {(w, v)|vFw} is the inverse of the relation F and P(w) is the set of worlds that
are in the past of w. The fact that the relation F is irreflexive and transitive ensures that F is
a strict linear (or total) order on the set T (w). For every world w in W , we call the linearly
ordered set (T (w),F) the history going through w. Because of the seriality of the relation _,
every history is infinite. Note that the concept of history and the assumption that histories are
infinite allow us to formally characterize chains of influence of any arbitrary length, namely
the fact an agent i1 influences an agent i2 to influence an agent i3 to influence...an agent i

m

to
make ' true. The formal properties of chains of influence of length 2 will be studied in Section
6.
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For notational convenience, let Hist denote the set of all histories in the model M and let
the elements of Hist be denoted by h, h

0
, . . . Moreover, for every moment m 2 Mom , let

Hist
m

= {h 2 Hist |9w 2 W such that w 2 m \ h}
be the set of all histories passing through the moment m and let

Ind = {m/h|m 2 Mom and h 2 Hist
m

}
be the set of all indexes in the model M .

Clearly, our Kripke semantics for DR-STIT allows us to interchangeably use the term
‘world’ and ‘history going through a certain world’ without lost of generality. Indeed, for
every world w there exists a unique history going through it. This point is highlighted by the
following proposition.

Proposition 1 Let w 2 W . Then, there exists a unique h 2 Hist such that w 2 h.

As every world in a model is identified with a unique history going through it, the equivalence
relation ⌘ can also be understood as an equivalence relation between historic alternatives: w ⌘
v means that the history going through v is alternative to the history going through w, or the
history going through w and the history going through v pass through the same moment.

Furthermore, in the semantics for DR-STIT there is a one-to-one correspondence between
worlds and indexes, as for every index m/h in Ind there exists a unique world w at the inter-
section between m and h, and for every world w there exists a unique index m/h such that
the intersection between m and h includes w. This fact is highlighted by the following two
propositions.

Proposition 2 Let m 2 Mom and let h 2 Hist
m

. Then, m \ h is a singleton.

Proposition 3 Let w 2 W . Then, there exists a unique m/h 2 Ind such that w 2 m \ h.

For every world w, the set ⇠
i

(w) identifies agent i’s actual choice at w, that is to say, the
set of worlds that can be obtained by agent i’s actual choice at w. Because of the one-to-one
correspondence between worlds and histories, one can also identify i’s actual choice at w with
the set {h 2 Hist |9v 2⇠

i

(w) such that v 2 h}. In other words, in DR-STIT an agent chooses
among different sets of histories.

Constraint C2 in Definition 1 just means that an agent can only choose among possible
alternatives. This constraint ensures that, for every world w, the equivalence relation ⇠

i

induces
a partition of the set ⌘(w). An element of this partition is a choice that is possible (or available)
for agent i at w.

Constraint C3 expresses the so-called assumption of independence of agents or indepen-
dence of choices: if ⇠1 (u1) is a possible choice for agent 1 at w, ⇠2 (u2) is a possible choice
for agent 2 at w,..., ⇠

n

(u
n

) is a possible choice for agent n at w, then their intersection is
non-empty. More intuitively, this means that agents can never be deprived of choices due to
the concomitant choices made by other agents. As emphasized in Section 3, this property of
the STIT semantics does not negate the whole possibility of influence, as a choice of an agent
i at a given moment m might determine the range of choices available to an agent j at a later
moment m.

Let C
i

denote the partition of the set of worlds W induced by the equivalence relation
⇠

i

. This partition characterizes agent i’s set of choices in the model M . The set RC
i

✓ C
i

characterizes agent i’s set of rational choices or also, the set of preferred choices of agent i
(given the assumption that a choice is rational if it is consistent with the agent’s preference over
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her alternative choices). The Constraint C4 just means that, at each moment, an agent has at
least one rational choice available.

For every world w, the set ⇠Agt (w) identifies the actual choice of group Agt at w, that is to
say, the set of worlds that can be obtained by the collective choice of all agents at w. Constraint
C5 just says that the collective choice of the grand coalition Agt is equal to the intersection of
the choices of all individuals. This corresponds to the notion of joint action proposed by Horty
in [18], where the joint action of a group is described in terms of the result that the agents in
the group bring about by acting together.

The Constraint C6 expresses a basic relation between action and time: if v is in the future of
w and u and v are in the same moment, then there exists an alternative z in the collective choice
of all agents at w such that u is in the future of z. This constraint corresponds to the property
of no choice between undivided histories given in STIT logic [3, Chap. 7]. It captures the idea
that if two histories come together in some future moment then, in the present, each agent does
not have a choice between these two histories. This implies that if an agent can choose between
two histories at a later stage, then she does not have a choice between them in the present.

A formula ' of the logic DR-STIT is evaluated with respect to a a Kripke STIT model with
discrete time and rational choices M = (W,⌘,_,^, {⇠

i

}
i2Agt ,⇠Agt , {RC i

}
i2Agt ,V) and

a world w in M . We write M,w |= ' to mean that ' is true at world w in M . The truth
conditions of DR-STIT formulae are then defined as follows:

M,w |= p () p 2 V(w)
M,w |= ¬' () M,w 6|= '

M,w |= ' ^  () M,w |= ' AND M,w |=  

M,w |= ⇤' () 8v 2 ⌘(w) : M, v |= '

M,w |= X' () 8v 2 _(w) : M, v |= '

M,w |= Y' () 8v 2 ^(w) : M, v |= '

M,w |= [i stit]' () 8v 2⇠
i

(w) : M, v |= '

M,w |= [Agt stit]' () 8v 2⇠Agt (w) : M, v |= '

M,w |= [i rstit]' () IF ⇠
i

(w) 2 RC
i

THEN

8v 2⇠
i

(w) : M, v |= '

Notice that the operators [i stit], [Agt stit], and [i rstit] are instantaneous action operators as
they describe the consequences of choices at the actual moment.

Since the relation _ is serial and deterministic, we can specify a total (successor) function
succ : W ! W such that succ(w) = v if and only if v 2_ (w). Moreover, since ^
is deterministic we can specify a partial (predecessor) function pred : W 9 W such that
pred(w) = v if and only if v 2^ (w). This allows to simplify the truth conditions of the
operators X and Y as follows:

M,w |= X' () M, succ(w) |= '

M,w |= Y' () IF pred(w) is defined THEN

M, pred(w) |= '

For any formula ' of the language LDR-STIT(Atm,Agt), we write |=DR-STIT ' if ' is
DR-STIT valid, i.e., for all Kripke STIT models with discrete time and rational choices M
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and for all worlds w in M , we have M,w |= '. We say that ' is DR-STIT satisfiable if ¬' is
not DR-STIT valid.

5 Axiomatization
Figure 5 contains a complete axiomatization of the logic DR-STIT with respect to the class of
Kripke STIT models with discrete time and rational choices.

PC Tautologies of classical propositional calculus
S5(⇤) All S5-principles for the operator ⇤
KD(X) All KD-principles for the operator X
K(Y) All K-principles for the operator Y
S5([i stit]) All S5-principles for the operators [i stit]
S5([Agt stit]) All S5-principles for the operator [Agt stit]
(AltX) ¬X'! X¬'
(AltY) ¬Y'! Y¬'
(ConvX,Y) '! XY'

(ConvY,X) '! YX'

(Rel⇤,[i stit]) ⇤'! [i stit]'

(AIA) (⌃[1 stit]'1 ^ . . . ^ ⌃[n stit]'
n

) !
⌃([1 stit]'1 ^ . . . ^ [n stit]'

n

)

(Rel[i rstit],[i stit]) hi rstiti> ! ([i rstit]'$ [i stit]')

(RatCh) hi rstiti> ! [i stit]hi rstiti>
(OneRat) ⌃hi rstiti>
(Rel[i stit],[Agt stit]) ([1 stit]'1 ^ . . . ^ [n stit]'

n

) !
[Agt stit]('1 ^ . . . ^ '

n

)

(NCUH) X⌃'! hAgt stitiX'

(MP) ', '!  

 

Figure 5: Sound and complete axiomatization of DR-STIT

This includes all tautologies of classical propositional calculus (PC) as well as modus po-
nens (MP). Moreover, we have all principles of the normal modal logic S5 for every operator
[i stit], for the operator [Agt stit] and for the operator ⇤, all principles of the normal modal
logic KD for the temporal operator X and all principles of the normal modal logic K for the
temporal operator Y. That is, we have Axiom K for each operator: (⌅' ^⌅('!  )) ! ⌅ 
with ⌅ 2 {⇤,X,Y, [Agt stit]} [ {[i stit]|i 2 Agt}. We have Axiom D for the tempo-
ral operator X: ¬(X' ^ X¬'). We have Axiom 4 for ⇤, [Agt stit] and for every [i stit]:
⌅' ! ⌅⌅' with ⌅ 2 {⇤, [Agt stit]} [ {[i stit]|i 2 Agt}. Furthermore, we have Axiom
T for ⇤, [Agt stit] and for every [i stit]: ⌅' ! ' with ⌅ 2 {⇤, [Agt stit]} [ {[i stit]|i 2
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Agt}. We have Axiom B for ⇤, [Agt stit] and for every [i stit]: ' ! ⌅¬⌅¬' with
⌅ 2 {⇤, [Agt stit]} [ {[i stit]|i 2 Agt}. Finally we have the rule of necessitation for each
modal operator: '

⌅'

with ⌅ 2 {⇤, [Agt stit],X,Y} [ {[i stit]|i 2 Agt}.
We have principles for temporal operators and for the relationship between time and action.

(AltX) and (AltY) are the basic axioms for the determinism of ‘tomorrow’ and ‘yesterday’.
(ConvX,Y) and (ConvY,X) are the basic interaction axioms between ‘tomorrow’ and ‘yester-
day’ according to which “if ' is true in the present, then tomorrow is going to be true that
yesterday ' has been true” and “if ' is true in the present, then yesterday has been true that
tomorrow ' is going to be true”.

(Rel⇤,[i stit]) and (AIA) are the two central principles in Xu’s axiomatization of the Chellas
STIT operators [i stit] [40]. According to Axiom (Rel⇤,[i stit]), if ' is true regardless of what
every agent does, then every agent sees to it that '. In other words, an agent brings about
those facts that are inevitable. According to Axiom (Rel[i stit],[Agt stit]), all agents bring about
together what each of them brings about individually. The principles S5(⇤) and S5([i stit])
together with the Axioms (Rel⇤,[i stit]) and (AIA) and the rule of inference (MP) constitute
the axiomatics of individual STIT logic as given in [1].

Axiom (NCUH) establishes a fundamental relationship between action and time and corre-
sponds to the semantic constraint of ’no choice between undivided histories’ (Constraint C6 in
Definition 1): if in the next world ' is going to be possible then the actual collective choice of
all agents will possibly result in a world in which ' is true. As emphasized in Section 4.1, this
axiom requires the grand coalition operator [Agt stit].

Axiom (Rel[i rstit],[i stit]) is the basic interaction principle between the rational choice op-
erator [i rstit] and the Chellas STIT operator [i stit]. It highlights that the Chellas STIT
operator and the rational choice STIT operator coincide under the condition that the agent’s
current choice is rational, expressed by the formula hi rstiti>.

Axiom (RatCh) means that the rationality of an agent just depends on her actual choice: if
agent i is rational then i sees to it that she is rational. Given Axiom (Rel[i rstit],[i stit]), Axiom
(RatCh) could be replaced by the equivalent formula hi rstiti> ! [i rstit]hi rstiti>.

Finally, according to Axiom (OneRat), an agent always has a rational choice in her reper-
toire.

Theorem 1 The set of DR-STIT validities is completely axiomatized by the principles given in
Figure 5.

The proof of Theorem 1 is given in the Annex A at the end of the paper.

6 Formalization of influence
We can now get back to the main issue of the paper, namely the problem of modeling the
concept of social influence in STIT. Let us consider the following definition of social influence:

An agent i influences another agent j to perform a certain (voluntary) action if and
only if, i sees to it that j will perform the action.

This definition of social influence is problematic for two reasons: (i) if an agent i sees to it
that some state of affairs ' will be true, then ' will necessarily be true after i’s choice, and (ii)
necessity is incompatible with action. Indeed, as emphasized in Section 2, the performance of
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an action by agent j producing the state of affairs ', presupposes that this action could have
not taken place and that ' possibly would not hold, which means that the action of agent j was
not necessary. This point is made clear by the following validity of our logic DR-STIT, that is
also a validity of STIT in general. For all i, j 2 Agt , we have:

|=DR-STIT ¬[i stit]X[j dstit]'.

Proof. Let us provide the Hilbert-style proof of this DR-STIT validity by means of the proof
calculus given in Section 5:

1. ` [i stit]X[j dstit]' $ [i stit]X([j stit]' ^ ⌃¬')
2. ` [i stit]X([j stit]' ^ ⌃¬') ! [Agt stit]X([j stit]' ^ ⌃¬')

By Axiom Rel[i stit],[Agt stit]

3. ` [Agt stit]X([j stit]' ^ ⌃¬') ! X⇤([j stit]' ^ ⌃¬')
By Axiom NCUH

4. ` X⇤([j stit]' ^ ⌃¬') ! X⇤(' ^ ⌃¬')
By Axiom T for [j stit], Axiom K and necessitation for X and ⇤

5. ` X⇤(' ^ ⌃¬') ! X(⇤' ^ ⇤⌃¬')
By Axiom K for ⇤, and Axiom K and necessitation for X

6. ` X(⇤' ^ ⇤⌃¬') ! X(⇤' ^ ⌃¬')
By Axiom T for ⇤, and Axiom K and necessitation for X

7. ` X(⇤' ^ ⌃¬') ! ?
By Axiom D for X

8. ` ¬[i stit]X[j dstit]'

From 1-7

This means that agent i cannot see to it that in the next world agent j deliberately sees to it
that some state of affairs ' is true. As the preceding proof highlights, this is a consequence of
no choice between undivided histories (Constraint C6 in Definition 1) and of the correspond-
ing Axiom NCUH. As a side note, we observe that ¬[i dstit]X[j dstit]' is valid because
[i dstit]X[j dstit]' implies [i stit]X[j dstit]'. Moreover, formulae ¬[i stit][j dstit]' and
¬[i dstit][j dstit]' are valid as well, when i 6= j. These two validities are consequences of
independence of choices (Constraint C3 in Definition 1).

However, a non-problematic notion of social influence can be expressed in our logic DR-STIT
by means of the special operators [i rdstit]. Indeed, these operators allow us to formally repre-
sent the idea we have discussed in Section 3, namely that the influencer induces the influencee
to perform a certain action by constraining her choice set in such a way that the choice that the
influencer wants to be chosen is exactly the one that the influencee would choose, given her
preferences. Specifically, we shall say that an agent i influences another agent j to make ' true,
denoted by [i infl j]', if and only if i sees to it that if agent i’s current choice is rational then i

is going to deliberately see to it that '. That is, for all i, j 2 Agt such that i 6= j, we define:

[i infl j]'
def
= [i stit]X[j rdstit]'.

In the previous definition of influence, we use the operator [j rdstit] rather than [j rstit] since,
as emphasized in Section 2, we assume that influence consists in determining the (voluntary)
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action of a certain agent and the deliberative STIT is more appropriate than the Chellas STIT to
capture the concept of action. Moreover, we use [i stit] rather than [i dstit] because we assume
that the minimal condition for agent i to influence agent j to perform a certain action is that
i’s choice is a sufficient condition for j’s action to occur. Finally, the reason why the operator
[i stit] is followed by the temporal operator X is that influence requires that the influencer’s
choice precedes the influencee’s action. On the contrary, we do not require that [j rdstit] is
followed by X since, as observed in Section 2, in STIT the concept of action is simply captured
by the deliberative STIT operator which does not necessarily need to be followed by temporal
modalities.

Note that, differently from formula [i stit]X[j dstit]', formula [i infl j]' is satisfiable.
In order to illustrate this, let us go back to the examples of Figures 3 and 4 in Section 3.
Since agent 2 prefers eating bananas to pears, her only rational choice at moment m2 is {w7}.
That is, we assume that {w7} 2 RC 2 while {w8} 62 RC 2. From this assumption, it follows
that formula [1 infl 2]ba is true at world w1. Indeed, [1 stit]X[2 rdstit]ba is clearly true
at w1 because for all v 2⇠1 � _ (w1) = {w7, w8} we have: (i) if ⇠2 (v) 2 RC 2 then
M,u |= ba for all u 2⇠2 (v), and (ii) M,u |= ¬ba for some u 2⌘ (v). Similarly, Since
agent 2 prefers buying an electric car to a diesel car in the presence of a monetary incentive,
her only rational choice at moment m2 is {w5}. That is, we assume that {w5} 2 RC 2 while
{w6} 62 RC 2. From this assumption, it follows that formula [1 infl 2]el is true at world w1.
Indeed, [1 stit]X[2 rdstit]el is clearly true at w1 because for all v 2⇠1 � _ (w1) = {w5, w6}
we have: (i) if ⇠2 (v) 2 RC 2 then M,u |= el for all u 2⇠2 (v), and (ii) M,u |= ¬el for some
u 2⌘(v).

The following proposition highlights some interesting properties of the influence operator
[i infl j].

Proposition 4 For all i, j, k 2 Agt such that i 6= j, i 6= k and j 6= k we have:

|=DR-STIT [i infl j]'! [i stit]X⌃¬' (1)
|=DR-STIT ([i infl j]' ^ [i infl j] ) ! [i infl j](' ^  ) (2)
|=DR-STIT ¬[i infl j]> (3)
|=DR-STIT ¬[i infl j]? (4)
|=DR-STIT ¬([i infl j]' ^ [i infl k]¬') (5)
|=DR-STIT [i infl j][j infl k]'$ [i infl j]X[k rdstit]' (6)

Validity 1 captures the idea that agent i influences agent j to perform a certain voluntary ac-
tion only if the result of j’s action is not necessary. Indeed, as emphasized above, action is
incompatible with necessity. Validity (2) characterizes the behavior of the operator [i infl j]
with conjunction. Note that its converse (i.e., [i infl j](' ^  ) ! ([i infl j]' ^ [i infl j] ))
is not DR-STIT valid. Indeed, the fact that, after i’s action, j has a choice available which
could possibly make ' ^  false, does not imply that after i’s action, j has a choice available
which could possibly make ' false and a choice available which could possibly make  false.
Validities (3) and (4) just say that an agent cannot influence another agent to bring about tau-
tologies or contradictions. These two validities follow from Axiom (OneRat). Indeed, Axiom
(OneRat) guarantees that, after i’s action, j has at least one rational choice. Since, it is never
the case that an agent deliberately brings about tautologies or contradictions (i.e., ¬[i dstit]>
and ¬[i dstit]? are both valid formulae), it follows that i cannot influence j to bring about
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tautologies or contradictions. According to validity (5), an agent cannot influence two differ-
ent agents to bring about conflicting results. Finally, validity (6) provides a characterization
of chain of influences: the fact ‘i influences j to influence k to make ' true’ just means that i
influences j to ensure that in the next state if k’s current choice is rational, then k deliberately
sees to it that '.
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Figure 6: Example of chain of influence of length 2

The concept of chain of influence is clearly illustrated in Figure 6 which is nothing but
the three-agent variant of the fruit example given in Section 3 (Figure 3). There are now four
fruits on the table, an apple (ap), a banana (ba), a pear (pe), and an orange (or ). Agent 1 is
the first one to choose by picking one of the four fruits. Agent 2 is the second one to choose
by picking one of the remaining three fruits. Agent 3 is the last one to choose by picking
one of the two remaining alternatives. Let us assume that agent 2 and agent 3 have the same
preferences over the fruits that remain constant along the tree structure, namely, they prefer
apples to bananas, bananas to pears, and pears to oranges. Let us also assume that agent 2 and
agent 3 are rational, in the sense that they choose the option they prefer among the available
alternatives. As in Figure 3, rational choices of agent 2 and agent 3 are depicted in grey. It
is easy to check that the formula [1 infl 2][2 infl 3]pe is true at world w1, at the bottom left
corner of the figure. Indeed, by picking the apple at w1, agent 1 induces agent 2 to pick the
banana at the second stage of the game who, in turn, induces agent 3 to pick the pear at the third
stage of the game. In other words, at world w1, a chain of influence of length 2 occurs leading
from agent 1’s choice of picking the apple to agent 3’s choice of picking the pear via agent
2’s choice of picking the banana. As emphasized in Section 4.2, the fact that, in the DR-STIT
semantics, histories are infinite allow us to formally characterize chains of influence of any
arbitrary length. Consequently, the example of Figure 6 can be generalized to any arbitrary
set {i1, . . . , ik} of agents and chain of influence of length k � 1. In this case, we have (i)
to start with a set {f1, . . . , fk+1} of fruits, (ii) to assume that the agents choose sequentially
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starting with agent i1’s choice over the complete set of alternatives and finishing with agent
i

k

’s choice over two remaining alternatives, and (iii) to assume that every agent in {i2, . . . , ik}
has the following preference over the fruits f1 > f2 > . . . > f

k+1. In the initial moment of
the model corresponding to the example, where agent i1 chooses to pick fruit f1, the following
formula would hold [i1 infl i2] . . . [ik�1 infl i

k

]f
k

. This means that, by picking fruit f1, agent
i1 induces agent i2 to pick fruit f2 who, in turn, induces agent i3 to pick fruit f3, and so on,
until agent i

k

is induced by agent i
k�1 to pick fruit f

k

.
As emphasized above, the operator [i infl j] captures the minimal condition for agent i to

influence agent j to perform a certain action, namely the fact that i’s choice is sufficient for
j’s action to occur. A stronger notion of influence also requires that j’s action would have not
occurred had i made a different choice. This stronger notion of influence is captured by the fol-
lowing abbreviation in which the Chellas STIT operator [i stit] is replaced by the deliberative
STIT operator [i dstit], with i 6= j:

[i strinfl j]'
def
= [i dstit]X[j rdstit]'.

where [i strinfl j]' has to be read “agent i strongly influences agent j to make ' true”. As the
following validity highlights, the previous definition guarantees that agent i does not strongly
influence agent j to make ' true, when j’s action of bringing about ' is inevitable, in the sense
that, necessarily, if in the next state j makes a rational choice then j will deliberately see to it
that ':

|=DR-STIT [i strinfl j]'! ¬⇤X[j rdstit]'

It is worth noting that the six validities in the preceding Proposition 4 are preserved by replacing
the influence operator [i infl j] with the strong influence operator [i strinfl j].

Before concluding this section, let us point that our concept and corresponding operator
of influence only entails the performance of the influencee’s action if the influencee chooses
rationally, that is to say, if the influencee chooses what she prefers. In other words, successful
influence also requires that in the next world along the actual history, the influencee chooses
rationally, as specified by the following abbreviation, with i 6= j:

[i succinfl j]'
def
= [i infl j]' ^Xhj rstiti>.

where [i succinfl j]' has to be read “agent i successfully influences agent j to make ' true”.9
This operator of successful influence clearly implies that in the next world along the actual
history the influencee performs the action for which she has been influenced. This is expressed
by the following validity:

|=DR-STIT [i succinfl j]'! X[j dstit]'.

7 Related work
The concept of influence has been modeled by Ingmar Pörn [32, 33] whose logic of action
builds upon [21]. However, in this weaker logic, contrary to STIT, it is not contradictory to

9It is also reasonable to define the following concept of successful strong influence:

[i succstrinfl j]'
def
= [i strinfl j]' ^Xhj rstiti>.

where [i succstrinfl j]' has to be read “agent i successfully strongly influences agent j to make ' true”.
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affirm that an agent i brings it about that another agent j brings it about that ' (i.e., E
i

E
j

' is
consistent). The same holds in the definition of the ‘bringing it about’ operator E

i

proposed
by [15], which was extended in [36] to distinctively address the production of outcomes by
influencing others. As we observed above, it seems to us that STIT’s inconsistency of i’s
seeing to it that j deliberately sees to it that ' ([i stit]X[j dstit]') correctly reflects the so-
called negative condition of agency, namely, the fact that an outcome can properly be attributed
to an action only when the outcome might not have obtained, had this action not taken place (a
different understanding of such a negative condition, however, is assumed by [15]). Moreover
neither formalization of the ‘bringing it about’ operator E

i

includes a way to deal with time,
and aspect that is essential, we believe, for capturing how the influencer’s action constrains the
subsequent behavior of the influencee.

Our idea of the rational choice of an agent, while formally similar to the idea of an oblig-
atory choice in Horty’s semantics for deontic logic (see [18, Chapter 4]), has a completely
different purpose, being complementary, rather than alternative to a deontic model. In particu-
lar, Horty’s utilitarian semantics provides a foundation for obligations governing a community
of agents, by assigning to each history a single social utility. This social utility determines in-
dividual obligations, under the assumption that individuals ought to choose histories having the
highest social utility (this is the concept of ‘ought’ of utilitarian morality), or rather to make a
choice that is not dominated by some other choice, according to the social utility of the histories
it includes. We, on the contrary, through our notion of a rational choice only want to model
how each influencee would act in the context resulting from the influencer’s action, if she were
to act rationally, where by ‘rationally’ we only mean, ‘according to her individual preferences
over the set of choices that are available to her’. Thus, we must allow in principle for as many
preference orderings over possible choices as there are individuals, and distinguish the notion of
rational action from the idea of a morally (or legally) obligatory action. In this way that we can
cover both inducements to behave in a socially beneficial ways (e.g. through sanctions or incen-
tives), and inducements to behave antisocially (e.g., through threats or bribes). By combining
our logic of influence with a deontic logic, we can then distinguish deontically permissible and
impermissible influence patterns, namely cases when the influencer or the influencee violate
deontic constraints in exercising the influence or in conforming to it.

8 Model checking and applications
STIT logic has attracted an increasing attention, being used both in theoretical analyses of
action, and in specifications for agent-based computer applications. We think that by enriching
STIT with the capability to model influence we enable it to address a vast set of contexts and
applications, i.e., whenever interactions between agents, humans and artificial ones, are at stake.
In fact social agents achieve their goals by obtaining the cooperation of other agents, namely,
by influencing them so that they act in the desired way. This motivates inducements, rewards
and sanctions.

The first problem that our logic DR-STIT might help to solve is in the area of organiza-
tional design. One might want to verify whether a certain agent in a team can induce another
agent to perform a given action. For example, one might want influencing power to be equally
distributed between the agents in a team so that there is no concentration of influencing power
in a single agent. By using our logic, we could check, within a team of agents, what agents
have the power to influence what other agents to perform what actions. This would enable us
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to determine whether an appropriate system of checks and balances is in place, so as to warrant
the stability of the organization.

The second problem that our logic DR-STIT might help to solve is in the law area. Indeed,
the notion of influence is crucial for the allocation of responsibilities according to normative
systems. We need the notion of influence to be able to direct blame and sanctions not only
against those who directly perform damaging acts, but also against those who have induced the
authors to perform such acts. This is crucial in criminal law, where accomplices are responsible
for criminal acts performed by others, exactly on the basis of the fact that they influenced the
author of the criminal act into performing that act (an act that might not have taken place,
had the accomplice not facilitated, ordered or instigated its performance). Similarly, in tort
law, secondary liability, or indirect infringement, arises when a party contributes to directly
infringing acts carried out by another party. We believe that in the regulation of societies of
intelligent artificial agents, able to engage in cooperation, these responsibilities must also be
introduced, to effectively target cooperation aimed at socially obnoxious activities.

These two problems can be addressed as instances of the model checking problem for our
logic DR-STIT. For instance, let us consider the second problem of verifying whether an agent
1 has induced another agent 2 to perform a certain damaging act. Suppose agent 1 and agent
2 are driving into opposite directions in the middle of a city. Suddenly, agent 1 invades agent
2’s track (in). If agent 2 goes straight (gs), he will crash against agent’s 1’s car (cc). In order
to avoid a car accident, agent 2 can either swerve to the left (sl ) or swerve to the right (sr ). If
he decides to swerve to the left, he will crash against the wall of a house and damage it (dw ),
whereas if he decides to swerve to the right, he will invade the sidewalk and will probably hurt
someone walking on it (hs). Suppose that agent 2 has individual preferences which are aligned
with social preferences, in the sense that he prefers those options that are considered to be the
best for the society. Specifically, the best situation for him is the one in which the wall is not
damaged, no passerby is hurt and no crash against agent 1’s car occurs. Moreover, he prefers
the situation in which the wall is damaged, no passerby is hurt and no crash against agent 1’s
occurs to the situation in which the wall is not damaged, no passerby is hurt and a crash against
agent 1’s car occurs. Finally, the worst situation for agent 2 is the one in which the wall is not
damaged, a passerby is hurt and no crash against agent 1’s occurs. (We assume that at most one
of the atoms cc, dw and hs can be true at a given moment.) Thus, after agent 1 has invaded
agent 2’s track, agent 1’s only rational choice is to swerve to the left with the consequence of
damaging the wall. On the contrary, in the counterfactual situation in which agent 1 stays on
her track and does not invade agent 2’s track, agent 1’s only rational choice is to go straight.
All this story is represented in Figure 7.

Suppose now we want to verify whether, by invading agent 2’s track, agent 1 successfully
influences agent 2 to damage the wall of the house, in the sense of successful influence defined
in Section 6. Evaluating whether agent 2’s damaging action has been successfully determined
by a previous action of agent 1 might be useful in order to decide whether responsibility for the
damage should be also attributed to agent 1 as she influenced agent 2 to cause the damage. In
formal terms, this corresponds to the task of verifying that formula [1 succinfl 2]Xdw is true
at world w1 in the model depicted in Figure 7. This is nothing but an instance of the model
checking problem for the logic DR-STIT.

Let us briefly comment how model checking can be concretely performed in our logic
DR-STIT. As observed in Section 4.2, because of Constraint C1 and of the seriality of the
temporal relation _, Kripke STIT models with discrete time and rational choices of Definition
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Figure 7: Example of model checking for DR-STIT

1 are infinite structures. As the input of a model checking problem is usually a finite model,
we need to define a finite version of models for the logic DR-STIT. We call finite Kripke
STIT models with discrete time and rational choices such a kind of models. Specifically, by
a finite Kripke STIT model with discrete time and rational choices (or finite model, for short)
we mean a tuple M = (W,⌘,_,^, {⇠

i

}
i2Agt ,⇠Agt , {RC i

}
i2Agt ,V) where W , ⌘, _, ^

, ⇠
i

, ⇠Agt , RC i

and V are as in Definition 1 except that: (1) W is finite, (2) _ is not serial,
and (3) V associates to every world w 2 W a finite set of atomic formulas in Atm . The
truth conditions of DR-STIT formulas relative to finite Kripke STIT models with discrete time
and rational choices are the same as the truth conditions relative to Kripke STIT models with
discrete time and rational choices. The model checking problem for DR-STIT is the following
decision problem: given a finite model M , a world w1 in M (the origin) and a DR-STIT formula
', is it the case that M,w1 |= '?

The model checking algorithm for DR-STIT is just an adaptation of the well-known modal
checking algorithm for multimodal logics and CTL [12]. The idea of the algorithm is to label
the worlds of the finite model step-by-step with sub-formulas of the formula ' to be checked,
starting from the smallest ones, the atomic propositions appearing in '. At each step, a formula
should be added as a label to just those worlds of the model at which it is true. Specifically, at
each step, the ‘labelling’ procedure goes as follows. Let '0 be a sub-formulas of the original
formula ' to be checked at world w1 of the finite model M = (W,⌘,_,^, {⇠

i

}
i2Agt ,⇠Agt

, {RC
i

}
i2Agt ,V). Suppose that all sub-formulas of '0 have been checked. Then, for each

world w 2 W :

• if '0 = p then label w with '0 iff p 2 V(w);

• if '0 = ¬ then label w with '0 iff w was not labeled with  ;
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• if '0 =  1 ^  1 then label w with '0 iff w was labeled both with  1 and with  2;

• if '0 = ⇤ then label w with '0 iff all worlds v 2 W such that w ⌘ v were labeled with
 ;

• if '0 = X then label w with '0 iff all worlds v 2 W such that w _ v were labeled
with  ;

• if '0 = Y then label w with '0 iff all worlds v 2 W such that w ^ v were labeled
with  ;

• if '0 = [i stit] then label w with '0 iff all worlds v 2 W such that w ⇠
i

v were labeled
with  ;

• if '0 = [Agt stit] then label w with '0 iff all worlds v 2 W such that w ⇠Agt v were
labeled with  ;

• if '0 = [i rstit] then label w with '0 iff if w 2 RC
i

then all worlds v 2 W such that
w ⇠

i

v were labeled with  .

The labelling procedure terminates, as the size of the sub-formulas of the original formula ' to
be checked increases and the formula has a finite size. Let W 0 ✓ W be the set of worlds at
which formula ' is added as a label, at termination of the labelling procedure. If w1 2 W

0, then
the model checking algorithm returns “yes”, otherwise it returns “no”. The overall complexity
of this model checking algorithm for DR-STIT is linear in the number of the different sub-
formulas of ' and in the size of the model M . It follows that the model checking problem for
DR-STIT is PTIME-complete with respect to size(') + size(M).

9 Conclusion
Let’s take stock. We have started the paper by raising the challenge of modeling the concept
of social influence in STIT theory. Then, we have proposed a variant of STIT with special
operators describing the consequences of an agent’s rational choice and shown that our logic
offers a suitable framework for modeling this concept. On the technical side, we have provided
a proof calculus for this logic.

Directions of future work are manifold. An important issue that has not been addressed in
this paper is the relationship between the concept of rational (or preferred) choice, represented
by the set RC

i

in the definition of Kripke STIT model with discrete time and rational choices
(Definition 1), and the concept of preference over the worlds. Indeed, the fact that the choice
of an agent is considered to be rational (or preferred) depends on the fact that, by making
this choice, the agent will maximize her preferences over the worlds (or outcomes). This is
one of the fundamental aspect of classical decision theory. The logic DR-STIT, as it stands,
has nothing to say about this relationship. In order to overcome this limitation, we plan to
enrich Definition 1 with a preference relation over the worlds for each agent and to extend the
language of DR-STIT by modal operators for preference such as the ones studied in the area
of modal logic of preferences (see, e.g., [38]). This will allow us to formally characterize the
preference relation over the worlds that is implicit in the two examples given in Section 3. As
emphasized in Section 3, we also plan to extend our logic by modal operators for beliefs in
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order to capture forms of influence via belief change or persuasion. The extension of DR-STIT
by modal operators for preference and modal operators for belief will go into the direction of
logics of mental attitudes [13, 28] and of combination of STIT logic with mentalistic concepts
such as knowledge and intention [17, 8].

Another interesting direction of future research is an extension of our analysis of social
influence to the achievement STIT operator of [2]. The interesting aspect of this operator is
that it allows for a fine-grained characterization of the counterfactual dimension of causality in
action. Specifically, the achievement STIT operator is a ‘backward-looking’ operator of agency.
That is, in order to say that agent i is the cause of ' (in the achievement STIT sense), one must
look in the past and check whether agent i had the possibility of making a different choice
resulting in ' to be false now. We believe that the achievement STIT operator as defined by
Belnap & Perloff (or, at least, an approximation of it) can be expressed in our logic DR-STIT, by
combining in the appropriate way the Chellas STIT operator [i stit], the operator of historical
necessity ⇤, and the ‘forward-looking’ and ‘backward-looking’ temporal operators X and Y.

On the technical side, we plan to look at the computational properties of our logic DR-STIT
starting with decidability of the satisfiability problem and then moving to the analysis of the
computational complexities of both model checking and the satisfiability problem.
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A Proof of Theorem 1

Proof.
Proving that the principles given in Figure 5 are sound with respect to the class of Kripke

STIT models with discrete time and rational choices (KDRs for short) is just a routine task.
The proof of completeness requires more work and is divided in four steps.
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From KDRs to standard KDRs. The first step consists in providing a
DR-STIT semantics in terms of standard KDRs (SKDRs for short), that is, tuples of the form
(W,⌘,_,^, {⇠

i

}
i2Agt ,⇠Agt , {RC

i

}
i2Agt ,V) where W,⌘,^,_, {⇠

i

}
i2Agt ,⇠Agt and V

are exactly as in Definition 1 and {RC
i

}
i2Agt is a family of binary relations on W that satisfy

the following three constraints for all i 2 Agt :

(C7) for all w 2 W : if RC
i

(w) 6= ; then RC
i

(w) =⇠
i

(w);

(C8) for all w, v 2 W : if v 2⇠
i

(w) and RC
i

(w) 6= ; then RC
i

(v) 6= ;;

(C9) for all w 2 W : there exists v 2 W such that w ⌘ v and RC
i

(v) 6= ;.

Truth conditions of DR-STIT formulae relative to the class of SKDRs are exactly as the one
in Section 4.2, except the truth condition for [i rstit]' which is as follows:

M,w |= [i rstit]' () 8v 2 RC
i

(w) : M, v |= '

We have that:

Lemma 1 For every formula ' in LDR-STIT(Atm,Agt), ' is satisfiable relative to the class of
KDRs iff it is satisfiable relative to the class of SKDRs.

Proof. ()) Let M = (W,⌘,_,^, {⇠
i

}
i2Agt ,⇠Agt , {RC i

}
i2Agt ,V) be a

KDR and let w be a world in M such that M,w |= '. We define a corresponding structure
M

0 = (W,⌘,_,^, {⇠
i

}
i2Agt ,⇠Agt , {RC

i

}
i2Agt ,V) such that for all i 2 Agt and for all

w, v 2 W , wRC
i

v if and only if w ⇠
i

v and ⇠
i

(w) 2 RC
i

. It is a routine task to verify that
M

0 satisfies the previous Constraints C7, C8 and C9. By induction on the structure of ', it is
easy to check that M 0

, w |= '. The only interesting case is ' = [i rstit] :

M,w |= [i rstit] () IF ⇠
i

(w) 2 RC
i

THEN

8v 2⇠
i

(w) : M, v |=  

() 8v 2 W : IF ⇠
i

(w) 2 RC
i

AND w ⇠
i

v THEN

M, v |=  

() 8v 2 RC
i

(w) : M, v |= '

() M

0
, w |= [i rstit] 

(() Let M = (W,⌘,_,^, {⇠
i

}
i2Agt ,⇠Agt , {RC

i

}
i2Agt ,V) be a SKDR and let w be

a world in M such that M,w |= '. We define a corresponding structure M

0 = (W,⌘,_,^
, {⇠

i

}
i2Agt ,⇠Agt , {RC i

}
i2Agt ,V) such that for all i 2 Agt and for all X ✓ W , X 2 RC

i

if and only if X =⇠
i

(w) for some w 2 W and ⇠
i

(w) = RC
i

(w). It is a routine task
to check that RC

i

is a subset of the partition of W induced by the equivalence relation RC
i

which satisfies Constraint C4 in Definition 1. Moreover, by induction on the structure of ', it
is easy to check that M 0

, w |= '. The only interesting case is ' = [i rstit] :

M,w |= [i rstit] () 8v 2 RC
i

(w) : M, v |=  

() IF ⇠
i

(w) = RC
i

(w) THEN

8v 2⇠
i

(w) : M, v |=  

() IF ⇠
i

(w) 2 RC
i

THEN

8v 2⇠
i

(w) : M, v |=  

() M

0
, w |= [i rstit] 
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From SKDRs to SKDRs with possible cycles. The second step consists in defining a
DR-STIT semantics in terms of standard Kripke STIT models with discrete time, rational
choices and possible cycles (SKDRCs). The latter are like SKDRs except that they do not
necessarily satisfy the Constraint C1 in Definition 1 about the special kind of irreflexivity of
the temporal relation F between moments. We have that:

Lemma 2 For every formula ' in LDR-STIT(Atm,Agt), ' is satisfiable relative to the class of
SKDRs iff it is satisfiable relative to the class of SKDRCs.

Proof. The lemma is provable by showing that, for every SKDRC M , we can build a SKDR
M

0 and define a bounded morphism from M

0 to M [5, Def. 2.12]. In other words, we show
that the Constraint C1 is not modally definable in the logic DR-STIT.

Let us denote sequences of worlds by symbols �,�0
, . . . Given a sequence � and a world

w, we write �.w to denote the sequence obtained by adding w at the end of sequence �. We
consider two types of sequences, namely finite sequences of the form hw1, . . . , wn

i and left-
infinite sequences of the form h. . . , w�2, w�1i. Let FSeq be the set of all finite sequences
and let LISeq be the set of all left-infinite sequences. Given a finite sequence � 2 FSeq , let
length(�) denote the length of �. Moreover, given a finite sequence � 2 FSeq of length n, let
�[k] with 1  k  n denote the element in the k-position of the sequence. Similarly, given a
left-infinite sequence � 2 LISeq , let �[k] with k  �1 denote the element in the k-position
of the sequence. Given a sequence � 2 FSeq [ LISeq , let �[last ] denote the element in the
last position of the sequence. That is, if � = hw1, . . . , wn

i 2 FSeq then �[last ] = w

n

, and if
� = h. . . , w�2, w�1i 2 LISeq then �[last ] = w�1.

Let

Path = {� 2 FSeq |�[k] _ �[k + 1] for 1  k < length(�)} [
{� 2 LISeq |�[k] _ �[k + 1] for k < �1}

be the set of all paths.
Finally, let MPPath be the set of all paths that are maximal in the past, that is, � 2 MPPath

iff � 2 Path \ LISeq or � 2 Path \ FSeq and there is no v such that v ^ �[1].
Let M = (W,⌘,_,^, {⇠

i

}
i2Agt ,⇠Agt , {RC

i

}
i2Agt ,V) be a SKDRC and let w be a

world in M such that M,w |= '.
We transform M into a new model M 0 = (W 0

,⌘0
,_0

,^0
, {⇠0

i

}
i2Agt ,⇠0

Agt ,
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{RC0
i

}
i2Agt ,V 0) where:

W

0 = MPPath

⌘0 = {(�,�0)|�,�0 2 LISeq ,�[last ] ⌘ �

0[last ] and �[k] ⇠Agt �
0[k]

for k < �1} [
{(�,�0)|�,�0 2 FSeq , length(�) = length(�0),�[last ] ⌘ �

0[last ]

and �[k] ⇠Agt �
0[k] for 1  k < length(�)}

_0 = {(�,�0)|�0 = �.w for some w 2 W}
^0 is the inverse relation of _0

⇠0
i

= {(�,�0)|�,�0 2 LISeq ,�[last ] ⇠
i

�

0[last ] and �[k] ⇠Agt �
0[k]

for k < �1} [
{(�,�0)|�,�0 2 FSeq , length(�) = length(�0),�[last ] ⇠

i

�

0[last ]

and �[k] ⇠Agt �
0[k] for 1  k < length(�)}

⇠0
Agt = {(�,�0)|�,�0 2 LISeq and �[k] ⇠Agt �

0[k]

for k  �1} [
{(�,�0)|�,�0 2 FSeq , length(�) = length(�0) and
�[k] ⇠Agt �

0[k] for 1  k  length(�)}
RC0

i

= {(�,�0)|(�,�0) 2⇠0
i

and �[last ]RC
i

�

0[last ]}
p 2 V 0(�) iff p 2 V(�[last ])

We can prove that the mapping f : � 7! �[last] defines a bounded morphism from M

0

to M . It follows from the definition of ⌘0
,_0

,^0
,⇠0

i

,⇠0
Agt and RC0

i

that � ⌘0
�

0 implies
�[last] ⌘ �

0[last], � _0
�

0 implies �[last] _ �

0[last], � ^0
�

0 implies �[last] ^ �

0[last],
� ⇠0

i

�

0 implies �[last] ⇠
i

�

0[last], � ⇠0
Agt �

0 implies �[last] ⇠Agt �
0[last] and �RC0

i

�

0

implies �[last]RC
i

�

0[last]. The other way around, it follows from the definition of _0 that
f(�) _ w implies that there is �0 (viz. �0 = �.w) such that � _0

�

0 and f(�0) = w. It
remains to prove that f(�) ⌘ w implies that there is �0 such that � ⌘0

�

0 and f(�0) = w. This
follows from Constraint C6 in Definition 1. Indeed, we have two possible cases.
CASE 1: � 2 Path \ LISeq . By Constraint C6, it is routine to verify that if �[last] = v and
v ⌘ w then there is �0 2 LISeq such that �0[last] = w and �[k] ⇠0

Agt �
0[k] for all k < �1.

CASE 2: � 2 Path \ FSeq . By Constraint C6, it is routine to verify that if �[last] = v

and v ⌘ w then there is �0 2 LISeq such that �0[last] = w, length(�) = length(�0) and
�[k] ⇠0

Agt �
0[k] for all 1  k < length(�).

In a similar way we can prove that:

• f(�) ⇠
i

w implies that there is �0 such that � ⇠0
i

�

0 and f(�0) = w,

• f(�) ⇠Agt w implies that there is �0 such that � ⇠0
Agt �

0 and f(�0) = w,

• f(�)RC
i

w implies that there is �0 such that �RC0
i

�

0 and f(�0) = w.

It is also a routine task to verify that M 0 is a SKDR.
As f is a bounded morphism it holds that M,w |= ' if and only if M

0
,� |= ' when

�[last ] = w. Thus, M 0
,� |= ' for all � such that �[last ] = w since M,w |= '.
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From SKDRCs to superadditive SKDRCs. The third step consists in introducing a
DR-STIT semantics in terms of superadditive SKDRCs. The only difference between SKDRCs
and superadditive SKDRCs is that in the latter the Constraint C5 in Definition 1 is replaced by
the following weaker Constraint C5⇤:

(C5⇤) for all w 2 W : ⇠Agt (w) ✓
T

i2Agt ⇠i

(w).

We prove that:

Lemma 3 For every formula ' in LDR-STIT(Atm,Agt), ' is satisfiable relative to the class of
SKDRCs iff it is satisfiable relative to the class of superadditive SKDRCs.

Proof. The lemma is provable by showing that, for every superadditive SKDRC M , we can
build a SKDRC M

0 and define a bounded morphism from M

0 to M . In other words, we show
that the direction ⇠Agt (w) ◆

T
i2Agt ⇠i

(w) of the Constraint C5 is not modally definable in
the logic DR-STIT. A similar technique is used in [24, Lemma 1].

Let M = (W,⌘,_,^, {⇠
i

}
i2Agt ,⇠Agt , {RC

i

}
i2Agt ,V) be a superadditive SKDRC and

let w be a world in M such that M,w |= '.
For every i 2 Agt let

�
i

= {⇠
i

(w)|w 2 W}

be the partition of W induced by the equivalence class ⇠
i

. Elements of �
i

are called i’s
choices. Moreover, let the elements of

Q
i2Agt �i

be denoted by �, �0, . . . and let �
i

denote the
element in the vector � corresponding to the agent i. Let

� = {� 2
Y

i2Agt

�
i

|
\

i2Agt

�

i

6= ;}

be the set of collective choices.10 For notational convenience, we write �w to denote the collec-
tive choice in � that includes the world w. That is, �w is the collective choice in � such that
w 2

T
i2Agt �

w

i

.
For every � 2 �, let

�
�

= {⇠Agt (w)|w 2
\

i2Agt

�

i

}

be the set of ⇠Agt -equivalence classes that are included in
T

i2Agt �i. For every � 2 �, let

k

�

: [1, . . . , card(�
�

)] �! �
�

be a bijection associating every integer between 1 and card(�
�

) to a unique element of �
�

. In
the sequel we write �n

�

to indicate the element k
�

(n) for every 1  n  card(�
�

).
For every w 2 W let

TC
w

= {� 2 �|9v 2
\

i2Agt

�

i

such that v 2 T (w)}

10Note that this collective choice is unique because every �i is an equivalence class.
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be the set of collective choices that are temporally related with w, with T (w) = P(w)[ {w}[
F(w). Moreover, let

PC
w

= {� 2 �|9v 2
\

i2Agt

�

i

such that v 2 P(w)}

be the set of collective choices that are in the past of w. Finally, let

FC
w

= {� 2 �|9v 2
\

i2Agt

�

i

such that v 2 F(w)}

be the set of collective choices that are in the future of w.
Let ⇤

w

be the set of all total functions f : TC
w

�! Zn that satisfy the following constraint
C

f

:

(C
f

) if f(�
w

) = �!
x then w 2 �

⌃
x

i

2{x1,...,x

n

}xi

�

w

where Z is the set of integers and �!
x = hx1, . . . , xn

i. We write f
i

(�) to denote the i-element in
the vector f(�), with 1  i  n.

By the Constraint C6 in Definition 1 and the previous Constraint C
f

, it is easy to prove that:

(A) if f 2 ⇤
w

and w ⌘ v then there exists f 0 2 ⇤
v

such that, for all � 2 PC
w

, f 0(�) = f(�).

Moreover, by the previous Constraint C
f

, it is easy to prove that:

(B) if f 2 ⇤
w

and v 2 T (w) then there exists f

0 2 ⇤
v

such that, for all � 2 TC
w

,
f

0(�) = f(�).

We are now able to transform the model M into a new model M 0 = (W 0
,⌘0

,_0
,^0

, {⇠0
i

}
i2Agt ,⇠0

Agt , {RC0
i

}
i2Agt ,V 0) where:

W

0 = {w
f

|w 2 W and f 2 ⇤
w

}
w

f

⌘0
v

f

0 iff w ⌘ v and f(�) = f

0(�) for all � 2 PC
w

w

f

_0
v

f

0 iff w _ v and f(�) = f

0(�) for all � 2 TC
w

^0 is the inverse relation of _0

w

f

⇠0
i

v

f

0 iff �

w

i

= �

v

i

, f

i

(�w) = f

0
i

(�v) and f(�) = f

0(�) for all � 2 PC
w

w

f

⇠0
Agt vf 0 iff �

w = �

v

, f(�w) = f

0(�v) and f(�) = f

0(�) for all � 2 PC
w

w

f

RC0
i

v

f

0 iff w

f

⇠0
i

v

f

0 and wRC
i

v

V 0(w
f

) = V(w)

It is a routine task to check that the mapping g : w
f

7! w defines a bounded morphism from
M

0 to M . Indeed, it follows from the definitions of ⌘0, _0, ^0, ⇠0
i

, ⇠0
Agt and RC0

i

that for all
w

f

, v

f

0 2 W

0:

• w

f

⌘0
v

f

0 implies w ⌘ v;

• w

f

_0
v

f

0 implies w _ v;
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• w

f

^0
v

f

0 implies w ^ v.

• w

f

⇠0
i

v

f

0 implies w ⇠
i

v;

• w

f

⇠0
Agt vf 0 implies w ⇠Agt v;

• w

f

RC0
i

v

f

0 implies wRC
i

v;

For instance, suppose that w
f

⇠0
i

v

f

0 . By definition of ⇠0
i

the latter implies that �w
i

= �

v

i

,
w 2 �

w

i

and v 2 �

v

i

. The latter implies that w ⇠
i

v.
Now, suppose that w

f

⇠0
Agt v

f

0 . This implies that �w = �

v and f(�w) = f

0(�v). By the
preceding Constraint C

f

, it follows that w, v 2 �f1(�
w)+...+f

n

(�w)
�

w

. Thus, w ⇠Agt v.
The other way around we have that:

• if g(w
f

) ⌘ v then there is v
f

0 such that w
f

⌘0
v

f

0 ;

• if g(w
f

) _ v then there is v
f

0 such that w
f

_0
v

f

0 ;

• if g(w
f

) ^ v then there is v
f

0 such that w
f

^0
v

f

0 ;

• if g(w
f

) ⇠
i

v then there is v
f

0 such that w
f

⇠0
i

v

f

0 ;

• if g(w
f

) ⇠Agt v then there is v
f

0 such that w
f

⇠0
Agt vf 0 ;

• if f(w
f

)RC
i

v then there is v
f

0 such that w
f

RC0
i

v

f

0 .

The first item and the last item are trivial and we do not prove it here. Let us prove the
second, third, fourth and fifth items.

Suppose that w
f

2 W

0 and f(w
f

) _ v. This implies that w _ v. It follows that w
f

_0
v

f

0

where the function f

0 is such that, for all � 2 TC
w

, f 0(�) = f(�). This function f

0 is
guaranteed to exist because of the observation (B) above. Thus, w

f

_0
v

f

0 .
Suppose that w

f

2 W

0 and f(w
f

) ^ v. This implies that w ^ v which is equivalent
to v _ w. It follows that v

f

0 _0
w

f

where the function f

0 is such that, for all � 2 TC
v

,
f(�) = f

0(�). This function f

0 is guaranteed to exist because of the observation (B) above.
Thus, w

f

^0
v

f

0 .
Suppose that w

f

2 W

0 and f(w
f

) ⇠
i

v. This implies that w ⇠
i

v. Therefore, ⇠
i

(w) =⇠
i

(v) as ⇠
i

is an equivalence relation. Hence, �v
i

= �

w

i

. It follows that w
f

⇠0
i

v

f

0 where the
function f

0 is defined as follows: (i) f 0
i

(�v) = f

i

(�w) and all f 0
j

(�v) with j 6= i are such that

v 2 �
f

0
1(�

v)+...+f

0
n

(�v)
�

v

, (ii) for all � 2 PC
v

, f 0(�) = f(�), (iii) for all � 2 FC
v

, f 0(�) is
arbitrarily defined. This function f

0 is guaranteed to exist because of the observation (A) above
and the fact that ⇠

i

✓⌘.
Finally, suppose that w

f

2 W

0 and f(w
f

) ⇠Agt v. This implies that w ⇠Agt v. Therefore,
⇠Agt (w) =⇠Agt (v) as ⇠Agt is an equivalence relation. Hence, �v = �

w. It follows that
w

f

⇠0
Agt v

f

0 where the function f

0 is defined as follows: (i) f

0(�v) = f(�w), (ii) for all
� 2 PC

v

, f 0(�) = f(�), (iii) for all � 2 FC
v

, f 0(�) is arbitrarily defined. This function f

0 is
guaranteed to exist because of the observation (A) above and the fact that ⇠Agt✓⌘.

It is also a routine task to verify that M 0 is a SKDRC.
As g is a bounded morphism it holds that M,w |= ' if and only if M 0

, w

f

|= '. Thus,
M

0
, w

f

|= ' for all w
f

2 W

0 since M,w |= '.

Completeness wrt superadditive SKDRCs. The fourth step consists in proving the fol-
lowing lemma:
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Lemma 4 The set of DR-STIT formulae that are valid in the class of superadditive SKDRCs is
completely axiomatized by the principles given in Figure 5.

Proof. it is a routine task to check that all principles in Figure 5 correspond one-to-one to their
semantic counterparts on the class of superadditive SKDRCs. This can for instance easily be
found using the algorithm SQEMA [14]. In particular, S5(⇤), S5([i stit]) and S5([Agt stit])
correspond to the fact that ⌘, ⇠

i

and ⇠Agt are equivalence relations, respectively. KD(X) cor-
responds to the fact that _ is a serial relation, while (AltX) to the fact that _ is deterministic.
K(Y) together with (ConvX,Y) and (ConvY,X) correspond to the fact that ^ is the inverse
relation of _ and (AltY) to the fact that ^ is deterministic. Finally, (Rel⇤,[i stit]), (AIA),
(Rel[i rstit],[i stit]), (RatCh), (OneRat), (Rel[i stit],[Agt stit]) and (NCUH), correspond to the
Constraints C2, C3, C7, C8, C9, C5⇤ and C6, respectively.

Moreover, it is routine, too, to check that all principles given in Figure 5 are in the so-called
Sahlqvist class. This means that they are complete with respect to the defined model classes,
cf. [5, Th. 2.42].

Theorem 1 is a consequence of Lemma 1, Lemma 2, Lemma 3 and Lemma 4.
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The aim of this work is to propose a logical framework for the specification of cognitive
emotions that are based on counterfactual reasoning about agents’ choices. The prototypical
counterfactual emotion is regret. In order to meet this objective, we exploit the well-known
STIT logic (Belnap et al. (2001) [9], Horty (2001) [30], Horty and Belnap (1995) [31]). STIT
logic has been proposed in the domain of formal philosophy in the nineties and, more
recently, it has been imported into the field of theoretical computer science where its
formal relationships with other logics for multi-agent systems such as ATL and Coalition
Logic (CL) have been studied. STIT is a very suitable formalism to reason about choices and
capabilities of agents and groups of agents. Unfortunately, the version of STIT with agents
and groups has been recently proved to be undecidable and not finitely axiomatizable. In
this work we study a decidable and finitely axiomatizable fragment of STIT with agents
and groups which is sufficiently expressive for our purpose of formalizing counterfactual
emotions. We call df STIT our STIT fragment. After having extended df STIT with knowledge
modalities, in the second part of article, we exploit it in order to formalize four types
of counterfactual emotions: regret, rejoicing, disappointment, and elation. At the end of
the article we present an application of our formalization of counterfactual emotions to a
concrete example.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A major objective of AI is to develop interactive cognitive systems which are more attractive and closer to the users and
that can be considered as believable interlocutors [8]. In this perspective, a challenge for AI is to build artificial agents which
are capable of: reasoning about emotions, showing their affective states and personalities, ascribing emotions to humans,
predicting the effects of their actions on emotions of humans, and adapting their behaviors accordingly. With the aim of
creating a new generation of emotional interaction systems, the study of affective phenomena has become a “hot” topic in
AI where the domain of Affective Computing [44] has emerged in the last few years.

Recently, some researchers have been interested in developing logical frameworks for the formal analysis of emotions
(see, e.g., [39,40,58,20]). Their main concern is to exploit logical methods in order to provide a rigorous specification of
how emotions should be implemented in an artificial agent. The design of agent-based systems where agents are capable of
reasoning about and of displaying some kind of emotions can indeed benefit from the accuracy of logical methods. These
logical frameworks for the specification of emotions are based on the so-called BDI logics (see e.g. [17,41]). BDI logics allow
to model agents’ mental states such as beliefs, desires, intentions, ideals, values, etc., which are the cognitive constituents
of emotions.

✩ This work is an extended and improved version of the article “A logic for reasoning about counterfactual emotions” appeared in the Proceedings of the
Twenty-first International Joint Conference on Artificial Intelligence (IJCAI’09), pp. 867–872.
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Although the application of logical methods to the formal specification of emotions has been quite successful, there is
still much work to be done in the field of computational and logical modeling of ‘counterfactual emotions’. In line with
psychological theories of ‘counterfactual emotions’, we use this term to denote those emotions such as regret which arise
during ‘counterfactual thinking’, that is, when “[. . . ] reality is compared to an imagined view of what might have been” [33,
p. 136]. In other terms, counterfactual emotions are based on an agent’s alteration of a factual situation and in the agent’s
imagination of an alternative situation that could have realized if something different was done [49].

The aim of our work is to advance the state of the art on computational modeling of affective phenomena by providing
a logic which supports reasoning about this kind of emotions. Our major concern here is to find a fair trade off between
expressivity and complexity of the formalism. We want a logic which is sufficiently expressive to capture the fundamental
constituents of counterfactual emotions and, at the same time, with good mathematical properties in terms of decidability
and complexity. To this aim, we exploit a well-known logic called STIT [9,30]. STIT logic has been proposed in the domain
of formal philosophy in the nineties and, more recently, it has been imported into the field of theoretical computer science
where its formal relationships with other logics for multi-agent systems have been studied (see, e.g., [12]). It is a very
suitable formalism to reason about counterfactual choices of agents and of groups. Unfortunately, the version of STIT with
agents and groups proposed by Horty [30] has been recently proved to be undecidable and not finitely axiomatizable [29].
In this work we study a decidable and finitely axiomatizable fragment of this logic which is sufficiently expressive for our
purpose of formalizing counterfactual emotions.

The paper is organized as follows. In Section 2 we introduce one of the most influential research approach to emotions:
appraisal theory. We provide a general overview of existing models of emotions proposed in this area by devoting spe-
cial attention to appraisal models of counterfactual emotions. We discuss how counterfactual emotions such as regret and
disappointment are defined in these models.

Section 3 is the first step in developing a representation language for the formalization of counterfactual emotions. We
introduce a fragment of the version of STIT logic with agents and groups proposed by Horty [30]. We call df STIT our STIT
fragment. Differently from Horty’s logic, we prove that our fragment is decidable and finitely axiomatizable.

In Section 4, we exploit the STIT fragment df STIT in order to formalize counterfactual statements of the form “group J
(or agent i) could have prevented χ to be true”. These statements are indeed basic constituents of counterfactual emotions
and will be fundamental for the formalization of counterfactual emotions given in Section 6.

In Section 5, we extend the STIT fragment df STIT studied in Section 3 with knowledge operators. This is a necessary
step in order to capture the subjective dimension of the affective phenomena we intend to analyze in our work. We provide
decidability results and a complete axiomatization for our epistemic extension of df STIT. We decided to present first the
STIT fragment without knowledge and then the extension with knowledge operators rather than to present a direct version
of a STIT fragment with knowledge operators for several reasons. The first one is because the STIT fragment without
knowledge studied in Section 3 is interesting in itself since it already allows to express counterfactual statements which are
an interesting component of counterfactual emotions. The second one is because the proof of decidability and the proof of
completeness of the STIT fragment with knowledge become much simpler after having studied the STIT fragment without
knowledge.

In Section 6, the logical framework of Section 5, is finally applied to the formalization of counterfactual emotions. We
provide a formalization of four types of counterfactual emotions: regret and its positive counterpart rejoicing, disappointment
and its positive counterpart elation. The formal definitions of these four emotions will be based on the psychological models
of counterfactual emotions discussed in Section 2. Section 7 presents an application of our logical formalization of counter-
factual emotions to a concrete example. Before concluding we discuss in Section 8 some related works in the area of logical
modeling of emotions and affective agents.

Proofs of the main theorems are collected in the annex at the end of the article.

2. Emotion theories

Our general objective in this work is to provide a formal model of emotions which can be used as an abstract speci-
fication for the design of artificial agents interacting with humans. To ensure the accuracy of a such a formal model, it is
important to consider how emotions have been defined in the psychological literature. Indeed, in order to build artificial
agents with the capability of recognizing the emotions of a human user, of anticipating the emotional effects of their actions
on the human, of affecting the user’s emotions by the performance of actions directed to his emotions (e.g. actions aimed
at reducing the human’s stress due to his negative emotions, actions aimed at inducing positive emotions in the human),
we must endow such agents with an adequate model of human emotions.

There exist several theoretical approaches to emotions in psychology. We here consider one of the most influential called
appraisal theory (see [53] for a broad introduction to the developments in appraisal theory).

In Section 2.1, we provide a general introduction to appraisal theory by reviewing some of the most popular models
proposed in this area. Then, in Section 2.2, we will focus on appraisal models of counterfactual emotions and of regret
in particular. This section will provide the conceptual basis for the formalization of counterfactual emotions proposed in
Section 6.
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2.1. Appraisal models of emotions

Appraisal theory has emphasized the strong relationship between emotion and cognition, by stating that each emotion
can be related to specific patterns of evaluations and interpretations of events, situations or objects (appraisal patterns)
based on a number of dimensions or criteria called appraisal variables (e.g. goal relevance, desirability, likelihood, causal
attribution). Appraisal variables are directly related to the mental attitudes of the individual (e.g. beliefs, predictions, desires,
goals, intentions). For instance, when prospecting the possibility of winning a lottery and considering ‘I win the lottery’ as
a desirable event, an agent might feel an intense hope. When prospecting the possibility of catching the H1N1 flu and
considering ‘I catch the H1N1 flu’ as an undesirable event, an agent might feel an intense fear.

It is worth noting that most appraisal models of emotions assume that explicit evaluations based on evaluative beliefs
(i.e. the belief that a certain event is good or bad, pleasant or unpleasant, dangerous or frustrating) are a necessary con-
stituent of emotional experience. On the other hand, there are some appraisal models mostly promoted by philosophers
[55,26] in which emotions are reduced to specific combinations of beliefs and desires, and in which the link between cog-
nition and emotion is not necessarily mediated by evaluative beliefs. Reisenzein [47] calls cognitive-evaluative the former
and cognitive-motivational the latter kind of models. For example, according to cognitive-motivational models of emotions,
a person’s happiness about a certain fact χ can be reduced to the person’s belief that χ obtains and the person’s desire
that χ obtains. On the contrary, according to cognitive-evaluative models, a person feels happy about a certain fact χ if she
believes that χ obtains and she evaluates χ to be good (desirable) for her. In the present work, we stay closer to cognitive-
evaluative models. In fact, we suppose that an agent’s positive (resp. negative) emotion requires the agent’s (evaluative)
belief that a certain event, situation or object is good (resp. bad) for her. For example, according to the formalization of
rejoicing we will propose in Section 6, if an agent rejoices for a certain event χ then he believes that χ is something good
for him.

Now let us provide a more comprehensive overview of the research in appraisal theory by briefly discussing some of the
most important models of emotions in this area.

Lazarus’s model. Lazarus [56,36] distinguishes primary appraisal from secondary appraisal. These two kinds of appraisal are
not sequential: they can be executed in any order. During primary appraisal a person assesses the relevance and congruence
of an event with respect to her desires and goals, that is, she evaluates whether an event helps or threatens the achievement
of her goals and/or the satisfaction of her desires. During secondary appraisal, the person evaluates available capabilities and
resources to cope with a certain event. For instance, after feeling an intense fear because of the belief that the undesirable
event ‘I catch the H1N1 flu’ will probably occur, an agent might consider whether to get vaccinated against the H1N1 flu in
order to reduce his risks.1

Scherer’s model. In Scherer’s model [52], the appraisal process is conceived as a sequence of processing levels of a given
stimulus (Stimulus Evaluation Checks) which underlies the assessment of the significance of the stimulus for an individual.
In particular, according to Scherer’s model, an event is sequentially evaluated through the following four steps: relevance
detection (i.e. whether the event is novel and important with respect to the momentary goals of the individual), implication
assessment (i.e. whether the event will further or endanger the individual’s attainment of his goals), coping potential determi-
nation (i.e. whether the individual can cope with the expected consequences of the event), normative significance evaluation
(i.e. whether the event is significant with respect to the individual’s ideals and values). Contrarily to Lazarus’s model, in
Scherer’s model the different stages of the appraisal process are sequential.

Roseman’s model. Roseman’s appraisal model [50,51] distinguishes seven appraisal dimensions that were found to differenti-
ate a large number of emotions: unexpectedness, situational state, motivational state, probability, control potential, problem
source and agency. In Roseman’s model, unexpectedness refers to whether an event is expected or unexpected by a person,
and situational state refers to whether the event is wanted or unwanted by the person. Motivational state refers to whether
the person assesses that the event has positive or negative implications on her goals, and probability refers to whether the
person thinks that the occurrence of the event is merely possible/probable or is definite. Control potential refers to whether
the person thinks she can cope with the event, and problem source refers to whether the event is unwanted by the per-
son because she thinks that it blocks attainment of her goals or because of some inherent characteristic. Finally, agency
refers to the person’s evaluation of the cause of the event (i.e. whether it was caused by the self, by someone else, or by
circumstances beyond anyone’s control).

OCC model. According to Ortony, Clore and Collins’s model (OCC model) [42], emotion arises from valenced (a dimension
ranging from positive to negative) reactions to consequences of events, actions of agents, or aspects of objects. In the
OCC model, the consequence of an event can be appraised as pleased or displeased. A person can be focused either on the

1 Lazarus also distinguishes appraisal from coping. Coping is the process of dealing with emotion, either externally by forming an intention to act in the
world or internally by changing the agent’s interpretation of the situation (e.g. by changing beliefs, shifting attention, shifting responsibility). Indeed, to
discharge a certain emotion, an agent has to modify those mental attitudes that sustain her emotional state.
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consequences of an event for the self or on the consequences for another person. For example, if the person is focused
on the self, she will feel hope when the consequences of the event are desirable for her, and she will feel fear when the
consequences of the event are undesirable for her. In the OCC model the action of an agent can be approved or disapproved.
A person can be focused either on her actions or on the actions of another agent. For example, if the person is focused
on another agent’s action, she will fell admiration when she approves this action, and she will feel reproach when she
disapproves it. Finally, the aspects of an object can be liked or disliked. If a person likes the aspects of an object she will feel
love. She will feel hate if she dislikes them.

Frijda’s model. In Frijda’s model [22] appraisal is defined as a sequence of evaluation steps determining the characteristics
of a given stimulus: causes and consequences of the event, relevance and congruence with respect to current goals and in-
terests, coping possibilities, and urgency. However, this model considers not only the appraisal patterns of different emotion
types, but also the action tendencies induced by emotions. According to Frijda, actions tendencies are [22, p. 75] “. . . states
of readiness to achieve or maintain a given kind of relationship with the environment. They can be conceived of as plans or
programs to achieve such ends, which are put in a state of readiness.” For example, the action tendency associated to fear
is escape. After a stimulus has been evaluated according to the previous appraisal dimensions, an action tendency is then
created that induces physiological changes, and finally an action is selected and executed.2

2.2. Appraisal models of counterfactual emotions

Regret is the prototypical counterfactual emotion which has been widely investigated in psychology and in the field of
decision theory in economics. Most authors (see, e.g., [37,59,48,33,32,71]) agree in considering regret as “. . . a negative,
cognitively determined emotion that we experience when realizing or imagining that our present situation would have
been better, had we acted differently” [71, p. 255]. In other words, regret stems from the comparison between the actual
outcome deriving from a given choice and a counterfactual better outcome that might have been had one chosen a different
action. Such a definition highlights the strong connection between decision-making and regret: broadly speaking, regret can
be conceived as an emotion originating from a person’s perception of her ‘bad decision’. From this perspective, a sense
responsibility for a bad outcome has been often considered a specific characteristic of the phenomenology of regret, that is,
the more a decision maker perceives himself to be responsible for a negative outcome, the more regret he experiences [23].3

This aspect clearly distinguishes regret from disappointment. According to some economists [38] and to some psycholo-
gists [19,70], disappointment too is part of the family of counterfactual emotions. But, although regret and disappointment
both originate from the comparison between the actual outcome and a counterfactual outcome that might have occurred,
disappointment follows from the comparison between the actual outcome and a counterfactual better outcome that might
have been had a different state of the world occurred. That is, while regret is related to a sense of responsibility and in-
volves an internal attribution of the cause of a bad outcome (i.e. when feeling regret a person considers her own choices to
be the cause of a bad outcome), disappointment is related to external attribution (i.e. when feeling disappointed a person
considers external events to be the cause of a bad outcome).

The positive counterparts of regret and disappointment have also been considered in the psychological literature (see,
e.g., [68,69]). The former is called rejoicing, while the latter is called elation. Broadly speaking, one can say that while
rejoicing stems from the comparison between the actual outcome deriving from a given choice and a counterfactual worst
outcome that might have been had one chosen a different action, elation follows from the comparison between the actual
outcome and a counterfactual worst outcome that might have been had a different state of the world occurred.

The next Section 3 is our first step in the development of a formal representation language for modeling counterfactual
emotions. We study a decidable fragment of STIT logic with groups of agents proposed by Horty [30], and we give an
axiomatization of it. STIT is indeed a suitable framework for expressing counterfactual statements about actions and choices
of the form “group J (or agent i) could have prevented a certain state of affairs χ to be true now”. Such statements are
fundamental building blocks for an analysis of counterfactual emotions.

3. A decidable and finitely axiomatizable fragment of STIT

The logic STIT (“Seeing to it that”) is a modal logic framework dealing with what agents and groups of agents do and can
do. More precisely, STIT supports reasoning about the effects of actions of agents and groups, and about the capabilities of
agents and groups to ensure certain outcomes. In [9], the language of STIT with individuals but without groups is studied:
Belnap et al. introduce constructions of the form [i stit : ϕ] to be read “agent i sees to it that ϕ” or “agent i brings it about
that ϕ”. They give a complete axiomatization of STIT without groups and prove that the logic is decidable. The extension of

2 According to Lazarus [36], there is an important difference between action tendencies and coping strategies. While the former are innately programmed
unconscious reflexes and routines, the latter are the product of a conscious deliberation process.

3 Compared to the large number of authors relating regret with responsibility for a bad outcome, there are very few authors who separate the two
concepts. According to [60,57] for instance, one can be regretful also for events that are partially or totally beyond one’s own control or for choices for
which there was no alternative. However, we here adopt the definition of regret shared by the majority of authors emphasizing the link between regret
and responsibility.



818 E. Lorini, F. Schwarzentruber / Artificial Intelligence 175 (2011) 814–847

STIT with groups has been proposed by Horty in [30]: it deals with constructions of the form [ J stit : ϕ] to be read “group
J sees to it that ϕ”. For notational convenience, we write here [ J ]ϕ instead of [ J stit : ϕ]. Unfortunately, in [29] Horty’s
STIT logic has been proved to be undecidable and unaxiomatizable (with a finite number of axioms schemas, necessitation
rules and modus ponens).

We here introduce a decidable and axiomatizable fragment of STIT with agents and groups called df STIT which is
sufficiently expressive to formalize counterfactual emotions. First, in Section 3.1, we recall the syntax of STIT and define the
syntactic fragment df STIT. In Section 3.2, we recall definition of models of the logic STIT. Then, in Section 3.3, we recall
the logic NCL (Normal Coalition Logic) [5,61,54]. The logic NCL shares the same syntax with STIT and its semantics looks
like the semantics of STIT. Nevertheless, NCL is axiomatizable. The logic NCL will be a key point to prove the decidability
of the STIT fragment df STIT and to give a complete axiomatization of df STIT (Section 3.4).

3.1. Syntax

Let n be a strictly positive integer. Let ATM be a countable set of atomic propositions and let AGT = {1, . . . ,n} be a
finite set of agents. The language LSTIT of the logic STIT with agents and groups proposed by Horty [30] is defined by the
following BNF:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | [ J ]ϕ
where p ranges over ATM and J over 2AGT . ⟨ J ⟩ϕ is an abbreviation of ¬[ J ]¬ϕ . Operators of type [ J ] are used to describe
the effects of the action that has been chosen by J . If J is a singleton we refer to J as an agent, whereas if J has more
than one element we refer to J as a group. In Belnap et al.’s STIT, an agent i’s action is described in terms of the result
that agent i brings about by his acting. For example, i’s action of killing another agent j is described by the fact that i sees
to it that j is dead. In Horty’s STIT with agents and groups we can make a distinction between individual actions of agents
and joint actions of groups. The joint action of a group J is described in terms of the result that the agents in J bring about
by acting together.

If J has more than one element the construction [ J ]ϕ means “group J sees to it that ϕ no matter what the other
agents in AGT \ J do”. If J is a singleton {i} the construction [{i}]ϕ means “agent i sees to it that ϕ no matter what
the other agents in AGT \ {i} do”. For notational convenience, we write [i] instead of [{i}]. [∅]ϕ can be shorten to “ϕ is
necessarily true”. The operator [∅] is exactly the historic necessity operator already present in the individual STIT logic [9].
The dual expression ⟨∅⟩ϕ means “ϕ is possibly true”. Note that the operators ⟨∅⟩ and [ J ] can be combined in order to
express what agents and groups can do: ⟨∅⟩[ J ]ϕ means “ J can see to it that ϕ no matter what the other agents in AGT \ J
do”.

Here we are interested in a fragment of LSTIT we call Ldf STIT . It is defined by the following BNF:

χ ::= ⊥ | p | χ ∧ χ | ¬χ (propositional formulas)

ψ ::= [ J ]χ | ψ ∧ ψ (see-to-it formulas)

ϕ ::= χ | ψ | ϕ ∧ ϕ | ¬ϕ | ⟨∅⟩ψ (see-to-it and “can” formulas)

where p ranges over ATM and J over 2AGT \ {∅}.
Ldf STIT is a syntactic restriction of LSTIT . We have Ldf STIT ⊆ LSTIT but LSTIT ! Ldf STIT . For instance, [1][{1,2}]p is in

LSTIT but is not in Ldf STIT .

3.2. Models

We give two semantics of STIT. It is proved in [29] that these two semantics are equivalent. The first one corresponds to
the original semantics of STIT with agents and groups proposed by Horty [30]. The other one is based on the product logic
S5n [24] and will be used in Section 3.4 in order to characterize the satisfiability of a df STIT-formula. Let us first recall the
original semantics of STIT.

Definition 1 (STIT-model). A STIT-model is a tuple M = (W , {R J } J⊆AGT , V ) where:

• W is a non-empty set of possible worlds or states;
• For all J ⊆ AGT , R J is an equivalence relation over W such that:

1. R J ⊆ R∅;
2. R J = ⋂

j∈ J R{ j};
3. for all w ∈ W , for all (w j) j∈AGT ∈ R∅(w)n ,

⋂
j∈AGT R{ j}(w j) ≠ ∅;

4. RAGT = idW .
• V is a valuation function, that is, V : W → 2ATM .
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As in the previous Constraint 3, it is convenient to view relations on W as functions from W to 2W , that is, for every
J ∈ 2AGT , we define R J (w) = {v ∈ W | w R J v}.

R J (w) is the set of outcomes that is forced by group J ’s action at world w , that is, at world w group J forces the world
to be in some state of R J (w). Hence, if v ∈ R J (w) then v is an outcome that is admitted by group J ’s action at world w .

Note that if v is admitted by group J ’s action at world w (i.e. v ∈ R J (w)) then this means that, given what the agents
in J have chosen at w , there exists a joint action of the agents in AGT \ J such that, if the agents in AGT \ J did choose this
joint action, v would be the actual outcome of the joint action of all agents.

We recall that R∅ is the relation over all possible outcomes: if w is the current world and w R∅v then v is a possible
outcome at w . Thus, Constraint 1 on STIT models just means that the set of outcomes that is forced by J ’s action is a subset
of the set of possible outcomes. Constraint 2 just says that the set of outcomes that is forced by J ’s joint action at a world
w is equal to the pointwise intersection of the sets of outcomes that are forced by the individual actions of the agents in J
at w . Constraint 3 expresses a so-called assumption of independence of agents: if w1, . . . , wn are possible outcomes at w then
the intersection of the set of outcomes that is forced by agent 1’s action at w1, and the set of outcomes that is forced by
agent 2’s action at w2, . . . , and the set of outcomes that is forced by agent n’s action at wn is not empty. More intuitively,
this means that agents can never be deprived of choices due to the choices made by other agents. Constraint 4 expresses
an assumption of determinism: the set of outcomes that is forced by the joint action of all agents is a singleton that is to
say we have RAGT(w) = {w} for all w ∈ W .

Truth conditions for atomic formulas and the boolean operators are entirely standard. For every J ∈ 2AGT , the truth
conditions of the modal operators [ J ] are classically defined by:

M, w |+ [ J ]ϕ iff M, v |+ ϕ for all v ∈ W such that w R J v.

The alternative semantics of STIT is based on the product logic S5n . It is defined as follows:

Definition 2 (product STIT-model). A product STIT-model is a tuple M = (W , V ) where:

• W = W1 × · · · × Wn where W i are non-empty sets of worlds or states;
• V is a valuation function, that is, V : W → 2ATM .

Truth conditions for atomic formulas and the boolean operators are also entirely standard. The truth conditions for the
modal operators [ J ] in product STIT-models are:

M, (w1, . . . , wn) |+ [ J ]ϕ iff M, (v1, . . . , vn) |+ ϕ for all (v1, . . . , vn) ∈ W such that v j = w j if j ∈ J .

Now let us just recall the notion of validity and satisfiability in STIT. As there is an equivalence between a STIT-model
and a product STIT-model as proved by [29], we can define those notions either with respect to STIT-models or with
respect to product STIT-models. A formula ϕ is STIT-valid (noted |+STIT ϕ) if and only if ϕ is true in every world of every
STIT-model. Or, equivalently, a formula ϕ is STIT-valid if and only if ϕ is true in every world of every product STIT-
model. A formula ϕ is STIT-satisfiable if and only if there exists a STIT-model M = (W , {R J } J⊆AGT , V ) and a point w ∈ W
such that M, w |+ ϕ . Or, equivalently, a formula ϕ is STIT-satisfiable if and only if there exists a product STIT-model
M = (W , V ) and a point (w1, . . . , wn) ∈ W such that M, (w1, . . . , wn) |+ ϕ .

3.3. The NCL logic

Unfortunately, STIT with agents and groups is not axiomatizable. Nevertheless, there exists an axiomatizable logic which
is very close to STIT. This logic is the fragment of Normal Coalition Logic (NCL) [5,61,54,13] in which we do not deal with
the next operator. Normal Coalition Logic was originally proposed in order to embed non-normal Coalition Logic CL [43]
into a normal modal logic. This embedding uses a general technique developed by [25]. The reader can find more details
about this specific embedding in [5,61,13]. As CL, NCL is axiomatizable and decidable.

Below we show that the fragment of Normal Coalition Logic without time axiomatizes the set of validities in the fragment
Ldf STIT of STIT. Moreover, we prove our central characterization theorem of a STIT-satisfiable formula of the fragment
Ldf STIT by using the Normal Coalition Logic without time. In rest of the paper, when we write NCL we refer to the fragment
of Normal Coalition Logic with the operators of group action [ J ] and without the next operator.

3.3.1. Definition
We start by giving the definition of the logic NCL. Concerning the syntax, as here we do not deal with the next operator,

the language of NCL-formulas is the same as the language of STIT-formulas, that is to say, LNCL = LSTIT . Concerning the
semantics, here is the definition of a NCL-model:

Definition 3 (NCL-model). A NCL-model is a tuple M = (W , R, V ) where:

• W is a non-empty set of worlds or states;
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• R is a collection of equivalence relations R J (one for every coalition J ⊆ AGT) such that:
1. R J1∪ J2 ⊆ R J1 ∩ R J2 ;
2. R∅ ⊆ R J ◦ RAGT\ J ;
3. RAGT = IdW .

• V : W → 2ATM is a valuation function.

As in Definition 1, R J (w) represents the set of outcomes that is forced by group J ’s action at world w , and if v ∈ R J (w)
then v is an outcome that is admitted by group J ’s action at world w . Hence, Constraint 1 says that if v is admitted by
group J1 ∪ J2’s action at w , then v is admitted by group J1’s action and by group J2’s action at w . Constraint 2 is close
to the assumption of independence of agents of STIT logic. According to Constraint 2, if v is a possible outcome at w then,
there exists a world u such that u is admitted by group J ’s action at w and v is admitted by group AGT \ J ’s action at u.
Constraint 3 expresses an assumption of determinism for the set of all agents AGT .

As usual truth conditions for atomic formulas and the boolean operators are entirely standard and the truth conditions
of the operators [ J ] are given in a traditional way by:

M, w |+ [ J ]ϕ iff M, v |+ ϕ for all v ∈ W such that w R J v.

In the same way, we introduce notions of validity and satisfiability in NCL. A formula ϕ is NCL-valid (noted |+NCL ϕ)
if and only if ϕ is true in every world of every NCL-model. A formula ϕ is NCL-satisfiable if and only if there exists a
NCL-model M = (W , R, V ) and a point w ∈ W such that M, w |+ ϕ .

3.3.2. Axiomatization of NCL
Constraints 1, 2, 3 presented in the Definition 3 above directly correspond to Sahlqvist axiom schemas [10]. For instance

Constraint 2 (R∅ ⊆ R J ◦ RAGT\ J ) corresponds to the axiom schema ⟨∅⟩ϕ → ⟨ J ⟩⟨AGT \ J ⟩ϕ . This is the reason why NCL logic
is axiomatizable unlike STIT logic. The following Theorem 1, which has been proved by [13], sums up this fact.

Theorem 1. The logic NCL is complete with respect to the following axiomatization:

(ProTau) all tautologies of propositional calculus
S5([ J ]) all S5-theorems, for every [ J ]
(Mon) [ J1]ϕ ∨ [ J2]ϕ → [ J1 ∪ J2]ϕ

Elim(∅) ⟨∅⟩ϕ → ⟨ J ⟩⟨AGT \ J ⟩ϕ
Triv(AGT) ϕ → [AGT]ϕ

plus modus ponens and necessitation for all [ J ].

As NCL is axiomatizable, we can introduce the symbol ⊢NCL to deal with proofs. We write ⊢NCL ϕ to say that ϕ is a
theorem of the axiomatization given in Theorem 1.

3.3.3. Link between STIT and NCL
In the case of individual STIT logic, i.e. when the STIT language only has operator [∅] and operators [i] with i ∈ AGT ,

the notion of satisfiability in STIT and the notion of satisfiability in NCL are equivalent [5, Theorem 14]. When we con-
sider group STIT logic with operators of group action [ J ] (with J ⊆ AGT), the two notions are different. The following
Proposition 1 highlights the relationship between satisfiability in group STIT logic and satisfiability in NCL.

Proposition 1. Let ϕ be a formula of LSTIT .

• If card(AGT) ! 2: ϕ is STIT-satisfiable iff ϕ is NCL-satisfiable;
• If card(AGT) " 3: if ϕ is STIT-satisfiable then ϕ is NCL-satisfiable. (The converse is false: there exists ϕ such that ϕ is NCL-

satisfiable and ¬ϕ is STIT-valid.)

Although the two logics NCL and STIT are different, the property of independence of agents holds in NCL. This fact is
stated in the following Lemma 1 and illustrated in Fig. 1. Every NCL-model satisfies the Constraint 3 (assumption of indepen-
dence of agents) of Definition 1. This property will be important in the constructive proof of Theorem 2. More precisely, it
will be used in the proof of Lemma 2 (see Appendix A at the end of the paper).

Lemma 1. Let M = (W , R, V ) be a NCL-model. Let r be a positive integer.4 Let w1, . . . , wr ∈ W be such that for all i, j ∈ {1, . . . , r},
wi R∅w j . Let J1, . . . , Jr ⊆ AGT be such that i ≠ j implies J i ∩ J j = ∅. We have:

4 Note that Lemma 1, in the degenerated case r = 0, says that
⋂

i=1...0 R Ji (wi) ≠ ∅. This is true because the intersection of zero subsets of W is W × W
by convention.
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Fig. 1. Independence of agents in NCL.

Fig. 2. Overview of the languages L and Ldf STIT and of the logics STIT and NCL.

⋂

i=1,...,r

R J i (wi) ≠ ∅.

Our fragment df STIT of STIT logic with agents and groups has interesting computational properties. In the rest of this
section, we are going to show that df STIT can be axiomatized by the axiomatics of the logic NCL, and that df STIT is
decidable. To prove this, we are going to study the link between NCL and STIT when we restrict formulas to the fragment
df STIT. Proposition 1 given above explains that in the general case, if a formula is STIT-satisfiable then it is NCL -satisfiable.
The following Theorem 2 explains that the notion of satisfiability in STIT and in NCL is the same if we restrict formulas to
the fragment df STIT.

Theorem 2. Let ϕ ∈ Ldf STIT . Then, the following three propositions are equivalent:

1. ϕ is NCL-satisfiable;
2. ϕ is STIT-satisfiable;
3. ϕ is STIT-satisfiable in a polynomial sized product STIT-model.

Fig. 2 highlights the relation between STIT and NCL. If we consider the whole set of formulas LSTIT , then we have that
all validities of NCL are validities of STIT but not the converse. But if we restrict formulas to the fragment Ldf STIT , then the
set of validities of NCL is equal to the set of validities of STIT.

3.4. Decidability and axiomatization

The result of Theorem 2 is close to the result of Pauly in [43]. In [43], Pauly compares strategic form games (like STIT-
models) and CL standard models (like NCL-models). Theorem 2 provides two crucial results: one about complexity and
another one about axiomatization of df STIT.

The following corollary follows from the equivalence between point 2 and 3 in Theorem 2.

Corollary 1. Deciding if a formula in Ldf STIT is STIT-satisfiable is NP-complete.

The following corollary follows from the equivalence between point 1 and 2 in Theorem 2.

Corollary 2. A formula ϕ in Ldf STIT is STIT-valid iff we have ⊢NCL ϕ .
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Of course, a proof of formula ϕ in Ldf STIT can contain formulas of LSTIT that are not in Ldf STIT .

3.5. Discussion

Before concluding this section, let us explain why we decided to use df STIT instead of NCL for our logical analysis of
counterfactual emotions.

The first reason is practical as the complexity of df STIT is lower than the complexity of NCL: the satisfiability problem
for NCL is NEXPTIME-complete [5] while it is NP-complete for df STIT (Corollary 1). Moreover, as we will show in Section 5
(Theorem 3), the complexity of df STIT extended by epistemic modal operators is still lower than the complexity of NCL, in
particular the satisfiability problem for the epistemic extension of df STIT is PSPACE-complete.

The second reason is theoretical. While STIT semantics has received several philosophical and conceptual justifications in
works by Belnap, Horty and col. (see, e.g., [9,30,31]) and is nowadays widely accepted in the fields of philosophical logic and
of logics for multi-agent systems, NCL semantics does not have such a robust conceptual and philosophical basis. Indeed,
NCL was developed mainly in order to embed CL into a decidable normal modal logic. For instance, we have shown that in
Horty’s STIT logic, the set of outcomes that is forced by the joint action of a group J is equal to the pointwise intersection
of the sets of outcomes that are forced by the individual actions of the agents in J (Constraint 2 in Definition 1). This is
a natural way to define the notion of group action which is well-justified by Horty in [30]. But such a property of group
action does not hold in the NCL semantics, and this is one the reason why the notion of group action in NCL is not as clear
as in STIT.5

It is worth noting that NCL and STIT already differs with a formula of modal depth 3. Indeed, the formula
ϕ = ¬[⟨{2,3}⟩p ∧ ⟨{1,3}⟩q ∧ ⟨{1,2}⟩r → ⟨∅⟩[⟨{2,3}⟩(⟨{1,3}⟩p ∧ ⟨{2,3}⟩q) ∧ ⟨{1,3}⟩(⟨{2,3}⟩r ∧ ⟨{1,2}⟩p) ∧ ⟨{2,3}⟩(⟨{1,2}⟩q ∧
⟨{1,3}⟩r)]] is NCL-satisfiable and ¬ϕ is STIT-valid [24]. It is an open question whether NCL and STIT differs with a formula
of modal depth 2.

4. Counterfactual statements in STIT

In this section we exploit the STIT fragment df STIT studied in Section 3 in order to formalize counterfactual statements
of the form “group J (or agent i) could have prevented a certain state of affairs χ to be true now”. Such statements are
indeed basic constituents of the appraisal patters of counterfactual emotions such as regret. In particular, counterfactual
emotions such as regret originate from reasoning about this kind of statements highlighting the connection between the
actual state of the world and a counterfactual state of the world that might have been had one chosen a different action. The
counterfactual statements formalized in this section will be fundamental for the formalization of counterfactual emotions
we will give in Section 6.

4.1. J could have prevented χ

The following counterfactual statement is a fundamental constituent of an analysis of counterfactual emotions:

(∗) J could have prevented a certain state of affairs χ to be true now.

The statement just means that there is a counterfactual dependence between the state of affairs χ and group J (i.e. χ
counterfactually depends on J ’s choice). The STIT fragment studied in Section 3 allows to represent it in a formal language.
We write CHP J χ this formal representation, which is defined as follows:

CHP J χ
def= χ ∧ ¬[AGT \ J ]χ .

The expression ¬[AGT \ J ]χ means that: the complement of J with respect to AGT (i.e. AGT \ J ) does not see to it that χ (no
matter what the agents in J have chosen to do). This is the same thing as saying that: given what the agents in AGT \ J have
chosen, there exists an alternative joint action of the agents in J such that, if the agents in J did choose this joint action,
χ would be false now. Thus, χ and ¬[AGT \ J ]χ together correctly translate the previous counterfactual statement (∗). If J
is a singleton {i}, we write CHPiχ instead of CHP{i}χ which means “agent i could have prevented χ to be true”.

The following is the semantic counterpart of the operator CHP J . We have that M, w |+ CHP J χ if and only if, M, w |+ χ
and there is v ∈ RAGT\ J (w) such that M, v |+ ¬χ . That is, at world w of model M, J could have prevented χ to be true if
and only if, χ is true at w and, given what the agents in AGT \ J have chosen at w , there exists a joint action of the agents
in J such that, if the agents in J did choose this action, the actual outcome of the joint action of all agents would be a
state in which χ is false.

Example 1. Imagine a typical coordination scenario with two agents AGT = {1,2}. Agents 1 and 2 have to take care of a
plant. Each agent has only two actions available: water the plant (water) or do nothing (skip). If either both agents water the

5 Note that in NCL semantics we only have R J ⊆ ⋂
j∈ J R{ j} .
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Fig. 3. The four worlds w1, w2, w3 and w4 are in the equivalence class determined by R∅ . Vertical circles represent the actions that agent 1 can choose,
whereas horizontal circles represent the actions that agent 2 can choose. For example, w1 is the world that results from agent 1 choosing the action water
and agent 2 choosing the action skip.

plant or both agents do nothing, the plant will die (dead). In the former case the plant will die since it does not tolerate too
much water. In the latter case it will die since it lacks water. If one agent waters the plant and the other does nothing, the
plant will survive (¬dead). The scenario is represented in the STIT model in Fig. 3. For instance both at world w2 and w4,
formulas CHP1 dead and CHP2 dead are true: each agent could have prevented the plant to be dead. Indeed, at world w2,
dead and ¬[2]dead are true: given what agent 2 has chosen (i.e. water), there exists an alternative action of agent 1 (i.e.
skip) such that, if 1 did choose this action, dead would be false now. At world w4, dead and ¬[2]dead are also true: given
what agent 2 has chosen (i.e. skip), there exists an alternative action of agent 1 (i.e. water) such that, if 1 did choose this
action, dead would be false now. The case for agent 2 is completely symmetrical.

The following are some interesting properties of the operator CHP J . For every J and for every J1, J2 such that J1 ⊆ J2:

|+STIT CHP J1(χ1 ∨ χ2) → (CHP J1χ1 ∨ CHP J1χ2), (1)

|+STIT CHP J1χ → CHP J2χ , (2)

|+STIT (CHP J1χ1 ∧ CHP J1χ2) → CHP J1(χ1 ∧ χ2), (3)

|+STIT ¬CHP J ⊤, (4)

|+STIT ¬CHP J ⊥. (5)

Proof. We give the proof of Validity 2 as an example. Let M be a STIT-model and w ∈ W such that M, w |+ CHP J1 χ . We
have M, w |+ χ and M, w |+ ¬[AGT \ J1]χ . As RAGT\ J1 ⊆ RAGT\ J2 , it implies that M, w |+ ¬[AGT \ J2]χ . That is why we
have M, w |+ CHP J2χ . ✷

According to Validity 1, J1 could have prevented χ1 or χ2 to be true implies J1 could have prevented χ1 or could have
prevented χ2. Validity 2 expresses a monotonicity property: if J1 is a subset of J2 and J1 could have prevented χ then,
J2 could have prevented χ as well. Validity 3 shows how the operator CHP J behaves over conjunction: if J1 could have
prevented χ1 to be true and could have prevented χ2 to be true separately then J1 could have prevented χ1 and χ2 to
be true. Finally, according to the Validities 4 and 5, tautologies and contradictions cannot counterfactually depend on the
choice of a group: it is never the case that a coalition J could have prevented a tautology (resp. a contradiction).

4.2. Discussion

The following two sections discuss some aspects related to the analysis of counterfactual statements presented above.
We first motivate why we chose STIT logic instead of concurrent logics such as Coalition Logic (CL) and ATL in order to
provide a formal representation of such statements. Then, we make a brief excursus on the notion of “partial responsibility
up to a certain degree”.

4.2.1. Limitations of CL compared to STIT
In recent times several logics of group actions and group abilities have been proposed. Roughly, we can distinguish two

families of such logics: those based on Coalition Logic (CL) [43], one for all Alternating-time temporal logic (ATL) [4] of
which several variants and extensions have been studied (see, e.g., [2,65,2,66]), and those based on STIT logic.
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As shown in [12], STIT embeds CL, and STIT extended with strategies (so-called strategic STIT) embeds ATL. The inter-
esting point is that, while the statements:

1. “the group of agents J has a joint strategy that forces χ ” and,
2. “the group of agents J has not a joint strategy that forces χ ”

are expressible in STIT but also in CL and ATL, the statements:

3. “the group of agents J has chosen a joint strategy that forces χ ” and,
4. “the group of agents J did not choose a joint strategy that forces χ ”

are only expressible in STIT. More generally, while ATL and CL only support reasoning about what agents and coalitions of
agents can do together, STIT also allows to express what agents and coalitions of agents actually do together (see also [11]
for a discussion on this matter). In formal terms, the previous statements 1 and 2 are expressed in STIT by the formulas
⟨∅⟩[ J ]χ and ¬⟨∅⟩[ J ]χ , while the previous statements 3 and 4 are expressed in STIT by the formulas [ J ]χ and ¬[ J ]χ .

As emphasized in Section 4.1, a logical analysis of counterfactual emotions is necessarily based on a logical analysis of
counterfactual constructions of the form “agent i could have prevented χ to be true” which implies that:

5. “given what the agents in AGT \ {i} have chosen, there exists an alternative action of agent i such that, if agent i did
choose this action, the state of affairs χ would be false now”.

We have shown that the previous statement 5 is expressed in STIT by the formula ¬[AGT \ {i}]χ . As for statements 3 and 4
above, CL and ATL cannot express the previous statement 5. More generally, while STIT allows to express what agents and
coalitions of agents could have done and could have prevented, this cannot be expressed in CL and ATL.

4.2.2. Partial responsibility up to a certain degree
We have given above a logical translation of the statement “agent i could have prevented χ to be true” noted CHPi χ

which expresses a counterfactual dependence between the state of affairs χ and agent i’s choice.
It is worth noting that CHPi χ does not cover situations in which agent i is partially responsible for χ up to a certain de-

gree without being fully responsible for χ . The following voting example illustrates the difference between full responsibility
and partial responsibility.

Example 2. A and B are the two candidates for an election and 1, 2, 3 are the three voters. Suppose w7 in the STIT model
in Fig. 4 is the actual world. In this world, voter 1 and voter 2 vote for candidate A while voter 3 votes for candidate B
so that A wins the election against B by a vote of 2–1. Formulas CHP1 Awin and CHP2 Awin are true at w7. In fact, at w7
candidate A wins the elections and, given what the other voters have chosen, there exists an alternative action of voter 1
(i.e. voting for candidate B) such that, if voter 1 did choose this action, candidate A would not win the elections. In other
words, at w7 the result of the election counterfactually depends on 1’s vote. The same is true for voter 2: at w7 the result
of the election counterfactually depends on 2’s vote. In this case, voter 1 and voter 2 can be said to be fully responsible for
candidate A’s win.

Suppose now w5 in the STIT model in Fig. 4 is the actual world. At w5 candidate A wins the election against candidate
B by a vote of 3–0. In this case, CHPiAwin is false for every voter, that is, for every voter the result of the election does not
counterfactually depend on his vote. Nevertheless, we would like to say that each of the three voters is partially responsible
for candidate A’s win up to a certain degree. Indeed, voter 1 is a cause of A winning even if the vote is 3–0 because, under
the contingency that one of the other voters had voted for candidate B instead, voter 1’s vote would have become critical;
if he had then changed his vote, candidate A would not have won. The same is true for voter 2 and for voter 3.

It is not the objective of this paper to provide a logical account of the notion of partial responsibility and of the cor-
responding notion of degree of responsibility. These notions have been studied for instance in [16] in which the degree of
responsibility of an event A for an event B is supposed to be 1

N+1 , where N is the minimal number of changes that have
to be made to the actual situation before B counterfactually depends on A. For instance, in the case of the 3–0 vote in the
previous example, the degree of responsibility of any voter for the victory of candidate A is 1

2 , since one change has to be
made to the actual situation before a vote is critical. In the case of the 2–1 vote, the degree of responsibility of any voter
for the victory is 1, since no change has to be made to the actual situation before a vote is critical.

5. A STIT extension with knowledge

In order to capture the subjective dimension of emotions, this section presents an extension of the fragment df STIT of
STIT logic presented in Section 3 with standard operators for knowledge of the form Ki , where i is an agent. The formula
Kiϕ means “agent i knows that ϕ is true”. This is a necessary step for the formalization of counterfactual emotions that will
be presented in Section 6.
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Fig. 4. Vertical circles represent the actions that voter 1 can choose, horizontal circles represent the actions that voter 2 can choose, and rectangles represent
the actions that voter 3 can choose. For example, w1 is the world in which candidate B wins the election and that results from agent 1 voting for candidate
A, and agents 2 and 3 voting for candidate B.

5.1. Definition

First we extend the language LSTIT of Section 3.1 with epistemic constructions Kiϕ . We give the language of all formulas
we can construct with STIT operators and knowledge operators. The language LKSTIT of the logic KSTIT is defined by the
following BNF:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | [ J ]ϕ | Kiϕ

where p ranges over ATM, i ranges over AGT and J over 2AGT .
For the same reasons than in Section 3.1, we are here interested in a fragment of LKSTIT . Indeed, the satisfiability

problem of the logic KSTIT will be undecidable if the number of agents is more than 3 (because the logic KSTIT will be
a conservative extension of the logic STIT which is already undecidable). So we focus into a syntactic fragment we call
df KSTIT.

The language Ldf KSTIT of the logic df KSTIT is defined by the following BNF:

χ ::= ⊥ | p | χ ∧ χ | ¬χ (propositional formulas),

ψ ::= [ J ]χ | ψ ∧ ψ (see-to-it formulas),

ϕ ::= χ | ψ | ϕ ∧ ϕ | ¬ϕ | ⟨∅⟩ψ | Kiϕ (see-to-it, “can”, knowledge formulas),

where p ranges over ATM, i ranges over AGT and J over 2AGT \ {∅}. For instance, K1⟨∅⟩[{1,2}]p ∈ Ldf KSTIT . But
⟨∅⟩K1[{1,2}]p /∈ Ldf KSTIT . Let us give the semantics of the logic df KSTIT.

Definition 4 (KSTIT-model). A KSTIT-model is a tuple M = (W , {R J } J⊆AGT , {Ei}i∈AGT , V ) where:

• (W , {R J } J⊆AGT , V ) is a STIT-model (see Definition 1);
• For all i ∈ AGT , Ei is an equivalence relation.
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We can also view epistemic accessibility relations on W as functions from W to 2W , that is, for every i ∈ AGT , Ei(w) =
{v ∈ W | w Ei v}.

As usual truth conditions for atomic formulas and the boolean operators are entirely standard. Truth conditions for the
STIT operators [ J ] are given in Section 3. Truth conditions for knowledge operators are defined in the standard way:

M, w |+ Kiϕ iff M, v |+ ϕ for all v ∈ W such that w Ei v.

That is, agent i knows that ϕ at world w in model M if and only if ϕ is true at all worlds that are indistinguishable for
agent i at world w .

As usual, a formula ϕ is KSTIT-valid (noted |+KSTIT ϕ) iff ϕ is true in every world of every KSTIT-model. A formula
ϕ is KSTIT-satisfiable iff there exists a KSTIT-model M = (W , {R J } J⊆AGT , {Ei}i∈AGT , V ) and a world w ∈ W such that M,
w |+ ϕ .

5.2. Decidability

The following is an extension of Corollary 1 given in Section 3.4.

Theorem 3. The satisfiability problem of df KSTIT is NP-complete if card(AGT) = 1 and PSPACE-complete if card(AGT) " 2.

5.3. Axiomatization

The study of an axiomatization for df KSTIT relies on an epistemic extension of the logic NCL presented in Section 3.3
which will also be axiomatizable. We call KNCL this epistemic extension of NCL. The syntax of the logic KNCL is the same
as the logic KSTIT, that is to say LKNCL = LKSTIT .

Let us now give the definition of model for the logic KNCL.

Definition 5 ( KNCL-model). A KNCL-model is a tuple M = (W , {R J } J⊆AGT , {Ei}i∈AGT , V ) where:

• (W , {R J } J⊆AGT , V ) is a NCL-model (see Definition 3);
• For all i ∈ AGT , Ei is an equivalence relation.

Truth conditions, validity and satisfiability in KNCL are defined as usual. We can now prove an extension of Theorem 2,
stating the equivalence between the satisfiability in KNCL and the satisfiability in KSTIT if we restrict the formula to the
syntactic fragment Ldf KSTIT .

Theorem 4. Let ϕ be a formula of Ldf KSTIT . We have equivalence between:

• ϕ is satisfiable in KNCL;
• ϕ is satisfiable in KSTIT.

In the same way, we have an extension of Corollary 2 about a complete axiomatization of the logic df KSTIT.

Corollary 3. A formula ϕ in Ldf KSTIT is KSTIT-valid iff we have ⊢KNCL ϕ where ⊢KNCL ϕ means that there exists a proof of ϕ using all
principles of the logic NCL, and all principles of modal logic S5 for every Ki .

Of course, as for Ldf STIT , a proof of a formula ϕ in Ldf KSTIT can contain formulas of LKSTIT that are not in Ldf KSTIT .

6. A formalization of counterfactual emotions

In Section 2.2 we have provided an overview of psychological theories of counterfactual emotions and discussed defini-
tions which are shared by most psychologists working in this area. In the following sections, we will use the STIT fragment
extended with epistemic operators studied in Section 5 and called df KSTIT, in order to provide a logical formalization of
this class of emotions. We consider four types of counterfactual emotions: regret and its positive counterpart rejoicing,
disappointment and its positive counterpart elation.

6.1. Regret and rejoicing

In order to provide a logical characterization of counterfactual emotions such as regret, we need to introduce a concept
of agent’s preference. Modal operators for desires and goals have been widely studied (see e.g. [17,41]). The disadvantage of
such approaches is that they complicate the underlying logical framework. An alternative, which we adopt in this paper is
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to label states with atoms that capture the “goodness” of these states for an agent. Our approach supposes a binary relation
of preference between worlds.

Let us introduce a special atom goodi for every agent i ∈ AGT . These atoms are used to specify those worlds which are
good for an agent.

We say that χ is good for agent i if and only if χ is true in all good/pleasant states for agent i. Formally:

GOODiχ
def= [∅](goodi → χ).

Now, we are in a position to define the concept of desirable state of affairs. We say that χ is desirable for agent i if and
only if, i knows that χ is something good for him:

DESiχ
def= KiGOODiχ .

As the following valid formulas highlight, every operator DESi satisfies the principle K of normal modal logic, and the
properties of positive and negative introspection: χ is (resp. is not) desirable for i if and only if i knows this.

|+KSTIT
(
DESiχ1 ∧ DESi(χ1 → χ2)

)
→ DESiχ2, (6)

|+KSTIT DESiχ ↔ KiDESiχ , (7)

|+KSTIT ¬DESiχ ↔ Ki¬DESiχ . (8)

We have now all necessary and sufficient ingredients to define the cognitive structure of regret and to specify its counter-
factual dimension. As emphasized in Section 2.2, such a dimension has been widely studied in the psychological literature
where several authors agree in considering regret as the emotion originating from an agent’s comparison between the ac-
tual bad outcome and a counterfactual good outcome that might have been had the agent chosen a different action (see,
e.g., [37,59,48,33,32,71]).

We say that an agent i regrets for χ if and only if ¬χ is desirable for i and i knows that it could have prevented χ to
be true now. Formally:

REGRETi χ
def= DESi¬χ ∧ KiCHPiχ .

The following is the semantic counterpart of the previous syntactic definition of regret. We have that M, w |+ REGRETi χ
if and only if for all v ∈ Ei(w) it holds that:

• for all u ∈ R∅(v), if M, u |+ goodi then M, u |+ ¬χ ;
• M, v |+ χ and there is u ∈ RAGT\{i}(v) such that M, u |+ ¬χ .

The former condition captures the motivational aspect of regret: if at world w agent i regrets for χ then, for every situation
that agent i considers possible at w , ¬χ is pleasant for him. The latter condition captures the counterfactual aspect of
regret: if at world w agent i regrets for χ then, for every situation that agent i considers possible at w , χ is true and, given
what the other agents have chosen, there exists an alternative action of i such that, if i did choose this action, χ would be
false now.

The following example is given in order to better clarify our logical definition of regret.

Example 3. Consider the popular two-person hand game “Rock-paper-scissors”. Each of the two players AGT = {1,2} has
three available actions: play rock, play paper, play scissors. The goal of each player is to select an action which defeats
that of the opponent. Combinations of actions are resolved as follows: rock wins against scissors, paper wins against rock;
scissors wins against paper. If both players choose the same action, they both lose. The scenario is represented in the STIT
model in Fig. 5. It is supposed winning is something good for each agent and each agent has the desire to win the game:
GOOD1 1Win, GOOD2 2Win, DES1 1Win and DES2 2Win are true at worlds w1–w9. Suppose world w1 is the actual world in
which 1 plays rock and 2 plays paper. In this world 1 loses the game (¬1Win), and 1 knows that (by playing scissors) it
could have prevented ¬1Win to be true (i.e. K1CHP1¬1Win is true at w1). It follows that at w1 player 1 regrets for having
lost the game, that is, REGRET1¬1Win is true at w1.

As the following validity highlights, regret implies the frustration of an agent’s desire:

|+KSTIT REGRETi χ → (Kiχ ∧ DESi¬χ). (9)

More precisely, if agent i regrets for χ then, i knows that χ holds and ¬χ is something desirable for i (in this sense i feels
frustrated for not having achieved ¬χ ). Moreover, regret satisfies the properties of positive and negative introspection:

|+KSTIT REGRETi χ ↔ KiREGRETi χ , (10)

|+KSTIT ¬REGRETi χ ↔ Ki¬REGRETi χ . (11)
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Fig. 5. Vertical circles represent the actions that player 1 can choose, whereas horizontal circles represent the actions that player 2 can choose. For the
sake of simplicity, we suppose that players 1 and 2 do not have uncertainty: everywhere in the model players 1 and 2 only consider possible the world in
which they are (reflexive arrows represent indistinguishability relations for the two players).

As emphasized by some psychological theories of counterfactual emotions (see, e.g., [68,69]), the positive counterpart of
regret is rejoicing: while regret has a negative valence (i.e. it is associated with the frustration of an agent’s desire), rejoicing
has a positive valence (i.e. it is associated with the satisfaction of an agent’s desire). According to these theories, a person
experiences regret when believing that the foregone outcome would have been better if she did a different action, whilst
she rejoices when believing that the foregone outcome would have been worse if she did a different action. More precisely,
an agent i rejoices for χ if and only if, χ is desirable for i and, i knows that it could have prevented χ to be true now by
choosing a different action:

REJOICEi χ
def= DESi χ ∧ KiCHPiχ .

In semantic terms, we have that M, w |+ REJOICEi χ if and only if for all v ∈ Ei(w) it holds that:

• for all u ∈ R∅(v), if M, u |+ goodi then M, u |+ χ ;
• M, v |+ χ and there is u ∈ RAGT\{i}(v) such that M, u |+ ¬χ .

The former condition corresponds to the motivational dimension of rejoicing, while the latter corresponds to the counterfac-
tual dimension. According to the former condition: if at world w agent i rejoices for χ then, for every situation that agent
i considers possible at w , χ is pleasant for him. According to the latter condition: if at world w agent i rejoices for χ then,
for every situation that agent i considers possible at w , χ is true and, given what the other agents have chosen, there exists
an alternative action of i such that, if i did choose this action, χ would be false now.

Example 4. Consider again the game “Rock-paper-scissors” represented by the STIT-model in Fig. 5. Suppose world w2 is
the actual world in which player 1 plays rock and player 2 plays scissors. In this world player 1 is the winner (1Win) and
it knows that (by playing paper or scissors) it could have prevented 1Win to be true (i.e. K1CHP1 1Win is true at w2). Since
DES1 1Win holds at w2, it follows that at w2 player 1 rejoices for having won the game, that is, REJOICE1 1Win is true
at w2.

The following validity highlights that rejoicing implies desire satisfaction:

|+KSTIT REJOICEi χ → (Kiχ ∧ DESi χ). (12)

More precisely, if agent i rejoices for χ then, i knows that χ and χ is something desirable for i (in this sense i
feels satisfied for having achieved χ ). Like regret, rejoicing satisfies the properties of positive and negative introspec-
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tion:

|+KSTIT REJOICEi χ ↔ KiREJOICEi χ , (13)

|+KSTIT ¬REJOICEi χ ↔ Ki¬REJOICEiχ . (14)

That is, agent i rejoices (resp. does not rejoice) for χ if and only if it knows this.

6.2. Disappointment and elation

As emphasized in Section 2.2, according to some authors [38,19,70], disappointment too is part of the family of counter-
factual emotions: like regret, disappointment originates from the comparison between the actual outcome and a counter-
factual outcome that might have occurred. However, there is an important difference between regret and disappointment.
If an agent feels regret he considers himself to be responsible for the actual outcome, whereas if he feels disappointed he
considers external events and other agents’ actions to be responsible for the actual outcome.

Thus, we can say that an agent i feels disappointed for χ if and only if ¬χ is desirable for i and i knows that the others
could have prevented χ to be true now. Formally:

DISAPPOINTMENTi χ
def= DESi¬χ ∧ KiCHPAGT\{i}χ .

In semantic terms, we have that M, w |+ DISAPPOINTMENTi χ if and only if for all v ∈ Ei(w) it holds that:

• for all u ∈ R∅(v), if M, u |+ goodi then M, u |+ ¬χ ;
• M, v |+ χ and there is u ∈ R{i}(v) such that M, u |+ ¬χ .

Like in the cases of regret and rejoicing, the former condition captures the motivational aspect of disappointment, while the
latter captures the counterfactual aspect. According to the former condition: if at world w agent i feels disappointed for χ
then, for every situation that agent i considers possible at w , ¬χ is pleasant for him. According to the latter condition: if
at world w agent i feels disappointed for χ then, for every situation that agent i considers possible at w , χ is true and,
given what i has chosen, there exists an alternative joint action of the other agents such that, if they did choose this action,
χ would be false now.

Example 5. In the “Rock-paper-scissors” game represented in Fig. 5, regret is always joined with disappointment. For in-
stance, at world w1 player 1 not only regrets for having lost the game (i.e. REGRET1¬1Win), but also he feels disappointed
for this (i.e. DISAPPOINTMENT1¬1Win). In fact, at w1, 1 knows that (by playing scissors) the others (i.e. player 2) could
have prevented ¬1Win to be true (i.e. K1CHPAGT\{1}¬1Win is true at w1).

Like regret and rejoicing, disappointment satisfies the properties of positive and negative introspection:

|+KSTIT DISAPPOINTMENTi χ ↔ KiDISAPPOINTMENTi χ , (15)

|+KSTIT ¬DISAPPOINTMENTi χ ↔ Ki¬DISAPPOINTMENTi χ . (16)

Moreover, like regret, disappointment implies desire frustration:

|+KSTIT DISAPPOINTMENTi χ → (Kiχ ∧ DESi¬χ). (17)

It is worth noting that regret and disappointment do not necessarily occur in parallel, i.e. the formulas REGRETi χ ∧
¬DISAPPOINTMENTi χ and ¬REGRETi χ ∧ DISAPPOINTMENTi χ are satisfiable. The following example illustrates the
situation in which an agent feels disappointed without feeling regret.

Example 6. Two agents AGT = {1,2} have made an appointment to dine together at a restaurant. When the time of the
appointment comes near, each of the two agents can either go to the restaurant in order to meet the other, or stay home,
or go to the cinema. The two agents will have dinner together only if each of them decides to go to restaurant to meet
the other. The scenario is represented in the STIT model in Fig. 6. It is supposed that having dinner with agent 2 is
something good for agent 1 and agent 1 desires to have dinner with agent 2: GOOD1 dinnerTogether and DES1 dinnerTogether
are true at worlds w1–w9. Suppose world w1 is the actual world in which 1 goes to the restaurant, while 2 goes to
the cinema and breaks his appointment with 1. In this world 1 does not have dinner with 2 (¬dinnerTogether), and 1
knows that (by going to the restaurant) the others (i.e. agent 2) could have prevented ¬dinnerTogether to be true (i.e.
K1CHPAGT\{1}¬dinnerTogether is true at w1). It follows that at w1 agent 1 feels disappointed for not having dinner with
2, that is, DISAPPOINTMENT1¬dinnerTogether is true at w1. Note that at w1 agent 1 does not feel regret for not having
dinner with agent 2 (i.e. REGRET1¬dinnerTogether is false at w1). In fact, at w1, 1 knows that ¬dinnerTogether only depends
on what 2 has decided to do. Therefore, at w1, 1 does not think that he could have prevented ¬dinnerTogether to be true
(i.e. ¬K1CHP1¬dinnerTogether is true at w1).
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Fig. 6. Again, vertical circles represent the actions that agent 1 can choose, whereas horizontal circles represent the actions that agent 2 can choose.
In this example, we suppose that agents 1 and 2 can only have uncertainty about the current choice of the other (vertical dotted rectangles represent
indistinguishability relations for agent 1, whereas horizontal dotted rectangles represent indistinguishability relations for agent 2).

We conclude with a formalization of the positive counterpart of disappointment, that is commonly called elation [68,69].
We say that agent i elates for χ if and only if, χ is desirable for i and i knows that the others could have prevented χ to
be true now:

ELATIONi χ
def= DESi χ ∧ Ki CHPAGT\{i}χ .

In semantic terms, we have that M, w |+ ELATIONi χ if and only if for all v ∈ Ei(w) it holds that:

• for all u ∈ R∅(v), if M, u |+ goodi then M, u |+ χ ;
• M, v |+ χ and there is u ∈ R{i}(v) such that M, u |+ ¬χ .

Like in the cases of regret, rejoicing and disappointment, the former condition captures the motivational aspect of elation
while the latter captures the counterfactual aspect. According to the former condition: if at world w agent i elates for χ
then, for every situation that agent i considers possible at w , χ is pleasant for him. According to the latter condition: if at
world w agent i elates for χ then, for every situation that agent i considers possible at w , χ is true and, given what i has
chosen, there exists an alternative joint action of the other agents such that, if they did choose this action, χ would be false
now.

Like regret, rejoicing and disappointment, elation satisfies the properties of positive and negative introspection:

|+KSTIT ELATIONi χ ↔ KiELATIONi χ , (18)

|+KSTIT ¬ELATIONi χ ↔ Ki¬ELATIONi χ . (19)

Moreover, like rejoicing, elation implies desire satisfaction:

|+KSTIT ELATIONi χ → (Kiχ ∧ DESi χ). (20)

Finally, like regret and disappointment, elation and rejoicing do not necessarily occur in parallel, i.e. the formulas
REJOICEi χ ∧ ¬ELATIONi χ and ¬REJOICEi χ ∧ ELATIONi χ are satisfiable. In fact, an agent might consider the others
to be responsible for the actual good situation, without considering himself to be responsible for the actual good situation.

Before concluding, it is worth noting that the constructions REGRETi χ and REJOICEi χ require group STIT operators.
This justifies the use of Horty’s STIT logic with agents and groups, and the study of a decidable fragment of this logic
provided in Section 3. On the contrary, Belnap et al.’s individual STIT logic [9] extended by knowledge operators would
be sufficient to write the formulas DISAPPOINTMENTi χ and ELATIONi χ . Let us recall that the fusion of two decidable
modal logics is decidable [24]. As the satisfiability problem of Belnap et al.’s individual STIT logic is decidable [7], the
fusion of the latter and epistemic logic is also decidable. So, it is not necessary to introduce syntactic restrictions on the
STIT language in order to obtain a decidable logic in which we can reason about disappointment and elation.

6.3. Discussion

Let us discuss some aspects we did not consider in the previous formalization of counterfactual emotions.
According to [14], disappointment entails invalidation of an agent’s positive expectation. That is, an agent feels disap-

pointed for χ , only if ¬χ is desirable for the agent and the agent believes that χ , and in the previous state he believed
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¬χ to be true in the next state. In other words, an agent feels disappointed for χ because he would like χ to be false now
and he just learnt that χ is true and, before learning that χ is true, he believed ¬χ to be true in the next state. In the
formalization of disappointment proposed in Section 6.2, this relationship between disappointment and expectations was
not considered. We included in the definition of disappointment only the agent’s mental states at the moment in which the
emotion arises.

Another aspect we did not consider in our formalization of counterfactual emotions is the distinction between regret
due to a choice to act (i.e. action) and regret due to a choice not to act (i.e. inaction). A classical example which clarifies this
distinction is the one given by [34] in which an agent i owned shares in company A, and he considered switching to stock
in company B but he decided against it. He now finds out that he would have been better off if he had switched to the stock
of company B (regret due to inaction). Another agent j owned shares in company B, and he switched to stock in company A.
He now finds out that he would have been better off if he had kept his stock in Company B (regret due to action). The logic
STIT is not sufficiently expressive to make this distinction between regret due to action and regret due to inaction. Indeed,
in STIT logic it is supposed that at a given state w every agent has made a choice. Moreover, STIT allows to reason about
the effects of the agents’ choices at a given state. Nevertheless, STIT does not allow to distinguish the situation in which, at
a given state, an agent has made the choice to act from the situation in which the agent has made the choice not to act.

7. A concrete example

The logical framework and formal analysis of counterfactual emotions proposed in this paper can also be exploited for
increasing the competence and performance of artificial emotional agents in emotion recognition, emotion anticipation,
response to others’ emotions and emotion communication and expression. Such capabilities are fundamental for developing
interactive agent technologies which are particularly relevant for applications in health care, education and entertainment,
like intelligent tutoring systems, robotic assistants to older or disabled people to improve quality of life, companions and
trainers in physical recovery and rehabilitation, etc. This section exposes more in detail how the results of the present
research can be exploited in order to design agents endowed with these capabilities.

We imagine a scenario of human-agent interaction in which an intelligent tutoring agent has to take care of a human
user. The tutoring agent has to reason about and to respond to the user’s emotions in order to sustain the user’s activity.
Here we only focus on some particular competencies of the artificial agent, namely: the capacity of inferring the user’s
emotions by attributing mental states to the user; the capacity of adapting its behavior during the dialogue with the user
in order to reduce the user’s negative emotions and in order to induce positive emotions on the user.

7.1. Inferring the user’s emotion through the attribution of mental states

The human user in this scenario is a student who has to pass a Certificate of Proficiency in English. The tutoring agent is
an artificial agent who supervises the student’s preparation for the exam. The tutoring agent is endowed with the capability
of reasoning about the student’s emotions.

Let us suppose that, according to the tutoring agent (noted t): the user (noted u) would like to pass the exam, the user
knows that he did not pass the exam, the user knows that necessarily if he studied then he would have passed the exam,
and the user knows that he had the opportunity to study. Thus, the tutoring agent’s knowledge base K B can be formally
represented by the conjunction of the following four formulas:

• KtDESupassu
• KtKu¬passu
• KtKu[∅]([u]studiedu → passu)
• KtKu⟨∅⟩[u]studiedu .

Note that all the four formulas are in Ldf KSTIT , even the third one which is equivalent to KtKu¬⟨∅⟩([u]studiedu ∧ ¬passu).
We can prove that from its initial knowledge base, the tutoring agent infers that the user is feeling regret for having failed
the exam, that is

|+KSTIT K B → KtREGRETu¬passu (21)

Now let us suppose that, according to the tutoring agent: the user would like to pass the exam, the user knows that
he passed the exam, the user knows that necessarily if he did not study then he would have failed the exam, and the
user knows that he had the opportunity not to study. Thus, the tutoring agent’s knowledge base K B∗ can be formally
represented by the conjunction of the following four formulas:

• KtDESupassu
• KtKupassu
• KtKu[∅]([u]¬studiedu → ¬passu)
• KtKu⟨∅⟩[u]¬studiedu .
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We can prove that from its initial knowledge base, the tutoring agent infers that the user is rejoicing for having passed the
exam, that is

|+KSTIT K B∗ → Kt REJOICEu passu. (22)

We have only considered a tutoring agent’s capability of inferring a human user’s emotions by the attribution of mental
states to the user. However, there are other important capabilities that a tutoring agent interacting with a human user
should be endowed with. In particular, the tutoring agent should be able to communicate with the human user in such a
way that it can adapt its behavior in order to reduce the user’s negative emotions and in order to induce positive emotions
on the user. In order to model this kind of capability, we discuss in the next section an extension of our logical framework
that allows to represent the exchange of information between a tutoring agent and a human user.

7.2. A ‘dynamification’ of KSTIT

We present a dynamic variant of the logic of Section 5, where knowledge is updated, as in public announcement logic
(PAL) [45,67] and, more precisely, as in the variant of PAL proposed by [63,64] where model update is redefined as an
epistemic relation-changing operation of ‘link cutting’ that does not throw away worlds from a model.

The logic KSTIT of Section 5 is here extended by dynamic operators of the form [∥θ∥]. The formula [∥θ∥]ϕ means ‘after

announcement of the truth value of θ , ϕ holds’. The dual of [∥θ∥] is ⟨||θ ||⟩, that is, ⟨||θ ||⟩ϕ def= ¬[∥θ∥]¬ϕ . We call KSTIT+ the
extended logic. The language LKSTIT+ of the logic KSTIT+ is defined by the following BNF:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | [ J ]ϕ | Kiϕ |
[
∥ϕ∥

]
ϕ

where p ranges over ATM, i ranges over AGT and J over 2AGT .
We are interested here in a decidable and finitely axiomatizable fragment of KSTIT+ called df KSTIT+ , which is nothing

else than the dynamic extension of the syntactic fragment df KSTIT of the logic KSTIT studied in Section 5.

χ ::= ⊥ | p | χ ∧ χ | ¬χ (propositional formulas),

ψ ::= [ J ]χ | ψ ∧ ψ (see-to-it formulas),

ϕ ::= χ | ψ | ϕ ∧ ϕ | ¬ϕ | ⟨∅⟩ψ | Kiϕ |
[
∥ϕ∥

]
ϕ (see-to-it, “can”, knowledge, update formulas),

where p ranges over ATM, i ranges over AGT and J over 2AGT \ {∅}.
The standard announcement operator [!θ] of PAL can be defined from the operator [∥θ∥] in a straightforward manner:

[!θ]ϕ def= θ →
[
∥θ∥

]
ϕ.

Formula [!θ]ϕ has to be read ‘after the announcement of θ , ϕ holds’. Indeed, the announcement of θ is nothing else than

the announcement of the truth value of θ when θ is true. The dual of [!θ] is ⟨!θ⟩, that is, ⟨!θ⟩ϕ def= ¬[!θ]¬ϕ .
In order to give semantics to the operators [∥θ∥] we define the elements of the model M∥θ∥ which results from the

update of the model M = (W , {R J } J⊆AGT , {Ei}i∈AGT , V ) by the announcement of θ ’s truth value:

• W ∥θ∥ = W ;
• for every J ⊆ AGT , R∥θ∥

J = R J ;

• for every i ∈ AGT , E∥θ∥
i = {(w, v)|(w, v) ∈ Ei and (M, w |+ θ iff M, v |+ θ)};

• V ∥θ∥ = V .

Basically, the effect of the announcement of θ ’s truth value is to remove the epistemic links between all worlds u and v in
which θ does not have the same truth value. In other words, for every world w in which θ is true and for every agent i,
the effect of the operation ∥θ∥ is to restrict the set of epistemically possible worlds for i to the set of worlds in which θ
is true; for every world w in which θ is false and for every agent i, the effect of the operation ∥θ∥ is to restrict the set of
epistemically possible worlds for i to the set of worlds in which θ is false.

It is just a routine to verify that the operation ∥θ∥ is well-defined, as it preserves the semantic constraints on KSTIT-
models, that is, if M is a KSTIT-model then M∥θ∥ is a KSTIT-model too.

The following are the truth conditions of the dynamic operators [∥θ∥]:

M, w |+ [∥θ∥]ϕ iff M∥θ∥, w |+ ϕ.

Note that under these truth conditions [∥θ∥]ϕ is equivalent to ⟨||θ ||⟩ϕ . Validity of a formula ϕ in KSTIT+ (noted |+KSTIT+ ϕ)
is defined in the usual way.
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Proposition 2. The following schemata are KSTIT+-valid:

(Redp)
[
∥θ∥

]
p ↔ p,

(Red¬)
[
∥θ∥

]
¬ϕ ↔ ¬

[
∥θ∥

]
ϕ,

(Red∧)
[
∥θ∥

]
(ϕ1 ∧ ϕ2) ↔

([
∥θ∥

]
ϕ1 ∧

[
∥θ∥

]
ϕ2

)
,

(Red[ J ])
[
∥θ∥

]
[ J ]ϕ ↔ [ J ]

[
∥θ∥

]
ϕ,

(RedKi )
[
∥θ∥

]
Kiϕ ↔

((
θ → Ki

(
θ →

[
∥θ∥

]
ϕ

))
∧

(
¬θ → Ki

(
¬θ →

[
∥θ∥

]
ϕ

)))
.

Remark. It is straightforward to verify that the announcement operators [!θ] defined above satisfy the standard principle of
PAL:

[!θ]Kiϕ ↔
(
θ → Ki[!θ]ϕ

)
.

The five equivalences of Proposition 2 together with the rule of replacement of proved equivalents provide a complete
set of reduction axioms for the dynamic operators [∥θ∥]. We call red the mapping which iteratively applies the above equiv-
alences from the left to the right, starting from one of the innermost modal operators. red pushes the dynamic operators
inside the formula, and finally eliminates them when facing an atomic formula.

The mapping red is inductively defined by:

1. red(p) = p
2. red(¬ϕ) = ¬red(ϕ)
3. red(ϕ1 ∧ ϕ2) = red(ϕ1) ∧ red(ϕ2)
4. red([ J ]ϕ) = [ J ]red(ϕ)
5. red(Kiϕ) = Ki red(ϕ)
6. red([∥θ∥]p) = p
7. red([∥θ∥]¬ϕ) = red(¬[∥θ∥]ϕ)
8. red([∥θ∥](ϕ1 ∧ ϕ2)) = red([∥θ∥]ϕ1 ∧ [∥θ∥]ϕ2)
9. red([∥θ∥][ J ]ϕ) = red([ J ][∥θ∥]ϕ)

10. red([∥θ∥]Kiϕ) = red((θ → Ki(θ → [∥θ∥]ϕ)) ∧ (¬θ → Ki(¬θ → [∥θ∥]ϕ)))
11. red([∥θ∥][∥ϵ∥]ϕ) = red([∥θ∥]red([∥ϵ∥]ϕ)).

The following Proposition 3 is a straightforward consequence of Proposition 2 and the fact that the following rule of
replacement of proved equivalents preserves validity:

ϕ1 ↔ ϕ2

ϕ ↔ ϕ[ϕ1 := ϕ2]
where ϕ[ϕ1 := ϕ2] is the formula ϕ in which we have replaced all occurrences of ϕ1 by ϕ2.

Proposition 3. Let ϕ ∈ LKSTIT+ . Then, red(ϕ) ↔ ϕ is KSTIT+-valid.

The following Proposition 4 is necessary in order to prove the completeness of the logic df KSTIT+ .

Proposition 4. Let ϕ ∈ Ldf KSTIT+ . Then, red(ϕ) ∈ Ldf KSTIT .

Corollary 4. The validities of df KSTIT+ are completely axiomatized by the axioms and inference rules of df KSTIT provided in Corol-
lary 3 together with the reduction axioms of Proposition 2 and the rule of replacement of proved equivalents.

Decidability of the logic of df KSTIT+ follows straightforwardly from the known decidability of the base logic df KSTIT
(Theorem 3) and from Propositions 3 and 4. Indeed, red provides an effective procedure for reducing a df KSTIT+-formula ϕ
into an equivalent df KSTIT-formula red(ϕ).

Corollary 5. The satisfiability problem of df KSTIT+ is decidable.

7.3. Adapting behavior during a dialogue with the user

It has to be noted that in PAL announcements are usually viewed as communicative actions performed by an agent that
is ‘outside the system’, i.e. that is not part of the set of agents AGT under consideration. However, communicative actions
performed by agents in AGT can be modelled in PAL by considering a particular subset of announcements of agents’ mental
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states. In particular, we here identify the event “agent i announces that ϕ is true” (or “agent i says that ϕ is true”) with
the announcement of the formula Kiϕ . Thus, we write say(i,ϕ) instead of !Kiϕ , and [say(i,ϕ)]ψ abbreviates [!Kiϕ]ψ . In
other words, we here identify agent i’s act of announcing that ϕ with the announcement of the fact that i knows that ϕ .
A similar point of view is taken by [3].

The dynamic extension of the logic KSTIT presented in Section 7.2 can easily incorporate rules which specify how, during
a dialogue with a human user, an artificial agent should adapt its behavior depending on the expected effects of certain
dialogue moves on the user’s emotions.

In order to formalize this kind of rules in our logic, we introduce a function Pre such that, for every formula θ in
Ldf KSTIT+ , Pre(θ) is the feasibility (or executability) precondition of the public announcement of θ . We denote with ⟨⟨!θ⟩⟩ϕ the
fact ‘the public announcement of θ will possibly occur, and ϕ will be true afterwards’, and we define it as follows:

⟨⟨!θ⟩⟩ϕ def= Pre(θ) ∧ ⟨!θ⟩ϕ.

Consequently, ⟨⟨!θ⟩⟩⊤ is logically equivalent to Pre(θ) ∧ θ , that is, the public announcement of θ will possibly occur if and
only if its feasibility precondition holds and θ is true. As we here identify the event “agent i announces that ϕ is true” (i.e.
say(i,ϕ)) with the announcement of the formula Kiϕ (i.e. !Kiϕ), ⟨⟨say(i,ϕ)⟩⟩ψ abbreviates ⟨⟨!Kiϕ⟩⟩ψ .

Remark. Note that the definition of the operator ⟨⟨!θ⟩⟩ forces agents to be sincere when performing a speech act. In particu-
lar, we have that an agent i will possibly announce that ϕ is true (i.e. ⟨⟨say(i,ϕ)⟩⟩⊤) only if i knows that ϕ is true (i.e. Kiϕ).
This assumption about sincerity is however acceptable for the scenario introduced in Section 7.1 in which a tutoring agent
which has to take care of a human user can be reasonably supposed to be cooperative and sincere with the human user.

Let us go back to the scenario introduced in Section 7.1. We suppose that in this scenario the tutoring agent’s decision
to perform a certain dialogue move depends on the tutoring agent’s expectations about the effects of this dialogue move on
the human user’s emotions. In particular, we suppose that:

• the tutoring agent t will possibly tell to the human user u that he passed the exam if and only if, t knows that by
telling to u that he passed the exam u will rejoice for having passed the exam and that at the present stage u does not
rejoice for having passed the exam;

• the tutoring agent t will possibly tell to the human user u that he failed the exam if and only if, t knows that by telling
to u that he failed the exam u will not regret for having failed the exam.

The previous two rules can be formally represented as follows:

Pre
(
say(t,passu)

)
= Kt

[
say(t,passu)

]
REJOICEupassu ∧ Kt¬REJOICEupassu,

Pre
(
say(t,¬passu)

)
= Kt

[
say(t,¬passu)

]
¬REGRETu¬passu.

Let us first suppose that, according to the tutoring agent: the user would like to pass the exam, the user does not know
whether he passed the exam, the user knows that necessarily if studied then he would have passed the exam, and the user
knows that he had the opportunity to study. Moreover, the tutoring agent knows that the user failed the exam. Thus, the
tutoring agent’s knowledge base K B∗∗ can be formally represented by the conjunction of the following five formulas:

• KtDESupassu
• Kt(¬Kupassu ∧ ¬Ku¬passu)
• KtKu[∅]([u]studiedu → passu)
• KtKu⟨∅⟩[u]studiedu
• Kt¬passu .

The following validity highlights that, given its knowledge base K B∗∗ , the tutoring agent will refrain from telling to the
user that he failed the exam.

|+KSTIT+ K B∗∗ → ¬
〈〈
say(t,¬passu)

〉〉
⊤. (23)

Now let us suppose that, according to the tutoring agent: the user would like to pass the exam, the user does not know
whether he passed the exam, the user knows that necessarily if did not study then he would have failed the exam, and
the user knows that he had the opportunity not to study. Moreover, the tutoring agent knows that the user passed the
exam. Thus, the tutoring agent’s knowledge base K B∗∗∗ can be formally represented by the conjunction of the following
five formulas:

• KtDESu passu
• Kt(¬Ku passu ∧ ¬Ku¬passu)
• KtKu[∅]([u]¬studiedu → ¬passu)



E. Lorini, F. Schwarzentruber / Artificial Intelligence 175 (2011) 814–847 835

• KtKu⟨∅⟩[u]¬studiedu
• Kt passu .

The following validity highlights that, given its knowledge base K B∗∗∗ , the tutoring agent will possibly tell to the user that
he passed the exam and, after that, the user will rejoice for having passed the exam.

|+KSTIT+ K B∗∗∗ →
〈〈
say(t,passu)

〉〉
REJOICEupassu. (24)

8. Related works

As emphasized in the introduction emotion is a very active field in AI. Several computational architectures of affective
agents have been proposed in the last few years (see, e.g., [46,21,18]). The cognitive architecture EMA (Emotion and Adap-
tion) [27] is one of the best example of research in this area. EMA defines a domain independent taxonomy of appraisal
variables stressing the many different relations between emotion and cognition, by enabling a wide range of internal ap-
praisal and coping processes used for reinterpretation, shift of motivations, goal reconsideration, etc. EMA also deals with
complex social emotions based on attributions of responsibility such as guilt and shame.

There are also several researchers who have developed formal languages which allow to reason about emotions and to
model affective agents. We discuss here some of the most important formal approaches to emotions and compare them
with our approach.

Meyer et al.’s logic of emotions. One of the most prominent formal analysis of emotions is the one proposed by Meyer et
al. [40,58,62]. In order to formalize emotions, they exploit the logical framework KARO [41]: a framework based on a blend
of dynamic logic with epistemic logic, enriched with modal operators for motivational attitudes such as desires and goals.

In Meyer et al.’s approach each instance of emotion is represented with a special predicate, or fluent, in the jargon of
reasoning about action and change, to indicate that these predicates change over time. For every fluent a set of effects
of the corresponding emotions on the agent’s planning strategies are specified, as well as the preconditions for triggering
the emotion. The latter correspond to generation rules for emotions. For instance, in [40] generation rules for four basic
emotions are given: joy, sadness, anger and fear, depending on the agent’s plans. More recently [62], generation rules for
social emotions such as guilt and shame have been proposed.

Contrarily to Meyer et al.’s approach, in our logic there are no specific formal constructs, like special predicates or fluents,
which are used to denote that a certain emotion arises at a certain time. We just define the appraisal pattern of a given
emotion in terms of some cognitive constituents such as desire and knowledge. For instance, according to our definition of
regret, an agent regrets for χ if and only if, he desires ¬χ and, i knows that it could have prevented χ to be true now. In
other words, following the so-called appraisal theories in psychology (see Section 2), in our approach an emotion is reduced
to its appraisal variables which can be defined through the basic concepts of a BDI logic (e.g. knowledge, belief, desires,
intentions).

It has to be noted that, although Meyer et al. provide a detailed formal analysis of emotions, they do not take into account
counterfactual emotions. This is also due to some intrinsic limitations of the KARO framework in expressing counterfactual
reasoning and statements of the form “agent i could have prevented χ to be true” which are fundamental constituents of
this kind of emotions. Indeed, standard dynamic logic on the top of which KARO is built, is not suited to express such
statements. In contrast to that, our STIT-based approach overcomes this limitation.

Note also that while Meyer et al. do not prove completeness and do not study complexity of their logic of emotions,
these are central issues in our work. As emphasized in the introduction of the article, our aim is to develop a logic which is
sufficiently expressive to capture the fundamental constituents of counterfactual emotions and, at the same time, with good
mathematical properties in terms of decidability and complexity.

Other logical approaches to emotions. Adam et al. [1] have recently exploited a BDI logic in order to provide a logical formal-
ization of the emotion types defined in Ortony, Clore and Collins’s model (OCC model) [42] (see Section 2.1 for a discussion
of this model). Similarly to our approach, in Adam et al.’s approach emotion types are defined in terms of some primitive
concepts (and corresponding modal operators) such as the concepts of belief, desire, and action which allow to capture
the different appraisal variables of emotions proposed in the OCC model such as the desirability of an event, probability
of an event, and degree of responsibility of the author of an action. However, Adam et al. do not consider counterfactual
emotions. In fact, the logic proposed by Adam et al. is not sufficiently expressive to capture counterfactual thinking about
agents’ choices and actions on which emotions like regret, rejoicing, disappointment and elation are based. Moreover, this
is due to some limitations of the OCC typology which does not contain definitions of emotions based on counterfactual
thinking such as regret and rejoicing.

In [20] a formal approach to emotions based on fuzzy logic is proposed. The main contribution of this work is a quan-
tification of emotional intensity based on appraisal variables like desirability of an event and its likelihood. For example,
following [42], in FLAME the variables affecting the intensity of hope with respect to the occurrence of a certain event
are the degree to which the expected event is desirable, and the likelihood of the event. However, in FLAME only basic
emotions like joy, sadness, fear and hope are considered and there is no formal analysis of counterfactual emotions as the
ones analyzed in our work.
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9. Conclusion

A logical framework which allows to formalize and to reason about counterfactual emotions has been proposed in this
article. This framework is based on a decidable and finitely axiomatizable fragment of STIT logic called df STIT. We have
shown that an epistemic extension of df STIT called df KSTIT is sufficiently expressive to capture the fundamental con-
stituents of counterfactual emotions and, at the same time, it has good mathematical properties in terms of complexity and
axiomatizability. We have proved that the satisfiability problem of df KSTIT is NP-complete if card(AGT) = 1 and PSPACE-
complete if card(AGT) " 2. This first result is fundamental in order to claim that we can write down algorithms in df KSTIT
to reason about counterfactual emotions such as regret, rejoicing, disappointment and elation. Moreover, we have provided
a complete axiomatization of df KSTIT logic. This second result is also important because it shows that we can perform syn-
tactic reasoning in df KSTIT about counterfactual emotions. We hope that the analysis developed in this paper will be useful
for improving understanding of affective phenomena and will offer an interesting perspective on computational modeling
of affective agents and systems.

Directions for our future research are manifold. The STIT fragment studied in Section 3 has an interesting expressivity,
as it allows to capture subtle aspects of counterfactual reasoning about agents’ choices. However, the reader may remark
that there is a gap between the complexity of the satisfiability problem of a formula in df STIT (NP-complete) and the
complexity of the satisfiability problem of a formula in df KSTIT (PSPACE-complete). Of course, the complexity for df KSTIT
cannot be improved because the satisfiability problem of S5n is already PSPACE-complete. An interesting open question is
to identify a more expressive fragment of STIT such that its satisfiability problem is PSPACE-complete and such that adding
knowledge will not increase the complexity of its satisfiability problem. However, we want to emphasize that the STIT
fragment studied in Section 3 already has an interesting expressivity. Indeed, as we have shown in Section 4, it allows to
capture subtle aspects of counterfactual reasoning about agents’ choices.

We have presented in Section 7 a decidable dynamic extension of the logic df KSTIT called df KSTIT+ and we have shown
how it can be used in order to capture interesting aspects of dialogue between an artificial agent and a human user. We
also postpone to future research an analysis of the complexity of this logic.

An analysis of intensity of counterfactual emotions was also beyond the objectives of the present work. However, we in-
tend to investigate this issue in the future in order to complement our qualitative analysis of affective phenomena with
a quantitative analysis. Moreover, we have focused in this paper on the logical characterization of four counterfactual
emotions: regret, rejoicing, disappointment and elation. We intend to extend our analysis in the future by studying the
counterfactual dimension of “moral” emotions such as guilt and shame. Indeed, as several psychologists have shown (see,
e.g., [36]), guilt involves the conviction of having injured someone or of having violated some norm or imperative, and the
belief that this could have been avoided.

Appendix A. Annex

A.1. Proof of Proposition 1

Let ϕ be a formula of LSTIT .

• If card(AGT) ! 2: ϕ is STIT-satisfiable iff ϕ is NCL-satisfiable;
• If card(AGT) " 3: if ϕ is STIT-satisfiable then ϕ is NCL-satisfiable. (The converse is false: there exists ϕ such that ϕ is

NCL-satisfiable and ¬ϕ is STIT-valid.)

Proof. Let us prove that a STIT-model is a NCL-model. For notational convenience, we write J instead of AGT \ J . Let
M = (W , {R J } J⊆AGT , V ) be STIT -model and let us prove that it is an NCL model. It suffices to prove that the constraints on
a NCL model are true in M. By the constraint 2 of Definition 1, we have R J1∪ J2 = ⋂

j∈ J1∪ J2
R{ j} = ⋂

j∈ J1
R{ j} ∩

⋂
j∈ J2

R{ j} =
R J1 ∩ R J2 . So we have R J1∪ J2 ⊆ R J1 ∩ R J2 . Now let us prove R∅ ⊆ R J ◦ RAGT\ J . If w R∅v , then the constraint 3 of Definition 1
gives:

⋂
j∈ J R{ j}(w) ∩ ⋂

j∈ J R{ j}(v) ≠ ∅. That is to say: R J (w) ∩ R J (v) ≠ ∅. So w R J ◦ R J v .
Now given that a STIT-model is a NCL-model, for all cardinalities of AGT , we have the implication “ϕ is STIT-satisfiable

implies ϕ is NCL-satisfiable”.
If card(AGT) = 1, we have that if ϕ is STIT -satisfiable then ϕ is NCL-satisfiable. Indeed, both the logic STIT and NCL are

just the logic S5 for the operator [∅] because the operator [1] is trivial (as we have [1]ϕ ↔ ϕ).
If card(AGT) = 2, from [29] we have that STIT is exactly the logic S52 with operators [1] and [2]. (We do not care about

operators [{1,2}] and [∅] because we have the two validities [{1,2}]ϕ ↔ ϕ and [∅]ϕ ↔ [1][2]ϕ .) Concerning NCL, directly
from the axiomatics of NCL, we have that NCL is exactly [S5, S5] with operators [1] and [2]. As S52 = [S5, S5] [24], we
have that STIT and NCL have the same satisfiable formulas.

If card(AGT) " 3, the problem of satisfiability of NCL is in NEXPTIME (see [5] or [54]) whereas the problem of satisfiability
of STIT is undecidable (see [29]). So the two logics do not have the same satisfiable formulas.

To sum up, we have:

• If card(AGT) = 1, STIT, S5 and NCL are the same logic;
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• If card(AGT) = 2, STIT, S52 and NCL are the same logic;
• If card(AGT) " 3, we have:

◦ STIT and S5card(AGT) are the same logic;
◦ If a formula is STIT-satisfiable then it is NCL-satisfiable. However, there exists a NCL-satisfiable formula which is not

STIT-satisfiable. ✷

A.2. Proof of Lemma 1

Let M = (W , R, V ) be a NCL-model. Let r be a positive integer. Let w1, . . . , wr ∈ W be such that for all i, j ∈ {1, . . . , r},
wi R∅w j . Let J1, . . . , Jr ⊆ AGT be such that i ≠ j implies J i ∩ J j = ∅. We have:

⋂

i=1...r

R J i (wi) ≠ ∅.

Proof. For r = 0 the lemma is true by convention. Let us prove the lemma by recurrence on r ∈ N∗ . Let us call P (r) the
statement of the lemma.

• P (1) is true.
• Let us prove P (2) because we need it in order to prove P (r + 1) from P (r).

Let u and w be in W such that uR∅w . Let J , K ⊆ AGT be two coalitions such that J ∩ K = ∅. As uR∅w , we have
uR J ◦ R J w . And then uR J ◦ R K w . This proves P (2).

• Now, assume that P (r) is true for a fixed r ∈ N∗ and let us prove that P (r + 1) is true. Let w1, . . . , wr, wr+1 ∈ W be
such that for all i, j ∈ {1, . . . , r}, wi R∅w j . Let J1, . . . , Jr, Jr+1 ⊆ AGT be such that i ≠ j implies J i ∩ J j = ∅. As P (r) is
assumed, we can apply it on (w1, . . . , wr) and ( J1, . . . , Jr) and obtain

⋂
i=1,...,r R J i (wi) ≠ ∅. Let us consider a world

w such that w ∈ ⋂
i=1,...,r R J i (wi). Now consider R⋃

i=1,...,r J i (w) and R Jr+1 (wr+1). By applying P (2) on (w, wr+1), and
(
⋃

i=1,...,r J i, Jr+1), we obtain that R⋃
i=1,...,r J i (w) ∩ R Jr+1 (wr+1) is not empty, i.e. R⋃

i=1,...,r J i (w) ∩ R Jr+1 (wr+1) contains
a point v . Note that by constraint 1 of Definition 3 we have R⋃

i=1,...,r J i (w) ⊆ ⋂
i=1,...,r R J i (w). As

⋂
i=1,...,r R J i (w) ⊆⋂

i=1,...,r R J i (wi), we have a point v in
⋂

i=1,...,r+1 R Ji (wi). In other words, P (r + 1) is true.

Conclusion: We have proved by recurrence that for all r " 1, P (r) is true. ✷

A.3. Proof of Theorem 2

Let ϕ ∈ Ldf STIT . Then, the following three propositions are equivalent:

1. ϕ is NCL-satisfiable;
2. ϕ is STIT-satisfiable;
3. ϕ is STIT-satisfiable in a polynomial sized product STIT-model.

Proof. As “2. implies 1.” has been investigated in Proposition 1, we focus here on the proof of “1. implies 3.” and we use a
selection-of-points argument as in [35]. Let ϕ be a NCL-satisfiable formula: there exists a NCL-model M = (W , V ) and z0
such that M, z0 |+ ϕ . The proof is divided in two parts. We first construct from M a product STIT-model M′ = (W ′, V ′).
Secondly we ensure that there exists a point (Z0, . . . , Z0) ∈ W ′ such that M′, (Z0, . . . , Z0) |+ ϕ . Broadly speaking, we take
care in the construction to create a new point in M′ for each subformula ⟨∅⟩ψ of ϕ true in M. We also take care to
construct enough points so that all subformulas ⟨∅⟩ψ and [ J ]χ of ϕ false at z0 of M can also be false in M′ .

Notations.

• Elements of W are noted x, y, etc. Elements of W ′ are noted x⃗, x⃗0, y⃗, etc. x j stands for the j-th coordinate of x⃗. Given
an element x⃗, we note x⃗ J = (x j) j∈ J ;

• (P , . . . , P ) denotes the vector x⃗ where for all j ∈ AGT , x j = P . Given a coalition J , (P , . . . , P ) J denotes x⃗ J where for all
j ∈ J , x j = P ;

• SF(ϕ) denotes the set of all subformulas of ϕ . SF1(ϕ) is the set of all subformulas of ϕ which are not in the scope of
a modal operator and which are of the form [ J ]χ where χ is propositional. For instance, if ϕ = [1]p ∧ ⟨∅⟩[2]q, then
SF(ϕ) = {p,q, [1]p, [2]q, ⟨∅⟩[2]q,ϕ} whereas SF1(ϕ) = {[1]p}.

Part 1: we define the model M′ . The definition of M′ relies on the following two sets of formulas:

• Pos = {ψ | ⟨∅⟩ψ ∈ SF(ϕ) and M, z0 |+ ⟨∅⟩ψ} ∪ {Z0} where Z0 = ∧
{[ J ]χ |[ J ]χ∈SF1(ϕ) and M,z0|+[ J ]χ}[ J ]χ . Formulas in Pos

are called positive formulas.
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• Neg = {[ J ]χ | [ J ]χ ∈ ψ and ⟨∅⟩ψ ∈ SF(ϕ) and M, z0 ̸|+ ⟨∅⟩ψ} ∪ Neg_in_z0 where Neg_in_z0 = {[ J ]χ | [ J ]χ ∈ SF1(ϕ) and
M, z0 |̸+ [ J ]χ}. Formulas in Neg are called negative formulas.

Example 7. Suppose that ϕ = ⟨∅⟩([1]χ1 ∧ [{1,3}]χ2) ∧ ¬⟨∅⟩([2]χ3 ∧ [4]χ4) ∧ [5]χ5 ∧ [6]χ6 ∧ ¬[7]χ7 ∧ ¬[8]χ8 and that M,
z0 |+ ϕ .

Then we have:

• Z0 = [5]χ5 ∧ [6]χ6;
• Pos = {[1]χ1 ∧ [{1,3}]χ2, [5]χ5 ∧ [6]χ6};
• Neg_in_z0 = {[7]χ7, [8]χ8};
• Neg = {[2]χ3, [4]χ4, [7]χ7, [8]χ8}.

First we define the Cartesian product W ′ = Cn = C ×C × · · ·×C where C = Pos∪ {0, . . . , card(Neg) − 1}. Then we introduce
few notations and prove the following Lemma 2 that allows us to define V ′:

• For all x⃗ ∈ W ′ , for all P ∈ Pos, we consider the set:

Coordx⃗
=P = { j ∈ AGT | x j = P }.

• For all x⃗ ∈ W ′ , we consider the set:

Posx⃗ =
{
χ

∣∣ P ∈ Pos, [ J ]χ ∈ SF(P ), J ⊆ Coordx⃗
=P

}
;

Intuitively Posx⃗ denotes a set of boolean formulas that must be true in x⃗ because of positive formulas. Formulas are
boolean because of the syntactic restriction over the language (definition of df STIT). For instance let us consider the
positive formula P = [1]p ∧ [{2,3}]q. The model M′ will be designed so that the point (P , . . . , P ) is the world where P
must be true. Indeed, for all α2, . . . ,αn ∈ C , the set Pos(P ,α2,...,αn) contains p. In the same way, for all α1,α4, . . . ,αn ∈ C ,
the set Pos(α1,P ,P ,α4,...,αn) contains q.

• For all x⃗ ∈ W ′ , we consider the formula

Boxesx⃗ =
∧

χ∈Posx⃗

χ .

Intuitively Boxesx⃗ is the conjunction of all (boolean) formulas which have to be true in x⃗ because of positive formulas.
• We fix a bijection i : {0, . . . , card(Neg) − 1} → Neg.

We need such a bijection between integers in {0, . . . , card(Neg) − 1} and Neg in order to use arithmetic operations +
and mod (modulo) for defining V ′ .

• We extend i to a function from W ′ to Neg in the following way:

i(x⃗) = i
( ∑

j∈{1,...,n}|x j∈{0,...,card(Neg)−1}
x j mod card(Neg)

)

where mod is the operation of modulo. Intuitively, i(x⃗) will correspond to the negative formula [ J ]χ which will be false
at x⃗ if there are no contradictions with Boxesx⃗ .

Lemma 2. For all x⃗ ∈ W ′ , there exists y ∈ W such that M, y |+ Boxesx⃗.

Proof. We just recall that by definition of Pos, we have that for all P ∈ Pos, M, z0 |+ ⟨∅⟩P . So for all P ∈ Pos, there exists a
point y P ∈ W , such that M, y P |+ P .

Let x⃗ ∈ W ′ . In the proof, we first define y ∈ W . Secondly we prove that M, y |+ Boxesx⃗ .

1. First, we define the candidate y ∈ W of our Lemma 2. As M is an NCL-model, M satisfies the assumption of indepen-
dence of agents (Lemma 1). We are simply going to apply Lemma 1 where points are {y P | P ∈ Pos} and sets of agents
are {Coordx⃗

=P , P ∈ Pos}. We take care that sets Coordx⃗
=P are disjoint if P ranges over Pos.6 Briefly, Lemma 1 leads to:

⋂

P∈Pos

RCoordx⃗
=P

(y P ) ≠ ∅.

As this set is not empty, let us consider y in it. Let y ∈ ⋂
P∈Pos RCoordx⃗

=P
(y P ).

6 Indeed, for all P , Q ∈ Pos, Coordx⃗
=P ∩ Coordx⃗

=Q ≠ ∅, implies that there exists j ∈ Coordx⃗
=P ∩ Coordx⃗

=Q . By definition of Coordx⃗
=P , we have x j = P . In the

same way, by definition of Coordx⃗
=P , we have x j = Q . Hence P = Q .
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Fig. 7. Model M′: a point (P , . . . , P ) and the subspace of all points x⃗ such that x⃗ J = (P , . . . , P ) J , that is, the subspace of worlds of M′ where every agent
in J performs action “P ”.

2. We have defined y ∈ W . Now let us prove that M, y |+ Boxesx⃗ . In other words, we are going to prove that for all
χ ∈ Posx⃗ , M, y |+ χ .
Let χ ∈ Posx⃗ . By definition of Posx⃗ , there exists P ∈ Pos and [ J ]χ ∈ SF(P ) such that J ⊆ Coordx⃗

=P . Recall that M, y⃗ P |+ P
and, consequently, we have M, y⃗ P |+ [ J ]χ . By definition of y, we have y P RCoordx⃗

=P
y. But as J ⊆ Coordx⃗

=P , we have
RCoordx⃗

=P
⊆ R J . So, we have y P R J y and, consequently, we have M, y |+ χ . So we have M, y |+ Boxesx⃗ . ✷

Finally, we define V ′ = f ◦ V where f is a mapping from W ′ to W defined by:

• f (Z0, . . . , Z0) = z0;
• For all x⃗ ∈ W ′ such that x⃗ ≠ (Z0, . . . , Z0), i(x⃗) is of the form [ J ]χ ∈ Neg.

– If there exists y ∈ W such that M, y |+ ¬χ ∧ Boxesx⃗ then f (x⃗)
def= y.

– Else, we choose a world y in W such that M, y |+ Boxesx⃗ (such a world exists because of Lemma 2) and we define

f (x⃗)
def= y.

Clearly, M′ = (W ′, V ′) is a product STIT-model and its size is polynomial. As V ′ = f ◦ V , we have immediately the
following lemma useful for the Part 2 of the proof.

Lemma 3. For all x⃗ ∈ W ′ , M′, x⃗ |+ Boxesx⃗.

Proof. Let x⃗ ∈ W ′ . By definition of f , M, f (x⃗) |+ Boxesx⃗ . But recall that V ′ = f ◦ V : in particular, we have V ′(x⃗) = V ( f (x⃗)).
Recall also that Boxesx⃗ is a boolean formula. So we obtain M, x⃗ |+ Boxesx⃗ . ✷

Part 2 of the proof : we prove M′, (Z0, . . . , Z0) |+ ϕ . We prove the following two facts:

Fact 1. For all ⟨∅⟩ψ of ϕ , we have M, z0 |+ ⟨∅⟩ψ iff M′, (Z0, . . . , Z0) |+ ⟨∅⟩ψ .

Fact 2. For all [ J ]χ ∈ SF1(ϕ), we have M, z0 |+ [ J ]χ iff M′, (Z0, . . . , Z0) |+ [ J ]χ .

⇒ of Fact 1 and ⇒ of Fact 2 In order to prove it, it suffices to prove that for all P ∈ Pos we have M′, (P , . . . P ) |+ P .
Let P ∈ Pos. P is a conjunction of formulas of the form [ J ]χ where χ is a Boolean formula. Let [ J ]χ ∈ SF(P ). We have
to show that for all x⃗ ∈ W ′ such that x⃗ J = (P , . . . , P ) J , we have M, x⃗ |+ χ . The situation is drawn in Fig. 7. But for those
x⃗ such that x⃗ J = (P , . . . , P ) J , we have J ⊆ Coordx⃗

=P . So χ ∈ Posx⃗ implies that |+ Boxesx⃗ → χ . But, by Lemma 3, we have
M′, x⃗ |+ Boxesx⃗ and this leads to M′, x⃗ |+ χ . Finally, M′, (P , . . . , P ) |+ [ J ]χ . Therefore we have M′, (P , . . . , P ) |+ P .

⇐ of Fact 1 Let N = [ J1]χ1 ∧ . . . [ Jk]χk be such that ⟨∅⟩N ∈ SF(ϕ) and M, z0 ̸|+ ⟨∅⟩N . Let us prove that for all x⃗0 ∈ W ′ ,
M′, x⃗0 |+ ¬N . We suggest the reader to look at Fig. 8 during this part.

Consider y0 = f (x⃗0) ∈ W . By definition of f , we have M, y0 |+ Boxesx⃗0 . We also have M, y0 |+ ¬N . So, there is i ∈
{1, . . . ,k} such that M, y0 |̸+ [ J i]χi . Notice that [ J i]χi belongs to Neg.

Now we are going to prove that M′, x⃗0 |̸+ [ J i]χi . We are going to define a vector x⃗ ∈ W ′ such that x⃗0 R ′
J i

x⃗ and M′, x⃗ |+
¬χi . As depicted in Fig. 8, we want that J i performs the same joint action both in x⃗0 and in x⃗.

The case where J i = AGT is trivial: we take x⃗ = x⃗0. Else, let j0 be an arbitrary agent in J i and x⃗ ∈ W ′ be the candidate
vector such that:

• x⃗ J i = x⃗0 J i ;
• x j = 0 for all j ∈ J i \ { j0};
• x j0 = i−1([ J i]¬χi) −∑

j∈AGT| j≠ j0 and x j∈{0,...,card(Neg)−1} x j mod N .
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Fig. 8. Proof of ⇐ of Fact 1.

Now we check that M′, x⃗ |+ ¬χi . As M, y0 |+ ⟨ J i⟩¬χi , there exists y ∈ W such that yR Ji y0 and M, y |+ ¬χi . Notice
that M, y |+ Boxesx⃗ . Indeed, Boxesx⃗ only contains subformulas χ1 such that [K ]χ1 is a subformula of Pos where K ⊆ J i
(because only coordinates in J i of x⃗ are in Pos; the others are integer). Then we have |+ Boxesx⃗0 → Boxesx⃗ . Hence M, y |+
Boxesx⃗ . To sum up, we have M, y |+ Boxesx⃗ ∧¬χi . So, as i(x⃗) = [ J i]¬χi , by definition of f we have that f (x⃗) is a such point
y where M, y |+ Boxesx⃗ ∧ ¬χi . Finally, by definition of V ′ , we have M′, x⃗ |+ ¬χi .

⇐ of Fact 2 Let us prove now that M′, (Z0, . . . , Z0) |+ Neg_in_z0. More precisely we prove that for all [ J ]χ ∈ Neg_in_z0,
M′, (Z0, . . . , Z0) |+ ⟨ J ⟩¬χ . We know that M, z0 |+ ⟨ J ⟩¬χ . So there exists y ∈ W such that yR J z0 and M, y |+ ¬χ . The
case J = AGT is trivial. Let us consider j0 ∈ J and let us define the candidate vector x⃗:

• x⃗ J = (Z0, . . . , Z0) J ;
• x j = 0 for all j ∈ J \ { j0};
• x⃗ j0 = i−1([ J ]χ).

Let us check that M′, x⃗ |+ ¬χ . Notice that Boxesx⃗ only contains Boolean formulas χ ′ where formulas [ J ′]χ ′ are subformulas
of Z0, where J ′ ⊆ J . Hence M, y |+ Boxesx⃗ . Furthermore, M, y |+ ¬χ . So by definition of f , as i(x⃗) = [ J ]χ , we have that
f (x⃗) is a point y such that M, y |+ ¬χ ∧ Boxesx⃗ . By definition of V ′ , M′, x⃗ |+ ¬χ .

The conclusion of the proof is left to the reader. ✷

A.4. Proof of Corollary 1

Deciding if a formula in Ldf STIT is STIT-satisfiable is NP-complete.

Proof. SAT is reducible to the STIT-satisfiability problem of a formula in Ldf STIT . Thus deciding if a formula in Ldf STIT is
STIT-satisfiable is NP-hard.

Now let us see that it is in NP. According to Theorem 2, if a formula ϕ is STIT-satisfiable, ϕ is satisfiable in a polynomial-
sized STIT-model. So a non-deterministic algorithm to solve the satisfiability problem can be as follows:

• we guess a polynomial-sized model M′ = (W ′, V ′) and a world x⃗ ∈ W ′;
• we check whether M′, x⃗ |+ ϕ holds or not.

Note that checking whether M′, x⃗ |+ ϕ or not can be done in polynomial time in the size of M′ and in the length of ϕ . As
the size of M′ is polynomial in the length of ϕ , checking whether M′, x⃗ |+ ϕ or not can be done in polynomial time in the
size of ϕ . ✷

A.5. Proof of Corollary 2

A formula ϕ in Ldf STIT is STIT-valid iff we have ⊢NCL ϕ .

Proof. We have:

• for all formulas ϕ ∈ L , |+NCL ϕ iff ⊢NCL ϕ (Theorem 1);
• for all formulas ϕ ∈ Ldf STIT , |+STIT ϕ iff |+NCL ϕ (Theorem 2).

Hence: for all formulas ϕ ∈ Ldf STIT , |+STIT ϕ iff ⊢NCL ϕ . ✷

A.6. Proof of Theorem 3

The satisfiability problem of df KSTIT is NP-complete if card(AGT) = 1 and PSPACE-complete if card(AGT) " 2.



E. Lorini, F. Schwarzentruber / Artificial Intelligence 175 (2011) 814–847 841

function sat(Σ, i)
(∃) choose β a set of at most n subsets of CL(Σ) such that there exists S ∈ β such that Σ ⊆ S , where n is the number of operators Ki
appearing in Σ .
Check Kiψ , ¬Kiψ , K jψ , Boolean coherence and STIT coherence:

1. for all S, S ′ ∈ β , Kiψ ∈ S iff Kiψ ∈ S ′;
2. for all S ∈ β , Kiψ ∈ S implies ψ ∈ S;
3. for all S ∈ β , ¬Kiψ ∈ S iff there exists S ′ ∈ β such that ¬ψ ∈ S ′;
4. for all S ∈ β , for all j ≠ i, K jψ ∈ S implies ψ ∈ S;
5. ψ1 ∧ ψ2 ∈ S iff (ψ1 ∈ S and ψ2 ∈ S);
6. ψ1 ∨ ψ2 ∈ S iff (ψ1 ∈ S or ψ2 ∈ S);
7. for all S ∈ β , ψ ∈ S xor ¬ψ ∈ S .
8. check that

∧
ψ∈S|ψ∈LSTIT

ψ is STIT-satisfiable.

(∀) choose S ′ ∈ β

(∀) choose j ∈ AGT \ {i}
if there exists a formula of the form ¬K jψ in S ′ ,

call sat({K jθ ∈ S ′} ∪ {¬K jθ ∈ S ′}, j)
endIf

endFunction

Fig. 9. An algorithm for the KSTIT-satisfiability problem of a given set of df KSTIT-formulas Σ .

Proof. card(AGT) = 1

Let us consider the case card(AGT) = 1. In this case there are only three operators: [∅], [1], and K1. Nevertheless, the op-
erator [1] can be removed because we force RAGT = idW in our models. As a K1 operator cannot appear after a [∅] operator,
we can prove by a selected points argument that if a df KSTIT-formula is KSTIT-satisfiable, then it is in a polynomial sized
model (in [35], it is done for S5).

card(AGT) " 2

Let us consider the case card(AGT) " 2. Recall that the satisfiability problem of S5card(AGT) is PSPACE-hard [28]. But the
logic S5card(AGT) is embedded into df KSTIT. So deciding if a df KSTIT-formula ϕ is KSTIT-satisfiable is also PSPACE-hard.

Now let us prove that the KSTIT-satisfiability problem of a given df KSTIT-formula is in PSPACE. As APTIME = PSPACE [15],
it is sufficient to prove that this problem is in APTIME. Fig. 9 shows an alternating procedure sat(Σ , i) where Σ is a set
of df KSTIT-formulas and i ∈ AGT . For all i ∈ AGT , when each formula of Σ starts with Ki or ¬Ki , then the call sat(Σ, i)
succeeds if and only if the set of formulas Σ is KSTIT-satisfiable, that is, the conjunction of all formulas ϕ ∈ Σ is sat-
isfiable. Note that Φ is satisfiable iff K1Φ is satisfiable. Thus, in order to check if Φ is satisfiable, we call sat({K1Φ}, 1).
For all formulas ϕ , we define the set CL(ϕ) = SF(ϕ) ∪ {¬ψ | ψ ∈ SF(ϕ)}. CL(ϕ) contains all the subformulas of ϕ and their
negations. For all sets of formulas Σ , we define CL(Σ) = ⋃

ϕ∈Σ CL(ϕ).
The procedure sat(Σ , i) is inspired by the algorithms of the satisfiability problem for S5n given in [28] and in [6]. It

checks the satisfiability of a set of formulas Σ where all formulas of Σ starts with Ki or ¬Ki by first constructing an
Ei -equivalence class represented by the set of subsets of CL(Σ). A subset of CL(Σ) represents all formulas that are true in
a given world of the Ei -equivalence class.

We require one of the worlds to satisfy Σ , that is, we require that there exists S ∈ β such that Σ ⊆ S . We then check that
all constraints on agent i’s knowledge are satisfied: steps 1, 2 and 3 in the algorithm of Fig. 9. We also check that constraints
on other agents’ knowledge are satisfied in worlds of the Ei -equivalence class: step 4. We check Boolean constraints: steps
5, 6 and 7. We finally check that at each world of the Ei -equivalence class all LSTIT-subformulas supposed to be true are
together satisfiable: step 8. This verification can run non-deterministically in polynomial time thanks to Theorem 1.

Finally we continue the construction of the model: at every point S ′ of the Ei -equivalence class and for all agents j,
we check if all constraints due to all subformulas of the form K jθ and ¬K jθ can be together satisfiable. Let l(Σ) be the
number of epistemic modal operators in the formulas of Σ that have the maximal number of epistemic modal operators.
Note that l({K jθ ∈ S ′} ∪ {¬K jθ ∈ S ′}) < l(Σ) so that the termination is granted. During all the recursive call of the algorithm
sat({K1Φ},1), we only work with subformulas of K1Φ . The algorithm runs in polynomial time. ✷

A.7. Proof of Theorem 4

Let ϕ be a formula of Ldf KSTIT . We have equivalence between:

• ϕ is satisfiable in KNCL;
• ϕ is satisfiable in KSTIT.

Proof. Unfortunately, the general results about completeness of fusion of logics given in [24] cannot be applied here because
we are dealing with syntactic fragments.
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Fig. 10. From KNCL-model M to the KSTIT-model M′ .

⇑ We can prove that a KSTIT-model is a KNCL-model. The proof is similar to the proof of Proposition 1.

⇓ Let Φ be a formula of Ldf KSTIT satisfiable in a KNCL-model, i.e. suppose that there exists a KNCL-model M =
(W , {R J } J⊆AGT , {Ei}i∈AGT , V ) and w ∈ W such that M, w |+ Φ . We are going to define a KSTIT-model M′ from M satisfy-
ing Φ . In order to do this, we are simply going to replace each “NCL-model” in the model M by an equivalent STIT-model
given by Theorem 2 as shown in Fig. 10.

Consider the set:

S = {s ∈ W | there exists a finite sequence i1, . . . in ∈ AGT such that w Ei1 ◦ · · · ◦ Ein s}
where ◦ is the standard composition operation over binary relation.

Let STIT-SF(Φ) be the set of all subformulas of Φ that do not contain an epistemic operator Ki .
For all s ∈ S , we define

ψs =
∧

ϕ∈STIT-SF(Φ)|M, s|+ϕ

ϕ ∧
∧

ϕ∈STIT-SF(Φ)|M, s|̸+ϕ

¬ϕ.

We have M, s |+ ψs . As Φ is in the fragment df KSTIT, we have that ψs is in the fragment df STIT. So we can apply the
Theorem 2: it gives the existence of a STIT-model Ms = (W s, {Rs J } J⊆AGT , V s) and rs ∈ W s such that Ms, rs |+ ψs .

Now we define M′ = (W ′, {R ′
J } J⊆AGT , {E ′

i}i∈AGT , V ′) as follows:

• W ′ = {(s, t) | s ∈ S, t ∈ W s};
• R ′

J = {⟨(s, t), (s, t′)⟩ ∈ W ′ × W ′ | (t, t′) ∈ Rs J };
• E ′

i = {⟨(s, rs), (s′, rs′ )⟩ | (s, s′) ∈ Ei} ∪ {⟨(s, t), (s, t)⟩ | (s, t) ∈ W ′};
• V ′(s, t) = V s(t).

Now we can prove by induction that for all subformulas ϕ of Φ , we have that for all s ∈ S , M, s |+ ϕ iff M′, (s, rs) |+ ϕ .

(df STIT) If ϕ is a see-to-it formula or is of the form ⟨∅⟩ψ where ψ is a see-to-it-formula, then ϕ does not contain
any epistemic operator. Hence by definition of ψs we have that ψs contains either ϕ or ¬ϕ . So, by definition
of the STIT-model Ms , we have M, s |+ ϕ iff Ms, rs |+ ϕ . And Ms, rs |+ ϕ is equivalent to M′, (s, rs) |+ ϕ
by definition of R ′

J and V ′ .
(boolean cases) Boolean cases are left to the reader.

(Kiϕ) Let us consider a subformula of the form Kiϕ . We have M, s |+ Kiϕ iff for all s′ ∈ W such that sEi s′ we
have M, s′ |+ ϕ . By definition of S , this is equivalent to: for all s′ ∈ S such that sEi s′ we have M, s′ |+ ϕ .
By induction, this is equivalent to the fact that for all s′ ∈ S such that sEi s′ we have M′, (s′, rs′ ) |+ ϕ . By
definition of E ′

i this is equivalent to M′, (s, rs) |+ Kiϕ . ✷

A.8. Proof of Validity (22) in Section 7.1

|+KSTIT K B∗ → Kt REJOICEu passu.

Proof. We give a syntactic proof of the previous validity. We show that we have

⊢KNCL K B∗ → Kt REJOICEu passu

by applying the axioms and rules of inference of KNCL. Then,

|+KSTIT K B∗ → KtREJOICEu passu
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follows from Corollary 3 and the fact that K B∗ → KtREJOICEupassu ∈ Ldf KSTIT .

1. ⊢KNCL ¬[∅]([u]¬studiedu → [u]¬passu) → ⟨∅⟩([u]¬studiedu ∧ ¬[u]¬passu)
2. ⊢KNCL ⟨∅⟩([u]¬studiedu ∧ ¬[u]¬passu) → ⟨∅⟩([u]¬studiedu ∧ ⟨u⟩passu)
3. ⊢KNCL ⟨∅⟩([u]¬studiedu ∧ ⟨u⟩passu) → ⟨∅⟩([u][u]¬studiedu ∧ ⟨u⟩passu) by the standard S5 validity [ J ]χ ↔ [ J ][ J ]χ
4. ⊢KNCL ⟨∅⟩([u][u]¬studiedu ∧ ⟨u⟩passu) → ⟨∅⟩⟨u⟩([u]¬studiedu ∧ passu) by necessitation rule for [∅] and the standard va-

lidity ([ J ]χ1 ∧ ⟨ J ⟩χ2) → ⟨ J ⟩(χ1 ∧ χ2)
5. ⊢KNCL ⟨ J ⟩ϕ → (⟨ J ⟩ϕ ∧ ⟨∅⟩ϕ) by the NCL Axiom Mon
6. ⊢KNCL ⟨ J ⟩ϕ → ⟨∅⟩ϕ by 5
7. ⊢KNCL ⟨∅⟩⟨u⟩([u]¬studiedu ∧ passu) → ⟨∅⟩⟨∅⟩([u]¬studiedu ∧ passu) by 6, necessitation rule for [∅] and the standard va-

lidity ([∅]χ1 ∧ ⟨∅⟩χ2) → ⟨∅⟩(χ1 ∧ χ2)
8. ⊢KNCL ⟨∅⟩⟨∅⟩([u]¬studiedu ∧ passu) → ⟨∅⟩([u]¬studiedu ∧ passu) by the standard S5 validity ⟨∅⟩χ ↔ ⟨∅⟩⟨∅⟩χ
9. ⊢KNCL ⟨∅⟩([u]¬studiedu ∧ passu) → ¬[∅]([u]¬studiedu → ¬passu)

10. ⊢KNCL ¬[∅]([u]¬studiedu → [u]¬passu) → ¬[∅]([u]¬studiedu → ¬passu) from 1–4 and 7–9
11. ⊢KNCL [∅]([u]¬studiedu → ¬passu) → [∅]([u]¬studiedu → [u]¬passu) from 10
12. ⊢KNCL (⟨∅⟩[u]¬studiedu ∧ [∅]([u]¬studiedu → [u]¬passu)) → ⟨∅⟩[u]¬passu by the standard validity

([∅]χ1 ∧ ⟨∅⟩χ2) → ⟨∅⟩(χ1 ∧ χ2)
13. ⊢KNCL (⟨∅⟩[u]¬studiedu ∧ [∅]([u]¬studiedu → ¬passu)) → ⟨∅⟩[u]¬passu from 11, 12
14. ⊢KNCL Ku(⟨∅⟩[u]¬studiedu ∧ [∅]([u]¬studiedu → ¬passu)) → Ku⟨∅⟩[u]¬passu by 13, Axiom K and necessitation rule for Ku
15. ⊢KNCL ⟨∅⟩[u]¬passu → ⟨AGT \ {u}⟩⟨u⟩[u]¬passu by the NCL Axiom Elim(∅)
16. ⊢KNCL ⟨u⟩[u]¬passu → [u]¬passu by Axiom 5 for [ J ]
17. ⊢KNCL [u]¬passu → ¬passu by Axiom T for [u]
18. ⊢KNCL ⟨u⟩[u]¬passu → ¬passu from 16, 17
19. ⊢KNCL ⟨AGT \ {u}⟩⟨u⟩[u]¬passu → ⟨AGT \ {u}⟩¬passu by 18, necessitation rule for [ J ] and the standard validity

([ J ]χ1 ∧ ⟨ J ⟩χ2) → ⟨ J ⟩(χ1 ∧ χ2)
20. ⊢KNCL ⟨∅⟩[u]¬passu → ⟨AGT \ {u}⟩¬passu from 15, 19
21. ⊢KNCL Ku⟨∅⟩[u]¬passu → Ku⟨AGT \ {u}⟩¬passu by 20, Axiom K and necessitation rule for Ku
22. ⊢KNCL Ku(⟨∅⟩[u]¬studiedu ∧ [∅]([u]¬studiedu → ¬passu)) → Ku⟨AGT \ {u}⟩¬passu from 14, 21
23. ⊢KNCL KtKu(⟨∅⟩[u]¬studiedu ∧ [∅]([u]¬studiedu → ¬passu)) → KtKu⟨AGT \ {u}⟩¬passu by 22, Axiom K and necessitation

rule for Kt
24. ⊢KNCL (KtKu⟨∅⟩[u]¬studiedu ∧KtKu[∅]([u]¬studiedu → ¬passu)) → KtKu⟨AGT \{u}⟩¬passu by 23, and the standard validity

Ki(χ1 ∧ χ2) ↔ (Kiχ1 ∧ Kiχ2)
25. ⊢KNCL (KtDESu¬passu ∧KtKupassu ∧KtKu⟨∅⟩[u]¬studiedu ∧KtKu[∅]([u]¬studiedu → ¬passu)) → REJOICEupassu from 24,

definition of REJOICEi χ and the standard validity (Kiχ1 ∧ · · · ∧ Kiχn) ↔ Ki(χ1 ∧ · · · ∧ χn)
26. ⊢KNCL K B∗ → REJOICEupassu from 25 and

K B∗ = KtDESupassu ∧ KtKupassu ∧ KtKu⟨∅⟩[u]¬studiedu ∧ KtKu[∅]([u]¬studiedu → ¬passu) ✷

A.9. Proof of Proposition 2

The following schemata are KSTIT+-valid:

(Redp)
[
∥θ∥

]
p ↔ p

(Red¬)
[
∥θ∥

]
¬ϕ ↔ ¬

[
∥θ∥

]
ϕ

(Red∧)
[
∥θ∥

]
(ϕ1 ∧ ϕ2) ↔

([
∥θ∥

]
ϕ1 ∧

[
∥θ∥

]
ϕ2

)

(Red[ J ])
[
∥θ∥

]
[ J ]ϕ ↔ [ J ]

[
∥θ∥

]
ϕ

(RedKi )
[
∥θ∥

]
Kiϕ ↔

((
θ → Ki

(
θ →

[
∥θ∥

]
ϕ

))
∧

(
¬θ → Ki

(
¬θ →

[
∥θ∥

]
ϕ

)))

Proof. We here just prove the validity of reduction axioms Red[ J ] and RedKi . The proofs of the other reduction axioms go
as in PAL [67].

M, w |+ [∥θ∥]Kiϕ ,

IFF (if M, w |+ θ then M, w |+ [∥θ∥]Kiϕ) and (if M, w |+ ¬θ then M, w |+ [∥θ∥]Kiϕ),
IFF (if M, w |+ θ then M∥θ∥, w |+ Kiϕ) and (if M, w |+ ¬θ then M∥θ∥, w |+ Kiϕ),
IFF (if M, w |+ θ then for all v ∈ W such that w E∥θ∥

i v , M∥θ∥, v |+ ϕ) and (if M, w |+ ¬θ then for all v ∈ W such that

w E∥θ∥
i v , M∥θ∥, v |+ ϕ),

IFF (if M, w |+ θ then for all v ∈ W such that w E∥θ∥
i v , M, v |+ [∥θ∥]ϕ) and (if M, w |+ ¬θ then for all v ∈ W such that

w E∥θ∥
i v , M, v |+ [∥θ∥]ϕ),
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IFF (if M, w |+ θ then for all v ∈ W such that w Ei v and M, v |+ θ , M, v |+ [∥θ∥]ϕ) and (if M, w |+ ¬θ then for all v ∈ W
such that w Ei v and M, v |+ ¬θ , M, v |+ [∥θ∥]ϕ),

IFF (if M, w |+ θ then M, w |+ Ki(θ → [∥θ∥]ϕ)) and (if M, w |+ ¬θ then M, w |+ Ki(¬θ → [∥θ∥]ϕ)),
IFF M, w |+ (θ → Ki(θ → [∥θ∥]ϕ)) ∧ (¬θ → Ki(¬θ → [∥θ∥]ϕ)).

M, w |+ [∥θ∥][ J ]ϕ ,

IFF M∥θ∥, w |+ [ J ]ϕ ,
IFF for all v ∈ W such that w R∥θ∥

J v , M∥θ∥, v |+ ϕ ,
IFF for all v ∈ W such that w R J v , M, v |+ [∥θ∥]ϕ ,
IFF M, w |+ [ J ][∥θ∥]ϕ . ✷

A.10. Proof of Proposition 4

Let ϕ ∈ Ldf KSTIT+ . Then, red(ϕ) ∈ Ldf KSTIT .

Proof. Proposition 4 is proved by induction on the structure of ϕ . For the atomic case, we have red(p) ∈ Ldf KSTIT . Then we
have to prove the following five inductive cases.

1. Suppose: if ϕ1 ∈ Ldf KSTIT+ then red(ϕ1) ∈ Ldf KSTIT . It follows that: if ¬ϕ1 ∈ Ldf KSTIT+ then red(¬ϕ1) ∈ Ldf KSTIT ,
2. Suppose: if ϕ1 ∈ Ldf KSTIT+ then red(ϕ1) ∈ Ldf KSTIT , and if ϕ2 ∈ Ldf KSTIT+ then red(ϕ2) ∈ Ldf KSTIT . It follows that: if

ϕ1 ∧ ϕ2 ∈ Ldf KSTIT+ then red(ϕ1 ∧ ϕ2) ∈ Ldf KSTIT ,
3. Suppose: if ϕ1 ∈ Ldf KSTIT+ then red(ϕ1) ∈ Ldf KSTIT . It follows that: if [ J ]ϕ1 ∈ Ldf KSTIT+ then red([ J ]ϕ1) ∈ Ldf KSTIT .
4. Suppose: if ϕ1 ∈ Ldf KSTIT+ then red(ϕ1) ∈ Ldf KSTIT . It follows that: if Kiϕ1 ∈ Ldf KSTIT+ then red(Kiϕ1) ∈ Ldf KSTIT .
5. Suppose: if ϕ1 ∈ Ldf KSTIT+ then red(ϕ1) ∈ Ldf KSTIT , and if θ ∈ Ldf KSTIT+ then red(θ) ∈ Ldf KSTIT . It follows that: if

[∥θ∥]ϕ1 ∈ Ldf KSTIT+ then red([∥θ∥]ϕ1) ∈ Ldf KSTIT .

Let us consider the case of negation (case 1). Suppose ¬ϕ1 ∈ Ldf KSTIT+ . Therefore, ϕ1 ∈ Ldf KSTIT+ and, by induction hy-
pothesis, we have red(ϕ1) ∈ Ldf KSTIT . By definition of Ldf KSTIT , it follows that ¬red(ϕ1) ∈ Ldf KSTIT . The latter implies
red(¬ϕ1) ∈ Ldf KSTIT , as ¬red(ϕ1) = red(¬ϕ1). We leave the case of conjunction (case 2) and of STIT operators [ J ] (case 3)
to the reader.

Let us consider the case of epistemic operators (case 4). Suppose Kiϕ1 ∈ Ldf KSTIT+ . Therefore, ϕ1 ∈ Ldf KSTIT+ and, by
induction hypothesis, we have red(ϕ1) ∈ Ldf KSTIT . By definition of Ldf KSTIT , it follows that Ki red(ϕ1) ∈ Ldf KSTIT . The latter
implies red(Kiϕ1) ∈ Ldf KSTIT , as Ki red(ϕ1) = red(Kiϕ1).

In order to prove the case of dynamic operators (case 5), we need the following Lemma 4.

Lemma 4. If ϕ ∈ Ldf KSTIT and red(θ) ∈ Ldf KSTIT then red([∥θ∥]ϕ) ∈ Ldf KSTIT .

Proof. We prove Lemma 4 by induction on the structure of ϕ . For the atomic case, we have red([∥θ∥]p) ∈ Ldf KSTIT . The
cases of atomic propositions, negation, conjunction and STIT operators are just straightforward. Let us prove the case of
epistemic operators, that is, when ϕ = Kiϕ1.

Suppose red(θ) ∈ Ldf KSTIT and Kiϕ1 ∈ Ldf KSTIT . Therefore, by definition of Ldf KSTIT , we have ϕ1 ∈ Ldf KSTIT and, by induc-
tion hypothesis, red([∥θ∥]ϕ1) ∈ Ldf KSTIT . From the latter and the assumption red(θ) ∈ Ldf KSTIT , by definition of Ldf KSTIT , it
follows that

(
red(θ) → Ki

(
red(θ) → red

([
∥θ∥

]
ϕ1

)))
∧

(
¬red(θ) → Ki

(
¬red(θ) → red

([
∥θ∥

]
ϕ1

)))
∈ Ldf KSTIT.

By definition of red, we have that

red
([

∥θ∥
]
Kiϕ1

)
=

(
red(θ) → Ki

(
red(θ) → red

([
∥θ∥

]
ϕ1

)))
∧

(
¬red(θ) → Ki

(
¬red(θ) → red

(
[∥θ∥]ϕ1

)))
.

Thus, we can conclude that red([∥θ∥]Kiϕ1) ∈ Ldf KSTIT .
This concludes the proof of Lemma 4. ✷

Let us go back to the proof of Proposition 4. Suppose [∥θ∥]ϕ1 ∈ Ldf KSTIT+ . Therefore, we have θ ∈ Ldf KSTIT+ and ϕ ∈
Ldf KSTIT+ and, by induction hypothesis, we have red(θ) ∈ Ldf KSTIT and red(ϕ1) ∈ Ldf KSTIT . From the latter, by Lemma 4, it
follows that red([∥θ∥]red(ϕ1)) ∈ Ldf KSTIT . It is a routine task to check that red([∥θ∥]red(ϕ1)) = red([∥θ∥]ϕ1). Therefore, we
conclude that red([∥θ∥]ϕ1) ∈ Ldf KSTIT . ✷

A.11. Proof of Corollary 4

The validities of df KSTIT+ are completely axiomatized by the axioms and inference rules of df KSTIT provided in Corol-
lary 3 together with reduction axioms of Proposition 2 and the rule of replacement of proved equivalents.
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Proof. Soundness is guaranteed by Proposition 2, plus the fact that the rule of replacement of proved equivalences preserves
validity. The completeness proof proceeds as follows. Suppose that ϕ ∈ Ldf KSTIT+ and that ϕ is KSTIT+-valid. Then red(ϕ)

is KSTIT+-valid due to Proposition 3. Moreover, due to Proposition 4 we have red(ϕ) ∈ Ldf KSTIT and, due to the fact that
KSTIT+ is a conservative extension of KSTIT, we have that red(ϕ) is KSTIT-valid. By the completeness of df KSTIT (Corol-
lary 3), red(ϕ) is also provable there. df KSTIT+ being a conservative extension of df KSTIT, red(ϕ) is provable in df KSTIT+ ,
too. As the reduction axioms and the rule of replacement of proved equivalents are part of our axiomatics, the formula ϕ is
also be provable in df KSTIT+ . ✷

A.12. Proof of Validity (24) in Section 7.3

|+KSTIT+ K B∗∗∗ →
〈〈
say(t,passu)

〉〉
REJOICEu passu.

Proof. First of all, note that ⟨⟨say(t,passu)⟩⟩REJOICEupassu is logically equivalent to Pre(say(t,passu))∧Ktpassu ∧ [∥Ktpassu∥]
REJOICEupassu . Thus, we just need to show that K B∗∗∗ implies the latter.

By definition of K B∗∗∗ , we have that:

A. |+KSTIT+ K B∗∗∗ → Kt passu .

Let us prove that K B∗∗∗ implies [∥Ktpassu∥]REJOICEupassu . By definition of K B∗∗∗ and Axiom T for Kt we have that:

B. |+KSTIT+ K B∗∗∗ → (Ktpassu ∧ DESupassu ∧ Ku[∅]([u]¬studiedu → ¬passu) ∧ Ku⟨∅⟩[u]¬studiedu).

From step 22 in the proof of Validity (22) (see Section A.8 in this appendix), we also have:

C. |+KSTIT+ (Ku[∅]([u]¬studiedu → ¬passu) ∧ Ku⟨∅⟩[u]¬studiedu) → Ku⟨AGT \ {u}⟩¬passu .

Therefore, from the previous validities B and C, we have:

D. |+KSTIT+ K B∗∗∗ → (Ktpassu ∧ DESupassu ∧ Ku⟨AGT \ {u}⟩¬passu).

Now, we are going to prove the following validity:

E. |+KSTIT+ (Ktpassu ∧ DESupassu ∧ Ku⟨AGT \ {u}⟩¬passu) → [∥Ktpassu∥](Kupassu ∧ DESupassu ∧ Ku⟨AGT \ {u}⟩¬passu).

As [∥θ∥](ϕ1 ∧ · · · ∧ ϕn) is equivalent to [∥θ∥]ϕ1 ∧ · · · ∧ [∥θ∥]ϕn (by reduction axiom Red∧), in order to prove the previous
validity E it is sufficient to prove that the following three formulas are valid:

• Ktpassu → [∥Kt passu∥]Ku passu
• DESupassu → [∥Kt passu∥]DESupassu
• Ku⟨AGT \ {u}⟩¬passu → [∥Ktpassu∥]Ku⟨AGT \ {u}⟩¬passu .

We just give the proof of the first validity, leaving the proofs of the other two validities to the reader.

1. |+KSTIT+ [∥Ktpassu∥]Kupassu ↔ ((Ktpassu → Ku(Ktpassu → [∥Ktpassu∥]passu)) ∧ (¬Ktpassu → Ku(¬Ktpassu → [∥Ktpassu∥]
passu))) by the reduction axiom RedKi

2. |+KSTIT+ ((Ktpassu → Ku(Ktpassu → [∥Ktpassu∥]passu)) ∧ (¬Ktpassu → Ku(¬Ktpassu → [∥Ktpassu∥]passu))) ↔ ((Ktpassu →
Ku(Ktpassu → passu)) ∧ (¬Ktpassu → Ku(¬Ktpassu → passu))) by the reduction axiom Redp and the rule of replacement
of proved equivalence

3. |+KSTIT+ ((Ktpassu → Ku(Ktpassu → passu)) ∧ (¬Ktpassu → Ku(¬Ktpassu → passu))) ↔ ((Ktpassu → Ku⊤) ∧ (¬Ktpassu →
Ku(¬Ktpassu → passu))) by Axiom T for Kt

4. |+KSTIT+ ((Ktpassu → Ku⊤) ∧ (¬Ktpassu → Ku(¬Ktpassu → passu))) ↔ (¬Ktpassu → Ku(¬Ktpassu → passu)) by the stan-
dard validity of normal modal logic Kt⊤ ↔ ⊤

5. |+KSTIT+ Ktpassu → (¬Ktpassu → Ku(¬Ktpassu → passu))

6. |+KSTIT+ Ktpassu → [∥Ktpassu∥]Kupassu from 1–4 and 5.

Therefore, by the previous validities D and E, we have:

F. |+KSTIT+ K B∗∗∗ → [∥Ktpassu∥](Kupassu ∧ DESupassu ∧ Ku⟨AGT \ {u}⟩¬passu).



846 E. Lorini, F. Schwarzentruber / Artificial Intelligence 175 (2011) 814–847

As REJOICEupassu abbreviates Kupassu ∧ DESupassu ∧ Ku⟨AGT \ {u}⟩¬passu , from the previous validity F, we have:

G. |+KSTIT+ K B∗∗∗ → [∥Ktpassu∥]REJOICEupassu .

As Pre(say(t,passu)) = Kt[say(t,passu)]REJOICEupassu ∧ Kt¬REJOICEupassu , in order to conclude the proof, we just need
to prove that we have:

H. |+KSTIT+ K B∗∗∗ → (Kt[say(t,passu)]REJOICEupassu ∧ Kt¬REJOICEupassu).

By the definition of REJOICEupassu , it is straightforward to verify that K B∗∗∗ implies Kt¬REJOICEupassu . Let us prove
that K B∗∗∗ implies Kt[say(t,passu)]REJOICEupassu .

1. |+KSTIT+ K B∗∗∗ → Kt K B∗∗∗ by Axiom 4 and Axiom 5 for Kt
2. |+KSTIT+ Kt(K B∗∗∗ → [∥Ktpassu∥]REJOICEupassu) by the previous validity G and necessitation rule for Kt
3. |+KSTIT+ K B∗∗∗ → Kt[∥Ktpassu∥]REJOICEupassu by 1, 2 and Axiom K for Kt
4. |+KSTIT+ K B∗∗∗ → Kt[say(t,passu)]REJOICEupassu by 3, the validity [∥θ∥]ϕ → [!θ]ϕ , Axiom K and necessitation rule

for Kt . ✷
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Abstract We propose a minimal logic for interactive epistemology based on a quali-
tative representation of epistemic individual and group attitudes including knowledge,
belief, strong belief, common knowledge and common belief.We show that our logic is
sufficiently expressive to provide an epistemic foundation for various game-theoretic
solution concepts including “1-round of deletion of weakly dominated strategies, fol-
lowed by iterated deletion of strongly dominated strategies” (DWDS1-IDSDS) and
“2-rounds of deletion of weakly dominated strategies, followed by iterated deletion
of strongly dominated strategies” (DWDS2-IDSDS). Axiomatization and complexity
results for the logic are given in the paper.

Keywords Epistemic logic · Epistemic game theory · Axiomatization · Complexity

1 Introduction

As emphasized byAumann (1999), interactive epistemology deals with formalmodels
of knowledge and belief when there is more than one rational agent or “player” in the
context of interaction having not only knowledge and beliefs about substantivematters,
but also knowledge and beliefs about the others’ knowledge and beliefs. The aim of
the epistemic program in game theory is to use such models in order to provide an
epistemic foundation for various game-theoretic solution concepts.

Much of the work in the field of epistemic game theory is based either on a quan-
titative representation of uncertainty and epistemic attitudes or on a semi-qualitative
one. Examples of the former are the analysis of the epistemic foundations for forward
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induction and for iterated admissibility based on Bayesian probabilities (Stalnaker
1998; Halpern and Pass 2009), conditional probabilities (Battigalli and Siniscalchi
2002) or lexicographic probabilities (Brandenburger et al. 2008). An example of the
latter is the analysis of the epistemic foundation for iterated weak dominance by
Lorini (2013) based on Spohn’s theory of uncertainty (Spohn 1988). There are also
few examples of qualitativemodels of epistemic attitudes and uncertainty which have
been used in the field of epistemic game theory. For instance, Baltag et al. (2009) have
proposed an analysis of the epistemic foundation for backward induction based on a
purely qualitative notion of plausibility. The distinction between purely quantitative,
semi-qualitative and qualitative approaches to uncertainty has been widely discussed
in the AI literature (see, e.g., Pearl 1993; Weydert 1994). While in purely quantita-
tive approaches belief states are characterized by classical probabilistic measures or
by alternative numerical accounts, such as lexicographic probabilities or conditional
probabilities (Battigalli and Siniscalchi 2002), in semi-qualitative approaches, such
as Spohn’s theory, belief states are described by rough qualitative measures assign-
ing orders of magnitude. Finally, qualitative approaches do not use any numerical
representation of uncertainty but simply a plausibility ordering on possible worlds
structures inducing an epistemic-entrenchment-like ordering on propositions.

The aim of the present work is to propose aminimal logic for interactive epistemol-
ogy based on a qualitative representation of epistemic individual and group attitudes
including knowledge, belief, strong belief, common knowledge and common belief.
We call LEG our logic, which stands for Logic of Epistemic attitudes in Games. Our
logic is “minimal” in the sense we make as few assumptions as possible about the
representation of epistemic states. Specifically, we assume that players in a game have
only two kinds of epistemic attitudes: (i) each player envisages a set of worlds or states
(also called epistemic alternatives) that defines the player’s information set, and (ii)
among these epistemic alternatives the player can distinguish possible alternatives,
that define the player’s belief set, from impossible ones. Our qualitative semantics
for uncertainty and epistemic attitudes is simpler than existing qualitative semantics
used in epistemic game theory (Baltag et al. 2009; Board 1998), as we do not assume
a plausibility ordering over possible worlds. The advantage of using such epistemic-
minimalmodels over usual epistemic-plausibilitymodels is that someof the underlying
assumptions built in epistemic-plausibility models are not needed to provide epistemic
characterizations of solution concepts. In particular, epistemic-minimal models only
require that a player is capable of assessing whether an envisaged situation is possible
or not, without requiring that she is capable of comparing the plausibility of two pos-
sible situations she envisages and of assessing whether one situation is more plausible
than the other.1 In other words, epistemic-minimal models can be seen as special cases
of epistemic-plausibility models in which the epistemic representation is binary (i.e.,
envisaged worlds are either possible or impossible).

We show that the logic LEG is sufficiently expressive to provide foundation for
various game-theoretic solution concepts. The most interesting result will be a charac-

1 Here we take the term “envisaged” to be synonymous of the term “imagined”. Clearly, there are situations
that one can imagine that she considers impossible. For example, a person can imagine a situation in which
she is the president of French republic and, at the same time, considers this situation impossible.
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terization in LEG of the epistemic foundation for the “2-rounds of deletion of weakly
dominated strategies, followed by iterated deletion of strongly dominated strategies”
(DWDS2-IDSDS).

As emphasized by Stalnaker (1998), DWDS2-IDSDS is an interesting solution
concept as it is tightly relatedwith the concept of forward induction. The latter has been
used to explain some empirical evidences and to justify the behavior of rational players
in the context of extensive games such as the well-known “battle of the sexes with
outside option” (Cooper et al. 1993). This game has beenwidely discussed in the game-
theoretic literature (see, e.g., Kohlberg and Mertens 1986; Osborne and Rubinstein
1994, Ex. 110.1) and, more specifically, in the area of epistemic game theory (see,
e.g., Brandeburger 2007; Battigalli and Siniscalchi 2002). The game goes as follows.
Player 1 andplayer 2 have to play a simultaneous coordination game.Eachplayer has to
choose between two available actions A and B. Theworst scenario for both players is to
miscoordinate (i.e., playing A while the other plays B or vice versa). Furthermore, the
players have diverging preferences regarding the best outcome for themselves: player
1 prefers coordination on (A, A)while player 2 prefers coordination on (B, B). Player
1 has a first-move advantage since, prior to playing the coordination game with player
2, she is offered the possibility of a fixed outside option. If she chooses to enter (IN),
both players will play the coordination game. If she takes the outside option (OUT ),
the game will end with an outcome that is for both players better than the outcome
resulting from coordinating on the less preferred option, but worse than the outcome
resulting from coordinating on the most preferred option. The extensive form of the
game is depicted in Fig. 1. The game has two subgame perfect Nash equilibria in
pure strategies that can be computed by backward induction, namely ((IN, A), A)
and ((OUT , B), B). Forward induction reasoning provides a refinement of subgame

IN OUT 

3,1 0,0 

0,0 1,3 

A 

B 

A B 

1 

1 

2 

2,2

Fig. 1 Battle of the sexes with outside option: extensive form
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1 

2 

2,2 2,2 

3,1 0,0 

0,0 1,3 

IN,A 

IN,B 

A B 

OUT 

Fig. 2 Battle of the sexes with outside option: strategic form

perfect Nash equilibrium as it allows us to rule out the strategy profile ((OUT , B), B)
and to keep the strategy profile ((IN, A), A). The idea is that, by entering the game,
player 1 “signals” to player 2 that she expects to get a payoff higher than 2 and,
consequently, that she will play action A (otherwise she would have played OUT ).
Thus, player 1 can take advantage of this and guarantee to herself the highest possible
payoff of 3. Indeed, player 1’s signal ensures that player 2 will choose action A in
order to maximize his payoff and that the two players will coordinate on the (A, A)
option.

It turns out that the forward induction solution ((IN, A), A) can be computed by
“two rounds of deletion of weakly dominated strategies, followed by one round of
deletion of strongly dominated strategies” in the strategic form of the game depicted
in Fig. 2. This is a special case of DWDS2-IDSDS in which the procedure terminates
after three rounds of iteration.2 Indeed, at the first round, strategy (IN, B) of player 1
can be eliminated since it is strongly dominated and thusweakly dominated by strategy
OUT . In the resulting subgame strategy B of player 2 can be eliminated since it is
weakly dominated by strategy A. Finally, strategy OUT of player 1 can be eliminated
since it is strongly dominated by strategy (IN, A). ((IN, A), A) is the only strategy
profile which survives.

The main motivation for introducing a minimal logic for interactive epistemology
is to show that interesting results about the epistemic foundation for solution concepts
in game theory can be proved, even if we make very few assumptions about the
representation of the players’ epistemic states. The rest of the paper is organized as
follows. In Sect. 2we introduce a semantics forLEG based on the concept of epistemic-
doxastic game model. Section 3 is devoted to present the formal language of LEG.
Section 4 provides a formalization of a qualitative version of the concept of strong
belief inLEG. This concept is indeed crucial to characterize the epistemic conditions of
DWDS2-IDSDS. In Sect. 5,LEG is used to provide an epistemic foundation for various
game-theoretic solution concepts. Finally, Sect. 6 is devoted to the axiomatization and
complexity results for LEG. A selection of proofs of the main results given in the
paper are collected in a technical annex at the end of the paper.

2 Notice that the game can be easily generalized to account for “two rounds of deletion of weakly dominated
strategies, followed by n rounds of deletion of strongly dominated strategies”.
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2 Normal form games and epistemic game models

Let Atm = {p, q, . . .} be a countable set of atomic propositions and let Γ =
(Agt, S1, . . . , Sn,U1, . . . ,Un) be a normal form game in the usual sense where:

– Agt = {1, . . . , n} is a finite set of players or agents;
– For every i ∈ Agt, Si is player i’s finite set of strategies whose elements are denoted
by si , s′i , . . .;

– For every i ∈ Agt, Ui :
∏

i∈Agt Si −→ R is player i’s utility function assigning a
real number (the utility value for i) to every strategy profile.

We let 2Agt∗ = 2Agt \ {∅} denote the set of all non-empty sets of players (alias
coalitions). For notational convenience we write −i instead of Agt \ {i}. For every
G ∈ 2Agt∗, we define the set of strategies for the coalition G to be SG = ∏

i∈G Si .
Elements of SG are denoted by sG, s′G , . . . For notational convenience, we write S
instead of SAgt and we denote elements of S by s, s′, . . .. Moreover, for every coalition
G ∈ 2Agt∗, for every strategy sG ∈ SG and for every player i ∈ G, we write sG [i] to
denote the position in the vector sG corresponding to player i .

The following definition introduces the concept of epistemic game model for the
game Γ and for the set of atomic propositions Atm.

Definition 1 (Epistemic game model) An epistemic-doxastic game model or, simply,
epistemic game model (EGM) is a tuple M = (W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . ,
chn,V) where:

– W is a nonempty set of possible worlds or states;
– For every i ∈ Agt, Ei is an equivalence relation on W ;
– For every i ∈ Agt, Bi is a serial relation between on W such that:
(C1) Bi ⊆ Ei ;
(C2) For all w, v ∈ W : if wEiv then Bi (w) = Bi (v);

– For every i ∈ Agt, chi is a total function chi : W −→ Si such that:
(C3) For allw, v ∈ W and for all si ∈ Si : if chi (w) = si andwEiv then chi (v) = si ;
(C4) For all w ∈ W , for all i ∈ Agt and for all s−i ∈ S−i : there is u ∈ W such that

wEi u and ch−i (u) = s−i .
– V : W −→ 2Atm is a valuation function for the set of atomic propositions Atm.

We define E = ⋃
i∈Agt Ei and B = ⋃

i∈Agt Bi . Moreover, we let E+ and B+ be
the transitive closure of the relation E and the transitive closure of the relation B,
respectively. Such relations are needed to define common knowledge and common
belief.

For any binary relation R on the set of worlds W and for every world w ∈ W , we
define R(w) = {v ∈ W :wRv}.

We call Ei (w) = {v ∈ W :wEiv} player i’s information set at world w, that is,
the set of worlds that player i envisages at world w. Moreover, we call Bi (w) =
{v ∈ W :wBiv} player i’s belief set at world w, that is, the set of worlds that player
i thinks to be possible at world w. The function chi specifies the strategy chosen
by player i at a certain world. We generalize this class of functions to coalitions by
introducing a function chG : W −→ SG for everyG ∈ 2Agt∗ and defining it as follows:
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for all w ∈ W and for all sG ∈ SG , chG(w) = sG if and only if chi (w) = sG[i] for
all i ∈ G.

The Condition (C1) just says that a player’s belief set is a subset of the player’s
information set. According to the Condition (C2), if two worlds are in the same
information set of player i , then player i has the same belief set at these two worlds.
The Condition (C3) is an ex-interim condition according to which an agent i chooses
the strategy si if and only if she knows this. Finally, according to the Condition (C4),
for every strategy s−i of the other players a player i envisages a world in which this
strategy is played. This corresponds to a well-known assumption in the context of
interactive epistemology: the assumption that knowledge of the players is cautious,
in the sense that every player must envisage all possible choices of the other players
(see, e.g., Mas-Colell et al. 1995, Chap. 8 and also Börgers 1994, Brandenburger 1992,
Börgers and Samuelson 1992, Samuelson 1992, Asheim and Dufwenberg 2003, and
Asheim 2001, for further discussion about this requirement). Notice that the Condition
(C4) excludes that if there exists a correlation between a player’s choice and the choices
of the others, then the player rules out from her information set all choices of the others
that are not correlated with her current choice. According to the present model, all
choices of the other players that are not correlated with the player’s current choice
should be included in the player’s information set but excluded from her belief set (as
they are impossible). For example, suppose that player 1 believes that there is a strict
correlation between her choice and the choice of player 2. In particular, she believes
that if she chooses A then player 2 will not choose B. Now, player 1 chooses A.
Hence, because of the ex-interim Condition (C3), player 1 knows this. Consequently,
the worlds in which player 2 chooses B should be excluded from player 1’s belief set.
However, the cautiousness Condition (C4) guarantees that they are included in player
1’s information set.

3 Logic of epistemic attitudes in games: formal language

The language of the logic of epistemic attitudes in games (LEG) is parametrized by
the game Γ and the set of atomic propositions Atm. It is denoted by LLEG(Γ,Atm)
and defined by the following grammar:

ϕ::=p | choosei (si ) | possi | ¬ϕ | ϕ ∧ ψ | Kiϕ | Biϕ | CKϕ | CBϕ

where p ranges over Atm, i ranges over Agt and si ranges over Si .
The formulas of the language LLEG(Γ,Atm) have the following meaning:

– choosei (si ): player i chooses strategy si ;
– possi : the current world is considered possible by player i ;
– Kiϕ: player i knows that ϕ is true;
– Biϕ: player i believes that ϕ is true;
– CKϕ: the players have common knowledge that ϕ;
– CBϕ: the players have common belief that ϕ.
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For notational convenience, we abbreviate K̂iϕ
def= ¬Ki¬ϕ and B̂iϕ

def= ¬Bi¬ϕ.
Furthermore, we define:

EKϕ
def=

∧

i∈Agt
Kiϕ

EBϕ
def=

∧

i∈Agt
Biϕ

choose(s) def=
∧

i∈Agt
choosei (s[i])

where EKϕ, EBϕ and choose(s) have to be read respectively “everybody knows that
ϕ is true”, “everybody believes that ϕ is true” and “the players choose the strategy
profile s”.

The following definition provides the truth conditions of formulas inLLEG(Γ,Atm)
relative to the class of epistemic game models. Notice in particular the truth condition
of formula possi according to which possi is true at certain world w if and only if w
is an element of player i’s belief set at w.

Definition 2 (Truth conditions) Let M be an epistemic game model and let w be a
world in M . Then:

M, w |) p iff p ∈ V(w)

M, w |) possi iff w ∈ Bi (w)

M, w |) choosei (si ) iff chi (w) = si
M, w |) ¬ϕ iff M, w ̸|) ϕ

M, w |) ϕ ∧ ψ iff M, w |) ϕ and M, w |) ψ

M, w |) Kiϕ iff M, v |) ϕ for all v ∈ Ei (w)

M, w |) Biϕ iff M, v |) ϕ for all v ∈ Bi (w)

M, w |) CKϕ iff M, v |) ϕ for all v ∈ E+(w)

M, w |) CBϕ iff M, v |) ϕ for all v ∈ B+(w)

We write |) ϕ to mean that the LEG-formula ϕ is valid relative to the class of
epistemic game models. That is, |) ϕ iff, for every EGM M and for every w in M , we
have M, w |) ϕ. We say that ϕ is satisfiable relative to the class of epistemic game
models iff, ¬ϕ is not valid relative to the class of epistemic game models.

Moreover, for every epistemic gamemodel=(W, E1, . . ., En,B1, . . .,Bn, ch1, . . . ,
chn,V) and LEG formula ϕ, ||ϕ||M = {w ∈ W :M, w |) ϕ} denotes the truth set of
ϕ relative to M . For notational convenience, when the context is clear we omit the
subscript and write ||ϕ|| instead of ||ϕ||M .

4 The concept of strong belief

The following abbreviation provides a purely qualitative characterization of the con-
cept of strong belief:
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SBiϕ
def= Kiϕ ∨ (Ki (possi → ϕ) ∧ Ki (¬possi → ¬ϕ))

where SBiϕ has to be read “player i strongly believes ϕ”. Quantitative and semi-
qualitative characterizations of this concept in a probabilistic framework and in a
semantics for epistemic logic with plausibility orderings over states can be found
in Battigalli and Siniscalchi (2002) and Baltag and Smets (2009), respectively. The
general intuition is that player i has a strong belief that ϕ if and only if the worlds that
i envisages in which ϕ is true are strictly more possible than the states that i envisages
in which ϕ is false.

As the following proposition highlights, the previous abbreviation correctly char-
acterizes the concept of strong belief:

Proposition 1 Let M = (W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) be an epis-
temic game model and let ||ϕ||w,i = {v ∈ W :v ∈ ||ϕ|| and wEiv} be player i’s set of
epistemic alternatives at world w in which ϕ is true. Then, M, w |) SBiϕ iff:

– ||ϕ||w,i ̸= ∅, and
– For all v ∈ ||ϕ||w,i and for all u ∈ ||¬ϕ||w,i , πi (u) < πi (v);

where πi : W −→ {0, 1} such that for all v ∈ W:

– πi (v) = 0 iff v /∈ Bi (v), and
– πi (v) = 1 iff v ∈ Bi (v).

Following possibility theory (Dubois and Prade 1998), we consider two ways of
lifting the possibility degree of a world to the possibility of a formula viewed as a
set of worlds. The first possibility measure introduced in the context of possibility
theory is the so-called weak possibility measure (or potential possibility). The weak
possibility of a formula ϕ corresponds to the maximal degree of plausibility of an
envisaged world in which ϕ is true. More formally:

Definition 3 (Weak possibility measure (or potential possibility)) Let M = (W, E1 ,
. . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) be an epistemic game model and let ||ϕ||w,i =
{v ∈ W :v ∈ ||ϕ|| and wEiv}. The weak possibility of formula ϕ for agent i at world
w, denoted by Πw,i (ϕ), is defined as follows:

Πw,i (ϕ) =

⎧
⎨

⎩
max

v∈||ϕ||w,i
πi (v) if ||ϕ||w,i ̸= ∅

0 if ||ϕ||w,i = ∅

where the function πi is defined as in Proposition 1.

The second possibility measure introduced in the context of possibility theory is the
so-called strong possibility measure (or guaranteed possibility). The strong possibility
of a formula ϕ corresponds to the minimal degree of plausibility of an envisaged world
in which ϕ is true. More formally:

Definition 4 (Strong possibility measure (or guaranteed possibility)) Let M =
(W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) be an epistemic game model and let
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||ϕ||w,i = {v ∈ W :v ∈ ||ϕ|| and wEiv}. The strong possibility of formula ϕ for agent
i at world w, denoted by ∆w,i (ϕ), is defined as follows:

∆w,i (ϕ) =

⎧
⎨

⎩
min

v∈||ϕ||w,i
πi (v) if ||ϕ||w,i ̸= ∅

1 if ||ϕ||w,i = ∅

where the function πi is defined as in Proposition 1.

Two basic decomposability properties of the weak possibility measure and the
strong possibility measures are given in the following proposition.

Proposition 2 Let M be an epistemic game model, let w be a world in M and let
i ∈ Agt. Then,

Πw,i (ϕ ∨ ψ) = max(Πw,i (ϕ),Πw,i (ψ))

∆w,i (ϕ ∨ ψ) = min(∆w,i (ϕ),∆w,i (ψ))

For instance, in order to prove the second property, we have to distinguish two
cases. Suppose ||ϕ ∨ ψ ||w,i ̸= ∅. Then:

∆w,i (ϕ ∨ ψ) = min
v∈||ϕ∨ψ ||w,i

πi (v)

= min
v∈||ϕ||w,i∪||ψ ||w,i

πi (v)

= min( min
v∈||ϕ||w,i

πi (v), min
v∈||||ψ ||w,i

πi (v))

= min(∆w,i (ϕ),∆w,i (ψ))

Suppose ||ϕ ∨ ψ ||w,i = ∅. Then ||ϕ||w,i = ∅ and ||ψ ||w,i = ∅. Thus, ∆w,i (ϕ ∨ ψ) =
min(∆w,i (ϕ),∆w,i (ψ)) = 1.

The following proposition highlights the connection between the concept of strong
belief and preceding concepts of weak possibility and strong possibility. Specifically,
a certain agent i strongly believes ϕ if and only if, i knows that ϕ, or the strong
possibility of ϕ for i is equal to 1 and the weak possibility of ¬ϕ for i is equal to 0.

Proposition 3 Let M be an epistemic game model, let w be a world in M and let
i ∈ Agt. Then, M, w |) SBiϕ iff: (i) ||¬ϕ||w,i = ∅ or, (ii) ∆w,i (ϕ) = 1 and
Πw,i (¬ϕ) = 0.

5 Epistemic game theory in LEG

In this section we use the logic LEG to characterize the epistemic conditions of
some well-know solution concepts in game theory: the procedure of iterated dele-
tion of strongly dominated strategies (IDSDS procedure), the procedure of 1-round
of deletion of weakly dominated strategies followed by iterated deletion of strongly

123



Synthese

dominated strategies (DWDS1-IDSDS procedure, and the procedure of 2-rounds of
deletion of weakly dominated strategies followed by iterated deletion of strongly dom-
inated strategies (DWDS2-IDSDS procedure). The concepts of strong dominance and
weak dominance we consider are relative to pure strategies.

The latter solution concepts are introduced in Sect. 5.1. In Sect. 5.2 the logic LEG
is used to formally characterize three different forms of rationality which have been
discussed in the field of epistemic game theory: weak rationality, strong rationality
and perfect rationality. In Sect. 5.3 three theorems about the epistemic and rationality
conditions of IDSDS, DWDS1-IDSDS and DWDS2-IDSDS will be given.

5.1 Solution concepts

The following concept of subgame is needed to formally characterize the solution
concepts.

Definition 5 (Subgame) Let Γ = (Agt, S1, . . . , Sn,U1, . . . ,Un) and Γ ′ = (Agt′,
S′
1, . . . , S

′
n,U

′
1, . . . ,U

′
n) be normal form games. Then, Γ ′ is a subgame of Γ if and

only if:
– Agt = Agt′;
– For every i ∈ Agt, S′

i ⊆ Si ;
– For every i ∈ Agt, U ′

i = Ui |∏i∈Agt S
′
i
where U ′

i is the restriction of Ui to the set of
strategy profiles

∏
i∈Agt S

′
i .

A strategy si of a given player i is a strongly dominated strategy if and only if,
there exists another strategy s′i of i such that, for all strategies s−i of the other players,
playing s′i while the others play s−i is for i better than playing si while the others
play s−i . An example of strongly dominated strategy is cooperation in the Prisoner
Dilemma (PD) game: whether the opponent chooses to cooperate or defect, defection
yields a higher payoff than cooperation. More formally:

Definition 6 (Strongly dominated strategies) Let Γ = (Agt, S1, . . . , Sn,U1, . . . ,Un)

be a normal form game. The set

SDΓ
i = {si ∈ Si :∃s′i ∈ Si s.t. ∀s−i ∈ S−i ,Ui (si , s−i ) < Ui (s′i , s−i )}

is the set of strategies of player i that are strongly dominated in Γ .

A strategy si of a given player i is a weakly dominated strategy if and only if, there
exists another strategy s′i of i such that, for all strategies s−i of the others, playing s′i
while the others play s−i is for i at least as good as playing si while the others play
s−i and there is at least one strategy s′−i of the others such that playing s′i while the
others play s′−i is for i better than playing si while the others play s

′
−i . More formally:

Definition 7 (Weakly dominated strategies) Let Γ = (Agt, S1, . . . , Sn,U1, . . . ,Un)

be a normal form game. The set

WDΓ
i = {si ∈ Si :∃s′i ∈ Si s.t. ∀s−i ∈ S−i ,Ui (si , s−i ) ≤ Ui (s′i , s−i ) and

∃s′−i ∈ S−i s.t. Ui (si , s−i ) < Ui (s′i , s−i )}
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is the set of strategies of player i that are weakly dominated in Γ .

The so-called iterated deletion of strongly dominated strategies (IDSDS) (or iterated
strong dominance) is a procedure that starts with the original game Γ and, at each
step, for every player i removes from the game all i’s strongly dominated strategies,
thereby generating a subgame of the original game, and that repeats this process again
and again. The IDSDS procedure can be inductively defined as follows.

Definition 8 (IDSDSProcedure) LetΓ = (Agt, S1, . . . , Sn,U1, . . . ,Un) be a normal
formgame. Iterated deletion of strongly dominated strategies (IDSDS) is the procedure
defined recursively as follows. For all i ∈ Agt:

– Let SIDSDSi,0 = Si and Γ 0 = Γ ,

– For m ≥ 1, let SIDSDSi,m = SIDSDSi,m−1 \SDΓ m−1

i , where Γ m−1 is the subgame of Γ with
strategy sets SIDSDSi,m−1 .

For every m ≥ 0 and G ∈ 2Agt∗, let SIDSDSG,m = ∏
i∈G SIDSDSi,m and let SIDSDSm = SIDSDSAgt,m .

Finally, let SIDSDSi = ⋂
m∈N SIDSDSi,m . For every G ∈ 2Agt∗, let SIDSDSG =∏

i∈G SIDSDSi and SIDSDS = SIDSDSAgt .

The procedure of n-rounds of deletion of weakly dominated strategies followed
by iterated deletion of strongly dominated strategies (DWDSn-IDSDS) is a procedure
that starts with the original game Γ and, at each step, for every player i removes
from the game all i’s weakly dominated strategies thereby generating a subgame of
the original game, and that repeats this process for n rounds. Then, after n rounds it
applies iterated deletion of strongly dominated strategies starting with the game Γ n .
The DWDSn-IDSDS procedure can be inductively defined as follows.

Definition 9 (DWDSn-IDSDS Procedure) Let Γ = (Agt, S1, . . . , Sn,U1, . . . ,Un)

be a normal form game. n-iteration of deletion of weakly dominated strategies
(DWDSn) followed by iterated deletion of strongly dominated strategies (IDSDS)
is the procedure defined recursively as follows. For all i ∈ Agt:

– Let SDWDSn−IDSDS
i,0 = Si and Γ 0 = Γ ,

– For 1 ≤ m ≤ n , let SDWDSn−IDSDS
i,m = SDWDSn−IDSDS

i,m−1 \WDΓ m−1

i ,

– For m > n, let SDWDSn−IDSDS
i,m = SDWDSn−IDSDS

i,m−1 \ SDΓ m−1

i , where Γ m−1 is the

subgame of Γ with strategy sets SDWDSn−IDSDS
i,m−1 .

For every m such that 0 ≤ m ≤ n and G ∈ 2Agt∗, let SDWDSn−IDSDS
G,m =

∏
i∈G SDWDSn−IDSDS

i,m and SDWDSn−IDSDS
m = SDWDSn−IDSDS

Agt,m .

Finally, let SDWDSn−IDSDS
i = ⋂

m∈N SDWDSn−IDSDS
i,m . For every G ∈ 2Agt∗, let

SDWDSn−IDSDS
G = ∏

i∈G SDWDSn−IDSDS
i and SDWDSn−IDSDS = SDWDSn−IDSDS

Agt .

Note that, if n = 0, DWDSn-IDSDS is nothing but IDSDS. Moreover, if n = ∞,
DWDSn-IDSDScorresponds to the procedure of iterated deletionofweakly dominated
strategies.
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The previous procedures IDSDS and DWDSn-IDSDS are well-known concepts in
game theory. In this paper we focus on the special cases of DWDSn-IDSDSwith n = 1
and n = 2. For instance, when n = 1, the procedure DWDSn-IDSDS corresponds to
the variant of the so-called Dekel-Fudenberg procedure (Dekel and Fudenberg 1990)
for pure strategies.3 A Bayesian justification of the concept of weak dominance given
in Definition 7 can be found in Börgers (1993). Börgers shows that, if the only part of
players’ preferences that is taken as exogenously given is their (ordinal) preferences
over pure strategy profiles, then a pure strategy si of a certain player i is not weakly
dominated by another pure strategy given a certain subset S′

−i ⊆ S−i of the set of
strategies of the other players if and only if, there exists a subjective probabilistic
belief with full support on S′

−i of the player and some von Neumann andMorgenstern-
utility function that agrees with the player’s ordinal preferences such that the strategy
si maximizes expected utility given S′

−i . (This can be seen as a pure strategy-variant
of the classical result about rationalizability by Pearce 1984.)

5.2 Types of rationality

The following three sections are devoted to define three rationality criteria that will be
used in Sect. 5.3 to give an epistemic foundation of the concepts of strong dominance,
weak dominance, IDSDS, DWDS1-IDSDS and DWDS2-IDSDS.

5.2.1 Weak rationality

The first concept of rationality we consider is weak rationality. Player i is said to be
weakly rational in choosing si , denoted by WRati (si ), if and only if action si is not
strongly dominated within her set of doxastic alternatives. Formally:

WRati (si )
def=

∧

s′i ̸=si

⎛

⎝
∨

s−i∈S−i :Ui (s′i ,s−i )≤Ui (si ,s−i )

B̂i choose−i (s−i )

⎞

⎠

We moreover define the fact that i is weakly rational, denoted byWRati :

WRati
def=

∨

si∈Si
(choosei (si ) ∧

∧

s′i ̸=si

⎛

⎝
∨

s−i∈S−i :Ui (s′i ,s−i )≤Ui (si ,s−i )

B̂i choose−i (s−i ))

⎞

⎠

5.2.2 Strong rationality

Let us now move to the concept strong rationality. Player i is said to be strongly
rational in choosing si , denoted by SRati (si ), if and only if action si is not weakly

3 Indeed the concept of weak dominance used by Dekel and Fudenberg is relative to mixed strategies in the
sense that, a given pure strategy si of player i is weakly dominated if and only if, there exists amixed strategy
σi ∈ ∆(Si ) of player i such thatUi (si , s′−i ) ≤ Ui (σi , s′−i ) for all s

′
−i ∈ S−i andUi (si , s′−i ) < Ui (σi , s′−i )

for some s′−i ∈ S−i , where ∆(Si ) is the set of all probability measures over Si .
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dominated within her set of doxastic alternatives. Formally:

SRati (si )
def=

∧

s′i ̸=si

⎛

⎝

⎛

⎝
∨

s−i∈S−i :Ui (s′i ,s−i )<Ui (si ,s−i )

B̂i choose−i (s−i )

⎞

⎠ ∨

⎛

⎝
∧

s−i∈S−i :Ui (si ,s−i )<Ui (s′i ,s−i )

Bi¬choose−i (s−i )

⎞

⎠

⎞

⎠

We moreover define the fact that i is strongly rational, denoted by SRati :

SRati
def=

∨

si∈Si
(choosei (si ) ∧ SRati (si ))

5.2.3 Perfect rationality

Finally, we consider the concept perfect rationality. The concept defined here is a qual-
itative version of Stalnaker’s lexicographic concept of perfect rationality (Stalnaker
1996; Stalnaker 1998). Player i is said to be perfectly rational in choosing si , denoted
by PRati (si ), if and only if:

– si is notweakly dominatedwithin i’s belief set (i.e., i is strongly rational in choosing
si ); and

– si is not weakly dominated within i’s information set, after having discarded all
weakly dominated strategies within i’s belief set (i.e., after having discarded all
strategies of i that are not strongly rational choices).

Formally:

PRati (si )
def= SRati (si ) ∧

∧

s′i ̸=si

(SRati (s′i ) →

⎛

⎝

⎛

⎝
∨

s−i∈S−i :Ui (s′i ,s−i )<Ui (si ,s−i )

K̂i choose−i (s−i )

⎞

⎠ ∨

⎛

⎝
∧

s−i∈S−i :Ui (si ,s−i )<Ui (s′i ,s−i )

Ki¬choose−i (s−i )

⎞

⎠

⎞

⎠

We moreover define the fact that i is perfectly rational, denoted by PRati :

PRati
def=

∨

si∈Si
(choosei (si ) ∧ PRati (si ))
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5.3 Epistemic foundation

Our first result is an epistemic characterization of the concepts of strong dominance
and weak dominance as defined in Definitions 6 and 7.

Theorem 1 Let i ∈ Agt. Then:

1. si /∈ SDΓ
i if and only if there exists an epistemic game model M =

(W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) and a world w ∈ W such that
M, w |) WRati (si );

2. si /∈ WDΓ
i if and only if there exists an epistemic game model M =

(W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) and a world w ∈ W such that
M, w |) PRati (si ).

It is worth noting that the second item of the previous Theorem 1 no longer
holds if we replace the concept of perfect rationality, expressed by the formula
PRati (si ), by the concept of strong rationality, expressed by the formula SRati (si ).
To show this, it is sufficient to consider the following epistemic game model M =
(W, E1, E2,B1,B2, ch1, ch2,V) for the two-player normal form game with strategy
set S = {(A, A), (A, B), (B, A), (B, B)} depicted in Fig. 3:

– W = {w(A,A), w(A,B), w(B,A), w(B,B), };
– E1(w(A,A)) = {w(A,A), w(A,B)}, E1(w(A,B)) = {w(A,A), w(A,B)},
E1(w(B,A)) = {w(B,A), w(B,B)}, E1(w(B,B)) = {w(B,A), w(B,B)};

– E2(w(A,A)) = {w(A,A), w(B,A)}, E2(w(A,B)) = {w(A,B), w(B,B)},
E2(w(B,A)) = {w(A,A), w(B,A)}, E2(w(B,B)) = {w(A,B), w(B,B)};

– B1(w(A,A)) = {w(A,A)}, B1(w(A,B)) = {w(A,B)},
B1(w(B,A)) = {w(B,A)}, B1(w(B,B)) = {w(B,B)};

– B2(w(A,A)) = {w(A,A)}, B2(w(A,B)) = {w(A,B)},
B2(w(B,A)) = {w(B,A)}, B2(w(B,B)) = {w(B,B)};

– ch1(w(A,A)) = ch1(w(A,B)) = A and ch1(w(B,A)) = ch1(w(B,B)) = B;
– ch2(w(A,A)) = ch2(w(B,A)) = A and ch2(w(A,B)) = ch2(w(B,B)) = B;
– V(w(A,A)) = V(w(A,B)) = V(w(B,A)) = V(w(B,B)) = Atm.

It is easy to check that player 1’s strategy A is weakly dominated by strategy B
Thus, A ∈ WDΓ

1 . But M, w(A,A) |) SRat1(A). Intuitively speaking, the reason why

1 

2 

1,0 1,0 

1,0 2,0 

A 

B 

A B 

Fig. 3 Counterexample
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the concept of strong rationality is not sufficient to characterize weak dominance is
that the latter requires that, when decidingwhat to do, a player should take into account
all strategies of the other players. While this is an important feature of the concept of
perfect rationality, it is not contemplated by the concept of strong rationality.

The following Theorem 2 is a well-known result in epistemic game theory (see,
e.g., Stalnaker 1994; Bonanno 2008; Board 2002): if the players have common belief
that every player is weakly rational, then the strategy profile which is played must
survive Iterated Deletion of Strongly Dominated Strategies (IDSDS). A similar result,
where domination means domination by mixed strategies, has also been shown by Tan
and Werlang (1988) and Brandenburger and Dekel (1987).

Theorem 2 Let AllWRatG
def= ∧

i∈G WRati for any G ∈ 2Agt∗. Then:

|) CB AllWRatAgt →
∨

s∈SIDSDS
choose(s)

According to the following Theorem 3, if the players have common belief that every
agent is perfectly rational, then the strategy profile which is played must survive one
iteration of DWDS followed by IDSDS. This theorem is also proved by Lorini (2013).

Theorem 3 Let AllPRatG
def= ∧

i∈G PRati for any G ∈ 2Agt∗. Then:

|) CB AllPRatAgt →
∨

s∈SDWDS1−IDSDS

choose(s)

An alternative characterization of the epistemic conditions of DWDS1-IDSDS in
a probabilistic setting has been given by Stalnaker (1996). Brandenburger (1992) and
Börgers (1994) provide characterizations of the so-calledDekel-Fudenberg procedure,
the variant of DWDS1-IDSDS which uses mixed strategies instead of pure strategies.

The last theorem of this section is about the epistemic foundation for DWDS2

-IDSDS. Under the assumption that the players have common belief that for every
player i and for every non-weakly dominated strategy of the other players there must
be a world envisaged by i in which this strategy is played and the other players are
perfectly rational (the so-called ‘completeness assumption’ Brandenburger et al. 2008;
Brandeburger 2007), the common belief that every player is perfectly rational and has
a robust belief about the perfect rationality of the other players is a sufficient condition
for DWDS2-IDSDS. As far as we know, this theorem has never been proved before in
a purely qualitative setting.

Theorem 4 Let

ComplAss def=
∧

i∈Agt

∧

s−i∈S−i :s−i∈SDWDS2−IDSDS
−i,1

K̂i (choose−i (s−i ) ∧ AllPRat−i ).
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Then:

|) CB(ComplAss ∧ AllPRatAgt ∧
∧

i∈Agt
SBi AllPRat−i ) →

∨

s∈SDWDS2−IDSDS

choose(s)

Notice that the completeness assumption ComplAss just guarantees that the epis-
temic gamemodel is large enough to include, for every non-weakly dominated strategy
of a player, a world in which this strategy is ‘rationally’ chosen by the player.

We conclude this section with the following Theorem 5 stating the converse of the
preceding Theorems 2, 3 and 4. Specifically, the theorem states that:

– For every strategy profile that survives IDSDS we can find an epistemic game
model in which this strategy profile is played and the players have common belief
that every player is weakly rational;

– For every strategy profile that survives DWDS1-IDSDS we can find an epistemic
game model in which this strategy profile is played and the players have common
belief that every player is strongly rational;

– For every strategy profile that survives DWDS2-IDSDS we can find an epistemic
game model in which this strategy profile is played and the players have common
belief that the completeness assumption ComplAss holds and that every player is
perfectly rational and has a robust belief about the perfect rationality of the other
players.

Thus, together with Theorems 2, 3 and 4, the following Theorem 5 provides
a characterization of the epistemic conditions of IDSDS, DWDS1-IDSDS and
DWDS2-IDSDS.

Theorem 5 Let s ∈ S. Then:

1. If s ∈ SIDSDS then there exists an epistemic game model M = (W, E1, . . . , En,B1
, . . . ,Bn, ch1, . . . , chn,V) and a world w ∈ W such that M, w |) choose(s) ∧
CB AllWRatAgt;

2. If s ∈ SDWDS1−IDSDS then there exists an epistemic game model M =
(W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) and a world w ∈ W such that
M, w |) choose(s) ∧ CB AllPRatAgt;

3. If s ∈ SDWDS2−IDSDS then there exists an epistemic game model M =
(W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) and a world w ∈ W such that
M, w |) choose(s) ∧ CB(ComplAss ∧ AllPRatAgt ∧ ∧

i∈Agt SBi AllPRat−i ).

The next section is devoted to study the mathematical and computational properties
of the logic LEG.

6 Axiomatization and complexity results

In this section we provide a sound and complete axiomatization for the logic LEG
relative to the class of epistemic game models as well as a complexity result for the
satisfiability problem.
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Theorem 6 The set of validities of the logic LEG relative to the class of epistemic
game models is completely axiomatized by the principles given in Fig. 4.

As Fig. 4 highlights, the axiomatization of the logic LEG is organized in four
categories of axioms plus the tautologies of propositional logic, the usual rule of
inference modus ponens and the rule of necessitation for the common knowledge
operator. Notice that the rules of necessitation for common belief, knowledge and
belief do not need to be added, as they are deducible from the rule of necessitation
for common knowledge, Axioms 2(f), 4(a) and 4(c). The axiomatization includes the
usual axioms for knowledge and common knowledge, namely the S5 principles for
the knowledge operators, the fixed-point axiom and the induction axiom for common
knowledge. Similarly, it includes the usual axioms for belief and common belief,
namely the KD principles for the belief operators, the fixed-point axiom and the
induction axiom for common belief. Notice that Axioms 4 and 5 for belief, namely
Biϕ → BiBiϕ and ¬Biϕ → Bi¬Biϕ, do not need to be added as they are deducible
from Axioms 2(a), 2(b), 2(c), 2(d), 4(a) and 4(b). As an example, we give the Hilbert-
style syntactic proof of the theorem ¬Biϕ → Bi¬Biϕ:

1. ⊢ ¬Biϕ → K̂i¬Biϕ

By Axiom 2(b)
2. ⊢ K̂iϕ → Ki K̂i K̂iϕ

By Axiom 2(d)
3. ⊢ Ki K̂i K̂iϕ → Ki K̂iϕ

By Axioms 2(a), 2(c) and necessitation for Ki

4. ⊢ K̂iϕ → Ki K̂iϕ

From 2 and 3
5. ⊢ K̂i¬Biϕ → Ki K̂i¬Biϕ

By item 4
6. ⊢ Ki K̂i¬Biϕ → Ki¬Biϕ

By Axioms 2(a), 4(b) and necessitation for Ki
7. ⊢ Ki¬Biϕ → Bi¬Biϕ

By Axiom 4(a)
8. ⊢ ¬Biϕ → Bi¬Biϕ

From 1, 5, 6 and 7

Axiom 3(c) is a local version of the Axiom T for the belief operator Bi in the sense
of Ditmarsch et al. (2012). It is local since the property Biϕ → ϕ holds only if the
atomic formula possi is true. That is, the formula Biϕ → ϕ may hold in the actual
world if possi is true, but not in all worlds as there exists some worlds in which possi
is false.

The third group of axioms including Axioms 4(a), 4(b) and 4(c) captures the basic
relationships between knowledge and belief, and between common knowledge and
common belief. In particular, we have the principle “knowing implies believing”, the
principle “believing implies knowing that one believes” and the principle “commonly
knowing implies commonly believing”. Finally, the fourth group of axioms is about
the properties of knowledge and choice. In particular, Axioms 5(a) and 5(b) together
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Fig. 4 Axiomatization of LEG

say that a player chooses exactly one strategy. According to Axiom 5(c), a player
knows the strategy that she chooses. According to Axiom 5(d), for every strategy of
the other players, a player envisages a situation in which this strategy is played.

Notice that the concept of strong belief has defined in Sect. 4 as an abbreviation.
Thus, in the axiomatization of the logic LEG there is no specific principle for the
operator SBi . An equivalent solution would consist in introducing the strong belief
operator as a primitive operator in the object language of the logic LEG, instead of
defining it as an abbreviation, and in adding the following reduction axiom for strong
belief to the axiomatization of the logic LEG:

SBiϕ ↔ Kiϕ ∨ (Ki (possi → ϕ) ∧ Ki (¬possi → ¬ϕ))

The following theorem provides a complexity result for the satisfiability problem
of LEG.

Theorem 7 The satisfiability problem of LEG relative to the class of epistemic game
models is decidable in exponential time.
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The interesting aspect of this complexity result is that, although the logic LEG
allows to represent properties of the worlds in the object language via the special
atomic formulas possi , it has the same complexity as the logic of common knowledge.

7 Conclusion

We have presented a logic for interactive epistemology called LEG (Logic of Epis-
temic attitudes and Games). The logic LEG is based on a qualitative representation
of epistemic individual and group attitudes including knowledge, belief, strong belief,
common knowledge and common belief. An application of the logic LEG to the char-
acterization of the epistemic conditions of solution concepts has been given in the
paper. This includes “1-round of deletion of weakly dominated strategies, followed by
iterated deletion of strongly dominated strategies” (DWDS1-IDSDS) and “2-rounds
of deletion of weakly dominated strategies, followed by iterated deletion of strongly
dominated strategies” (DWDS2-IDSDS). In the last section of the paper, we have pro-
vided a sound and complete axiomatization for this logic as well as a complexity result
for its satisfiability problem.

We envisage two directions of future research. First of all, we plan to generalize
Theorem 4 to the the characterization of the epistemic conditions of “n-rounds of
deletion of weakly dominated strategies, followed by iterated deletion of strongly
dominated strategies” (DWDSn-IDSDS), for any arbitrary integer n. Secondly, we
plan to extend our analysis to solution concepts for games in extensive form. This will
require to extend the logic LEG by operators of temporal logic in order to model how
epistemic attitudes of the players evolve during the game.

Appendix 1: Proof of Theorem 1

Let i ∈ Agt. Then:

1. si /∈ SDΓ
i if and only if there exists an epistemic game model M =

(W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) and a world w ∈ W such that
M, w |) WRati (si );

2. si /∈ WDΓ
i if and only if there exists an epistemic game model M =

(W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) and a world w ∈ W such that
M, w |) PRati (si ).

Proof We only prove the second item, as the first item can be proved in a very similar
way.

As to the left-to-right direction, let us assume that si /∈ WDΓ
i . We are going to build

an epistemic game model M = (W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) and a
world w ∈ W such that M, w |) PRati (si ). The model M is defined as follows:

– W = {ws :s ∈ S},
– For all i ∈ Agt, Ei = Bi = {(ws, ws′):ws, ws′ ∈ W and s[i] = s′[i]},
– For all ws ∈ W and for all i ∈ Agt, chi (ws) = s[i],
– For all ws ∈ W , V(ws) = Atm.
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It is straightforward to verify that M, ws |) PRati (si ) for all ws ∈ W such that
chi (ws) = si .

As to the right-to-left direction, we prove it by reductio ad absurdum. Let us suppose
that si ∈ WDΓ

i . Moreover, let M = (W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) be
an epistemic game model and let w ∈ W such that M, w |) PRati (si ). si ∈ WDΓ

i
means that there exists s′i ∈ Si such that ∀s−i ∈ S−i ,Ui (si , s−i ) ≤ Ui (s′i , s−i ) and
∃s′−i ∈ S−i such that Ui (si , s−i ) < Ui (s′i , s−i ). By the Condition (C4) on epistemic
game models and the definition of perfect rationality, the latter implies that M, w |)
¬PRati (si ). This is in contradiction with the initial assumption. ⊓5

Appendix 2: Proof of Theorem 4

Let

ComplAss def=
∧

i∈Agt

∧

s−i∈S−i :s−i∈SDWDS2−IDSDS
−i,1

K̂i (choose−i (s−i ) ∧ AllPRat−i ).

Then:

|) CB(ComplAss ∧ AllPRatAgt ∧
∧

i∈Agt
SBi AllPRat−i ) →

∨

s∈SDWDS2−IDSDS

choose(s)

Proof Instead of proving

|) CB(ComplAss ∧ AllPRatAgt ∧
∧

i∈Agt
SBi AllPRat−i ) →

∨

s∈SDWDS2−IDSDS

choose(s)

we simply prove that for all s /∈ SDWDS2−IDSDS:

|) CB(ComplAss ∧ AllPRatAgt ∧
∧

i∈Agt
SBi AllPRat−i ) → ¬choose(s)

Indeed, we have the following valid equivalence:

|)
∨

s∈SDWDS2−IDSDS

choose(s) ↔
∧

s /∈SDWDS2−IDSDS

¬choose(s)

The proof is by induction. The proof of the inductive case goes exactly as the proof
of the inductive case in the proof of Theorem 3.

Let us prove the base case first.
Base case. For all s /∈ SDWDS2−IDSDS

2 we prove that:

(A) |) CB(ComplAss ∧ AllPRatAgt ∧ ∧
i∈Agt SBi AllPRat−i ) → ¬choose(s)
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Toprove (A), it is sufficient to prove the followingvalidity (B), aswehave the following
validity:

|) CB(ComplAss ∧ AllPRatAgt ∧
∧

i∈Agt
SBi AllPRat−i ) →

(ComplAss ∧ AllPRatAgt ∧
∧

i∈Agt
SBi AllPRat−i )

For all s /∈ SDWDS2−IDSDS
2 we have that:

(B) |) (ComplAss ∧ AllPRatAgt ∧ ∧
i∈Agt SBi AllPRat−i ) → ¬choose(s)

And to prove (B), it is sufficient to prove that if s[i] /∈ SDWDS2−IDSDS
i,2 then:

(C) |)
( ∧

s−i∈S−i :s−i∈SDWDS2−IDSDS
−i,1

K̂i (choose−i (s−i ) ∧ AllPRat−i ) ∧ PRati∧ SBi

AllPRat−i

)
→ ¬choosei (s[i])

Let us prove (C) by reductio ad absurdum. We assume that s[i] /∈ SDWDS2−IDSDS
i,2

and M, w |) ∧
s−i∈S−i :s−i∈SDWDS2−IDSDS

−i,1
K̂i (choose−i (s−i ) ∧ AllPRat−i ) ∧ PRati ∧

SBi AllPRat−i ∧ choosei (s[i]) for some arbitrary epistemic game model M =
(W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) and world w in M . We are going to
show that these two facts are inconsistent.

The rest of the proof makes use of the following Lemma 1.

Lemma 1 Let M = (W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) be an epistemic
game model, let w ∈ W and let s−i , s′−i ∈ S−i . Then, if

1. M, w |) ∧
s−i∈S−i :s−i∈SDWDS2−IDSDS

−i,1
K̂i (choose−i (s−i ) ∧ AllPRat−i ) ∧ SBi

AllPRat−i

2. s−i ∈ SDWDS2−IDSDS
−i,1 and s′−i /∈ SDWDS2−IDSDS

−i,1

then Πw,i (choose−i (s−i )) > Πw,i (choose−i (s′−i )).

Proof Assume thatM, w |) ∧
s−i∈S−i :s−i∈SDWDS2−IDSDS

−i,1
K̂i (choose−i (s−i )∧AllPRat−i )

∧ SBi AllPRat−i and that s−i ∈ SDWDS2−IDSDS
−i,1 and s′−i /∈ SDWDS2−IDSDS

−i,1 . By Propo-
sition 1, M, w |) SBi AllPRat−i implies that for all v ∈ ||AllPRat−i ||w,i and for all
u ∈ ||¬AllPRat−i ||w,i , πi (u) < πi (v). Thus, by the second item of Theorem 1 and
the fact that M, w |) K̂i (choose−i (s−i ) ∧ AllPRat−i ) and that s−i ∈ SDWDS2−IDSDS

−i,1

and s′−i /∈ SDWDS2−IDSDS
−i,1 , it follows that there exists v ∈ ||choose−i (s−i )||w,i

such that, for all u ∈ ||choose−i (s′−i )||w,i , πi (u) < πi (v). The latter implies that
Πw,i (choose−i (s−i )) > Πw,i (choose−i (s′−i )). ⊓5

From M, w |) ∧
s−i∈S−i :s−i∈SDWDS2−IDSDS

−i,1
K̂i (choose−i (s−i ) ∧ AllPRat−i ) ∧ SBi

AllPRat−i , by Lemma 1, it follows that:
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(D) if s′−i ∈ SDWDS2−IDSDS
−i,1 and s′′−i /∈ SDWDS2−IDSDS

−i,1 then Πw,i (choose−i (s′−i )) >

Πw,i (choose−i (s′′−i )).

s[i] /∈ SDWDS2−IDSDS
i,2 implies that:

(E1) s[i] /∈ SDWDS2−IDSDS
i,1 or

(E2) s[i] ∈ SDWDS2−IDSDS
i,1 and s[i] /∈ SDWDS2−IDSDS

i,2

We split the proof in the two subcases: (E1) and (E2).
Proof for the case (E1).
s[i] /∈ SDWDS2−IDSDS

i,1 implies that:

(F1) There is s′i ∈ SDWDS2−IDSDS
i such that: (1) s′i ̸= s[i] and (2) ⟨s[i], s′−i ⟩ <i

⟨s′i , s′−i ⟩ for some s′−i ∈ SDWDS2−IDSDS
−i and (3) ⟨s[i], s′′−i ⟩ ≤i ⟨s′i , s′′−i ⟩ for all

s′′−i ∈ SDWDS2−IDSDS
−i .

From (F1), by the Condition (C4) on epistemic game models, it follows that:

(G1) There are s′i ∈ SDWDS2−IDSDS
i and s′−i ∈ SDWDS2−IDSDS

−i and v ∈ W such that:
(1) s′i ̸= s[i] and (2) wEiv and (3) M, v |) choose−i (s′−i ) and (4) ⟨s[i], s′−i ⟩ <i

⟨s′i , s′−i ⟩ and (5) for all u ∈ W such that wEi u and for all s′′−i ∈ SDWDS2−IDSDS
−i :

if M, u |) choose−i (s′′−i ) then ⟨s[i], s′′−i ⟩ ≤i ⟨s′i , s′′−i ⟩.
But (G1) is in contradiction with M, w |) PRati and M, w |) choosei (s[i]).

Proof for the case (E2).
(E2) implies that:

(F2) There is s′i ∈ SDWDS2−IDSDS
i,1 such that: (1) s′i ̸= s[i] and (2) ⟨s[i], s′−i ⟩ <i

⟨s′i , s′−i ⟩ for some s′−i ∈ SDWDS2−IDSDS
−i,1 and (3) ⟨s[i], s′′−i ⟩ ≤i ⟨s′i , s′′−i ⟩ for all

s′′−i ∈ SDWDS2−IDSDS
−i,1 .

By the Condition (C4) on epistemic game models, (F2) together with M, w |) PRati
and M, w |) choosei (s[i]) imply that:

(G2) There are s′−i ∈ SDWDS2−IDSDS
−i,1 and s′′−i /∈ SDWDS2−IDSDS

−i,1 such that
Πw,i (choose−i (s′−i )) ≤ Πw,i (choose−i (s′′−i )).

But (G2) is in contradiction with (D). This proves the base case.
Let us now prove the inductive case.
Inductive case. For m > 1, we assume that if s /∈ SDWDS2−IDSDS

m then:

(Inductive Hypothesis) |) CB(ComplAss∧AllPRatAgt∧
∧

i∈Agt SBi AllPRat−i ) →
¬choose(s)

We are going to prove that if s /∈ SDWDS2−IDSDS
m+1 then:

(A) |) CB(ComplAss ∧ AllPRatAgt ∧ ∧
i∈Agt SBi AllPRat−i ) → ¬choose(s)
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Let us take an arbitrary epistemic gamemodelM andworldw and assume thatM, w |)
CB(ComplAss∧AllPRatAgt ∧

∧
i∈Agt SBi AllPRat−i ) and M, w |) choose(s). We

are going to show that s ∈ SDWDS2−IDSDS
m+1 .

M, w |) CB(ComplAss ∧ AllPRatAgt ∧ ∧
i∈Agt SBi AllPRat−i ) implies |)

AllPRatAgt which in turn implies:

(A) |) ∧
i∈Agt SRati

Moreover, we have the following validity by the property |) CBAgtϕ → BiCBAgtϕ

for every i ∈ Agt:

(B) |) CB(ComplAss ∧ AllPRatAgt ∧ ∧
i∈Agt SBi AllPRat−i ) → ∧

i∈Agt BiCB
(ComplAss ∧ AllPRatAgt ∧ ∧

i∈Agt SBi AllPRat−i )

Therefore, from M, w |) CB(ComplAss∧AllPRatAgt ∧
∧

i∈Agt SBi AllPRat−i )we
infer that:

(C) M, w |) ∧
i∈Agt BiCB(ComplAss ∧ AllPRatAgt ∧ ∧

i∈Agt SBi AllPRat−i )

By the inductive hypothesis, Axiom K and the rule of necessitation for the belief
operator Bi , from (C) it follows that if s′ /∈ SDWDS1−IDSDS

m then:

(D) M, w |) ∧
i∈Agt Bi¬choose(s′)

From (B), (D) and M, w |) choose(s) it follows that for every i ∈ Agt and for all
s′i ∈ Si either there is s′ ∈ SDWDS1−IDSDS

m such that ⟨s′i , s′−i ⟩ <i ⟨s[i], s′−i ⟩ or for all
s′ ∈ SDWDS1−IDSDS

m we have ⟨s′i , s′−i ⟩ ≤i ⟨s[i], s′−i ⟩. The latter implies that for every

i ∈ Agt we have s[i] ∈ SDWDS1−IDSDS
i,m+1 which is equivalent to s ∈ SDWDS1−IDSDS

m+1 . ⊓5

Appendix 3: Proof of Theorem 5

Let s ∈ S. Then:

1. If s ∈ SIDSDS then there exists an epistemic gamemodel M = (W, E1, . . . , En,B1,
. . . ,Bn, ch1, . . . , chn,V) and a world w ∈ W such that M, w |) choose(s) ∧
CB AllWRatAgt ;

2. If s ∈ SDWDS1−IDSDS then there exists an epistemic game model M =
(W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) and a world w ∈ W such that
M, w |) choose(s) ∧ CB AllPRatAgt ;

3. If s ∈ SDWDS2−IDSDS then there exists an epistemic game model M =
(W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) and a world w ∈ W such that
M, w |) choose(s) ∧ CB(ComplAss ∧ AllPRatAgt ∧ ∧

i∈Agt SBi AllPRat−i ).

Proof We only prove the third item, as the first item and the second item can be proved
in a very similar way.

We build the following epistemic game model M = (W, E1, . . . , En,B1, . . . ,Bn,

ch1, . . . , chn,V):
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– W = {ws :s ∈ S},
– For all i ∈ Agt, Ei = {(ws, ws′):ws, ws′ ∈ W and s[i] = s′[i]},
– For all i ∈ Agt, Bi = {(ws, ws′):wsEiws′ and s′−i ∈ SDWDS2−IDSDS

−i,1 },
– For all ws ∈ W and for all i ∈ Agt, chi (ws) = s[i],
– For all ws ∈ W , V(ws) = Atm.

It is routine to check that, for all ws ∈ W and for all i ∈ Agt:

(A) s[i] ∈ SDWDS2−IDSDS
i,1 iff M, ws |) PRati .

The right-to-left direction follows from Theorem 1 above. The left-to-right direction
follows from the construction of the previous epistemic game model M and the defi-
nition of PRati .

By the previous item (A), from the definition of SBi and the construction of the
previous epistemic game model M , for all ws ∈ W and for all i ∈ Agt, we have:

(B) M, ws |) SBi AllPRat−i .

By the previous item (A), from the definition of ComplAss and the construction of
the previous epistemic game model M , for all ws ∈ W , we have:

(C) M, ws |) ComplAss.

By the previous item (A), from the construction of the previous epistemic game model
M , we have that:

(D) If s ∈ SDWDS2−IDSDS
1 then M, ws′ |) AllPRatAgt for all ws′ ∈ B+(ws).

Now, let s ∈ SDWDS2−IDSDS . Hence, s ∈ SDWDS2−IDSDS
1 . Thus, from the previous items

(B), (C) and (D) it follows that M, ws |) choose(s)∧CB(ComplAss∧AllPRatAgt ∧∧
i∈Agt SBi AllPRat−i ). ⊓5

Appendix 4: Proof of Theorem 6

The set of validities of the logic LEG relative to the class of epistemic game models
is completely axiomatized by the principles given in Fig. 4.

Proof Proving that the axioms given in Fig. 4 are sound with respect to the class of
epistemic game models (EGMs) and that the inference rules preserve validity is just a
routine task and we do not give it here.

As to completeness, the proof consists of three steps.
Step 1 Let us first observe that the LEG semantics in terms of epistemic game models
is equivalent to a LEG semantics in terms of multi-relational Kripke models in which
formulas choosei (si ) and possi are seen as atomic propositions.

Definition 10 (Multi-relational Kripke model) A multi-relational Kripke model
(MKM) for the strategic gameΓ = (Agt, {Si }i∈Agt, {Ui }i∈Agt) and for the set of atomic
propositions Atm is a tuple M = (W, {Ei }i∈Agt, {Bi }i∈Agt,π) where W, {Ei }i∈Agt and
{Bi }i∈Agt are as in Definition 1 and π is the valuation function:

π : W −→ 2Atm∪Φ∪Ψ
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with Φi = {choosei (si ):si ∈ Si }, Φ = ⋃
i∈Agt Φi and Ψ =

{
possi :i ∈ Agt

}
, which

satisfies the following conditions:

(C3∗) For all w, v ∈ W , for all i ∈ Agt and for all si ∈ Si : if choosei (si ) ∈ π(w)

and wEiv then choosei (si ) ∈ π(v);
(C4∗) For all w ∈ W , for all i ∈ Agt and for all s−i ∈ S−i : there is u ∈ W such that

wEi u and choose j (s j ) ∈ π(u) for all j ∈ Agt \ {i};
(C5) For all w ∈ W and for all i ∈ Agt: πi (w) is a singleton with πi (w) =

π(w) ∩ Φi ;
(C6) For all w ∈ W and for all i ∈ Agt: if possi ∈ π(w) then wBiw.

The truth conditions of formulas in LLEG(Γ,Atm) relative to MKMs are like the
truth conditions relative to EGMs except for formulas choosei (si ) and possi , which
are interpreted by means of the valuation function π as follows:

M, w |) possi iff possi ∈ π(w)

M, w |) choosei (si ) iff choosei (si ) ∈ π(w)

We write |)MKM ϕ to mean that the LEG-formula ϕ is valid relative to the class of
MKMs.

We have the following equivalence result:

Lemma 2 Let ϕ ∈ LLEG(Γ,Atm). Then, |) ϕ iff |)MKM ϕ.

Step 2 The second step consists in introducing the class of weak multi-relational
Kripke models (WMKMs) that are like MKMs except that they do not necessarily
satisfy Conditions (C3∗), (C4∗) and (C5).

We write |)WMKM ϕ to mean that the LEG-formula ϕ is valid relative to the class
of WMKMs.

Moreover, for any finite set∆ ofLEG-formulas,wewrite∆ |)WMKM ϕ tomean that
ϕ is a logical consequence of the set of formulas ∆ relative to the class of WMKMs.
That is,∆ |)WMKM ϕ iff, for everyweak multi-relational Kripke model M , if M, w |)∧

ψ∈∆ ψ for all w ∈ W , then M, w |) ϕ for all w ∈ W .
The following Proposition 4 highlights that the validity problem relative to the

class of MKMs is reducible to the logical consequence problem relative to the class
of WMKMs.

Proposition 4 Let

∆0 ={
∨

si∈Si
choosei (si ) : i ∈ Agt}∪

{choosei (si ) → ¬choosei (s′i ) : i ∈ Agt and si , s′i ∈ Si with si ̸= s′i }∪
{choosei (si ) → Ki choosei (si ) : i ∈ Agt and si ∈ Si }∪
{K̂i choose−i (s−i ) : i ∈ Agt and s−i ∈ SAgt\{i}}

Then, for every LEG-formula ϕ, |)MKM ϕ iff ∆0 |)WMKM ϕ.
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Proof We just need to observe that the (global) axioms in ∆0 force a weak multi-
relational Kripke models to satisfy Conditions (C3∗), (C4∗) and (C5). That is, M is a
WMKM in which the formula

∧
ψ∈∆0

ψ is true (i.e., M, w |) ∧
ψ∈∆0

ψ for all w in
M) iff M is a MKM. Therefore, the class of WMKMs in which the formula

∧
ψ∈∆0

ψ

is true coincides with the class of MKMs. ⊓5

The following Proposition 5 highlights that, thanks to the common knowledge
modality CK , the logical consequence problem relative to the class of WMKMs can
be reduced to the validity problem relative to the class of WMKMs.

Proposition 5 For every LEG-formula ϕ and for every finite set ∆ of LEG-formulas,
∆ |)WMKM ϕ iff |)WMKM CK

∧
ψ∈∆ ψ → ϕ.

Step 3 The third step consists in providing an axiomatization result for LEG relative
to the class of WMKMs.

Lemma 3 The set of validities of the logic LEG relative to the class of WMKMs is
completely axiomatized by the groups of axioms (1), (2), (3) and (4) and by the rules
of inference (6) and (7) in Fig. 4.

Proof The proof just consists in adapting the completeness proof by Kraus and
Lehmann (1988). Kraus and Lehmann provide an axiomatization result for the logic of
belief, knowledge, common belief and common knowledge whose language is defined
by the following grammar:

ϕ::=p | ¬ϕ | ϕ ∧ ψ | Kiϕ | Biϕ | CKϕ | CBϕ

and which is interpreted over structures that are like WMKMs except that they do
not necessarily satisfy Condition (C6). Their axiomatization consists of the groups
of axioms (1), (2) and (4), the rules of inference (6) and (7) and Axioms (3a), (3b),
(3d), (3e), (3f) and (3g) in Fig. 4. It is a routine task to slightly modify Kraus and
Lehmann’s proof by adding Condition (C6) in the semantics and proving that the
resulting structures are completely axiomatized by their axioms and inference rules
plus Axiom (3c).4 ⊓5

The last element we need for proving Theorem 6 is the following Proposition 6.
Let ⊢LEG ϕ and !LEG ϕ mean, respectively, that the LEG-formula ϕ is provable via
the groups of axioms (1), (2), (3), (4) and (5) and the rules of inference (6) and (7) in
Fig. 4 and that the LEG-formula ϕ is provable via the groups of axioms (1), (2), (3)
and (4) and the rules of inference (6) and (7) in Fig. 4.

4 Kraus and Lehmann’s proof can be easily adapted by adding the following condition to their definition
of standard set (Kraus and Lehmann 1988, Def. 2.8):

– If Biϕ ∈ D, possi ∈ D and D is a standard set then ϕ ∈ D.

This modification of the definition of standard set guarantees that the binary relation ∼i over standard
sets defined in (Kraus and Lehmann 1988, Def. 2.10) correctly satisfies the Condition (C6) (i.e., if D is a
standard set and possi ∈ D then D ∼i D).
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Proposition 6 For every LEG-formula ϕ, if !LEG CK
∧

ψ∈∆0
ψ → ϕ then ⊢LEG ϕ,

where ∆0 is defined as in Proposition 4.

Proof Suppose !LEG CK
∧

ψ∈∆0
ψ → ϕ. Hence, ⊢LEG CK

∧
ψ∈∆0

ψ → ϕ.
By the inference rule (7) (viz. necessitation for CK) and the group of axioms (5),

we have ⊢LEG
∧

ψ∈∆0
CKψ . By Axiom 2(e), we can derive ⊢LEG CK

∧
ψ∈∆0

ψ .
Consequently, by the inference rule (6) (viz. modus ponens), we have that ⊢LEG ϕ.

⊓5

Propositions 4, 5 and 6 together with Lemmas 2 and 3 are sufficient to prove
Theorem 6.

Suppose that |)LEG ϕ. Hence, by Lemma2, |)MKM ϕ. Hence, by Propositions 4 and
5, |)WMKM CK

∧
ψ∈∆0

ψ → ϕ. By Lemma 3, it follows that!LEG CK
∧

ψ∈∆0
ψ →

ϕ. Hence, by Proposition 6, ⊢LEG ϕ. ⊓5

Appendix 5: Proof of Theorem 7

The satisfiability problem of LEG relative to the class of epistemic game models is
decidable in exponential time.

Proof The following Lemma 4 follows from the fact that LEG is an extension of the
logic of common knowledge whose satisfiability problem is ExpTime-complete Fagin
et al. (1995).

Lemma 4 The satisfiability problem of LEG relative to the class of epistemic game
models is ExpTime-hard.

In order to prove that the satisfiability problem of LEG is in ExpTime, we are going
to embed LEG into the decidable logic S5-PDL, i.e., the variant of propositional
dynamic logic PDL Harel et al. (2000) in which atomic programs are interpreted by
means of equivalence relations.

Let Atm+ = Atm ∪ {choosei (si ):i ∈ Agt and si ∈ Si } ∪ {possi :i ∈ Agt}. The
language LS5−PDL(Atm+,Agt) of S5-PDL is defined as follows:

π ::= ∼i | π1;π2 | π1 ∪ π2 | π∗ |?ϕ
ϕ::= p | ¬ϕ | ϕ ∧ ϕ | [π ]ϕ

where p ranges over Atm+ and i ranges over Agt. The dual of the operator [π ] is
defined in the standard way as follows: ⟨π⟩ϕ def= ¬[π ]¬ϕ.

S5-PDL models are tuples M = ⟨W,R∼1 , . . . ,R∼n , I⟩ where:

– W is a set of worlds;
– Every R∼i is an equivalence relation on W ;
– I : Atm+ −→ 2W is a valuation function.
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Binary relations for complex programs are defined in the standard way as follows:

Rπ1;π2 = Rπ1;Rπ2

Rπ1∪π2 = Rπ1 ∪ Rπ2

Rπ∗ = (Rπ )
∗

R?ϕ = {(w,w):w ∈ W and M, w |) ϕ}

Truth conditions of S5-PDL formulae are the standard ones for Boolean operators
plus the following one for the operator [π ]:

M, w |) [π ]ϕ iff M, v |) ϕ for all v ∈ Rπ (w)

For any formula ϕ of the language LS5−PDL(Atm+,Agt), we write |)S5−PDL ϕ if
ϕ is S5-PDL valid, that is, if ϕ is true in all S5-PDL models (i.e., for all S5-PDL
models M and for all worlds w in M , we have M, w |) ϕ). We say that ϕ is S5-PDL
satisfiable if¬ϕ is not S5-PDL valid. Moreover, we shall say that ϕ is a global logical
consequence in S5-PDL of a finite set of global axioms ∆ = {χ1, . . . ,χn}, denoted
by ∆ |)S5−PDL ϕ, if and only if for every S5-PDL model M , if ∆ is true in M (i.e.,
for every world w in M , we have M, w |) χ1 ∧ . . .∧ χn) then ϕ is true in M too (i.e.,
for every world w in M , we have M, w |) ϕ).

Proposition 7 The satisfiability problem of S5-PDL is in ExpTime.

Proof The logic S5-PDL is polynomially embeddable into PDL extended with con-
verse, by simulating S5 program ∼i with the composite program (xi ∪ −xi )∗ where
xi is an arbitrary atomic program interpreted by means of the binary relation Rxi ,
and −xi is the converse of xi . (Note indeed that relation R(xi∪−xi )∗ is an equiva-
lence relation.) The satisfiability problem of PDL with converse has been proved to be
ExpTime-complete Vardi (1985). It follows that the satisfiability problem of S5-PDL
is in ExpTime. ⊓5

We define the following translation from the LEG language LLEG(Γ,Atm) to
LS5−PDL(Atm+,Agt) for p ∈ Atm and i ∈ Agt:

tr(p) = p

tr(choosei (si )) = choosei (si )

tr(possi ) = possi
tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)

tr(Kiϕ) = [∼i ]tr(ϕ)
tr(Biϕ) = [∼i ](possi → tr(ϕ))

tr(CKϕ) = [(∼1 ∪ . . .∪ ∼n)
∗]tr(ϕ)

tr(CBϕ) = [(∼1 ;?poss1 ∪ . . .∪ ∼n ;?possn)∗]tr(ϕ)
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As the following proposition highlights, the validity problem inLEG can be reduced
to the problem of (global) logical consequence in S5-PDL.

Proposition 8 A LEG formula ϕ is LEG valid, i.e., |)LEG ϕ, if and only if tr(ϕ) is a
logical consequence of the set of global axioms∆0 in S5-PDL, i.e.,∆0 |)S5−PDL tr(ϕ),
where:

∆0 ={
∨

si∈Si
choosei (si ) : i ∈ Agt}∪

{choosei (si ) → ¬choosei (s′i ) : i ∈ Agt and si , s′i ∈ Si with si ̸= s′i }∪
{choosei (si ) → Ki choosei (si ) : i ∈ Agt and si ∈ Si }∪
{K̂i choose−i (s−i ) : i ∈ Agt and s−i ∈ SAgt\{i}}

Proof (Sketch) (⇒) Take an arbitrary EGM M = (W, E1, . . . , En,B1, . . . ,Bn, ch1,
. . . , chn,V) which satisfies formula ϕ. We build a corresponding S5-PDL model
M ′ = ⟨W,R∼1 , . . . ,R∼n , I⟩ such that:

– For all i ∈ AGT ,R∼i = Ei ;
– For all p ∈ Atm, I(p) = V(p);
– For all i ∈ Agt, for all si ∈ Si and for all w ∈ W , w ∈ I(possi ) iff w ∈ Bi (w);
– For all i ∈ Agt and for all w ∈ W , w ∈ I(choosei (si )) iff chi (w) = si .

By induction on the structure of ϕ, it is easy to check that tr(ϕ) is satisfied by M ′ and
that for every χ ∈ ∆0, M ′, w |) χ for all w ∈ W .

(⇐) Take an arbitrary S5-PDL model M = ⟨W,R∼1 , . . . ,R∼n , I⟩ which satisfies
tr(ϕ) such that that for all χ ∈ ∆0 and for all w ∈ W , M, w |) χ . We build a
corresponding EGM M ′ = (W, E1, . . . , En,B1, . . . ,Bn, ch1, . . . , chn,V) such that:

– For all i ∈ AGT , Ei = R∼i ;
– For all i ∈ AGT , Bi = {(w, v):wEiv and M, v |) possi };
– For all i ∈ Agt, for all si ∈ Si and for all w ∈ W , chi (w) = si iff
w ∈ I(choosei (si ));

– For all p ∈ Atm, V(p) = I(p).

Again, by induction on the structure of ϕ, it is easy to check that ϕ is satisfied by
M ′. ⊓5

From Propositions 7 and 8 we obtain the following upper boud for the complexity
of the satisfiability problem of LEG.

Lemma 5 The satisfiability problem of LEG relative to the class of epistemic game
models is in ExpTime.

Proof It is a routine task to verify that the problem of global logical consequence
in S5-PDL with a finite number of global axioms is reducible to the problem of
validity in S5-PDL. In particular, if ∆ = {χ1, . . . ,χm} we have ∆ |)S5−PDL ϕ if
and only if |)S5−PDL [any∗](χ1 ∧ . . .χm) → ϕ where any is the special program
defined as any def= (

⋃
i∈Agt ∼i ∪ ≡). Hence, by Proposition 8 and by the fact that
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∆0 is finite, it follows that a LEG formula ϕ is LEG valid if and only if |)S5−PDL
[any∗](∧χ∈∆0

χ) → tr(ϕ). Consequently, given the fact that tr is a polynomial
reduction of LEG to S5-PDL and given also the fact that the satisfiability problem
of S5-PDL is in ExpTime (Proposition 7), it follows that the satisfiability problem of
LEG is also in ExpTime. ⊓5

Theorem 7 follows from Lemmas 4 and 5. ⊓5
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Abstract

In the recent years, several formal approaches to the specification of norma-
tive multi-agent systems and artificial institutions have been proposed. The aim of
this paper is to advance the state of the art in this area by proposing an approach
in which a normative multi-agent system is conceived to be autonomous, in the
sense that it is able to create, maintain, and eventually change its own institutions
by itself, without the intervention of an external designer in this process. In our
approach the existence and the dynamics of an institution (norms, rules, institu-
tional facts, etc.) are determined by the (individual and collective) acceptances of
its members, and its dynamics depends on the dynamics of these acceptances.

In order to meet this objective, we propose the logic AL (Acceptance Logic)
in which the acceptance of a proposition by the agents qua members of an insti-
tution is introduced. Such propositions are true w.r.t. an institutional context and
correspond to facts that are instituted in an attitude-dependent way.

The second part of the paper is devoted to the logical characterization of some
important notions in the theory of institutions. We provide a formalization of the
concept of constitutive rule, expressed by a statement of the form “X counts as
Y in the context of institution x”. Then, we formalize the concepts of obliga-
tion and permission (so called regulative rules). In our approach constitutive rules
and regulative rules of a certain institution are attitude-dependent facts which are
grounded on the acceptances of the members of the institution.

Keywords

Modal logic, institutions, acceptance, normative systems, multi-agent systems
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1 Introduction

The problem of devising artificial institutions and modeling their dynam-
ics is a fundamental problem in the multi-agent system (MAS) domain
[Dignum and Dignum, 2001]. Following [North, 1990, p. 3], artificial institutions
can be conceived as “the rules of the game in a society or the humanly devised
constraints that structure agents’ interaction”. Starting from this concept of insti-
tution, many researchers working in the field of normative MAS have been inter-
ested in developing models which describe the different kinds of rules and norms
that agents have to deal with. In some models of artificial institutions norms are
conceived as means to achieve coordination among agents and agents are supposed
to comply with them and to obey the authorities of the system [Esteva et al., 2001].
More sophisticated models of institutions leave to the agents’ autonomy the deci-
sion whether to comply or not with the specified rules and norms of the institution
[Ågotnes et al., 2007, Lopez y Lopez et al., 2004]. However, all previous models ab-
stract away from the legislative source of the norms of an institution, and from how
institutions are created, maintained and changed by their members. More precisely,
while it is widely shared in the MAS field that, in order to face complex and dynamical
problems, individual agents must be autonomous, less emphasis is devoted to the fact
that MASs themselves for exactly the same reasons should be conceived and designed
to be autonomous. In fact, etymologically, autonomous means self-binding (‘auto’ and
‘nomos’), and an autonomous MAS should be the vision of an artificial society that is
able to create, maintain, and eventually change its own institutions by itself, without
the intervention of the external designer in this process.

The aim of this work is to advance the state of the art on artificial institutions and
normative multi-agent systems by proposing a logical model in which the existence and
the dynamics of an institution (norms, rules, institutional facts, etc.) are determined by
the individual and collective attitudes of the agents which identify themselves as mem-
bers of the institution. In particular, we propose a model in which an institution is
grounded on the (individual and collective) acceptances of its members, and its dy-
namics depends on the dynamics of these acceptances. On this aspect we agree with
[Mantzavinos et al., 2004], when the authors say that (p. 77):

“only because institutions are anchored in peoples minds do they ever be-
come behaviorally relevant. The elucidation of the internal aspect is the
crucial step in adequately explaining the emergence, evolution, and effects
of institutions.” [Emphasis added].

This relationship between acceptance and institutions has been emphasized in the
philosophical doctrine of Legal Positivism [Hart, 1992]. According to Hart, the foun-
dations of a normative system or institution consist of adherence to, or acceptance of,
an ultimate rule of recognition by which the validity of any rule of the institution may
be evaluated. 1

1In Hart’s theory, the rule of recognition is the rule which specifies the ultimate criteria of validity in a
legal system.
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Other authors working in the field of multi-agent systems have advocated the need
for a bottom up approach to the explanation of the origin and the evolution of institu-
tions. According to these authors, institutions and their dynamics should be anchored in
the agents’ attitudes [Conte et al., 1998, Boella and van der Torre, 2007]. For instance,
in agreement with Hart’s theory, [Conte et al., 1998] have stressed that the existence of
a norm in an institution (but also in a group, organization, etc.) depends on the recogni-
tion and acceptance of the norm by the members of the institution. In their perspective,
agents in a multi-agent system contribute to the enforcement and the propagation of the
norm in the social context.

The fundamental concept in our paper is that of acceptance qua member of an in-
stitution. This notion will be informally presented in Section 2. In Section 3 we will
introduce a modal logic (called AL for Acceptance Logic) which enables to reason
about acceptances of agents and groups of agents. We call the former individual ac-
ceptances, and the latter collective acceptances. In Section 4 we will study the logical
properties of the notion of acceptance and its interactions with classical notions such
that of individual (private) belief and that of mutual belief. On the basis of the concept
of acceptance qua member of an institution, we will specify how a group of agents can
create and maintain normative and institutional facts which hold only in an attitude-
dependent way. That is, it is up to the agents, and not to the external designer, to sup-
port such facts (Section 5). Then, we will distinguish regulative components and non-
regulative components of an institution [Searle, 1995] (Section 6). On the one hand,
we will formalize the concept of constitutive rule, that is, the kind of rules accepted
by the members of an institution which express classifications between different con-
cepts and establish the relations between “brute” physical facts and institutional facts
within the context of the institution (Section 6.1). Since [Searle, 1995, Searle, 1969]
and [Jones and Sergot, 1996], these rules have been expressed in terms of assertions of
the form “X counts as Y in the context of institution x” (e.g. in the institutional context
of US, a piece of paper with a certain shape, color, etc. counts as a five-dollar bill). On
the other hand, regulative rules will be formalized through a notion of obligation and
a notion of permission by studying a reduction of deontic logic to the logic of accep-
tance (Section 6.2). Section 7 will be devoted to show how the logic of acceptance
AL can be appropriately refined in order to capture some essential properties of legal
institutions in which a special kind of agents called legislators are introduced. We will
discuss some general principles which seem adequate for a formal characterization of
legal institutions. Finally, in Section 8, we will compare our proposal with related log-
ical works on institutions and normative systems. Special emphasis will be devoted to
the comparison between our approach and the modal logic of normative systems and
“counts-as” proposed by Grossi et al. [Grossi et al., 2006]. Proofs of the main theorems
presented in the paper are collected in the annex.

2 The concept of acceptance

Some conceptual clarifications of the concept of acceptance qua member of an insti-
tution are needed because of the crucial role it plays in explaining the maintenance of
social institutions.
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Several authors have emphasized the difference between acceptance and belief as
particular kinds of individual attitudes. Whereas private beliefs have been studied for
decades [Hintikka, 1962] as representative of doxastic mental states, acceptances have
only been examined since [Stalnaker, 1984] and since [Cohen, 1992]. Some authors
(e.g. [Clarke, 1994]) claim that acceptance implies belief (at least to some minimal
degree as argued in [Tollefsen, 2003]). On the contrary, in [Stalnaker, 1984] acceptance
is considered to be stronger than belief. Although belief and acceptance seem very
close, several authors [Bratman, 1992, Cohen, 1992, Tuomela, 2000] have argued for
the importance of keeping the two notions independent. We here agree with this point
of view (see Section 4.3).

For the aims of this paper we are particularly interested in a particular feature of
acceptance, namely the fact that acceptance is context-dependent (on this point see also
[Engel, 1998]). In our approach, this feature is directly encoded in the formal definition
of acceptance (see Section 3.1). In fact, one can decide (say for prudential reasons) to
reason and act by “accepting” the truth of a proposition in a specific context, and reject
the very same proposition in a different context. We will explore the role of acceptance
in institutional contexts. Institutional contexts are conceived here as rule-governed so-
cial practices on the background of which the agents reason. For example, take the
case of a game like Clue. The institutional context is the rule-governed social practice
which the agents conform to in order to be competent players. On the background of
such contexts, we are interested in the agents’ attitudes that can be formally captured.
In the context of Clue, for instance, an agent accepts that something has happened qua
player of Clue. The state of acceptance qua member of an institution is the kind of ac-
ceptance one is committed to when one is “functioning as a member of the institution”
[Tuomela, 2002]. In these situations it may happen that the agent’s acceptances are in
conflict with his/her beliefs. For instance, a lawyer who is trying to defend a client in a
murder case accepts qua lawyer that his/her client is innocent, even she/he believes the
contrary.

There exist others differences between belief and acceptance that are not encoded
in our formalization of acceptance. According to [Hakli, 2006], the key difference
between belief and acceptance is that the former is aimed at truth, whilst the latter
depends on an agent’s decision. More precisely, while a belief that p is an attitude con-
stitutively aimed at the truth of p, an acceptance is the output of “a decision to treat p

as true in one’s utterances and actions” without being necessarily (see [Tuomela, 2000]
for instance) connected to the actual truth of the proposition.

In the present paper the notion of acceptance qua member of an institution is also
applied to the collective level named collective acceptance. The idea of collective
attitudes is developed by Searle [Searle, 1995] among others: without supposing the
existence of any collective consciousness, he argues that attitudes can be ascribed to a
group of agents and that “the forms of collective intentionality cannot (...) be reduced
to something else” [Searle, 1995]2.

Collective attitudes such as collective acceptance have been studied in social phi-
losophy in opposition to the traditional notions of mutual belief and mutual knowl-

2A deeper discussion on this point remains out of the scope of this paper. Some interesting arguments for
collective intentionality can be found in [Tollefsen, 2002].
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edge that are very popular in artificial intelligence and theoretical computer science
[Fagin et al., 1995, Lewis, 1969]. It has been stressed that, while mutual belief is
strongly linked to individual beliefs and can be reduced to them, collective attitudes
such as collective acceptance cannot be reduced to a composition of individual atti-
tudes. This aspect is particularly emphasized by Gilbert [Gilbert, 1987] who follows
Durkheim’s non-reductionist view of collective attitudes [Durkheim, 1982]. According
to Gilbert, any proper group attitude cannot be defined only as a label on a particular
configuration of individual attitudes, as mutual belief is. In [Gilbert, 1989] it is sug-
gested that a collective acceptance of a set of agents C is based on the fact that the
agents in C identify themselves as members of a certain group, institution, team, orga-
nization, etc. and recognize each other as members of the same group, institution, team,
organization, etc. (this is the view that we adopt in our formalization of acceptance, see
Section 3). But mutual belief (and mutual knowledge) does not entail this aspect of
mutual recognition and identification with respect to the same social context.

In accordance with [Tuomela, 2002], in this paper we consider collective accep-
tance with respect to institutional contexts as an attitude that is held by a set of agents
qua members of the same institution. A collective acceptance held by a set of agents
C qua members of a certain institution x is the kind of acceptance the agents in C are
committed to when they are “functioning together as members of the institution x”,
that is, when the agents in C identify and recognize each other as members of the insti-
tution x. For example, in the context of the institution Greenpeace agents (collectively)
accept that their mission is to protect the Earth qua members of Greenpeace. The state
of acceptance qua members of Greenpeace is the kind of acceptance these agents are
committed to when they are functioning together as members of Greenpeace, that is,
when they identify and recognize each other as members of Greenpeace.

3 Acceptance logic

The logic AL (Acceptance Logic) enables expressing that some agents identify them-
selves as members of a certain institution and what (groups of) agents accept while
functioning together as members of an institution. The principles of AL clarify the
relationships between individual acceptances (acceptances of individual agents) and
collective acceptances (acceptances of groups of agents).

3.1 Syntax

The syntactic primitives of AL are the following: a finite non-empty set of agents
AGT ; a countable set of atomic formulas ATM ; and a finite set of labels INST de-
noting institutions. We note 2AGT? = 2AGT \ {;} the set of all non-empty subsets of
AGT . The language LAL of the logic AL is given by the following BNF:

' ::= ? | p | ¬' | ' _ ' | AC :x'

where p ranges over ATM , C ranges over 2AGT? and x ranges over INST . We define
^, !, $ and > from _, ¬ and ? in the usual manner.
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The formulaAC :x' reads “the agents in C accept that 'while functioning together
as members of the institution x”. For notational convenience, we write i :x instead of
{i}:x .

For example, AC :GreenpeaceprotectEarth expresses that the agents in C accept
that the mission of Greenpeace is to protect the Earth while functioning together as
activists in the context of Greenpeace; and Ai:CatholicPopeInfallibility expresses that
agent i accepts that the Pope is infallible while functioning as a member of the Catholic
Church.

The formula AC :x? has to be read “agents in C are not functioning together as
members of the institution x”, because we assume that functioning as a member of an
institution is, at least in this minimal sense, a rational activity. Conversely, ¬AC :x?
has to be read “agents in C are functioning together as members of the institution x”.
Thus, ¬AC :x?^AC :x' stands for “agents in C are functioning together as members
of the institution x and they accept that ' while functioning together as members of
x” or simply “agents in C accept that ' qua members of the institution x”. Therefore
¬AC :x' has to be read “agents in C do not accept that ' be true qua members of x”.

3.2 AL frames

We use a standard possible worlds semantics. Let the set of all couples of non-empty
subsets of agents and institutional contexts be

� = 2AGT? ⇥ INST .
A frame of the logic of acceptance AL (AL frame) is a couple

F = hW ,A i
where:

• W is a non-empty set of possible worlds;

• A : � ! W ⇥W maps every C :x 2 � to a relation AC :x between possible
worlds in W .

We note AC :x (w) = {w 0 : hw ,w 0i 2 AC :x} the set of worlds that the agents in C

accept at w while functioning together as members of the institution x .
We impose the following constraints on AL frames, for any world w 2 W , insti-

tutional context x 2 INST , and sets of agents C ,B 2 2AGT? such that B ✓ C :

if w

0 2 AB :y(w) then AC :x (w 0) ✓ AC :x (w)(S.1)
if w

0 2 AB :y(w) then AC :x (w) ✓ AC :x (w 0)(S.2)
if AC :x (w) 6= ; then AB :x (w) ✓ AC :x (w)(S.3)

if w

0 2 AC :x (w) then w

0 2
[

i2C

Ai:x (w 0)(S.4)

if AC :x (w) 6= ; then AB :x (w) 6= ;(S.5)

The constraint S.1 is a generalized version of transitivity: given two sets of agents
C ,B such that B ✓ C , if w0 is a world that the agents in B accept at w while func-
tioning together as members of the institution y and w00 is a world that the agents in C
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accept at w0 while functioning together as members of the institution x then, w00 is a
world that the agents in C accept at w while functioning together as members of the
institution x.

The constraint S.2 is a generalized version of euclideanity: given two sets of agents
C ,B such that B ✓ C , if w0 is a world that the agents in B accept at w while func-
tioning together as members of the institution y and w00 is a world that the agents in
C accept at w while functioning together as members of the institution x then, w00 is a
world that the agents in C accept at w0 while functioning together as members of the
institution x.

The constraint S.3 is a property of conditional inclusion: given two sets of agents
C ,B such that B ✓ C , if there exists a world w00 that the agents in C accept at w while
functioning together as members of the institution x and w0 is a world that the agents
in B accept at w while functioning together as members of the institution x then, w0 is
also a world that the agents in C accept at w while functioning together as members of
the institution x.

The constraint S.4 is a sort of weak reflexivity: if w0 is a world that the agents in C

accept at w while functioning together as members of the institution x then, there exists
some agent i 2 C such that w0 is a world that agent i accepts at w0, while functioning
as a member of the institution x.

According to the last constraint S.5, given two sets of agents C ,B such that B ✓
C , if there exists a world w0 that the agents in C accept at w while functioning together
as members of the institution x then, there exists a world w00 that the agents in B accept
at w while functioning together as members of the institution x.

3.3 AL models and validity

A model of the logic of acceptance AL (AL model) is a couple
M = hF ,V i

where:

• F is a AL frame;

• V : ATM ! 2W is valuation function associating a set of possible worlds
V (p) ✓ W to each atomic formula p of ATM .

Given M = hW ,A ,V i and w 2 W , the couple hM,wi is a pointed AL model.
Given a formula ', we write M,w |= ' and say that ' is true at world w in M. The
notation M,w 6|= ' means that ' is false at world w in M. The truth conditions for
the formulas of the logic AL are:

• M,w 6|= ?;

• M,w |= p iff w 2 V (p);

• M,w |= ¬' iff M,w 6|= ';

• M,w |= ' _  iff M,w |= ' or M,w |=  ;

• M,w |= AC :x' iff M,w 0 |= ' for all w

0 2 AC :x (w).
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A formula ' is true in a AL model M if and only if M, w |= ' for every world w in
M. ' is AL valid (noted |=AL ') if and only if ' is true in all AL models. ' is AL
satisfiable if and only if ¬' is not AL valid.

3.4 Axiomatization

The axiomatization of AL is as follows:

All principles of propositional calculus(ProTau)
AC :x ('!  ) ! (AC :x'! AC :x )(K)
AC :x'! AB :yAC :x' if B ✓ C(PAccess)
¬AC :x'! AB :y¬AC :x' if B ✓ C(NAccess)
(¬AC :x? ^AC :x') ! AB :x' if B ✓ C(Inc)

AC :x (
^

i2C

Ai:x'! ')(Unanim)

¬AC :x? ! ¬AB :x? if B ✓ C(Mon)
From ` ' and ` '!  infer `  (MP)
From ` ' infer ` AC :x (Nec)

This axiomatization includes all tautologies of propositional calculus (ProTau) and
the rule of inference modus ponens (MP). Axiom K and rule of necessitation (Nec)
define a minimal normal modal logic. (See [Chellas, 1980, chap. 4].)

Axioms PAccess and NAccess express that a group of agents has always access to
what is accepted (resp. not accepted) by its supergroups.

Axiom PAccess concerns the (positive) access to what is accepted by a supergroup:
when the agents in a set C function together as members of the institution x , then for
all B ✓ C the agents in B have access to all facts that are accepted by the agents in
C . That is, if the agents in C accept that ' while functioning together as members of
the institution x then, while functioning together as members of x , the agents of every
subset B of C accept that the agents in C accept that '.

Axiom NAccess concerns the (negative) access to what is not accepted by a super-
group: if the agents in C do not accept that ' while functioning together as members
of the institution x then, while functioning together as members of x , the agents of
every subset B of C accept that the agents in C do not accept that '.

Example 1. Suppose that three agents i, j, k, while functioning together as members
of the UK trade union, accept that their mission is to increase teachers’ wages, but they
do not accept qua members of the trade union that their mission is to increase railway
workers’ wages:
A{i,j,k}:Union increaseTeacherWage and ¬A{i,j,k}:Union increaseRailwayWage.

By Axiom PAccess we infer that, while functioning as a UK citizen, i accepts that
i, j, k accept that their mission is to increase teachers’ wages, while functioning to-
gether as members of the trade union:

A
i:UK

A{i,j,k}:Union increaseTeacherWage.
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By Axiom NAccess we infer that, while functioning as a UK citizen, i accepts that
i, j, k do not accept, qua members of the trade union, that their mission is to increase
railway workers’ wages:

A
i:UK

¬A{i,j,k}:Union increaseRailwayWage.

Axiom Inc says that, if the agents in C accept that ' qua members of x then for
every subset B of C the agents in B accept ' while functioning together as members
of x . This means that the facts accepted by the agents in C qua members of a certain
institution x are necessarily accepted by the agents in all of C ’s subsets with respect
to the same institution. Therefore Axiom Inc describes the top down process leading
from C ’s collective acceptance to the individual acceptances of the agents in C .

Example 2. Imagine three agents i, j, k that, qua players of the game Clue, accept
that someone called Mrs. Red, has been killed:

¬A{i,j,k}:Clue? ^A{i,j,k}:CluekilledMrsRed .
By Axiom Inc we infer that also the two agents i, j, while functioning as Clue players,
accept that someone called Mrs. Red has been killed:

A{i,j}:CluekilledMrsRed .

Axiom Unanim expresses a unanimity principle according to which the agents in
C , while functioning together as members of x , accept that if each of them individually
accepts that ' while functioning as a member of x , then ' is the case. This axiom de-
scribes the bottom up process leading from the individual acceptances of the members
of C to the collective acceptance of the group C .

Finally, Axiom Mon expresses an intuitive property of monotonicity about institu-
tion membership. It says that, if the agents in C are functioning together as members
of the institution x then, for every subset B of C , the agents in B are also functioning
together as members of the institution x . As emphasized in Section 2, “the agents in
C function together as members of institution x” means for us that “the agents in C

identify and recognize each other as members of the same institution x”. Thus, Axiom
Mon can be rephrased as follows: if the agents in a set C identify and recognize each
other as members of the institution x then, for every subset B of C , the agents in B

also identify and recognize each other as members of x .
The following correspondences (in the sense of correspondence theory, see for in-

stance [van Benthem, 2001, Blackburn et al., 2001]) exist between the axioms of the
logic AL and the semantic constraints over AL frames given in Section 3.2 (see also
proof of Theorem 1 in the Annex): Axiom PAccess corresponds to the constraint S.1,
NAccess corresponds to S.2, Inc corresponds to S.3, Unanim corresponds to S.4 and
Mon corresponds to S.5.

We call AL the logic axiomatized by the principles given above: ProTau, K, PAc-

cess, NAccess, Inc, Unanim, Mon, MP, Nec. We write `AL ' if formula ' is a
theorem of AL and 0AL ' if formula ' is not a theorem.

We can prove thatAL is sound and complete with respect to the class ofAL frames.

Theorem 1. `AL ' if and only if |=AL '.

By the standard filtration method we can also prove that the logic AL is decidable.

Theorem 2. The logic AL is decidable.
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In the following section the properties of the concepts of individual acceptance,
collective acceptance and institution membership will be studied. We will also study
the relationships between acceptance and belief in a more formal way than in Section
2.

4 General properties

4.1 Properties of acceptance and institution membership

The following theorem highlights some interesting properties of collective acceptance
and institution membership.

Theorem 3. For every x, y 2 INST and B,C 2 2AGT? such that B ✓ C :

`AL AC :x¬AC :x?(3a)

`AL AC :x

^

i2C

¬Ai:x?(3b)

`AL AB :yAC :x'$ AC :x'(3c)
`AL AB :y¬AC :x'$ (AB :y? _ ¬AC :x')(3d)
`AL AC :x (AC :x'! ')(3e)

`AL (AC :x

^

i2C

Ai:x') $ AC :x'(3f)

Theorem 3a expresses a property of institution membership. It says that the agents
in a group C , while functioning together as members of the institution x, accept that
they are functioning together as members of the institution x. Theorem 3b is another
way to express the property of institution membership: it expresses that the agents in
a group, while functioning together as members of a certain institution, accept that
everyone of them is functioning as a member of the institution.

Example 3. Suppose that, during a concert, the agents in C are functioning together
as members of the Philharmonic Orchestra. Then, according to Theorem 3a, this fact
is accepted by the group C . That is, while functioning together as members of the
Philharmonic Orchestra, the agents in C accept that they are functioning together as
members of the Philharmonic Orchestra: A

C:Orchestra¬AC:Orchestra?. Moreover,
they accept that everyone of them is functioning as a member of the Philharmonic
Orchestra: A

C:Orchestra

V
i2C

¬A
i:Orchestra?.

Theorem 3c and Theorem 3d together express that a group of agents B can never
be wrong in ascribing a collective acceptance to its supergroup C and in recognizing
that its supergroup C does not accept something. Furthermore, a group of agents B

has always correct access to what is accepted (resp. not accepted) by its supergroups.
The right to left direction of Theorem 3c is Axiom PAccess. The left to right direction
means that, given two sets of agents B and C such that B ✓ C , if the agents in B , while
functioning together as members of institution y, accept that the agents in C accept '
while functioning together as members of institution x then, the agents in C accept '

11



while functioning together as members of institution x. The right to left direction of
Theorem 3d is Axiom NAccess. The left to right direction means that, given two sets
of agents B and C such that B ✓ C , if the agents in B , while functioning together as
members of institution y, accept that the agents in C do not accept ' qua members of
institution x then, either the agents in B do not function as members of y or the agents
in C do not accept ' qua members of institution x.

Theorem 3e and Theorem 3f are variants of the unanimity Axiom Unanim. Theo-
rem 3e says that for every set of agents C , the agents in C , while functioning together
as members of x , accept that if they accept that ' while functioning together as mem-
bers of x , then ' is the case. Theorem 3f expresses that: if the agents in C , while
functioning together as members of x , accept that each of them individually accepts
that ' while functioning as a member of x , then the agents in C , while functioning
together as members of x , accept that ' is the case.

The following theorem highlights the relationship between the acceptance of a
group of agents and the acceptances of its subgroups.

Theorem 4. For every x 2 INST and C1, C2, C3 2 2AGT such that C3 ✓ C2 ✓ C1

and C3 6= ;:

`AL AC1:x (A
C2:x'! A

C3:x')

Theorem 4 expresses that every group of agents has to accept the principle of in-
clusion formalized by Axiom Inc.

4.2 Discussion around the unanimity principle

Let us consider more in detail the unanimity property of our logic of acceptance ex-
pressed by Axiom Unanim (and Theorems 3e,3f). This property says that collective
acceptances emerge from consensus. This is for us a necessary requirement for a no-
tion of collective acceptance which is valid for all institutions and groups. We did not
include stronger principles which explain how a collective acceptance of a group of
agents C might be constructed. Nevertheless, one might go further and consider other
kinds of principles which are specific to certain institutions and groups.

For example, one might want to extend the analysis to formal (legal) institutions
in which special agents with the power to affect the acceptances of the other members
of the institution are introduced. In legal institutions, one can formalize the rule ac-
cording to which all facts that are accepted by the legislators of an institution must be
universally accepted by all members of this institution. Suppose that x denotes a legal
institution (e.g. EU, Association of Symbolic Logic, etc.) which has a non-empty set
of agents called legislators, noted Leg(x ) 2 2AGT?. (See Section 7 for a precise defi-
nition of the function Leg() and a more elaborate analysis of the concepts of legislator
and legal institution.) From this, one can formalize a principle stating that everything
that the legislators of the legal institution x accept is universally accepted in the legal
institution x :

AC :x (
^

i2Leg(x)

Ai:x'! ')(Legislators)
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The Principle Legislators says that, for every group of agents C , while functioning
together as members of the institution x , the agents in C accept that if the legislators
of x accept that ', then ' is the case.

Another interesting principle for the construction of collective acceptance is ma-
jority. (In this case, unanimity is not required to obtain a consensus.) This kind of
principle applies both to informal and formal institutions. The principle of majority
could be introduced as a logical axiom for two specific sets of agents C and B such
that B ✓ C and |C \B| < |B | (i.e. B represents the majority of agents in C):

AC :x (
^

i2B

Ai:x'! ')(Majority)

The Principle Majority says that, for every group of agents C , while functioning to-
gether as members of the institution x , the agents in C accept that if the majority of
them accept that ', then ' is the case. The following example by Pettit [Pettit, 2001]
shows how the majority principle would work.

Example 4. Imagine a three-member court which has to make a judgment on whether
a defendant is liable (noted l) for a breach of contract. The three judges i, j and k
accept a majority rule to decide on the issue. That is, i, j and k, while functioning
together as members of the court, accept that if the majority of them accepts that the
defendant is liable (resp. not liable), then the defendant is liable (resp. not liable).
Formally, for any B such that B ✓ {i , j , k} and |B | = 2 we have:

A{i,j ,k}:court

(
^

i2B

A
i:court

l ! l) ^A{i,j ,k}:court

(
^

i2B

A
i:court

¬l ! ¬l)

Therefore, if the three judges accept that two of them accept that the defendant is liable,
i.e. A{i,j ,k}:court

(A
i:court

l ^ A
j:court

l), by the Principle Majority and Axiom K it
follows that the three judges have to accept that the judge is liable, i.e. A{i,j ,k}:court

l).

It has to be noted that the previous principle of majority cannot be generalized to
all sets of agents without incurring the following very counterintuitive consequence.

Proposition 1. If we suppose that the Principle Majority is valid for any B,C such
that B ✓ C and |C \B| < |B | then, the following consequence is derivable, for i 6= j:

(AAGT :xA{i,j}:x' ^ ¬AAGT :x?) ! AAGT :x'

This means that, when the majority principle is generalized to all sets of agents,
we can infer that: if all agents, qua members of institution x, accept that two of them
accept ' while functioning together as members of institution x then, the acceptances
of the two agents propagate to all agents in such a way that all agents accept ' qua
members of institution x.

4.3 Relationships between acceptance and belief

As said in Section 2, there is a large literature about the distinction between belief
and acceptance. For us, belief and acceptance are clearly different concepts in several
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senses. In this section we focus on the distinction between acceptance, individual be-
lief and mutual belief. Our aim is to provide further clarifications of the concept of
acceptance in terms of its relationships with other kinds of agents’ attitudes rather than
proposing an extension of the logic AL with individual belief and mutual belief and
studying its mathematical properties. Here, we just show how modal operators for be-
lief and mutual belief can be integrated into the logic AL on the basis of some intuitive
interaction principles relating acceptance and belief.

For convenience, we note Bel

i

' the formula that reads “the agent i believes that
' is true”, and we suppose that belief operators of type Bel

i

are defined as usual in
a KD45 modal logic [Hintikka, 1962]. Belief operators Bel

i

are interpreted in terms
of accessibility relations B

i

on the set of possible worlds W . These accessibility re-
lations are supposed to be serial, transitive and euclidean. We write B

i

(w) for the set
{w 0 : hw ,w 0i 2 B

i

}. B
i

(w) is the set of worlds that are possible according to agent
i. The truth condition is:

M,w |= Bel

i

' iff M,w 0 |= ' for every w

0 2 B
i

(w)

Moreover we introduce the notion of mutual belief which has been extensively stud-
ied both in the computer science literature [Fagin et al., 1995] and in the philosophical
literature [Lewis, 1969]. Given a set of agents C ✓ AGT ,MB

C

' reads “there is a mu-
tual belief in C that '”, that is, “everyone in C believes that ', everyone in C believes
that everyone in C believes that ', everyone in C believes that everyone in C believes
that everyone in C believes that ', and so on”. The mutual belief of a set of agents
C is interpreted in terms of the transitive closure B+

C

of the union of the accessibility
relations B

i

for every agent i 2 C , that is:

M,w |= MB
C

' iff M,w 0 |= ' for every w

0 2 B+
C

(w)

Let the concept of “everybody in group C believes '” be defined as follows:

E
C

'
def=

^

i2C

Bel

i

'

As shown in [Fagin et al., 1995], the following axioms and rules of inference provide a
sound and complete axiomatization of the logic of individual belief and mutual belief:

All KD45-principles for the operators Bel

i

(KD45Bel)
`MB

C

'$ E
C

(' ^MB
C

')(FixPoint)
From ` '! E

C

(' ^  ) infer ` '!MB
C

 (InductionRule)

The first interesting thing to note is that, although collective acceptance and mutual
belief have different natures (see the discussion in Section 2), they share the Fix Point
property. The following Theorem 5 highlights this aspect.

Theorem 5.

`AL AC :x'$
^

i2C

Ai:x (' ^AC :x')
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Nevertheless we cannot argue that our concept of collective acceptance is stronger
than the concept of mutual belief, in particular because the InductionRule does not
hold in AL. This is due to the non-reductionist feature of the collective acceptance: it
cannot be reduced to a particular configuration of individual acceptances.

The following two sections are devoted to discuss other interesting relations be-
tween acceptance and belief. We will first provide an analysis of the shared aspect
of collective acceptance expressed in terms of mutual belief. Then, we will briefly
consider the problem of the incompatibility between acceptance and belief.

4.3.1 The shared nature of collective acceptance

As emphasized in the philosophical literature [Gilbert, 1989, Tuomela, 1992], a collec-
tive acceptance of the agents in a set C must not be confused with (nor reduced to) the
sum of the individual acceptance of the agents in C . On the contrary, when the agents
in C accept some fact ' to be true qua members of a certain institution, it means that
every agent in C declares to the other agents of the group C that she/he is willing to
accept ' to be true. This aspect of acceptance can be formally derived by supposing
the following two principles relating individual beliefs with collective acceptances.

AC :x'! Bel

i

AC :x' if i 2 C(PIntrAccept)
¬AC :x'! Bel

i

¬AC :x' if i 2 C(NegIntrAccept)

The first principle says that: if the agents in C accept that ' while functioning together
as members of the institution x then, every agent in C believes this. The second prin-
ciple says that: if the agents in C do not accept ' qua members of x then every agent
in C believes this.

We can easily prove that, under the previous two principles, collective acceptance
is always shared so much that the group C accepts ' if and only if the agents in C

mutually believe this. More formally:

Proposition 2. For any C :x 2 �, the following formulas are derivable from the
axiom D for belief (following from KD45Bel), Axiom FixPoint and Rule of infer-
ence InductionRule for mutual belief, and the interaction Principles PIntrAccept and
NegIntrAccept for acceptance and belief.

AC :x'$MB
C

AC :x'(2a)
¬AC :x'$MB

C

¬AC :x'(2b)

According to Proposition 2a, the agents in C accept that ' while functioning to-
gether as members of the institution x if and only if there is a mutual belief in C that
they accept that ' while functioning together as members of the institution x. Accord-
ing to Proposition 2b, the agents in C do not accept that ' qua members of x if and
only if there is a mutual belief in C that they do not accept that ' qua members of x .
Hence, accepting (resp. not accepting) a proposition while functioning as members of
an institution is always a mutually believed fact (for the members of the group) which
is out in the open and that is used by all the members to reason about each other in the
institutional context.
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4.3.2 Acceptance and belief might be incompatible

Individual belief and individual acceptance are both private mental attitudes but: an in-
dividual belief does not depend on context, whilst an individual acceptance is a context-
dependent attitude which is entertained by an agent qua member of a given institution.
Therefore, an agent can privately disbelieve something she/he accepts while function-
ing as a member of a given institution. Formally: Bel

i

' ^ Ai:x¬' may be true. In
a similar way, as emphasized in [Tuomela, 1992], a collective acceptance that ' by a
group of agents C (qua members of a given institution) might be compatible with the
fact that none of the agents in C believes that ' (and even that every agent in C believes
that ¬'). The following example, inspired by [Tuomela, 1992, p. 285], illustrates this
point.

Example 5. At the end of the 80s, the Communist Party of Ruritania accepted that
capitalist countries will soon perish (but none of its members really believed so).

This means that the agents in C accept that capitalist countries will perish (ccwp)
qua members of the Communist Party of Ruritania (CPR) but nobody in C (privately)
believes this. Thus, formally: ¬A

C:CPR? ^AC:CPRccwp ^
V

i2C

¬Bel

i

ccwp.
In the following Section 5 we will show how institutional facts can be grounded

on agents’ acceptances in such a way that the existence of the former depends on the
latter.

5 Truth in an institutional context

Recent theories of institutions [Lagerspetz, 2006, Searle, 1995, Tuomela, 2002] share
at least the following two theses.

Performativity: the acceptance that a certain fact is true shared by the members of a
certain institution may contribute to the truth of this fact within the context of
the institution.

Reflexivity: if a certain fact is true within the context of a certain institution, the ac-
ceptance of this fact by the members of the institution is present.

More precisely, a certain fact ' is true within the context of an institution x if and only
if the fact ' is accepted to be true by the members of the institution x. Therefore,
a necessary condition for the existence of a fact within the context of an institution
is that this fact is accepted to exist by the members of the institution. Moreover, the
acceptance of a certain fact by the members of an institution is a sufficient condition
for the existence of this fact within the context of the institution.

Example 6. If the agents, qua European citizens, accept a certain piece of paper with
a certain shape, color, etc. as money, then, within the context of EU, this piece of paper
is money (performativity). At the same time, if it is true that a certain piece of paper is
money within the context of EU, then the agents qua European citizens accept the piece
of paper as money (reflexivity).
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Our aim here is to represent in AL those facts that are true within the context of an
institution, that is, to define the concept of truth with respect to an institutional context
(institutional truth) in a way that respects the previous two principles of reflexivity and
performativity. We formalize the notion of institutional truth by means of the operator
[x]. A formula [x]' is read “within the institutional context x, it is the case that '”. We
take the latter to be synonymous of “for every set of agents C , the agents in C accept
that ' while functioning together as members of the institution x”. Formally, for every
x 2 INST :

[x]' def=
^

C22AGT?

AC :x'

According to our definition, a fact ' is true within the context of institution x if and
only if, for every group C , the agents in C accept ', while functioning together as
members of x . Hence the performativity and the reflexivity principles mentioned above
are guaranteed.

It is worth noting that this formal definition of truth with respect to an institution is
perfectly adequate to characterize informal institutions in which there are no special-
ized agents called legislators empowered to change the institution itself on behalf of
everybody else. It is a peculiar property of informal institutions the fact that they are
based on the general consensus of all their members [Coleman, 1990], that is, a certain
fact ' is true within the context of an informal institution x if and only if all members
of x accept ' to be true. In Section 7 we will show how the operator [x] can be appro-
priately redefined in order to characterize formal (legal) institution and to distinguish
them from informal institutions. For the moment, we just suppose that our model only
applies to the basic informal institutions of a society in which no legislator is given.

It is straightforward to prove that [x] is a normal modal operator satisfying Axiom
K and the necessitation rule.

Theorem 6. For every x 2 INST :

`AL [x] ('!  ) ! ([x]'! [x] )(6a)
From `AL ' infer `AL [x]'(6b)

Nevertheless, institutional operators of type [x] fail to satisfy Axiom 4 and Axiom
5. That is, [x]' ^ ¬ [x] [x]' and ¬ [x]' ^ ¬ [x]¬ [x]' are satisfiable in the logic AL
for any x 2 INST . This means that for every institution x, the members of x might
accept ' while they do not accept that they accept ' and, it might be the case that the
members of x do not accept ', while they do not accept that they do not accept '. The
operator [x] does to satisfy these two properties because of the restriction imposed on
Axioms PAccess and NAccess according to which, the agents in a group B have access
to all facts accepted (resp. not accepted) by the agents in another group C , only if B is
a subgroup of C . Therefore, in the logic AL, a certain fact ' might be accepted by all
groups of members of a certain institution x, while some group of members of x does
not have access to the fact that all groups of members of x accept '. (See Section 8.1
for a discussion about a different point of view.)
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The following operator [Univ ] is defined in order to express facts which are true in
all institutions:

[Univ ]' def=
^

x2INST

[x]'

where [Univ ]' is meant to stand for “' is universally accepted as true”. The operator
[Univ ] is also a normal modal operator satisfying Axiom K and the necessitation rule:

Theorem 7.

`AL [Univ ] ('!  ) ! ([Univ ]'! [Univ ] )(7a)
From `AL ' infer `AL [Univ ]'(7b)

The operator [Univ ] too fails to satisfy Axiom 4 and Axiom 5. Indeed, [Univ ]' ^
¬ [Univ ] [Univ ]' and ¬ [Univ ]' ^ ¬ [Univ ]¬ [Univ ]' are satisfiable in the logic
AL. This means that: ' might be universally accepted, while it is not universally
accepted that ' is universally accepted and; it might be the case that ' is not universally
accepted, while it is not universally accepted that ' is not universally accepted.

In the following section operators of institutional truth of type [x] and the operator
of universal truth [Univ ] will be used to define the concepts of constitutive rule and
regulative rule. These two concepts are indeed fundamental for a theory of institutions.

6 Constitutive rules and regulative rules

According to many philosophers [Rawls, 1955, Alchourrón and Bulygin, 1971] work-
ing on social theory and researchers in the field of normative multi-agent systems
[Boella and van der Torre, 2004], institutions are based both on regulative and non-
regulative components. In particular, institutions are not only defined in terms of sets
of permissions, obligations, and prohibitions (i.e. norms of conduct [Bulygin, 1992])
but also in terms of rules which specify and create new forms of behavior and con-
cepts. Several terms such as constitutive rule [Searle, 1969, Searle, 1995], concep-
tual rule [Bulygin, 1992] or determinative rule [Von Wright, 1963] have been used
to identify this non-regulative dimension of institutions. According to Searle for in-
stance “(...) regulative rules regulate antecedently or independently existing forms
of behavior (...). But constitutive rules do not merely regulate, they create or de-
fine new forms of behavior” [Searle, 1969, p. 33]. In Searle’s theory of institutions
[Searle, 1969, Searle, 1995], constitutive (i.e. non-regulative) rules are expressed by
means of “counts-as” statements of the form “X counts as Y in context x” where the
context x refers to the institution/normative system in which the rule is specified. As
emphasized in [Grossi et al., 2006], “counts-as” statements are used to express classi-
fications and subsumption relations between different concepts, that is, they assert just
that a concept X is a subconcept of a concept Y. These classifications are fundamen-
tal for establishing the relations between “brute” physical facts and objects on the one
hand, and institutional facts and objects on the other hand (e.g. money, private property,
etc.). For example, in the institutional context of Europe, a piece of paper with a certain
shape, color, etc. (a physical object) counts as a five-euro bill (an institutional object).
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6.1 Constitutive rules

From the concept of institutional truth presented above, a notion of constitutive rule
of the form “' counts as  in the institutional context x” can be defined in the logic
AL. We conceive a constitutive rule as a material implication of the form ' !  in
the scope of an operator [x]. Thus, “' counts as  in the institutional context x” only
if every group of members of institution x accepts that ' entails  . Furthermore, we
suppose that a constitutive rule is intrinsically contextual, which means that the rule is
not universally valid while it is accepted by the members of a certain institution. More
precisely, we exclude situations in which [Univ ] (' !  ) is true (i.e. situations in
which it is universally accepted that ' entails  ).

In this perspective, “counts-as” statements with respect to a certain institutional
context x do not just express that the members of institution x classify ' as  in virtue
of their acceptances, but also that this classification is proper to the institution, i.e. it is
not universally accepted that ' entails  . (See [Grossi et al., 2006] for a similar per-
spective.) In this sense, the notion of “counts-as” presented here is aimed at capturing
the proper meaning of the term “constitutive rule”, that is, a rule which constitutes
something new within the context of an institution.

Thus, for every x 2 INST the following abbreviation is given:

'
xB  

def= [x] ('!  ) ^ ¬ [Univ ] ('!  )

where '
xB  stands for “' counts as  in the institutional context x”.

Example 7. Let consider the institutional context of gestural language. There exists a
constitutive rule in this language according to which, the nodding gesture counts as an

endorsement of what the speaker is suggesting, i.e. nodding

gesture
B yes . This means

that every group of speakers using gestural language accepts that making the nodding
gesture entails endorsing what the speaker is suggesting, i.e. [gesture] (nodding !
yes), and there are members of other institutions (e.g. different cultural contexts in
which the same gesture does not express the same fact) who do not accept this, i.e.
¬ [Univ ] (nodding ! yes).

Note that a stronger version of the concept of constitutive rule could be given by
supposing that “' counts as  in the institutional context x” if and only if ' en-
tails  within the institutional context x, i.e. [x] (' !  ), and for every institution
y, if y 6= x then it is not the case that ' entails  within the institutional con-
text y, i.e.

V
y2INST ,y 6=x

¬ [y] (' !  ). The latter condition implies the condition

¬ [Univ ] ('!  ) in the definition of the “counts-as” conditional'
xB  . This stronger

version of the concept of constitutive rule is not analyzed in the present paper.
The following two theorems highlight some valid and invalid properties of “counts-

as” operators of the form
xB. Similar properties of “counts-as” have been isolated in

[Jones and Sergot, 1996] and [Grossi et al., 2006].
The invalidities 8a-8e show that operators

xB do not satisfy reflexivity (invalidity
8a), transitivity (invalidity 8b), strengthening of the antecedent (invalidity 8c), weak-
ening of the consequent (invalidity 8d) and cautious monotonicity (invalidity 8e).
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On the contrary, operators
xB satisfy the properties of right logical equivalence (The-

orem 9a), left logical equivalence (Theorem 9b), conjunction of the consequents (Theo-
rem 9c), disjunction of the antecedents (Theorem 9d), cumulative transitivity (Theorem
9e).

Theorem 8.

0AL '
xB '(8a)

0AL (('1
xB '2) ^ ('2

xB '3)) ! ('1
xB '3)(8b)

0AL ('1
xB '2) ! (('1 ^ '3)

xB '2)(8c)

0AL ('1
xB '2) ! ('1

xB ('2 _ '3))(8d)

0AL (('1
xB '2) ^ ('1

xB '3)) ! (('1 ^ '2)
xB '3)(8e)

Theorem 9. For every x 2 INST :

From `AL ('2 $ '3) infer `AL ('1
xB '2) $ ('1

xB '3)(9a)

From `AL ('1 $ '3) infer `AL ('1
xB '2) $ ('3

xB '2)(9b)

`AL (('1
xB '2) ^ ('1

xB '3)) ! ('1
xB ('2 ^ '3))(9c)

`AL (('1
xB '2) ^ ('3

xB '2)) ! (('1 _ '3)
xB '2)(9d)

`AL (('1
xB '2) ^ (('1 ^ '2)

xB '3)) ! ('1
xB '3)(9e)

The invalidities 8a-8e are due to the local nature of the “counts-as” conditional
'

xB  . For instance, the fact that '1
xB '2 and '2

xB '3 are constitutive rules of the
institution x does not necessarily entail that '1

xB '3 is a constitutive rule of x since
it does not necessarily entail ¬ [Univ ] ('1 ! '3). This is the reason why

xB fails to
satisfy transitivity.

Example 8. In the US state of Texas, “to commit a murder counts as to be punishable
by the Death Penalty”, and “to be punishable by the Death Penalty counts as to be li-
able to indictment”. As the Death Penalty is not universally accepted in all institutions,

both these rules are constitutive rules of Texas, i.e. murder

TexasB DeathPenalty and

DeathPenalty

TexasB indictable . From this, it does not follow that it is a constitutive
rule of Texas that “to commit a murder counts as to be liable to indictment”. Indeed,

¬(murder

TexasB indictable) is true. This is due to the fact that “to commit a mur-
der counts as to be liable to indictment” in all countries and institutions, and it is not
constitutive of Texas, i.e. [Univ ] (murder ! indictable).

Similarly,
xB fails to satisfy reflexivity. Indeed, all agents in all possible institutions

accept the tautology ' ! ' so that “' counts as '” cannot be intrinsically contextual
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with respect to a certain institution. For similar reasons, strengthening of the antecedent
is not a valid property of the operator

xB.3 The following example clarifies this aspect.

Example 9. It is an accepted custom in the US that a person must leave a tip to the
waiter that served him/her at a restaurant. That is, it is a constitutive rule of US that

“not leaving a tip to the waiter counts as a violation”, i.e. ¬leaveTip

USB viol . From
this, it does not follow that it is a constitutive rule of US that “not leaving a tip to
the waiter and not paying the bill counts as a violation”. Indeed, ¬((¬leaveTip ^
¬payBill)

USB viol) is true. This is because “not leaving a tip and not paying the bill
counts as a violation” in all countries and institutions, and it is not constitutive of US,
i.e. [Univ ] ((¬leaveTip ^ ¬payBill) ! viol).

Discussion

The formal analysis of “counts-as” presented in this section is in agreement with the
formal analysis of “counts-as” proposed in [Grossi et al., 2006], where a notion of
proper classificatory rule is introduced. A proper classificatory rule is represented
by the construction ' )cl+

x

 which is meant to stand for “' counts as  in the nor-
mative system x”. Proper classificatory rules are distinguished by Grossi et al. from
(non-proper) classificatory rules of type ' )cl

x

 . In a way similar to our concept
of constitutive rule, proper classificatory rules have the specific property of not being
universally valid (i.e. valid in all institutional contexts). That is, differently from non-
proper classificatory rules, proper classificatory rules are rules which would not hold
without the normative system/institution stating them.4

Non-proper classificatory rules could be expressed in our logical framework by
constructions of the form [x] (' !  ), that is, by removing the condition ¬ [Univ ]
(' !  ) from the definition of '

xB  . In agreement with Grossi et al., we would
be able to prove that, differently from constitutive rules of the form '

xB  , such a
kind of rules satisfy reflexivity, transitivity, strengthening of the antecedent, weakening
of the consequent, and cautious monotonicity. Indeed, the following formulas are all
theorems of our logic AL:

Theorem 10.

`AL [x] ('! ')(10a)
`AL ([x] ('1 ! '2) ^ [x] ('2 ! '3)) ! [x] ('1 ! '3)(10b)
`AL [x] ('1 ! '2) ! [x] (('1 ^ '3) ! '2)(10c)
`AL [x] ('1 ! '2) ! [x] ('1 ! ('2 _ '3))(10d)
`AL ([x] ('1 ! '2) ^ [x] ('1 ! '3)) ! [x] (('1 ^ '2) ! '3)(10e)

In Section 8.1 a more elaborate and detailed analysis of the logic presented in
[Grossi et al., 2006] will be provided and its formal relationships with our logic of
acceptance will be studied.

3Other authors have defended the idea that strengthening of the antecedent and transitivity should not be
valid properties of “counts-as” conditionals (e.g. [Gelati et al., 2004]).

4See [Grossi et al., 2008] for a refinement of this typology of rules.
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Another important aspect to be discussed about our formalization of “counts-as”
is the problem of contraposition. Indeed, at the present stage, '

xB  is logically
equivalent to ¬ 

xB ¬' which can be counterintuitive in some situations. However, the
problem of contraposition could be solved by distinguishing in the language of the logic
AL formulas denoting “brute” physical facts from formulas denoting institutional facts
and by imposing that the consequent  of a “counts-as” conditional '

xB  is always
a formula denoting an institutional fact. Under this assumption, if the negation of the
antecedent in the “counts-as” conditional is not an institutional fact (i.e. formula ¬'
does not denote an institutional fact), contraposition is not allowed. That is, '

xB  

does not imply ¬ 
xB ¬'.5 It is worth noting that, this distinction between formulas

denoting “brute” physical facts and formulas denoting institutional facts would enable
us to account for an aspect of “counts-as” that our current formalization is not able to
capture, namely: the function of “counts-as” statements of establishing the relations
between physical facts and objects on the one hand (the antecedent of the “counts-as”),
and institutional facts and objects on the other hand (the consequent of the “counts-as”),
e.g. a certain piece of paper counts as a five-euro bill.

6.2 Regulative rules

Constitutive rules as defined in the previous Section 6.1 are still not sufficient for a
characterization of institutional reality. An institution is indeed connected to a deon-
tic dimension that up to now is still missing in our analysis. This deontic dimension
consists in several concepts such as obligation, permission, prohibition, etc. which are
aimed at regulating agents’ behaviors and social interactions within the context of the
institution.

In order to capture this deontic dimension of institutions, our logic AL can be
appropriately extended by introducing a violation atom viol as in Anderson’s reduc-
tion of deontic logic to alethic logic [Anderson, 1958] and in dynamic deontic logic
[Meyer, 1988]. A similar approach has been recently taken in [Grossi, 2008]. By
means of the new formal construct viol we can specify the concepts of obligation and
that of permission in a way that respects their being also a kind of attitude-dependent
facts holding in a specific institutional context.

As far as obligations are concerned, we introduce operators of the form O
x

which
are used to specify what is obligatory in the context of a certain institution x:

O
x

'
def= ¬'

xB viol

According to this definition, “' is obligatory within the institutional context x” if and
only if “¬' counts as a violation within the institutional context x”.

Example 10. The formula (driveCar ^ RightSide)
UKB viol which is equivalent to

OUK (driveCar ! ¬RightSide) expresses that in the UK it is obligatory to drive on
5See also [Grossi, 2008] for a different solution on how to solve the problem of contraposition in a normal

modal logic of “counts-as”.
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the left side of the street (i.e. “driving a car on the right side of the street counts as
violation in UK”).

As the following theorem highlights, our O
x

operators satisfy axiom K (Theorem
11a) and do not allow obligations about tautologies (Theorem 11b).

Theorem 11. For every x 2 INST :

`AL O
x

('!  ) ! (O
x

'! O
x

 )(11a)
`AL ¬O

x

>(11b)

On the contrary, obligation operators do not satisfy the necessitation rule. This is
due to the negative condition ¬ [Univ ] (¬' ! viol) in the definition of O

x

'. Indeed,
in order to have a normal modal operator for obligation, it is sufficient to remove the
negative condition ¬ [Univ ] (' !  ) from the definition of the “counts-as” condi-
tional '

xB  given in Section 6.1. The following theorem highlights other interesting
invalidities of the obligation operators O

x

.

Theorem 12.

0AL ¬O
x

?(12a)
0AL O

x

'! O
x

(' _  )(12b)
0AL O

x

(' ^  ) ! O
x

'(12c)

According to the invalidity 12a, obligation operators do not satisfy the axiom D of
Standard Deontic Logic (SDL) [Åqvist, 2002]. For instance, in the logic AL institu-
tions might be empty, that is, for every C 2 2AGT?, AC :x?. If institution x is empty,
it does not have any obligation (i.e. O

x

?). According to the other two invalidities we
have that: if ' is obligatory within the context of institution x then, it is not necessarily
the case that ' or  is obligatory within the context of the same institution (invalidity
12b) and if ' and  are obligatory within the context of institution x then, it is not
necessarily the case that ' is obligatory within the context of the same institution (in-
validity 12c). Thus, our obligation operators O

x

do not incur two classical problems of
Standard Deontic Logic which are commonly referred to as “Ross paradox” and “Good
Samaritan paradox” [Carmo and Jones, 2002]. On the one hand, it seems rather odd to
say that the obligation to mail a certain letter entails an obligation to mail the letter or
to burn it which can be fulfilled simply by burning the letter (something presumably
forbidden) (“Ross paradox”). On the other hand, it seems rather odd to say that if it
is obligatory that Mary helps John who has had an accident, then it is obligatory that
John has an accident (“Good Samaritan paradox”). Here we do not consider other
well-known paradoxes of deontic logic (such as Chisholm paradox for instance) which
require an elaborate and detailed analysis of contrary-to-duty obligations and defeasi-
ble conditional obligations (on this see [Prakken and Sergot, 1997, Hansen et al., 2007]
for instance). Indeed, this issue goes beyond the objectives of the present work.

As far as permissions are concerned we say that “' is permitted within the institu-
tional context x” (noted P

x

') if and only if ¬' is not obligatory within the institutional
context x. Formally:

P
x

'
def= ¬O

x

¬'
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That is, we define the permission operator in the standard way as the dual of the obli-
gation operator.6

Before concluding this section, it is important to stress again that in our approach
regulative rules of type O

x

' and P
x

' as well as constitutive rules of type '
xB  of a

certain institution are attitude-dependent facts which are grounded on the acceptances
of the members of a certain institution.

7 Towards legal institutions

In Section 5 we have supposed that ' is true within the context of institution x if and
only if all members of this institution accept ' to be true. At this point, it might be
objected that there are facts which are true in an institutional context but only “special”
members of the institution are aware of them. For instance, there are laws in every
country that are known only by the specialists of the domain (lawyers, judges, members
of the Parliament, etc.). Aren’t these facts true notwithstanding that many members of
the institution are not aware of them?

In order to resist to this objection recall that until now our model applied to
the basic informal institutions of a society, that is, rule-governed social practices
[Tuomela, 2002] in which no member with “special” powers is introduced.

It is a peculiar property of informal institutions to be based on general consen-
sus [Coleman, 1990], that is, a certain fact ' is true within the context of an informal
institution x if and only if all members of x accept ' to be true. Relative to this restric-
tion, the assumption made in Section 5 is justified because, with respect to informal
institutions, there are no specialized agents called legislators empowered to change the
institution itself on behalf of everybody else. For instance, in the informal institution
of common language, nobody has the power to change the rules for promising. (See
[Searle, 1969] for more details.) On the contrary, it is a specificity of legal (formal)
institutions to have such specialized agents with special powers to interpret and mod-
ify the institution itself. This distinction between informal and formal (legal) institu-
tions has been stressed by many authors working in the field of social and legal theory
[Castelfranchi, 2003, North, 1990, Lorini and Longin, 2008, Von Wright, 1963]. Con-
sider for instance the following quotation from Von Wright where the terms prescrip-
tion and custom respectively correspond to the terms formal institution and informal
institution used here: “(...) Prescriptions are given or issued by someone. They ‘flow’
from or have their ‘source’ in the will of norm-giver (...) Customs, first of all, are not
given by any authority to subjects. If we can speak of an authority behind the customs
at all this authority would be the community itself” [Von Wright, 1963, p. 7–9].

In the rest of this section we will show how the logic AL can be appropriately
refined in order to move beyond informal institutions and to capture some essential

6We do not consider here the classical distinction between weak permission and strong permission
[Alchourrón and Bulygin, 1971, Raz, 1975, Von Wright, 1963]. According to legal theory, a weak permis-
sion corresponds to the absence in a normative system of a norm prohibiting ' (this is represented by our
permission operator P

x

). A strong permission corresponds to the existence in the normative system of an
explicit norm, issued by the legislators, according to which ' is permitted. For a logical analysis of the
distinction between weak and strong permission see our related work [Lorini and Longin, 2008].
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properties of formal (legal) institutions in which legislators are introduced. We will
discuss some general principles which seem adequate for a formal characterization
of legal institutions. For the sake of simplicity and readability of the article, these
principles will not be included in the axiomatization of the logicAL and their semantic
counterparts will not be studied.

In order to distinguish formal from informal institutions, we introduce a total func-
tion Leg which assigns a (possibly empty) set of agents to every institution x:

Leg : INST �! 2AGT

Leg(x) denotes the set of legislators of institution x, that is, the set of agents legally
responsible over institution x and which are entitled to modify its structure. The func-
tion Leg allows distinguishing formal from informal institutions in a simple way. It is
indeed reasonable to suppose that informal institutions are those institutions that do not
have legislators, that is, x is an informal institution if and only if Leg(x) = ;. On the
contrary, if Leg(x) 6= ;, x is a legal or formal institution. In this sense, the cardinality
of Leg(x) provides an important property: it allows us to distinguish between legal
institutions and informal institutions.

It seems reasonable to suppose that the legislators of a certain legal institution x
must function together as members of institution x. This assumption is expressed by
the following principle. For any x 2 INST such that Leg(x) 6= ;:

¬ALeg(x):x?

As emphasized in Section 5, legislators are “special” agents who have the power to
affect the acceptances of the other members of the institution. In legal institutions, all
facts that are accepted by the legislators must be universally accepted by all members
of the institution. In this perspective, legal institutions are characterized by the follow-
ing principle which explains how the collective acceptance of a set C of members of
institution x is affected by the acceptance of the legislators of the institution. For every
C 2 2AGT? and x 2 INST such that Leg(x) 6= ;:

AC :x (
^

i2Leg(x)

Ai:x'! ')(Legislators)

According to Legislators, for every group of agents C , while functioning together as
members of the institution x , the agents in C accept that if the legislators of x accept
that ', then ' is the case. As emphasized in Section 4.1, the Principle Legislators can
be conceived as an additional specification of how collective acceptances of groups of
agents are built within the context of an institution. It is worth noting that Legislators is
perfectly compatible with the general principle of unanimity of the logic AL described
by Axiom Unanim (and the related Theorems 3e, 3f). Indeed, we can reasonably
suppose that the members of an institution might accept certain things on the basis of
a criterion of unanimity and, at the same time, accept what the legislators accept and
decide.7

7Note that a further principle which seems reasonable for legal institutions is a majority principle for
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We conclude by showing how the concept of institutional truth proposed in Sec-
tion 5 can be appropriately refined in order to deal with legal institutions. Differently
from informal institutions, legal institutions do not necessarily depend on the general
consensus of all their members. More precisely, if a certain fact ' is true within the
context of the legal institution x then, it is not necessarily the case that for every set
of agents C , the agents in C accept ' while functioning together as members of the
legal institution x. In a legal institution it is sufficient that the legislators accept ' to
be true to make it true for the institution. This means that the notion of institutional
truth for legal institutions should be defined as follows. For any x 2 INST such that
Leg(x) 6= ;:

[x]L ' def= ALeg(x):x'

This means that “within the context of the legal institution x it is the case that '” if and
only if “the legislators of institution x accept that '”.

From the principles of AL and the definition of the function Leg(), it follows that
the operators [x]L are also normal. Moreover, differently from the [x] operators, which
adequately characterize the notion of institutional truth for informal institutions, [x]L

operators satisfy axioms 4 and 5 of modal logic, that is: if the legislators of institution
x accept ' then, they accept that they accept ' (Theorem 13c); if the legislators of
an institution x do not accept ', then they accept that they do not accept ' (Theorem
13d).8

Theorem 13. For every x 2 INST :

`AL [x]L ('!  ) ! ([x]L '! [x]L  )(13a)

From `AL ' infer `AL [x]L '(13b)

`AL [x]L '! [x]L [x]L '(13c)

`AL ¬ [x]L '! [x]L ¬ [x]L '(13d)

It is worth noting that the analysis of constitutive rules and regulative rules proposed
in Sections 6.1 and 6.2 could be refined in the light of this distinction between informal
and legal institutions. In particular, a new form of “counts-as” and two related concepts
of obligation and permission could be defined in terms of the previous operator [x]L.
This is in order to characterize a notion of constitutive rule and a notion of regulative
rule which apply straightforwardly to the context of legal institutions, and which go
beyond the notions of constitutive rule and regulative rule for informal institutions
given in Sections 6.1 and 6.2 and based on the operator [x]. We postpone this kind of
analysis to future works.

legislators: the legislators of a certain legal institution x accept that if the majority of them accept ', then
' is true. This should be conceived as a particular case of the majority principle discussed in Section 4.1.
Formally, for any x 2 INST such that Leg(x) 6= ;, if B ✓ Leg(x) and |Leg(x) \ B | < |B | (i.e. B

represents the majority of the legislators of the institution x ) then: ALeg(x):x (
V

i2B Ai:x' ! ').
8Note that the operator [x] is stronger than the operator [x]L, that is, [x] ' implies [x]L '.
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8 Comparison with other logical approaches to norma-

tive systems

In the following two sections our logic AL will be compared with two approaches to
normative systems and institutions which have been recently proposed in the multi-
agent system domain.

8.1 Embedding Grossi et al.’s logic of “counts-as” into AL
Because of the interesting formal similarities, we will first compareALwith the modal
logic of normative systems proposed in [Grossi et al., 2006], henceforth abbreviated
GMD logic.

In the GMD logic a set of contexts CXT denoting normative systems is intro-
duced. GMD logic is based on a set of modal operators [[x]] (one for every context
x in CXT ). Operators [[x]] are similar to our operators [x] defined in Section 5.9 A
formula [[x]]' approximately stands for “in the institutional context/normative system
x it is the case that '”. It is supposed that CXT contains a special context Univ ,
where the operator [[Univ ]] is used for denoting facts which universally hold. We note
CXT 0 = CXT \ {Univ}. The language of the GMD logic is given by the following
BNF:

' ::= ? | p | ¬' | ' _ ' | [[x]]'

where p ranges over ATM and x ranges over CXT . ^, !, $ and > are defined from
_, ¬ and ? in the usual manner.

As noted in Section 6.1, operators [[x]] and [[Univ ]] are exploited in Grossi et al.’s
logic to define contextual conditionals called proper classificatory rules, noted ')cl+

x

 , which are an abbreviation of [[x]] ('!  ) ^ ¬ [[Univ ]] ('!  ) and which read “'
counts as  in the normative system x”. The construction ' )cl+

x

 is similar to our
'

xB  .
The most striking difference between our logic of acceptance AL and the GMD

logic is that in the logic AL the contextual operators [x] are built on the notion of
collective acceptance, whereas in the GMD logic the contextual operators [[x]] are
given as primitive operators.

Frames of the GMD logic are called multi-context frames. A multi-context frame
has the following form:

FGMD = hS , {S
x

}
x2CXT0

i
where:

• S is a set of possible worlds;

• {S
x

}
x2CXT0

is a family of subsets of S , one for every institutional context x 2
CXT 0.

A multi-context model is a tuple
MGMD = hFGMD,⇡i

where:
9Here we use the notation [[x]] in order to distinguish their operators from ours.

27



• FGMD is a multi-context frame;

• ⇡ : ATM ! 2S is a valuation function associating a set of possible worlds
⇡(p) ✓ S to each atomic formula p of ATM .

The truth conditions for formulas of the GMD logic are just standard for con-
tradiction, atomic propositions, negation and disjunction. The following are the truth
conditions for [[x ]]' and [[Univ ]]'.

• MGMD,w |= [[x ]]' iff M,w 0 |= ' for all w

0 2 S

x

;

• MGMD,w |= [[Univ ]]' iff M,w 0 |= ' for all w

0 2 S .

A formula ' is true in a GMD model MGMD iff MGMD, w |= ' for every world w
in MGMD. ' is GMD valid (noted |=GMD ') if and only if ' is true in all GMD
models. ' is GMD satisfiable iff ¬' is not GMD valid.

The GMD logic is axiomatized by the following principles, where x and y denote
elements of the set CXT 0 :

All principles of propositional calculus(ProTau)
[[x]] ('!  ) ! ([[x]]'! [[x]] )(K[[x]])
[[Univ ]] ('!  ) ! ([[Univ ]]'! [[Univ ]] )(K[[Univ ]])
[[x]]'! [[y]] [[x]]'(4[[x]],[[y]])
¬ [[x]]'! [[y]]¬ [[x]]'(5[[x]],[[y]])
[[Univ ]]'! [[Univ ]] [[Univ ]]'(4[[Univ ]])
¬ [[Univ ]]'! [[Univ ]]¬ [[Univ ]]'(5[[Univ ]])
[[Univ ]]'! '(T[[Univ ]])
[[Univ ]]'! [[x]]'(✓[[Univ ]],[[x]])
From ` ' and ` '!  infer `  (MP)
From ` ' infer ` [[x]] (Nec[[x]])
From ` ' infer ` [[Univ ]] (Nec[[Univ ]])

We write `GMD ' if formula ' is a theorem of GMD.
Axiom K[[x]] and Rule Nec[[x]] express that the operators [[x]] are normal modal oper-

ators. Axioms K[[Univ ]], 4[[Univ ]], 5[[Univ ]], T[[Univ ]] and the rule of inference Nec[[Univ ]]

express that the universal modality [[Univ ]] is defined in the modal logic system S5.
According to the Axioms 4[[x]],[[y]] and 5[[x]],[[y]], truth and falsehood in institutional con-
texts/normative systems are absolute because they remain invariant even if they are
evaluated from another institutional context/normative system. This means that every
normative system y has full access to all facts which are true in a different normative
system x. In our view, these two principles are criticizable because they rely on a
strong assumption of perfect information, i.e. a normative system has perfect informa-
tion about the facts that are true in the other normative systems. Axiom ✓[[Univ ]],[[x]]

expresses the relationship between the universal modality and the contextual modali-
ties.
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In [Grossi et al., 2006] it is proved that the GMD logic is sound and complete with
respect to the class of GMD frames.

It is easy to show that the principles of the acceptance logic AL given in Section
3 are not sufficient to derive the principles of the GMD logic. In particular, Axioms
4[[x]],[[y]], 5[[x]],[[y]], 4[[Univ ]], 5[[Univ ]] and T[[Univ ]] are not derivable in AL.

In order to embed GMD we need to slightly modify the properties of the logicAL.
On the one hand, we need to generalize Axioms PAccess and NAccess by supposing
that they also hold for the case B 6✓ C. This is in order to infer the formulas [x]' !
[y] [x]' and ¬ [x]' ! [y]¬ [x]' in the augmented logic AL. Thus, we need to
assume that, given two arbitrary sets of agents B and C , the agents in B have access
to all facts that the agents in C accept (do not accept), while functioning together as
members of a certain institution x. On the other hand, we need to add the principle
[Univ ]' ! ' to the logic AL. The way to embed the GMD logic into our logic AL
is illustrated in the following paragraph.

An embedding of GMD logic. Let us slightly modify the logic of acceptance AL
in order to provide a correct embedding of GMD. We call AL+ the modified logic of
acceptance.

AL+ has the same language as AL (see Section 3.1). AL+ frames are tuples F =
hW ,A i where W and A are defined as for AL frames, except that the constraints
S.1 and S.2 given in Section 3.2 are supposed to hold also for the case B 6✓ C and
the following additional constraint S.6 is imposed. That is, for any world w 2 W ,
institutional context x 2 INST , and sets of agents C ,B 2 2AGT? we suppose:

if w

0 2 AB :y(w) then AC :x (w 0) ✓ AC :x (w)(S.1’)
if w

0 2 AB :y(w) then AC :x (w) ✓ AC :x (w 0)(S.2’)

Furthermore, for any world w 2 W we suppose:

9C 2 2AGT?, 9x 2 INST such that w 2 AC :x (w)(S.6)

The axiomatization of AL+ is given by the axiom schemes and rules of inference of
AL, except that an Axiom corresponding to the Axiom T[[Univ ]] of the GMD logic
is added, and the Axioms PAccess and NAccess of the logic AL are generalized in
such a way that they also for hold for the case B 6✓ C. That is, for any sets of agents
C ,B 2 2AGT?, we suppose:

AC :x'! AB :yAC :x'(PAccess

+)
AC :x'! AB :y¬AC :x'(NAccess

+)

Furthermore, we suppose:

[Univ ]'! '(TUniv )

Axioms PAccess

+ and NAccess

+ respectively correspond to the semantic constraints
S.1’ and S.2’, whilst Axiom TUniv corresponds to the semantic constraint S.6.
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The definitions of validity and satisfiability inAL+ are given accordingly. We write
|=AL+ ' if formula ' is valid in all AL+ models satisfying the semantic constraints
S.3, S.4, S.5 given in Section 3.2 and the constraints S.1’, S.2’, S.6 given here. We
call AL+ the logic axiomatized by Axiom TUniv and the principles of the logic AL
(Section 3.4), where Axioms PAccess and NAccess are generalized to PAccess

+ and
NAccess

+. We write `AL+ ' if formula ' is a theorem of AL+.
We can prove that AL+ as well is sound and complete. More precisely:

Theorem 14. `AL+ ' if and only if |=AL+ '.

Consider the following translation tr from GMD to the new logic AL+:

• tr(?) = ?

• tr(p) = p

• tr(¬') = ¬tr(')

• tr(' _  ) = tr(') _ tr( )

• tr([[x]]') = [x] tr(')

• tr([[Univ ]]') = [Univ ] tr('),

As the following Theorem 15 shows, tr is a correct embedding of the GMD logic.

Theorem 15. Let INST = CXT and ' be a formula of the GMD logic. Then, ' is
GMD satisfiable if and only if tr(') is AL+ satisfiable.

REMARK. It is worth noting that GMD logic can also be embedded into the variant of
AL with legislators presented in Section 7 by the translations tr([[x]]') = [x]L ' and
tr([[Univ ]]') = [Univ ]L ', after defining

[Univ ]L ' def=
V

x2INST [x]L '.
To obtain a correct embedding of the GMD logic, it is sufficient to add toAL the three
axioms [x]L ' ! [y]L [x]L ', ¬ [x]L ' ! [y]L ¬ [x]L ' and [Univ ]L ' ! ' and the
two corresponding semantic constraints over AL frames:

if w

0 2 ALeg(y):y(w) then ALeg(x):x(w 0) = ALeg(x):x(w), and
9x 2 INST such that w 2 ALeg(x):x(w).

8.2 A conceptual comparison with Boella & van der Torre’s model

The formal approach to institutions and normative systems proposed by Boella & van
der Torre [Boella and van der Torre 2004, 2007] is similar in some respect to ours. Here
we just provide a conceptual comparison between the two approaches. We are not able
to provide a more technical comparison. Indeed, our formalism based on modal logic
and their formalism based on input-output logic [Makinson and van der Torre, 2000]
are too different to be compared in the fashion followed in Section 8.1.

Boella & van der Torre emphasize the relevance of the concept of acceptance for a
formal model of institutions. In their model, individual agents accept a norm, together
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with its associated sanctions and rewards, when they recognize that this norm serves to
achieve their desires and believe that the other agents will conform to it. According to
them, for a norm to be really effective it must be respected due to its acceptance, and
not only to the fear of sanctions. Although they take the concept of acceptance into
consideration, they do not analyze it in detail. In particular, in their model there is no
distinction between individual acceptance and collective acceptance. On the contrary,
this distinction is fundamental in our AL logic in which we clarify the relationships
between individual acceptances and collective acceptances and we provide an explana-
tion of how the collective acceptance of a group of agents C is built from the individual
acceptances of the agents in C .

Moreover, in Boella & van der Torre’s approach, normative systems and institutions
are conceived as agents and mental attitudes such as beliefs and goals are ascribed to
them. Differently from them, we do not claim that institutions can be conceived as
agents. In our approach, we only defend the idea that the institutional reality is built on
the top of the agents’ attitudes. In particular, we claim that institutions are grounded
on the individual and collective acceptances of their members and groups of members,
and their dynamics depend on the dynamics of these acceptances.

9 Conclusion

We have presented in this article a logic of acceptance and applied it to the analysis of
institutions. Our logic of acceptance allows to express that agents accept something to
be true qua members of a certain institution. Given the properties of this demystified
notion of acceptance, we have provided an analysis of the kind of attitude-dependent
facts which are typical of institutions. We have formalized the concept of constitutive
rule expressed by statements of the form “X counts as Y in the context of institution
x”. Then, we have introduced a notion of obligation and a notion permission with
respect to an institutional context (i.e. so-called regulative rules). While constitutive
rules and regulative rules are usually defined from the external perspective of a nor-
mative system or institution, in the present work we have anchored these rules in the
agents’ acceptances.

Directions for future research are manifold. For instance, future works will be
devoted to integrate modalities expressing agents’ goals and preferences, such as the
ones provided in [Cohen and Levesque, 1990], into the logical framework presented
in this paper. This is in order to investigate the decision to join (resp. not to join)
a given institution and the related decision to accept (resp. not to accept) the norms
of the institution with its associated sanctions and rewards. These kinds of decisions
are indeed influenced by the inconsistency between the agent’s goals and the current
norms and rules of the institution. For instance, if the agent’s goals conflict with the
norms proclaimed by the legislators then, the agent will probably decide not to join the
institution.

Another interesting topic to be investigated in future works is the dynamics of in-
dividual and collective acceptances in institutional contexts. We have already started
to study this topic in a recent work [Herzig et al., 2008]. The idea is to extend the
logic of acceptance AL by events of type x !' and corresponding dynamic operators
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of the form [x !']. A formula [x !'] , means that  is true after every announcement
of formula ' in the context of institution x . Operators of type [x !'], which are simi-
lar to the operators of announcements in dynamic epistemic logic [Baltag et al., 1998,
Gerbrandy and Groeneveld, 1997, van Ditmarsch et al., 2007], express that the mem-
bers of an institution x learn that ' is true in that institution in such a way that their
acceptances, qua members of institution x, are updated. Such operators can also be
used to describe how the acceptances of the members of institution x change, after that
a certain norm (e.g. obligation, permission) is issued or promulgated within the context
of this institution.
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A Annex: proofs of some theorems

This Annex contains some selected proofs of the theorems presented in the paper.

Proof of Theorem 1

Axiom K and rule of inference Nec define a minimal normal modal logic. Thus, they
do not have an associated semantic constraint. It is a routine task to check that the Ax-
ioms PAccess, NAccess, Inc, Unanim and Mon of the logic AL correspond to their
semantic counterparts S.1-S.5 over AL models. In particular, the following correspon-
dences exist between the axioms of the logicAL and the semantic constraints over AL
frames.

• Axioms PAccess corresponds to the constraint S.1.

• Axiom NAccess corresponds to the constraint S.2.

• Axiom Inc corresponds to the constraint S.3.

• Axiom Unanim corresponds to the constraint S.4.

• Axiom Mon corresponds to the constraint S.5.

It is a routine, too, to check that all of axioms of the logicAL are in the Sahlqvist class,
for which a general completeness result exists.
(See [Sahlqvist, 1975, Blackburn et al., 2001].)

Proof of Theorem 2

For notational convenience, we will use the following abbreviation in the proof:

bAC :x'
def= ¬AC :x¬'

We have to prove that if ' is AL satisfiable then it is satisfiable in a finite AL
model.

Suppose that M = hW ,A ,V i is a AL model which satisfies '. Our aim is
to build a finite AL model which satisfies '. To do this, we use a filtration method
[Blackburn et al., 2001, Goldblatt, 1992].

Let us introduce the following definition.

Definition 1. A set of formulas ⌃ is closed under subformulas (cus) if for all formulas
','0: if ' _ '0 2 ⌃ then so are ' and '0; if ¬'0 2 ⌃ then so is '; for any x 2 INST

and C 2 2AGT? if AC :x' 2 ⌃ then ' 2 ⌃.

Let us now consider an arbitrary finite set of formulas ⌃
'

which is closed under
subformulas and which contains '. From ⌃

'

we define the set ⌃+
'

as follows.
⌃+

'

is defined as the smallest superset of ⌃
'

such that:

1. for all x, y 2 INST and C ,B 2 2AGT?, if AC :x' 2 ⌃+
'

then AB :y' 2 ⌃+
'

;
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2. for all x 2 INST and C 2 2AGT?, if AC :x' 2 ⌃+
'

then ¬AC :x' 2 ⌃+
'

;

3. for all x 2 INST and C 2 2AGT?, AC :x? 2 ⌃+
'

;

4. ? 2 ⌃+
'

.

The following proposition follows straightforwardly due to the fact that the sets AGT

and INST are supposed to be finite.

Proposition 3. ⌃+
'

is finite and closed under subformulas.

We define the relation ! between the worlds in W of the model M. For every
two worlds w, v 2 W :

• w ! v iff for all ' 2 ⌃+
'

, M, w |= ' iff M, v |= '.

For every world w 2 W , we note |w| the equivalence class of world w of M with
respect to !. Moreover, let W⌃+

'
= {|w| | w 2 W }.

Now, we have to build a filtrated model Mf = hW f ,A f ,V f i of the model M.

Definition 2. We define Mf as follows.

A. W

f = W⌃+
'

;

B. for every B 2 2AGT? and x 2 INST , |v| 2 A f

B :x (|w|) if and only if:

1. 8AB :x' 2 ⌃+
'

, if M, w |= AB :x' then M, v |= ';

2. 8y 2 INST and 8C 2 2AGT?, if B ✓ C then:
8AC :y' 2 ⌃+

'

, if M, w |= AC :y' then M, v |= AC :y';

3. 8y 2 INST and 8C 2 2AGT?, if B ✓ C then:
8 bAC :y' 2 ⌃+

'

, if M, w |= bAC :y' then M, v |= bAC :y';

4. 8C 2 2AGT?, if B ✓ C then:
8AC :x', bAC :x> 2 ⌃+

'

, if M, w |= bAC :x> ^AC :x' then M, v |= ';
5. 9i 2 B such that 8Ai:x' 2 ⌃+

'

, if M, v |= Ai:x' then M, v |= '.

C. V f (p) = {|w| | M, w |= p}, for all propositional atoms in ⌃+
'

.

It is straightforward to prove that the modelMf is indeed a filtration ofM through
⌃+

'

.

Lemma 1. Mf is a filtration of M through ⌃+
'

.

The next step consists in proving that Mf is a AL model.

Lemma 2. Mf is a AL model.

Proof. We have to prove that the model Mf satisfies the five semantic constraints
S.1-S.5 over AL models.

Let us start with constraint S.1. We have to prove that the following condition holds
in Mf for any x, y 2 INST and C ,B 2 2AGT? such that B ✓ C :
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• if |w0| 2 A f

B :x (|w|) and |w00| 2 A f

C :y(|w0|) then |w00| 2 A f

C :y(|w|).

Suppose |w0| 2 A f

B :x (|w|) and w00 2 A f

C :y(|w0|), where B ✓ C . We have to prove
that |w00| 2 A f

C :y(|w|). By Definition 2, the latter is equivalent to:

1. 8AC :y' 2 ⌃+
'

, if M, w |= AC :y' then M, w00 |= ';

2. 8z 2 INST and 8D 2 2AGT?, if C ✓ D then:
8AD:z' 2 ⌃+

'

, if M, w |= AD:z' then M, w00 |= AD:z';

3. 8z 2 INST and 8D 2 2AGT?, if C ✓ D then:
8 bAD:z' 2 ⌃+

'

, if M, w |= bAD:z' then M, w00 |= bAD:z';

4. 8D 2 2AGT?, if C ✓ D then:
8AD:y', bAD:y> 2 ⌃+

'

, if M, w |= bAD:y> ^AD:y' then M, w00 |= ';

5. 9i 2 C such that 8Ai:y' 2 ⌃+
'

, if M, w00 |= Ai:y' then M, w00 |= '.

So, to prove S.1 we just need to prove that the previous items 1-5 are consequences of
|w0| 2 A f

B :x (|w|) and |w00| 2 A f

C :y(|w0|) when B ✓ C .
Item 1. Suppose AC :y' 2 ⌃+

'

and M, w |= AC :y'. As B ✓ C and |w0| 2
A f

B :x (|w|), it follows that M, w00 |= '.
Item 2. Take an arbitrary D such that C ✓ D and an arbitrary z 2 INST . As

B ✓ C , we have B ✓ D . Suppose AD:z' 2 ⌃+
'

and M, w |= AD:z'. As |w0| 2
A f

B :x (|w|), it follows that M, w0 |= AD:z'. As w00 2 A f

C :y(|w0|), we conclude that
M, w00 |= AD:z'.

Item 3. Take an arbitrary D such that C ✓ D and an arbitrary z 2 INST . As
B ✓ C , we have B ✓ D . Suppose bAD:z' 2 ⌃+

'

and M, w |= bAD:z'. As |w0| 2
A f

B :x (|w|), it follows that M, w0 |= bAD:z'. As w00 2 A f

C :y(|w0|), we conclude that
M, w00 |= bAD:z'.

Item 4. Take an arbitrary D such that C ✓ D . As B ✓ C , we have B ✓ D .
Suppose AD:y', bAD:y> 2 ⌃+

'

and M, w |= AD:y' ^ bAD:y>. As |w0| 2 A f

B :x (|w|),
it follows that M, w0 |= AD:y' ^ bAD:y>. As w00 2 A f

C :y(|w0|), we conclude that
M, w00 |= '.

Item 5. This item follows straightforwardly from the fact w00 2 A f

C :y(|w0|).
This proves that S.1 holds.

Let us now consider constraint S.2. We have to prove that the following condition
holds in Mf for any x, y 2 INST and C ,B 2 2AGT? such that B ✓ C :

• if |w0| 2 A f

B :x (|w|) and w00 2 A f

C :y(|w|) then w00 2 A f

C :y(|w0|).

Suppose |w0| 2 A f

B :x (|w|) and w00 2 A f

C :y(|w|), where B ✓ C . We have to prove
that |w00| 2 A f

C :y(|w0|). By Definition 2, the latter is equivalent to:

1. 8AC :y' 2 ⌃+
'

, if M, w0 |= AC :y' then M, w00 |= ';
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2. 8z 2 INST and 8D 2 2AGT?, if C ✓ D then:
8AD:z' 2 ⌃+

'

, if M, w0 |= AD:z' then M, w00 |= AD:z';

3. 8z 2 INST and 8D 2 2AGT?, if C ✓ D then:
8 bAD:z' 2 ⌃+

'

, if M, w0 |= bAD:z' then M, w00 |= bAD:z';

4. 8D 2 2AGT?, if C ✓ D then:
8AD:y', bAD:y> 2 ⌃+

'

, if M, w0 |= bAD:y> ^AD:y' then M, w00 |= ';

5. 9i 2 C such that 8Ai:y' 2 ⌃+
'

, if M, w00 |= Ai:y' then M, w00 |= '.

So, to prove S.2 we just need to prove that items 1-5 are consequences of |w0| 2
A f

B :x (|w|) and w00 2 A f

C :y(|w|).
Item 1. Suppose AC :y' 2 ⌃+

'

and M, w0 |= AC :y'. By construction of ⌃+
'

we have bAC :y¬' 2 ⌃+
'

. As |w0| 2 A f

B :x (|w|) and B ✓ C, it follows that M, w |=
AC :y'. As |w00| 2 A f

C :y(|w|), we conclude that M, w00 |= '.
Item 2. Take an arbitrary D such that C ✓ D and an arbitrary z 2 INST . As B ✓

C , we have B ✓ D . Suppose AD:z' 2 ⌃+
'

and M, w0 |= AD:z'. By construction
of ⌃+

'

we have bAD:z¬' 2 ⌃+
'

. As |w0| 2 A f

B :x (|w|) and B ✓ D , it follows that
M, w |= AD:z'. As |w00| 2 A f

C :y(|w|), we conclude that M, w00 |= AD:z'.
Item 3. Take an arbitrary D such that C ✓ D and an arbitrary z 2 INST . As B ✓

C , we have B ✓ D . Suppose bAD:z' 2 ⌃+
'

and M, w0 |= bAD:z'. By construction
of ⌃+

'

we have AD:z¬' 2 ⌃+
'

. As |w0| 2 A f

B :x (|w|) and C ✓ D , it follows that
M, w |= bAD:z'. As |w00| 2 A f

C :y(|w|), we conclude that M, w00 |= bAD:z'.
Item 4. Take an arbitrary D such that C ✓ D . As B ✓ C , we have B ✓ D .

Suppose AD:y', bAD:y> 2 ⌃+
'

and M, w0 |= AD:y' ^ bAD:y>. By construction of
⌃+

'

we haveAD:y?, bAD:y¬' 2 ⌃+
'

. As |w0| 2 A f

B :x (|w|) and C ✓ D , it follows that
M, w |= AD:y' ^ bAD:y>. As |w00| 2 A f

C :y(|w|), we conclude that M, w00 |= '.
Item 5. This item follows straightforwardly from the fact w00 2 A f

C :y(|w|).
This proves that S.2 holds.

As a next step we have to prove the model Mf satisfies the semantic condition S.3.
That is, we have to prove that for any x 2 INST and C ,B 2 2AGT? such that B ✓ C :

• if A f

C :x (|w|) 6= ; then A f

B :x (|w|) ✓ A f

C :x (|w|).

The following proposition is needed to prove that Mf satisfies the condition S.3.

Proposition 4. For every x 2 INST and C 2 2AGT?, if A f

C :x (|w|) 6= ; then 9w 2
|w| such that M, w |= bAC :x>.

Proof. Let us suppose that A f

C :x (|w|) 6= ;, and M, w |= AC :x? for all w 2 |w|. We
are going to show that the two facts are inconsistent.

Condition A f

C :x (|w|) 6= ; implies that 9|w0| 2 W

f such that: if AC :x' 2 ⌃+
'

then, if M, w |= AC :x' then M, w0 |= '. As we have AC :x? 2 ⌃+
'

(by construction
of ⌃+

'

) and we have supposed M, w |= AC :x?, we can infer that M, w0 |= ?.
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Let us now prove that Mf satisfies the condition S.3. Consider an arbitrary x 2
INST and C ,B 2 2AGT? such that B ✓ C . Suppose that A f

C :x (|w|) 6= ; and
w0 2 A f

B :x (|w|). We have to prove that w0 2 A f

C :x (|w|). By Definition 2, the latter is
equivalent to:

1. 8AC :x' 2 ⌃+
'

, if M, w |= AC :x' then M, w0 |= ';

2. 8z 2 INST and 8D 2 2AGT?, if C ✓ D then:
8AD:z' 2 ⌃+

'

, if M, w |= AD:z' then M, w0 |= AD:z';

3. 8z 2 INST and 8D 2 2AGT?, if C ✓ D then:
8 bAD:z' 2 ⌃+

'

, if M, w |= bAD:z' then M, w0 |= bAD:z';

4. 8D 2 2AGT?, if C ✓ D then:
8AD:x', bAD:x> 2 ⌃+

'

, if M, w |= bAD:x> ^AD:x' then M, w0 |= ';

5. 9i 2 C such that 8Ai:x' 2 ⌃+
'

, if M, w0 |= Ai:x' then M, w0 |= '.

So, to prove that Mf satisfies the condition S.3 we just need to prove that items 1-5
are consequences of A f

C :x (|w|) 6= ; and |w0| 2 A f

B :x (|w|).
Item 1. Suppose AC :x' 2 ⌃+

'

and M, w |= AC :x'. By construction of ⌃+
'

,
we have bAC :x> 2 ⌃+

'

. From A f

C :x (|w|) 6= ; it follows that 9w 2 |w| such that
M, w |= bAC :x> (by Proposition 4). Thus, by definition of |w|, we can conclude that
8w 2 |w| it holds that M, w |= bAC :x>. Then, in particular, M, w |= bAC :x>. As
M, w |= AC :x' and B ✓ C, from the latter it follows thatM, w |= AB :x' (by Axiom
Inc of the logic AL). As |w0| 2 A f

B :x (|w|) and AB :x' 2 ⌃+
'

(from AC :x' 2 ⌃+
'

, by
construction of ⌃+

'

), from the latter we conclude M, w0 |= '.
Item 2. Take an arbitrary D such that C ✓ D and an arbitrary z 2 INST . As

B ✓ C , we have B ✓ D . Moreover, suppose AD:z' 2 ⌃+
'

and M, w |= AD:z'. As
|w0| 2 A f

B :x (|w|), we conclude that M, w0 |= AD:z'.
Item 3. Take an arbitrary D such that C ✓ D and an arbitrary z 2 INST . As

B ✓ C , we have B ✓ D . Moreover, suppose bAD:z' 2 ⌃+
'

and M, w |= bAD:z'. As
|w0| 2 A f

B :x (|w|), we conclude that M, w0 |= bAD:z'.
Item 4. Take an arbitrary D such that C ✓ D . As B ✓ C , we have B ✓ D .

Moreover, suppose AD:x', bAD:x> 2 ⌃+
'

and M, w |= AD:x' ^ bAD:x>. As |w0| 2
A f

B :x (|w|), we conclude that M, w0 |= '.
Item 5. From w0 2 A f

B :x (|w|), it follows that 9i 2 B such that 8Ai:x' 2 ⌃+
'

, if
M, w0 |= Ai:x' then M, w0 |= '. As B ✓ C , the latter implies that 9i 2 C such that
8Ai:x' 2 ⌃+

'

, if M, w0 |= Ai:x' then M, w0 |= '.
This proves that S.3 holds.

Now, we prove that the model Mf satisfies the semantic condition S.4. That is, we
prove that for any x 2 INST and C 2 2AGT?:

• if |w0| 2 A f

C :x (|w|) then |w0| 2
S

i2C Ai:x (|w0|).
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Suppose |w0| 2 A f

C :x (|w|). We have to prove that |w0| 2
S

i2C Ai:x (|w0|). By
Definition 2, the latter is equivalent to the fact that 9i 2 C such that:

1. 8Ai:x' 2 ⌃+
'

, if M, w0 |= Ai:x' then M, w0 |= ';

2. 8z 2 INST and 8D 2 2AGT?, if i 2 D then:
8AD:z' 2 ⌃+

'

, if M, w0 |= AD:z' then M, w0 |= AD:z';

3. 8z 2 INST and 8D 2 2AGT?, if i 2 D then:
8 bAD:z' 2 ⌃+

'

, if M, w0 |= bAD:z' then M, w0 |= bAD:z';

4. 8D 2 2AGT?, if i 2 D then:
8AD:x', bAD:x> 2 ⌃+

'

, if M, w0 |= bAD:x> ^AD:x' then M, w0 |= ';

5. 8Ai:x' 2 ⌃+
'

, if M, w0 |= Ai:x' then M, w0 |= '.

Thus, we have to suppose |w0| 2 A f

C :x (|w|) and prove that 9i 2 C which satisfies
items 1-5. Items 2 and 3 trivially hold for all 9i 2 C . Moreover, items 1 and 5 are the
same condition. Therefore, we just need to prove that |w0| 2 A f

C :x (|w|) implies that
9i 2 C which satisfies items 1 and 4.

From |w0| 2 A f

C :x (|w|), we can infer that 9i 2 C such that 8Ai:x' 2 ⌃+
'

, if
M, w0 |= Ai:x' then M, w0 |= '.

By Axiom Inc of the logic AL and by construction of ⌃+
'

the following property
holds for all i 2 C . For all D 2 2AGT?, if i 2 D then: 8AD:x', bAD:x> 2 ⌃+

'

, if
M, w0 |= bAD:x> ^AD:x' then M, w0 |= Ai:x' and Ai:x' 2 ⌃+

'

.
From the previous two facts, we conclude that 9i 2 C such that: 8Ai:x' 2 ⌃+

'

, if
M, w0 |= Ai:x' then M, w0 |= '; 8D 2 2AGT?, if i 2 D then: 8AD:x', bAD:x> 2
⌃+

'

, if M, w0 |= bAD:x> ^AD:x' then M, w0 |= '.
This proves that S.4 holds.

It remains to be proved that the model Mf satisfies the semantic condition S.5.
That is, we have to prove that for any x 2 INST and C ,B 2 2AGT? such that B ✓ C :

• if A f

C :x (|w|) 6= ; then A f

B :x (|w|) 6= ;.

In order to prove this, we prove first that A f

C :x (|w|) 6= ; implies M, w |= bAB :x>,
when B ✓ C .

Let us suppose that A f

C :x (|w|) 6= ; and M, w |= AB :x? with B ✓ C . We show
that these facts are inconsistent.

From M, w |= AB :x? we infer M, w |= AC :x? (by Axiom Mon of the logic AL
and the fact that B ✓ C ). From Definition 2 and A f

C :x (|w|) 6= ;, we can infer that
9|w0| such that 8AC :x' 2 ⌃+

'

, if M, w |= AC :x' then M, w0 |= '. By construction
of ⌃+

'

we have that AC :x? 2 ⌃+
'

. Thus, as we have M, w |= AC :x?, we conclude
that 9|w0| such that M, w0 |= ?.

This proves that A f

C :x (|w|) 6= ; implies M, w |= bAB :x>, when B ✓ C .
Now, we have to show that M, w |= bAB :x> implies A f

B :x (|w|) 6= ;.
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M, w |= bAB :x> implies that 9w0 such that w0 2 AB :x (w). As Mf is a filtration
of M (Lemma 1), from the latter we conclude that 9|w0| such that |w0| 2 A f

B :x (|w|).
This proves that S.5 holds.

Lemma 3. The modelMf contains at most 2n worlds where n denotes the size of ⌃+
'

.

Proof. From Lemma 1 and Proposition 2.38 given in [Blackburn et al., 2001, p. 79].

Lemma 4. Mf is a finite model.

Proof. From Lemma 3 and Proposition 3.

Lemma 5. Formula ' is satisfiable in Mf .

Proof. From Lemma 1 and Proposition 3, the fact that ' is satisfiable in M, the fact
that ' 2 ⌃+

'

and the Filtration Theorem given in [Blackburn et al., 2001, p. 79].

Lemma 6. The logic AL has the finite model property.

Proof. We have started with an arbitrary formula ' which is satisfiable in a AL model
M. We have built a model Mf and proved that Mf is a finite AL model (Lemma 4).
Finally, we have proved that ' is satisfiable in Mf (Lemma 5). Thus, we can conclude
that for every formula ', if ' is AL satisfiable then, ' is satisfiable in a finite AL
model.

Theorem 2 is a direct consequence of Lemma 6.

Proof of Theorem 14

As for the logic AL, it is a routine to prove soundness, whereas completeness is
again obtained by Sahlqvist completeness theorem. Indeed, all axioms of AL+ are
in the Sahlqvist class, for which a general completeness result exists [Sahlqvist, 1975,
Blackburn et al., 2001].

Proof of Theorem 15

In order to prove Theorem 15, it is sufficient to prove that if INST = CXT and ' is
a formula of the GMD logic then: if ' is a theorem of GMD then tr(') is a theorem
of AL+ and, if ' is GMD satisfiable then tr(') is AL+ satisfiable.

Proposition 5. Suppose that INST = CXT and ' is a formula of the logic GMD
then: if `GMD ' then `AL+ tr(').

Proof. We only need to prove that the translations of the axioms of the GMD logic are
theorems ofAL+ and that the translated rules of inference of GMD preserves validity.

It is straightforward to show that the translation of the rules of inference Nec[[x]],
Nec[[Univ ]] and MP preserve validity. As the AL+ operators [x] and [Univ ] are normal,
it is a routine to verify that the translation of the GMD Axioms K[[x]] and K[[Univ ]] are
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theorems ofAL+. Furthermore, by the definitions of [x]' and [Univ ]', it is just trivial
to prove that that the translation of the GMD Axiom✓[[Univ ]],[[x]] is a theorem ofAL+.
The translation of the GMD Axiom T[[Univ ]] is a theorem of AL+ as well. Indeed,
this corresponds to the Axiom TUniv of the logic AL+. By Axioms PAccess

+ and
NAccess

+ we can prove that the translations of the GMD Axioms 4[[x]],[[y]] and 5[[x]],[[y]]

are theorems of AL+. By the same principles, we can prove that the translations of the
GMD Axioms 4[[Univ ]] and 5[[Univ ]] are theorems of AL+.

Proposition 6. Suppose that INST = CXT and ' is a formula of the logic GMD
then: if ' is GMD satisfiable then tr(') is AL+ satisfiable.

Proof. Suppose that' is GMD satisfiable. Thus, there exists a GMDmodelMGMD =
hS , {S

x

}
x2CXT0

,⇡i which satisfies '. We prove that we can build a AL+ model M
which satisfies the same formulas as MGMD.

As we have supposed INST = CXT , the AL+ model M associated with the
GMD model MGMD can be defined as follows.

• W = S ;

• 8w 2 W ,8x 2 CXT 0,8C 2 2AGT?, AC :x (w) = S

x

;

• 8w 2 W ,8C 2 2AGT?, AC :Univ (w) = S ;

• 8w 2 W ,8p 2 ATM, w 2 ⇡(p) if and only if w 2 V (p).

It is a routine to verify that the previous conditions ensure that the modelM is indeed a
AL+ model. By structural induction on ', it is also a routine to prove that the previous
AL+ model satisfies the same formulas as the GMD model it is associated. That is,
MGMD, w |= ' if and only if M, w |= tr(').

Theorem 15 is an immediate corollary of Proposition 5 and Proposition 6.

Proof of Theorems 3, 4, 5, 6 and 7

Theorems 3 and 4 can be syntactically proved usingAL logic axiomatization. Theorem
5 proof is based on Theorem 3. As every A

C:x operator is normal, Theorems 6 and 7
can be proved by iteration of the Axiom (K) and the Rule of Necessitation (Nec) for
every group of 2AGT? and every institution of INST . We provide in the sequel only
the complete proof for Theorems (3a) and (3e).

Proof. Theorem (3a):

(1) `AL AC :x? _ ¬AC :x?, by (ProTau)

(2) `AL ¬AC :x? ! AC :x¬AC :x?, by (NAccess)

(3) `AL AC :x? ! AC :x¬AC :x?, by (ProTau), (Nec) and (K)

(4) `AL AC :x¬AC :x?, from (1), (2) and (3) by (ProTau)
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Proof. Theorem (3e):

(1) `AL AC :x ((¬AC :x?^AC :x') ! Ai:x'), for every i 2 C, from Axiom (Inc)
by inference rule (Nec),

(2) `AL AC :x ((¬AC :x? ^AC :x') !
V

i2C

Ai:x'), from (1), by K principles

(3) `AL AC :x (
V

i2C

Ai:x'! '), from (Unanim)

(4) `AL AC :x ((¬AC :x? ^AC :x') ! '), from (2) and (3) by (ProTau) and (K)

(5) `AL AC :x¬AC :x? ! AC :x (AC :x'! '), from (4) by (ProTau) and (K)

(6) `AL ¬AC :x? ! AC :x¬AC :x?, by (NAccess)

(7) `AL ¬AC :x? ! AC :x (AC :x'! '), from (5) and (6) by (ProTau)

(8) `AL AC :x? ! AC :x (AC :x'! '), by (ProTau), (Nec) and (K)

(9) `AL AC :x (AC :x'! '), from (7) and (8) by (ProTau)

Proof of Proposition 1

Proof. Let suppose that the majority Principle (Majority) holds for any sets of agents
C and B such that B ✓ C and |C \ B| < |B |. We will prove by induction on the set
C

n

, that there exists a set C
n

such that:

(¬AAGT :x? ^AAGT :xA{i,j}:x') ! A
Cn:x'(P

n

)

where i, j 2 AGT , C
n

✓ AGT , |C
n

| = n and n � 2.
We begin by showing that (P2) holds.

(1) `AL ¬AAGT :x? ^AAGT :xA{i,j}:x'! A{i,j}:xA{i,j}:x', by (Inc).

(2) `AL ¬AAGT :x? ^AAGT :xA{i,j}:x'! A{i,j}:x', from (1) by Theorem (3c)

(2) entails that (P2) holds.
We suppose that (P

n

) holds for any n such that C
n

⇢ AGT . Under this hypothesis
we will show that (P

n+1) holds. We suppose that C
n+1 is defined as: C

n+1 = C
n

[{i},
with i 2 AGT and i 62 C

n

(thus C
n

⇢ C
n+1).

(3) `AL (¬AAGT :x? ^ AAGT :xA{i,j}:x') ! A
Cn:x', by induction hypothesis

(P
n

)

(4) `AL (A
Cn+1:x¬AAGT :x? ^ ACn+1:xAAGT :xA{i,j}:x') ! A

Cn+1:xACn:x',
from (3) by (Nec), (K) and standard properties of normal modal operatorA

Cn+1:x

(5) `AL (¬AAGT :x? ^ AAGT :xA{i,j}:x') ! A
Cn+1:xACn:x' ^ ¬A

Cn+1:x?,
from (4) by (PAccess), (NAccess), (Mon) and (ProTau)
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(6) `AL ¬ACn+1:x? ! ¬A
Cn:x?, by (Mon)

(7) `AL ACn+1:x¬ACn+1:x? ! A
Cn+1:x¬ACn:x?, from (6) by (Nec), (K)

(8) `AL ¬ACn+1:x? ! A
Cn+1:x¬ACn:x?, from (7) by (NAccess) and (ProTau)

(9) `AL (¬AAGT :x? ^ AAGT :xA{i,j}:x') ! A
Cn+1:x(A

Cn:x' ^ ¬A
Cn:x?),

from (5) and (8) by (ProTau) and standard properties of normal modal operator
A

Cn+1:x

(10) `AL (¬AAGT :x? ^ AAGT :xA{i,j}:x') ! A
Cn+1:x(

V
k2Cn

Ak :x'), from (9)
by (Inc), (K), (Nec) and (ProTau)

(11) `AL (¬AAGT :x?^AAGT :xA{i,j}:x') ! A
Cn+1:x', from (10) by (Majority),

(K), (Nec) and (ProTau)

Thus (11) entails (P
n+1).

As (P2) holds and from (P
n

) we can infer that (P
n+1) for n < |AGT |, we can thus

deduce by induction that (P
n

) holds for n  |AGT |. In particular, we can deduce from
the extension of the Principles (Majority) for every set of agents C and B such that
B ✓ C and |C \B| < |B |, that the following counterintuitive formula holds:

(AAGT :xA{i,j}:x' ^ ¬AAGT :x?) ! AAGT :x'

Proof of Proposition 2

Lemma 7.

AC :x'$ Bel

i

AC :x' if i 2 C(7a)
¬AC :x'$ Bel

i

¬AC :x' if i 2 C(7b)

Proof. Lemma (7a) and (7b):

(1) ¬AC :x'! Bel

i

¬AC :x', by (NegIntrAccept), for i 2 C

(2) Bel

i

¬AC :x'! ¬Bel

i

AC :x', by Axiom (D) for Bel

i

(3) Bel

i

AC :x'! AC :x', from (1), (2), and (ProTau), for i 2 C

The proof of Lemma (7b) is similar to the one of Lemma (7a), we only use Axiom
(PIntrAccept) instead of Axiom (NegIntrAccept).

Proof. Propositions (2a) and (2b):

(1) MB
C

AC :x'!
V

i2C

Bel

i

(AC :x' ^MB
C

AC :x'), by (FixPoint)

(2)
V

i2C

Bel

i

(AC :x'^MB
C

AC :x') !
V

i2C

Bel

i

AC :x', because Bel

i

are nor-
mal modal operators

(3)
V

i2C

Bel

i

AC :x'! AC :x', by Lemma (7a)
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(4) MB
C

AC :x'! AC :x', from (1), (2), (3) by (ProTau)

(5) AC :x'! Bel

i

AC :x', by (PIntrAccept), for every i 2 C

(6) AC :x'! E
C

(AC :x' ^AC :x'), from (5), by (ProTau) and definition of E
C

(7) AC :x' ! MB
C

AC :x', from (6) by inference rule (InductionRule) (left to
right direction of Theorem (2a))

(8) AC :x'$MB
C

AC :x', from (4) and (7)

The proof of Proposition (2b) is similar to the one of Proposition (2a), we only use
Lemma (7b) instead of Lemma (7a) and (NegIntrAccept) instead of (PIntrAccept).

Proof of Theorem 8

To prove that these formulas are not valid in AL, we only have to exhibit a model
where there is a world where these formulas are false. We give the complete proof only
for Theorem (8b), the others are very similar.

Proof. Theorem (8b):
We will build a AL model M in which there is a world w is which the formula is false,
i.e.: M, w ✏ ('1

xB '2) ^ ('2
xB '3) ^ ¬('1

xB '3). Let ATM = {'1,'2,'3},
AGT = {i}, INST = {x, y, z} and W = {w ,w

x

,w
y

,w
z

}. We build the valuation
function V : V ('1) = {w

y

}, V ('2) = {w
z

} and V ('3) = {w
y

}, and the relation A :
A{i}:x(w) = {w

x

}, A{i}:y(w) = {w
y

} and A{i}:z(w) = {w
z

}.
As we wantM to be aALmodel, we ensure that it satisfies the constraints S.1-S.5.

• In order to satisfy (S.1) and (S.2) we impose: hw
y

,w
x

i 2 A{i}:x, hw
z

,w
x

i 2
A{i}:x, hw

x

,w
y

i 2 A{i}:y , hw
z

,w
y

i 2 A{i}:y , hw
x

,w
z

i 2 A{i}:z and hw
y

,w
z

i 2
A{i}:z;

• as there is only one agent in our model, (S.3) and (S.5) are satisfied;

• in order to satisfy (S.4) we impose that: hw
x

,w
x

i 2 A{i}:x, hw
y

,w
y

i 2 A{i}:y
and hw

z

,w
z

i 2 A{i}:z;

In this model M:

• M,w ✏ [x] ('1 ! '2) ^ [x] ('2 ! '3)

• M,w ✏ ¬ [y] ('1 ! '2) and thus M,w ✏ ¬ [Univ ] ('1 ! '2)

• M,w ✏ ¬ [z] ('2 ! '3) and thus M,w ✏ ¬ [Univ ] ('2 ! '3)

• M,w ✏ [x] ('1 ! '3) ^ [y] ('1 ! '3) ^ [z] ('1 ! '3), i.e. M,w ✏
[Univ ] ('1 ! '3)

We have built aALmodel which satisfies the formula ('1
xB '2)^('2

xB '3)^¬('1
xB

'3). Thus, ('1
xB '2) ^ ('2

xB '3) ! ('1
xB '3) is not valid in AL. By Theorem 1,

we conclude that ('1
xB '2) ^ ('2

xB '3) ! ('1
xB '3) is not a theorem of AL.
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Proof of Theorem 9

Proof. Theorems (9a) and (9b):
Since [x] and [Univ ] are normal modal operators, they satisfy the rule of equivalence
RE [Chellas, 1980]. Theorems (9a) and (9b) follow straightforwardly from RE.

Proof. Theorem (9c):

(1) `AL (('1 ! '2) ^ ('1 ! '3)) $ ('1 ! ('2 ^ '3)), by (ProTau)

(2) `AL ([x] ('1 ! '2) ^ [x] ('1 ! '3)) ! [x] ('1 ! ('2 ^ '3)), from (1) by
Theorem (6b)

(3) `AL (¬ [Univ ] ('1 ! '2) ^ ¬ [Univ ] ('1 ! '3)) ! (¬ [Univ ] ('1 ! '2) _
¬ [Univ ] ('1 ! '3)), by (ProTau)

(4) `AL (¬ [Univ ] ('1 ! '2) _ ¬ [Univ ] ('1 ! '3)) ! ¬ [Univ ] (('1 ! '2) ^
('1 ! '3)), by standard properties of normal modal operator [Univ ]

(5) `AL (¬ [Univ ] ('1 ! '2) ^ ¬ [Univ ] ('1 ! '3)) ! ¬ [Univ ] ('1 ! ('2 ^
'3)), from (3) and (4) by (ProTau)

(6) (('1
xB '2)^ ('1

xB '3)) ! ('1
xB ('2 ^ '3)), from (2) and (5) and (ProTau)

Proof. Theorems (9d) and (9e):
The proofs of Theorems (9d) and (9e) are very similar to the previous one. Both apply
(Nec), (K) and propositional tautologies.

Proof of Theorem 10

All these theorems follow from the necessitation rule (Nec) and logical tautologies.
Proofs also need Axiom (K) and theorems (M) and (C)10 [Chellas, 1980] for the distri-
bution over conjunction. We give the complete proof of Theorem (10b) as an example.

Proof. Theorem (10b):

(1) `AL (('1 ! '2) ^ ('2 ! '3)) ! ('1 ! '3), by (ProTau)

(2) `AL [x] ((('1 ! '2) ^ ('2 ! '3)) ! ('1 ! '3)), from (1) by (Nec)

(3) `AL [x] (('1 ! '2)^ ('2 ! '3)) ! [x] ('1 ! '3), from (2) by (K) and (C).

10The conjunction of both (M) and (C) give the equivalence: [x] ('1 ^ '2) $ ([x] '1 ^ [x] '2).
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Proof of Theorem 11

Proof. Theorem (11a):

This theorem comes straightforwardly from Theorems 6a, 6b, 7a, 7b, and the fol-
lowing propositional tautologies:

(1) `AL (((' ^ ¬ ) ! viol) ^ (¬'! viol)) ! (¬ ! viol), by (ProTau)

(2) `AL (¬ ! viol) ! ((¬ ^ ') ! viol), by (ProTau)

Proof. Theorem (11b):

(1) `AL O
x

> ! ¬ [Univ ] (? ! viol), by the definition of O
x

>

(2) `AL ¬ [Univ ] (? ! viol) ! ¬ [Univ ]>, by (ProTau)

(3) `AL ¬ [Univ ]> ! ?, by standard properties of normal modal operator [Univ ]

(4) `AL > ! ¬O
x

>, from (1), (2) and (3) by (ProTau)
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individually costly, e�cient outcomes

⇤

Giuseppe Attanasi† Astrid Hopfensitz‡ Emiliano Lorini§

Frédéric Moisan¶

Abstract

We study the impact of social ties on behavior in two types of asym-

metric coordination games. Social ties are varied by making players

interact with partners from di↵erent in-groups (fellow members of their

own sports team, members of their sports club, students of their uni-

versity). Subjective social ties are further measured by direct question-

naires.

We find that smaller and more salient in-groups lead to significantly

more group beneficial choices. The same e↵ect is observed for play-
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1 Introduction

This paper analyzes behavior in asymmetric coordination games for di↵erent

levels of social ties between players. Behavior in interactions requiring coordi-

nation is intrinsically di�cult to predict. While participants in coordination

problems clearly prefer to coordinate, reaching this state in the absence of

communication is not trivial. Focal points help in symmetric games but might

not be strong enough when games are asymmetric (Crawford et al., 2008). In-

cidentally human interactions are never completely void of information about

interaction partners. When we interact with others, we take into account peo-

ple’s nationality, gender, political preferences, or favorite sports team. Group

membership of others leads us to anticipate certain behaviors or influences

our concerns for their welfare. These e↵ects have, over the last years, received

increased attention in economics and psychology. Specifically, recent experi-

mental evidence has investigated the importance of a joint social identity on

coordination among multiple Pareto ranked equilibria (Chen and Li, 2009).

The importance of social identity in economics has been pointed out by

the seminal work of Akerlof and Kranton (2000). Social identity theory is

based on the assumption that an individual is not characterized by one unique

‘personal self’, but rather by many ‘selves’ that correspond to overlapping

circles of group identities. Di↵erent cues might trigger the individuals to act

and feel on their personal, family or national ‘level of self’ (Turner et al., 1987).

While social identity theory clearly considers the importance of di↵erent levels

or ‘strength’ of social identity, the main experimental approach has focused on

identifying a ‘minimal group’ level, which allows us to observe discriminatory

behavior.1 Since the seminal work by Tajfel et al. (1971), results support the

idea that even minimal group membership enhances behavior beneficial for

group members, sometimes at the expenses of the out-group (i.e., people who

are not members of the group).

1Primarily based on this ‘minimal group paradigm’, a large body of evidence has been
collected in psychology (e.g. Brewer, 1979, 1999; Tajfel and Turner, 1979) and in economics
(e.g. Bernhard et al., 2006; Buchan et al., 2006; Chavanne et al., 2011; Goette et al., 2012)
on in-group vs out-group behavior.
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A reasonable assumption is that the strength of a social tie between two

individuals can be described through the level with which each of them com-

monly identifies with the same group(s). This interpretation relies on a gradual

type of group identification that extends the binary in-group/out-group clas-

sification presented above (one may instead identify with a given group up to

a certain degree). In this case, the question is how behavior is changed when

we interact with a person we know very well compared to an acquaintance,

or a person we are only minimally tied with (e.g. a perfect stranger). What

to expect is not immediately obvious. Stronger ties with others might lead to

better predictions of others’ intentions. For example, a stronger tie between

two individuals might influence their concerns for each other’s outcomes ac-

cording to existing theories of social preferences (e.g. Charness and Rabin,

2002; Fehr and Schmidt, 1999), which all assume individual intentions (what

should I do?) to maximize the overall benefit of the group. Alternatively,

stronger connectedness might induce another type of reasoning that focuses

on collective intentions (what should we do?) to reach the same group bene-

ficial outcome (e.g. Bacharach, 1999; Sugden, 2000, 2003). Finally, a stronger

social tie between two individuals might enforce some commonly known exter-

nal norms such that the cost for deviating from them increases (Goette et al.,

2012): not conforming to an in-group norm may lead one to identify more as

an out-group member and consequently deteriorate the quality of the social

relationship.

Recent experimental evidence has observed that, for the case of symmetric

games, an ‘enhanced’ minimal group paradigm enables coordination among

multiple Pareto ranked equilibria (Chen and Chen, 2011). Similarly Gaechter

et al. (2012) observe that players scoring higher on a psychological measure of

shared identity (‘one’-ness) are more likely to coordinate on high e↵ort levels

in a weakest link game. Furthermore, Charness et al. (2007) have shown that

coordination can increase in a battle of the sexes game when a ‘host’ player

(in-group member) interacts with a ‘guest’ player (out-group member). In this

case, making these roles salient to the players (when they are both observed

by the host’s in-group members) leads coordination to favor an ‘aggressive’
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host who faces a more ‘accommodating’ guest.

Asymmetric games have however not been investigated for the case of dif-

ferent levels of connectedness among interacting players. Yet stronger connect-

edness might favor coordination on outcomes that are considered as better for

the group. For example, take a battle of the sexes game that does not o↵er

symmetric payo↵s dependent on which outcome the players agree on. Con-

sider the classical example of Ann and Bob who have to choose between going

to the opera or to a football game. Though Ann might prefer the opera and

Bob the football game, Ann might have a higher utility from the football game

than Bob from the opera. Thus the overall e�ciency for the couple is higher

when they coordinate on the football game.

In this paper, we study with an experiment how the level of connectedness

with others influences coordination in asymmetric battle of the sexes games,

where coordination comes at a cost for the individual. We investigate this

e↵ect in two games: an asymmetric battle of the sexes game (baseline game)

and an extension of this game where, due to the presence of an outside option,

one player has to make a conscious choice to enter the battle of the sexes

game (entrance game). The entrance game enables us to investigate how

social connectedness influences the interpretation of moves by the other.

Objective social ties are varied by making players interact with partners

from di↵erent in-groups: fellow members of their own sports team, members

of their sports club, students of their university. Sports team are exogenously

assigned, according to gender and skill at playing volleyball. In this regard,

our experimental design is di↵erent from other studies on social ties where

groups are formed endogenously Leider et al. (2009); Goeree et al. (2010),

while instead it shares features with studies where groups are randomly as-

signed Goette et al. (2012) or di↵er in terms of member characteristics Fersht-

man and Gneezy (2001). Subjective social ties are further measured by direct

questionnaires. These questionnaires are aimed at eliciting a subject’s per-

ceived self-connectedness to the group and perceived ties between other team

members.

Our results show that even in asymmetric games where one player has
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to accept an individual cost, coordination on a group beneficial outcome is

increased with both stronger objective ties and stronger subjective ties. Higher

social connectedness indeed enhances the focal value of such group beneficial

outcomes.

The rest of the article is organized as follows. Section 2 clarifies the concept

of a social tie that we consider. Section 3 presents the two versions of the

asymmetric battle of the sexes game (the baseline and entrance game) studied

in this paper. We further discuss how social ties are measured. Specifically

we distinguish between objective ties (which refer to the type of partners a

subject interacts with) and subjective ties (which correspond to a subject’s

own perception about social relationships within a group). Section 4 gives

the procedures of the experiment and Section 5 presents results from both

coordination games, depending on both types of social ties (objective and

subjective). Section 6 discusses the theoretical implications of our results.

2 Defining social ties

The concept of social ties that we consider relies on social identity theory

(Tajfel and Turner, 1979; Hogg, 2002), according to which an individual’s

social identity is built upon a set of social features, each referring to a salient

characteristic that can be shared by individuals in a particular context (e.g.,

one may identify himself as a student of a specific university, a member of a

particular sport club, a member of a political party, etc).

However, departing from this theory, we assert that the minimal criterion

for the existence of a social tie between two individuals is for them to com-

monly believe that they share the same social features that define their social

identities (Attanasi et al., 2014). Such a requirement clearly distinguishes so-

cial ties from unilateral ties where a person’s perceived closeness with another

may not be reciprocated (feeling close to someone, e.g., a political figure, is

insu�cient to be described as a social tie).

Beyond this basic definition, an important property of social ties lies in

their quantitative aspect: two individuals can indeed be more or less socially
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connected with one another. In this case, we argue that the strength of a tie can

be determined based on the quantity and importance of the social features that

are shared by the two persons. Intuitively, sharing more social features of high

importance (as commonly perceived by the two individuals) leads to a stronger

social tie. This reasonable statement characterizes an informational dimension

of social ties, in the sense that two individuals can be more socially connected

simply by commonly acquiring relevant information about each other’s social

identities.

However, we believe that there exists another important aspect influencing

the strength of a social tie between two individuals: the quantity and quality

of past interactions between them. Indeed, a tie between two persons can

reasonably become stronger if they interact frequently and/or share positive

meaningful experiences (e.g., exchanging ideas, opinions, emotions, etc.) with

each other. This characterizes an experiential dimension of social ties.

In this study, we aim at testing the e↵ects of those two factors by (1)

exogeneously manipulating individuals’ knowledge about each other’s social

identities (objective social ties), and (2) measuring their own perception of

social closeness with one another (subjective social ties).

3 Experimental Design

In the following, we will introduce two coordination games to study social ties:

the first is a variant of the battle of the sexes game that we call the ‘baseline

game’; the second extends the previous game by adding an outside option

and is named the ‘entrance game’.

3.1 The baseline game

The coordination game that we consider as baseline is an asymmetric battle

of the sexes game. It is a simultaneous move game with two players (1 for

row and 2 for column), each of which has to choose between two available

actions A and B. The corresponding payo↵ matrix is represented in Figure
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1(a). As in the traditional battle of the sexes, the worst scenario for both

players is to miscoordinate (i.e., playing A while the other plays B or vice

versa). Furthermore, the players have diverging preferences regarding the best

outcome for themselves: player 1 prefers coordination on (A,A) while player 2

prefers coordination on (B,B). However, unlike the classical battle of the sexes

game, the lowest payo↵ is di↵erent in the two coordination outcomes: outcome

(B,B) is worth more to player 1 than outcome (A,A) is worth to player 2.

In spite of this di↵erence, the game theoretic properties of this asymmetric

battle of the sexes game remain as in the classical case: both (A,A) and (B,B)

are the only pure-strategy Nash equilibria, which also are the only Pareto

optimal outcomes.2

The main feature of this game lies on the impact of group preferences on

players’ behavior. As in the classical battle of the sexes, being self-interested is

not su�cient to guarantee coordination success. However, in our asymmetric

game, one can notice the existence of a unique group beneficial outcome for

the group, which is not present in the classical battle of the sexes game: out

of the two pure-strategy Nash equilibria, the outcome (B,B) seems better for

the group. Whether one considers the sum, the average, the di↵erence, or

the minimum value among the individual payo↵s as a measure of the group’s

utility, this outcome always outperforms every other solution. In fact, the

asymmetry in the players’ payo↵s provides a clear possibility of favoring the

group as a whole, which can allow them to also maximize their self interest

(any coordination is always better than miscoordination). Both players may

then consider this salient solution as a coordination device. However, one

should note that, as the corresponding solution (B,B) favors player 2 more

than it favors player 1 (what is best for the group is also best for player 2),

coordination is not guaranteed. We will investigate whether participants in

the role of player 1 detect and follow the salient outcome (B,B), and which

factors weaken or strengthen the focus on it.

2There also exists a Nash equilibrium in mixed strategies, which consists of playing A
with probability 7/8 for player 1 and playing B with probability 7/10 for player 2 (in this
case, the respective expected payo↵s are 10.5 for player 1, and 4.4 for player 2).
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player 1
A

A

B

B

player 2

(35,5)

(15,35)(0,0)

(0,0)

(a) The baseline game (asymmetric battle

of the sexes game).

player 1

(20,10)

In

Out

A

A

B

B

player 2

(35,5)

(15,35)(0,0)

(0,0)

(b) The entrance game (asymmetric battle

of the sexes game with outside option).

Figure 1: Baseline and entrance game.

3.2 The entrance game

We extend the baseline game presented above to the ‘entrance game’ by adding

an outside option (see Figure 1(b)), i.e. asymmetric battle of the sexes

game with outside option. In this two-player game, prior to playing the

coordination game itself, player 1 is o↵ered the possibility of a fixed outside

option. If he chooses to enter the coordination game (play ‘In’) both players

play the asymmetric battle of the sexes game as described in the previous

section. If he takes the outside option (play ‘Out’), the game ends with player

1 earning 20 and player 2 earning 10.

The outside option makes participation in the coordination game a volun-

tary decision by player 1. Entering the game can therefore be interpreted as

a signal to play a certain strategy. How this signal is interpreted will depend

on player 2’s beliefs about player 1’s motivations: specifically if player 1 is

expected to be self-interested or to take the group interest into account.

Before expanding this forward induction argument, let us notice that the

entrance game contains three Nash equilibria in pure strategies: ((In,A),A),

((Out,A),B), ((Out,B),B).3 Considering subgame perfect Nash equilibria by

backward induction allows us to rule out the solution ((Out,A),B).4

3Moreover, the entrance game also has Nash equilibria in mixed strategies, which consist
of player 1 always playing Out (i.e., selecting either strategy (Out,A) or strategy (Out,B)
with probability 1) and player 2 playing B with probability 3/7.

4There also exists a Nash equilibrium in behavioral strategies, which consists of player 1
always choosing Out first and playing B with probability 1/8 in the subgame; while player
2 plays B with probability 7/10.
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Forward induction then allows us to restrict the set of subgame perfect

Nash equilibria to those solutions that survive the iterated elimination of

weakly dominated strategies. Initially player 1’s strategy (In,B) is weakly (and

strictly) dominated by any strategy involving Out. Then player 2’s strategy

B becomes weakly dominated by A. Thus player 1’s strategies (Out,A) and

(Out,B) are both weakly (and strictly) dominated by (In,A). Therefore, the

unique forward induction solution is ((In,A),A).

Indeed, assuming common knowledge that both players are fully rational

and motivated by their own self interest, this solution should be played. When

playing In, player 1 signals that he intends to play A in the subgame (if he

intended to play B, he would have been better o↵ playing Out in the first

place). Therefore, as a best response, player 2’s unique rational move is to

play A. Finally, since outcome ((In,A),A) is better for player 1 than selecting

Out, he chooses (In,A).5 This therefore suggests that such a game introduces

some ‘first mover’ advantage, assuming there is common knowledge that both

players are self-interested agents.6 Let us also point out that such a forward

induction argument has already received wide experimental support in the

literature (e.g. Brandts and Holt, 1989; Cooper et al., 1992, 1993; Van Huyck

et al., 1993; Balkenborg, 1994; Brandts and Holt, 1995; Cachon and Camerer,

1996; Shahriar, 2009).

However, if players focus on some collective goals and expect others to do

the same, entering the subgame will be associated with a choice of B. As a

result, stronger social ties with a group might lead to either e↵ect: a stronger

belief in individual rationality of partners that are more identifiable (group

members) or a stronger belief in collective rationality by group members. In

the former case, ((In,A),A) will be played. In the latter case the outcome will

be ((In,B),B).

Specifically, the entrance game will enable us to observe if players linked by

stronger social ties are more likely to expect coordination in the subgame and

5No Nash equilibrium in mixed/behavioral strategies does resist this forward induction
argument.

6The forward induction argument holds also if player 2 is not a self-interested agent,
provided that he prefers outcome ((In,A),A) to outcome ((In,A),B).
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therefore more likely to enter the second stage of the game (when acting as

player 1). In turn, reactions by player 2 will allow us to investigate whether and

how – via coordination on either (A,A) or (B,B) – this intention is understood.

The baseline game will serve us as control to see whether the first stage is

always needed to signal intentions.

3.3 Varying social ties

We vary the strength of social ties by considering partners that come from

more or less strongly linked ‘in-groups’. This manipulation aims at controlling

for the informational dimension of social ties introduced in Section 2. More

precisely, we investigate three levels of ‘in-groups’ (objective ties).

The weakest level of social ties concerns our treatment university. In this

treatment, participants know that they will interact with a fellow student from

their own university. Note that this is the default in most laboratory experi-

ments and therefore the possibility of social ties between such participants is

assumed to be minimal.

Our strongest level of social ties concerns our treatment team in which two

players from the same volleyball team interact. Teams consist of 7 to 9 players

and meet at least once per week for a two-hour training session. Note that

interactions were anonymous in the sense that no participant could identify

his interaction partner from the game. However it was common knowledge

that both participants were members of the same team.

A third treatment gives some intermediate level of social ties: club. Here

both participants were members of the same volleyball club, but not playing in

the same team. The club had around 70 members and members might interact

before and after training with players that were not from their own team.

We further elicited through questionnaires how well the players saw them-

selves linked to their teammates and how they considered the relationship

between their teammates. We use these subjective measures to determine so-

cial ties through their experiential dimension as presented in Section 2. More

specifically, participants responded to two types of scales (subjective ties).

10



The first scale (direct scale) asked with respect to each team member ‘how

do you think this person feels about you?’ (see Figure 7 in the Appendix for an

example). Participants could choose between ‘likes me a lot’, ‘likes me’, ‘dis-

likes me’ and ‘is indi↵erent’.7 Answers to this measure allow us to determine

how well the individual feels ‘liked’ and thus connected to his team (index of

subjective connectedness of the self to the group). Specifically, for every par-

ticipant i, the corresponding coe�cient of i’s belief about self connectedness

to the group G (i 2 G) is determined by:

kS
i =

Ni

|G|� 1

where |G| denotes the size of the team and Ni defines the number of individuals

in G that participant i believes to strongly like him. Specifically, Ni indicates

how many times the answer ‘the other likes me a lot’ was selected by i in the

questionnaire. Note that kS
i simply stands for the probability that individual

i interacts with a person he believes to strongly like him.

Let us also define the average self connectedness KS within the group G

as follows:

KS =

P
i2G kS

i

|G|

We will use this measure later to determine whether an individual scores

more or less high concerning beliefs about his own popularity compared to his

team mates.

The second scale (indirect scale) aimed at eliciting ties between team mem-

bers as perceived by the participant. To do so, each participant i was asked

to indicate for any two members of his team whether he considered them to

be ‘friends’ (for an example, see Figure 8 in the Appendix). The scale was

presented in a visual intuitive form with all team members’ photographs ar-

ranged in a circle, where participants were asked to indicate by a line any two

7Participants also answered for each team member whether they ‘liked a lot’, ‘liked’ or
‘disliked’ this person. Answers were strongly correlated with the indirect question.
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members they thought to be friends (excluding themselves).8 In the example

from Figure 8, individual C responds to the questionnaire and indicates her

belief that F is friend with A and G, that G is also friend with E, and that D

and B are friends.

Based on answers to this measure, we construct an index of the individual

belief about the groups connectedness kG
i . Specifically, we hypothesize that in

our game, behavior does not only depend on the individual’s closeness to every

other member, but also on the belief about every other member’s closeness to

each other. To illustrate this assumption, imagine a group of four individuals

(Alice, Bob, Carol, and Daniel) and suppose it is common knowledge that

Alice is equally close to Bob, Carol, and Daniel, while these three characters

are not tied with each other. In the case where every individual is equally

likely to interact with any other group member, Alice is indi↵erent between

interacting with the three others (she is sure to interact with someone she

is tied with). However, Bob, Carol, and Daniel are not indi↵erent: they all

prefer to interact with Alice, which turns out to be a rather unlikely event

with probability p = 1/3. As a result, Bob, Carol, and Daniel can be seen as

weakly tied with the group. Concerning coordination, Alice thus needs to take

this into account and should act as if she is a weekly tied participant (if she

does not, she exposes herself to the risk of performing some group-regarding

behavior that is not reciprocated).

For every participant i, the corresponding coe�cient of i’s belief about the

group connectedness is calculated as follows:

kG
i =

N�i

M

where N�i represent the estimated number of links in the group G (according

to i’s beliefs) that do not involve i,9 and M corresponds to the maximum

number of individual links that are possible in the group without individual i:

8During the experiment, participants were notified that any link that would involve
themselves in this question would simply be ignored.

9A link not involving player i is a connection between two players j and h, where j and
h are di↵erent from i.
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M =

✓
|G|� 1

2

◆
=

(|G|� 1) · (|G|� 2)

2

Note that kG
i resembles the concept of a local clustering coe�cient, which

characterizes the probability that two randomly selected neighbors of i are tied

with each other (Watts and Strogatz, 1998; Newman, 2003). As an illustrative

example from Figure 8 in the Appendix, assuming the corresponding answer

was made by individual C, we would obtain kG
C = 4

21

.

Let us also define the average group connectedness KG within some group

G as follows:

KG =

P
i2G kG

i

|G|

4 Experimental Procedure

Participants in our experiments were students from the University of Toulouse

(Capitole) who were also members of the main university volleyball club. Dur-

ing a preliminary meeting, every active member of the club was proposed to

participate in our study. Upon acceptance, every participant was then pho-

tographed for later use in the questionnaire (see Figures 7 and 8 in the Ap-

pendix for examples).

The experiment was run in November 2011 during two training sessions.

In total, 70 subjects participated (37 men and 33 women). At the beginning

of the academic year (September 2011), volleyball players within the club were

divided by the coach into 9 single-sex teams: 5 male teams and 4 female teams.

Each team had between 7 and 9 members. Students of the same gender were

ranked according to their initial skills at playing volleyball: the best players

were assigned to team 1, the next best players to team 2, and so on. The

coach enforced assignment to teams such that no switch between members

of di↵erent teams was allowed along the academic year. For instance, any

player’s request to join a particular team because a friend belonged to that

team would be declined.
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Another 43 students were recruited from the same university as partners for

the game played with another university student. Data from these observations

are not discussed in this paper.

The experiment was run by paper and pencil during training sessions. Sub-

jects first filled out a demographic questionnaire and answered to the direct

and indirect scales for social ties. Social ties were elicited before the games

were played to prevent an impact of game behavior on social tie measures.

Presenting the questionnaire before the game further ensures that participants

were aware of their social ties to the team and that they were aware that other

participants had also been asked the same questions. This common knowledge

assumption is indeed part of the minimum criterion for the existence of a social

tie, as defined in Section 2.

Every participant was then asked to report strategies for the baseline game

and the entrance game according to three di↵erent types of reference groups.

All treatment comparisons are therefore on a within-subject level. Indeed,

within-subject comparison seems necessary for our research question, since

social ties are necessarily individual characteristics. To control for order e↵ects

between the baseline game and the entrance game, the order of games was

counterbalanced across subjects. The detailed instructions of both games are

described in Sections B.2 and B.4 of the Appendix.

The three in-group treatments (team, club and university) were played by

every subject and the order was inverted for half of the sessions. However,

since answers were given by paper and pencil, participants were free to answer

these questions in any order they wished. Participants responded by meta-

strategy method for each possible treatment, i.e., all subjects had to indicate

their decision if assigned the role of player 1, as well as their decision if assigned

the role of player 2. This was made for both the baseline and the entrance

game, and for each possible treatment, i.e. if playing with a university student,

a club member, or a teammate (12 decisions as a whole).10 Participants were

10We acknowledge that our strategy elicitation method might lead to an experimental
demand e↵ect: a subject being asked similar questions that only di↵er for the interaction
partner – team, club, or university member –, he could report di↵erent strategies for di↵erent
partners. However, the fact that the strategy elicitation is monetarily incentivized should

14



informed that only upon completion of the questionnaire, their role, the game,

and the treatment selected for payout would be randomly determined.

The experiment lasted approximately one hour. Earnings were payed out

during the next training sessions in December 2011. The payment method,

which was specified to all subjects in the instructions (see Section B.1 from the

Appendix), consisted of randomly drawing one role (i.e., player 1 or player 2),

one game (i.e., entrance game or baseline game), one treatment (i.e., university,

club, or team), and one co-player (depending on the treatment). A subject’s

payo↵ was therefore defined according to his choice made as the selected player

in the selected situation (which corresponds to the selected treatment in the

selected game), and the selected co-player’s choice in the same situation. Each

e↵ective payment was made individually and anonymously through random

draws taken in front of the concerned participant.11 Earnings included a 5

euros show-up fee. Mean earnings were about 19 euros12 (standard deviation

of 12 euros, with a maximum of 40 euros and a minimum of 5 euros).

5 Results

We will start the analysis by considering di↵erences across the three treat-

ments (determining di↵erent types of partners). In addition to this exogenous

variation of ties to the interaction partner, we will in a second part consider

whether similar patterns can be observed when considering the subjective mea-

sures of social ties as defined above (through coe�cients kS
i and kG

i ). Since

we observe no significant e↵ect of team gender and team rank over subjects’

behavior in all role-game-treatment situations, we will in the following pool

data from the nine di↵erent teams.

mitigate this problem. Furthermore, the experimental demand in our study is not easy
to detect, and does not necessarily require di↵erent strategies if matched with di↵erent
partners. For instance, subjects with low subjective ties (e.g., group connectedness) should
not choose strategy (In, B) in the entrance game independently of the treatment (see Figure
5 in Section 5).

11The random selection of the co-player was made through a random code name to pre-
serve anonymity between subjects.

12Approximately 25 US dollars at the time of the experiment (1 euro = 1.4 US dollars).
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5.1 Objective social ties

We first present descriptive statistics concerning the players’ behavior in both

the baseline game and the entrance game, for the three treatment scenarios

(i.e., team, club and university). Note that in this case, the social ties are

considered objective as their strength is exogenously controlled by changing

the type of a participant’s interaction partner. Since we observe no order e↵ect

regarding which game or treatment was presented first, we will in the following

pool data from the di↵erent sessions.

5.1.1 Baseline game

We present choices in the baseline game, depending on whether the correspond-

ing co-player is a teammate, a club member, or a fellow university student in

Figure 2 (detailed results can be found in Table 4 of the Appendix).

Let us recall the predictions concerning the impact of social ties for player

1 and player 2. Specifically, for player 2, the own payo↵ maximizing outcome

coincides with the outcome that is best for the group (i.e. (B,B)). Meanwhile

player 1 faces a choice between the own payo↵ maximizing outcome (A,A) and

the outcome that is considered as best for the group (B,B). Increasing social

ties is therefore expected to increase the percentage of players 1 choosing

option B. This is indeed what we observe. As we see in Figure 2, an increasing

percentage of players 1 select option B when the social tie with the interaction

group increases. We can reject the null hypothesis that player 1 is making the

same choice when paired with a university student as when interacting with a

teammate (Wilcoxon signed rank test, p = 0.002). For the intermediate level

of the social tie (i.e. the club treatment), behavior is situated between the two

extremes.

When acting in the role of player 2, subjects clearly favor option B in all

types of interactions.13 Varying the strength of the social tie has no impact on

choices by player 2. While this is in line with the prediction that self interest

13Note that in this case, player 2’s average behavior is close to the optimal mixed strategy
i.e., playing B with probability 7/10.
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Figure 2: Behavior in the baseline game for all players in each type of matching.
Significance levels based on Wilcoxon signed rank tests: p < 0.01 (⇤⇤⇤); p < 0.1
(⇤). Data recorded by meta-strategy method thus each bar consists of 69
observations.

and group interest are not at conflict for player 2, this also implies that they

do not seem to anticipate player 1 being influenced by the strength of the

social tie. We will next use our observations from the entrance game to see

whether player 2 is more likely to take the treatment di↵erence into account

when he knows that player 1 has to make an active choice to participate in

the coordination game.

5.1.2 Entrance game

In the context of the entrance game, our first observation is that participants

interacting with a team member in contrast to a university student are signif-

icantly more likely to enter the second stage of the entrance game (Wilcoxon

signed rank test: p = 0.004). Recall that agents will only enter the second

stage of the game if they believe that this will lead to an outcome that is

on some dimension preferable to the outside option. Under the assumption

that others will maximize own income and that others expect the agent to do

the same, this might lead to the forward induction reasoning that results in

choosing A in the subgame. If however agents focus on some collective goals
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Figure 3: Behavior in the entrance game. Significance levels based onWilcoxon
signed rank tests: p < 0.01 (⇤⇤⇤); p < 0.05 (⇤⇤). Data recorded by meta-strategy
method thus 69 observations per treatment and player role.

and expect others to do the same, entering the subgame will be associated

with a choice of B. As a result, stronger social ties with a team might lead

to either e↵ect: a stronger belief in individual rationality of partners that are

more identifiable (teammates) or a stronger belief in collective rationality by

team members.

We present choices concerning both roles in the entrance game, depending

on whether interacting with a teammate, a club member, or a fellow university

student in Figure 3. For player 1, we focus on strategies (In,A), (In,B), and

Out.

Figure 3(a) allows us to reject the hypothesis that social ties promote

forward induction focused on individual rationality. Indeed, the proportion of

subjects selecting strategy (In,A) is similar in all treatments. On the other

hand, Figure 3(a) shows that subjects are significantly more likely to choose

(In,B) when interacting at the team level than at the university level (39% vs

20%, Wilcoxon signed rank test: p = 0.003). This shows a significant fraction

of participants that switch from selecting Out when interacting with a fellow

university student, to selecting (In,B) when interacting with an individual from

their team.

We further observe no significant di↵erence between player 1’s behavior in
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the second stage of the entrance game (i.e., after choosing In) and choices in

the baseline game from Section 5.1.1. Among the subjects who played In in the

first stage, we observe that option B is selected for: 63% (team), 56% (club)

and 48% (university) of participants. As this behavior is very similar to that

in the baseline game from Figure 2 (Wilcoxon signed rank tests: p = 0.405

in team treatment, p = 0.527 in club treatment, p = 0.257 in university

treatment), we conclude that the outside option of the entrance game has only

a negligible e↵ect on player 1’s behavior in the coordination game. In other

words, right after playing In, player 1 tends to consider the subgame as a new

independent game. We will get back to this observation in Section 5.3 when

discussing the joint meta-strategy behind the veil of ignorance whether the

agent will act as player 1 or 2.

We now turn to the question of whether choices in the role of player 2

are also una↵ected by the outside option. Matched with fellow university

students, we observe that choices as player 2 are indeed influenced by the

outside option as forward induction would assume. Specifically 64% of players

2 choose B in the entrance game, while 74% choose this option in the baseline

game (Wilcoxon signed rank test: p = 0.07). We further observe from Figure

3(b) that, when playing with a team member, player 2 chooses B significantly

more often than when interacting with a university student (Wilcoxon signed

rank test: p = 0.049). These results therefore confirm the hypothesis that

social ties help people to coordinate on the most group beneficial outcome

((B,B) in the baseline game, (In,B,B) in the entrance game).

5.2 Subjective social ties

We will now extend our analysis to include the subjective measures of social

ties as defined in Section 3.3. As discussed previously, every subject in our

experiment was asked to provide subjective information about whether they

believed their teammates to like them and how much they considered their

teammates to be friends with each other. Using these answers, we calculate

two subjective measures of social ties for each individual i: kS
i and kG

i .
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Category Condition N
(a) HS kS

i � KS 38
LS kS

i < KS 31

(b) HG kG
i � KG 30

LG kG
i < KG 39

Table 1: Classifications based on subjective reports relative to average in group
concerning (a) self connectedness (KS), and (b) group connectedness (KG).

To analyze the relation between these measures and behavior in our games,

we categorize participants as ranking either above (HS and HG) or below (LS

and LG) the average answers in their own team (i.e., KS and KG respectively).

By doing so, we avoid the possible confound that some teams might be more

closely tied than others and focus on the relative part of the measure 14.

Table 1 summarizes the classification with respect to the group average

concerning (a) self connectedness (KS) and (b) group connectedness (KG).

The two measures show no statistically significant correlation (Pearson’s chi-

squared test: �2=1.464, p = 0.226). We therefore consider these two types of

measures separately throughout the following analysis.

The objective of the next sections is to identify subjective measures that

allow us to replicate the previous observed results for the objective variation

of social connectedness. While the previous section focused on a compari-

son between participants paired with team members, club members, or fellow

university students, this section will compare behavior at the team level for

participants scoring either high or low on the di↵erent subjective measures.

5.2.1 Baseline game

We start our analysis with observations from the baseline game. Recall that

in Section 5.1.1 we found a significant treatment e↵ect for choices of player 1.

We will thus focus, in the following, on choices by player 1 when interacting

with another team member. Our comparison will be between individuals cat-

14We find that high-rank teams score higher on average on the self-connectedness scale
than low-rank teams.
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Figure 4: Player 1’s behavior in the baseline game. (a) Team treatment;
(b) University treatment. Significance levels based on Mann-Whitney tests:
p < 0.05 (⇤⇤). Data recorded by meta-strategy method thus 69 observations
per treatment.

egorized as either ‘high’ or ‘low’ for either our measure of self connectedness

(HS and LS respectively) or group connectedness (HG and LG respectively).

As a control, we will also present results concerning choices when interacting

with a fellow university student. Recall that both connectedness measures

were recorded with respect to team members. A good measure of the social

connectedness at the team level should therefore show no e↵ect on choices

when interacting with an individual at the university level.

Figure 4(a) summarizes choices for self and group connectedness at the

team level (see also Tables 5 and 6 in the Appendix). We observe an e↵ect for

both self and group connectedness, marginal in the first case (Mann-Whitney

test comparing HS vs LS: p = 0.109) and significant in the latter (Mann-

Whitney test comparing HG vs LG: p = 0.018). In both cases, participants

reporting high values concerning connectedness are more likely to choose the

group beneficial outcome B.

Looking at choices by the same groups of participants in the university

treatment (see Figure 4(b)), we can now disentangle whether the e↵ect is due
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to an increased concern for others in the team or whether the measures also

pick up some other e↵ect. Indeed in both cases, the same tendency observed

in the team treatment is also observed in the university treatment (Mann-

Whitney test in the university treatment: HS vs LS : p = 0.115; HG vs

LG: p = 0.042). Both measures thus seem to be related to individual char-

acteristics that lead agents to make more group beneficial choices in general.

One possible interpretation could be that self/group connectedness among our

participants may be correlated with other-regarding traits. An alternative

interpretation is that these individuals can more easily detect (B,B) as the

unique group beneficial outcome that might help solve the coordination prob-

lem. Following this interpretation, they play B to maximize the welfare of the

group in the ‘team’ treatment and to maximize their own individual payo↵

in the ‘university’ treatment. Indeed, it is worth recalling that, besides being

the fairest outcome, (B,B) is also a Nash equilibrium in the baseline game.

To distinguish between these two hypotheses, we will next analyze the results

from the entrance game.

5.2.2 Entrance game

Recall that in the entrance game, a treatment e↵ect was observed as well

for player 1 as for player 2 when interacting with a team member (see Section

5.1.2). The focus by both players on action B is striking given that the outcome

((In,B),B) is not a Nash equilibrium.

As in the previous section, we now present behavior by player 1 and player

2 in the team treatment in Figures 5(a) and 6(a) respectively (see also Tables

7-12 in the Appendix). We observe from Figure 5(a) that both the group and

the individual connectedness measures are correlated with player 1’s decision

to select strategy (In,B) (self connectedness: 50% vs 26%; Mann-Whitney

test: p = 0.042; group connectedness: 57% vs 26%; Mann-Whitney test:

p = 0.009). However, when we turn to behavior as player 2, we observe a

di↵erence between the two measures (see Figure 6(a)). Recall that player 2 in

this game has to understand the possible reasons that might lead player 1 to

enter the game. Behavior as player 2 is very similar no matter the reports of
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Figure 5: Player 1’s behavior in the entrance game. (a) Team treatment;
(b) University treatment. Significance levels based on Mann-Whitney tests:
p < 0.05 (⇤⇤); p < 0.01 (⇤⇤⇤). Data recorded by meta-strategy method thus 69
observations per treatment.

the individuals’ self connectedness (proportion of selecting B: 76% vs 77%).

Thus believing that one is liked by many other players is not su�cient to

conclude that these other players would in an anonymous interaction take a

risky choice (B vs A) with any person from the team. Meanwhile, we observe

that the group connectedness measure is significantly correlated with player 2’s

choice (proportion of selecting B: 90% vs 67%; Mann-Whitney test: p = 0.024).

Thus players that believe in a high interconnectedness in their team are more

likely to believe that player 1 enters the game to play the group beneficial

outcome.

As before, we can also compare these results to behavior when interacting

with a fellow university student. We observe from Figures 5(b) and 6(b) that

there exists no significant correlation between the connectedness measures and

choices at the university level. This clearly indicates that subjective beliefs

concerning self and group connectedness are only related to behavior (as player

1 and player 2) when interacting with a team member. It thus seems that

subjective beliefs about self and group connectedness are rather correlated
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Figure 6: Player 2’s behavior in the entrance game. (a) Team treatment;
(b) University treatment. Significance levels based on Mann-Whitney tests:
p < 0.05 (⇤⇤). Data recorded by meta-strategy method thus 69 observations
per treatment.

with an ability to identify the focal nature of the (B,B) outcome and not to a

higher level of fairness (see hypotheses at the end of Section 5.2.1).

Results in Figures 5 and 6 further show that subjects who perceive low

social connectedness within their team behave similarly with a teammate and

a random university student in the entrance game. This observation clearly

indicates that increased coordination on the group beneficial outcome in the

team treatment is not driven by some notion of group identity, but instead re-

sults from the subjective perception of social closeness (and in particular group

connectedness). In other words, sharing the same social features that char-

acterize the players’ social identities (informational dimension of social ties)

is alone insu�cient to induce e↵ective coordination in this context. Sharing

some positive experience is also required.
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Strategies
treatment

team club university
(A,A) 13% 13% 12%
(A,B) 19% 29% 39%
(B,A) 10% 10% 14%
(B,B) 58% 48% 35%

Table 2: Meta-strategies in the original position of the baseline game across
treatments (69 observations per treatment).

5.3 Behind the veil of ignorance

Recall that in our experiment, strategies were elicited by meta-strategy method

for the case of being selected as either player 1 or player 2. This allows us to

add to the previous discussion, an analysis of behavior in the ‘original position’

of the meta-game before actual roles were assigned (Rawls, 1971).

To analyze behavior in the meta-game, we need to consider equilibria for

the higher order symmetric game. We will denote strategies for this game as

(x
1

, x
2

), where x
1

indicates the choice when assigned to the role of player 1

and x
2

the choice for the role of player 2.

In the baseline game, four distinct strategies exist: (A,A), (B,B), (A,B) and

(B,A). The payo↵ matrix concerning expected earnings from the transformed

game can be found in Table 13 of the Appendix. We can easily see that there

exist three di↵erent pure-strategy Nash equilibria: (1) both players selecting

(A,A); (2) both players selecting (B,B); and (3) one player selecting (A,B)

while the other chooses (B,A). Note that the third solution is not consistent

with making a decision in Rawls’ original position, since the latter implies to

select the same strategy that one expects others to select. Furthermore, of all

the above strategies, only (A,A) and (B,B) are evolutionary stable.

Observed behavior of meta-strategies for the baseline game is shown in Ta-

ble 2. When interacting with another university student, 39% of participants

select strategy (A,B) in this game. Note that this is coherent with participants

expecting their interaction partner to act di↵erently (e.g. to choose (B,A)). In

other words, participants seem to strongly identify with each player role (i.e.,

25



they do not use Rawls’ original position to make their decision): when they

act as player 1, they do not consider what they would do as player 2, and vice

versa.

However we observe a change in behavior when we consider the team treat-

ment. A Wilcoxon signed rank test indeed indicates that (B,B) is selected

significantly more often in the team treatment (57%) than in the university

treatment (34%, p < 0.001). Considering the independence of strategies played

in the role of player 1 and player 2 further emphasizes this result. We observe

no correlation in the case of the university treatment (Pearson’s chi-squared

test, �2=0.384, p = 0.535) but a significant correlation in the team treatment

(Pearson’s chi-squared test, �2=5.694, p = 0.017). For further details, see Ta-

ble 15 in the Appendix. In other words, these results suggest that increasing

social ties leads people to take Rawls’ original position into account.

Similar results can be obtained for the entrance game. In this case, six

distinct strategies need to be considered (see Table 14 for the payo↵ matrix).15

The transformed entrance game has three pure-strategy Nash equilibria: (1)

both players selecting ((In,A),A); (2) both players selecting (Out,B); (3) one

player selecting ((In,A),B) while the other chooses (Out,A). As in the baseline

game, the latter solution is not consistent with making a decision in Rawls’

original position. In this case, of the six strategies available, only ((In,A),A)

is evolutionary stable.

Similarly to the baseline game, we observe that, in the entrance game,

social ties still lead people to act as if they were in the original position (see

Table 3). A Wilcoxon signed rank test again reveals that ((In,B),B) is selected

significantly more often in the team treatment (35%) than in the university

treatment (13%, p < 0.001). More precisely, in the case of the university

treatment, we observe no correlation between players’ choices in both roles

(Pearson’s chi-squared test, �2=0.950, p = 0.622). However in the team

treatment, a significant correlation is observed (Pearson’s chi-squared test,

�2=8.897, p = 0.012). For further details, see Table 16 in the Appendix.

15For simplicity, we omit counterfactual strategies (i.e., ((Out,A),·) and ((Out,B),·)) that
are irrelevant to this analysis.
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Strategies
treatment

team club university
((In,A),A) 12% 7% 10%
((In,A),B) 12% 16% 12%
((In,B),A) 4% 9% 7%
((In,B),B) 35% 22% 13%
(Out,A) 7% 17% 19%
(Out,B) 30% 29% 39%

Table 3: Meta-strategies in the original position of the entrance game across
treatments (69 observations).

Specifically note that in the team treatment, the fairest outcome ((In,B),B)

becomes the modal choice.

Finally we consider the implications of these results with respect to our

subjective measures of connectedness in the particular case of interactions

between teammates. In the context of the baseline game, being closely tied

with other team members according to the group connectedness measure makes

participants select (B,B) significantly more often (73% in group HG; 46% in

group LG; Mann-Whitney test: p = 0.024). On the other hand, this e↵ect

does not replicate through the alternative self connectedness measure (63% in

group HS; 52% in group LS; Mann-Whitney test: p = 0.337). Furthermore,

looking at behavior in the entrance game reveals similar results: being closely

tied with other team members according to the group connectedness measure

makes participants select ((In,B),B) significantly more often (57% in group

HG; 18% in group LG; Mann-Whitney test: p < 0.001). Unlike in the baseline

game, using the self connectedness measure replicates this e↵ect (47% in group

HS; 19% in group LS; Mann-Whitney test: p = 0.016). These results, which

are illustrated in greater details through Figures 9 and 10 from the Appendix,

indicate that both self and group connectedness lead to choices that are more

in tune with choices that should be taken in Rawls’ original position.
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6 Discussion

The experimental study presented in this paper provides evidence that an

increase of (objective) social ties through exogenously assigned groups involv-

ing real social interactions can help individuals solve asymmetric coordination

problems with a unique clearly identifiable best outcome for the group.16 This

evidence is stronger for group members perceiving higher (subjective) social

ties among them.

In this section, we will discuss whether and in which measure relevant

theories in the literature can explain the e↵ect of social ties observed in our

study.

Theories of social preferences cannot fully explain the e↵ect of social ties

that we observe. For example an increase in inequity aversion (Bolton and

Ockenfels, 2000; Fehr and Schmidt, 1999) would predict the choice of Out for

player 1 in the entrance game. Our results show the opposite tendency. Alter-

natively, assuming that social ties correlate with stronger reciprocal fairness

(Charness and Rabin, 2002) would predict high degrees of miscoordination in

the baseline game.17 Again we observe the opposite result. Intuitively, such

theories of social preferences are not best candidates to reasonably explain

coordination in the above games because they all rely on the assumption that

people make decisions with the individual intention to promote fairness (e.g.,

acting as a benefactor). This kind of benefactor behavior (Bacharach, 1999) is

indeed not su�cient because it still requires each player to think about each

other’s possible actions in order to coordinate (in the baseline game, one may

think that B is the fairest option if the other chooses B, and that A is the

16It is worth noting that our results cannot be generalized to other interactive situations
that do not satisfy this constraint. For example, it is not di�cult to define an asymmetric
coordination game where a particular outcome maximizes the total payo↵ of the pair whereas
another maximizes equality in payo↵s. In this case, what is the most group beneficial
outcome is not clear anymore, and therefore, social ties may not be su�cient to increase
coordination in this context. We however postpone further investigation of such scenarios
to future work.

17According to the model in Charness and Rabin (2002), both outcomes (A,A) and (B,B)
are always Nash equilibria of the baseline game, no matter how strongly motivated players
are to maximize the welfare of the group.

28



fairest option if the other chooses A). For more details, see Attanasi et al.

(2014).

Coordination on the (B,B) outcome in the baseline game, and on the

((In,B),B) outcome in the entrance game can however be explained by theories

of team reasoning (Bacharach, 1999; Sugden, 2000, 2003). When an individual

engages in team reasoning, he identifies himself as a member of a group and

conceives that group as a unit of agency acting in pursuit of some collective

objective (Sugden, 2000). In other words, such an individual will act for the

interest of his group by identifying and implementing a strategy profile that

maximizes the collective payo↵ of the group. This type of thinking is clearly

distinct from that assumed in the theories of social preferences previously dis-

cussed. Under Bacharach’s concept of unreliable team interaction (Bacharach,

1999), which relies on such team reasoning, a given player identifies with a

team with a certain probability p and chooses the action which maximizes

the team benefit. With probability 1 � p the player is self-interested and

maximizes his own benefit. In the context of our experiment, given a su�-

ciently high probability of team reasoning, the players should coordinate on

the (B,B) outcome in the baseline game, and on the ((In,B),B) outcome in

the entrance game. Following this theory, our results imply that players in the

team treatment are more likely to use team reasoning than in the university

treatment (especially when they believe in strong group connectedness within

their team). However, note that the theory only considers binary types of

reasoning: either one follows team reasoning, or not. Yet, given the multiple

levels of self evoked by social identity theory, we might consider a more gradual

notion of group identification. As a result, existing theories of team reasoning

fail to fully capture the possibility of di↵erent levels of social connectedness

(see Attanasi et al. (2014) for more details regarding team reasoning and its

main limitation in the context of social ties).

Another theory, which can explain the observed behavior in our experi-

ment, is the theory of empathetic preferences (see Binmore, 1994, 1998, 2005).

Binmore argues that an individual may be equipped with some empathetic

preferences, which consist in combining his actual own preferences with his
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preferences when imagining himself to be in the other person’s position. For

example, in the context of the baseline game, an empathizing player 1 would

compare his own preferences while being himself (i.e., player 1) with his pref-

erences while being player 2.18 If making a decision based on such an inter-

personal comparison of preferences, player 1 is said to empathize with player

2. The idea is thus linked to Rawls’ concept of original position (see Section

5.3). According to the analysis of the meta-strategies discussed in Section 5.3,

we can thus say that players empathize more with each other in the presence

of social ties. However, Binmore’s theory can also not fully capture the con-

cept of gradual social ties as it does not quantify the degree of empathizing

behavior, that is, how choices are altered for intermediate levels of empathy.

As an alternative, the model of homo moralis (Alger and Weibull, 2013,

p. 2276) can also be used to interpret our results. Homo moralis faces a

trade-o↵ between maximizing his own material payo↵, and doing ’the right

thing,’ that is, choose a strategy that, if used by all individuals, would lead to

the highest possible payo↵.” Given our experimental findings, the degree of

morality seems to be stronger in the presence of stronger social ties. It should

however be noted that this model assumes a symmetric game structure and

thus strictly has to be related to the findings discussed in Section 5.3 (i.e.,

assuming participants make their decision behind the veil of ignorance).

Finally, in contrast with the above theories that can be described as some

kind of hard-wired psychological mechanisms, the concept of social norms (Bic-

chieri, 2006) can also be considered to justify the e↵ects of social ties observed

in our experiment. Indeed, such a normative approach follows the idea that a

person’s utility can be directly influenced by the conformity of his own choices

with internalized rules that have been socially defined (i.e., deviating from

such norms is costly to the individual). In particular, equilibria of coordina-

tion games can be seen as ‘norms’ insofar as they are unintended collective

18Binmore points out that, when projecting himself to be in player 2’s position, player 1
must not consider his own preferences as player 1, he must instead imagine himself while
having player 2’s preferences: since player 2 prefers outcome (B,B) to outcome (A,A), player
1 should share this preference when putting himself in player 2’s position, even though he
prefers (A,A) to (B,B) as player 1.
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outcomes of individual choices (Bicchieri, 2006, p. 51)

It has recently been argued that prosocial behavior could be driven by the

desire to adhere to social norms (e.g., Krupka and Weber, 2013): sociality is

driven not by preferences over payo↵s of others, but rather by preferences for

following well-established social rules. These norms specify the most socially

appropriate action for an agent in a given strategic setting. Hence, di↵erent

norms can be active in di↵erent contexts, and, within the same context, dif-

ferent subjects can be sensitive to di↵erent norms. Following this approach,

Kimbrough and Vostroknutov (2015) have elicited individual norm-sensitivity

and shown how it relates to play in di↵erent social dilemma games. Further-

more, Goette et al. (2012) have shown that membership to real groups as well

as minimal groups can lead to di↵erent behaviors in terms of norm enforce-

ment: in-group norm violators are more leniently punished than out-group

defectors.

Therefore, discussing which norm appears to be active in our experimental

game is worth doing. In the context of our experiment, members of a par-

ticular volleyball team may learn, throughout repeated training sessions, to

enforce the norm of “maximizing team benefit” (after all, team performance,

not individual performance, is what matters most in such team sports). This

rule may then be enforced by subjects when asked to play the above coordina-

tion games with one of their teammates. This kind of normative interpretation

is clearly plausible to justify increased coordination in the team treatment of

our experiment. However, how it can account for the increased coordination

between players with intermediate levels of ties is less obvious (Figure 3(a)

illustrates that, in the entrance game, players 1 select (In,B) more often in

the club treatment than in the university treatment). As for the previously

discussed theories, the main challenge of such a normative approach is to fully

capture the gradual nature of social ties (e.g., can di↵erent levels of ties trigger

di↵erent social norms?). We postpone such a relevant analysis to future work.
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A Measurement of subjective connectedness

Figures 7 and 8 illustrate the kind of questions that were used in our experi-

ment. Note that the individuals’ faces have been voluntarily blurred to ensure

anonymity.

Figure 7: Measuring an individual’s self connectedness with another team
member.

Figure 8: Measuring individual C’s belief of the group connectedness.

36



B Experimental Instructions

B.1 Preliminary Instructions

We are going to present two games that you will have to play with some

unknown participants. One of these games will then be drawn in order to

determine your actual earnings.

Each game considers two players. You will be asked to take a decision as

player 1 and as player 2. At the end of the experiment, we will randomly

assign one of these two roles to you.

Your actual earning will then depend on your decision in the role that will

be assigned to you as well as your partner’s decision in the selected game.

Therefore, each of your decisions is important. So please take every question

seriously by carefully answering them.

Moreover your participation to this experiment relies on the fact that you

answered every single question.

If anything is unclear or if you have any question, please do not hesitate

to raise your hand so that we can bring you the clarification that you need.

B.2 Instructions of the baseline game

During this experiment, you will interact with some randomly selected player

in a game that is defined as follows.

In the first stage, some initial amount are given to both you and your

opponent:

• 20 euros for player 1

• 10 euros for player 2

No decision needs to be taken by any player during this stage.

In the second stage, every player will then have to choose simultaneously

between two distinct moves A and B.

In the second stage:
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• If every player chooses to play A, 5 euros will be withdrawn from player

2 ’s initial amount and 15 euros will be added to player 1 ’s initial amount.

Thus player 1 will get 35 euros while player 2 will get 5 euros.

• If every player chooses to play B, 5 euros will be withdrawn from player

1 ’s initial amount and 25 euros will be added to player 2 ’s initial amount.

Thus player 1 will get 15 euros while player 2 will get 35 euros.

• If the players’ choices are di↵erent from each other, then both players’

amount will be reset to zero (each will thus get 0 euro).

The following table summarizes the various choices and payo↵s from the

second stage:

A

A

B

B
(1): 35
(2): 5

(1): 0
(2): 0

(1): 15
(2): 35

(1): 0
(2): 0

This simultaneous decision ends both the second stage and the game. All

along the game, both players will remain anonymous to one another. You will

receive the corresponding amount if this game is eventually being selected.

These instructions concern the three situations described below.

B.3 Questions for the baseline game

In the context of the previous game, you will play with X 19 (select one answer

per question).

• Please indicate your choice if you are acting as player 1:

In the second stage, you play:

19Depending on the matching process, X may stand for “a university student”, “a club
member”, or “a teammate”. Each subject answered the following two questions (as player
1 and as player 2) for all three values of X (See Section 4 for details about the matching
process).
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A B

In% Out%

• Please indicate your choice if you are acting as player 2:

In the second stage, you play:

A B

In% Out%

Note that the three previous pair of questions (with, as opponent: a uni-

versity student, a club member, or a teammate) are independent from one

another. Please make sure to answer each of them.

B.4 Instructions of the entrance game

During this experiment, you will interact with some randomly selected player

in a game that is defined as follows.

In the first stage, some initial amount are given to both you and your

opponent:

• 20 euros for player 1

• 10 euros for player 2

Then, the two following options become available to player 1 :

• The “Out” option implies that every player keeps their initial amount

and the game ends.

• The alternative option (“In”) implies entering a second stage where each

player will have to take another decision. In the latter case, both players

will then have to choose simultaneously between two distinct moves A

and B.

In the second stage:
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• If every player chooses to play A, 5 euros will be withdrawn from player

2 ’s initial amount and 15 euros will be added to player 1 ’s initial amount.

Thus player 1 will get 35 euros while player 2 will get 5 euros.

• If every player chooses to play B, 5 euros will be withdrawn from player

1 ’s initial amount and 25 euros will be added to player 2 ’s initial amount.

Thus player 1 will get 15 euros while player 2 will get 35 euros.

• If the players’ choices are di↵erent from each other, then both players’

amount will be reset to zero (each will thus get 0 euro).

The following table summarizes the various choices and payo↵s from the

second stage:

A

A

B

B
(1): 35
(2): 5

(1): 0
(2): 0

(1): 15
(2): 35

(1): 0
(2): 0

This simultaneous decision ends both the second stage and the game. All

along the game, both players will remain anonymous to one another. You will

receive the corresponding amount if this game is eventually being selected.

These instructions concern the three situations described below.

B.5 Questions for the entrance game

In the context of the previous game, you will play with X 20 (select one answer

per question).

• Please indicate your choice while you are acting as player 1:

In the first stage, you play:

20Depending on the matching process, X may stand for “a university student”, “a club
member”, or “a teammate”. Each subject answered the following two questions (as player
1 and as player 2) for all three values of X (See Section 4 for details about the matching
process).
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A B

In% Out%

In the second stage (assume that you played “In” first), you play:

A B

In% Out%

• Please indicate your choice while you are acting as player 2:

In the second stage (assume that your opponent played “In” first), you

play:

A B

In% Out%

Note that the three previous pair of questions (with, as opponent: a uni-

versity student, a club member, or a teammate) are independent from one

another. Please make sure to answer each of them.
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C Additional tables

Throughout this section, all figures include Wilcoxon signed rank test results

concerning mean rank di↵erences in behavior across treatments (i.e., team,

club, university). Moreover, some tables also include Mann-Whitney test re-

sults that allow comparing behavior across the various groups from Table 1.

Note that in all statistical tests, only p values lower than 0.2 are displayed in

the tables. p values larger than 0.2 are classified as not significant (n.s.).

C.1 Baseline game

players
Matching types

Wilcoxon signed rank test
(p values)

team club university
team vs team vs club vs

university club university

1 68% 58% 49% 0.002 0.090 0.109
2 77% 77% 74% n.s. n.s. n.s.

Table 4: Choosing B in the baseline game for each player in each type of
matching (69 observations).

Player
Matching types

Wilcoxon signed rank test

Groups
(p values)

team club university
team vs team vs club vs

university club university

HS 1 76% 68% 58% 0.008 n.s. 0.102
(38 obs.) 2 79% 74% 74% n.s. n.s. n.s.

LS 1 58% 45% 39% 0.058 n.s. n.s.
(31 obs.) 2 74% 80% 74% n.s. n.s. n.s.
HS vs LS 1 0.109 0.053 0.115
(p values) 2 n.s. n.s. n.s.

Table 5: Choosing B in the baseline game based on groups HS (kS
i � KS) and

LS (kS
i < KS).
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Player
Matching types

Wilcoxon signed rank test

Groups
(p values)

team club university
team vs team vs club vs

university club university

HG 1 83% 73% 63% 0.014 0.179 0.179
(30 obs.) 2 83% 83% 73% 0.179 n.s. 0.083

LG 1 56% 46% 38% 0.035 n.s. n.s.
(39 obs.) 2 72% 72% 74% n.s. n.s. n.s.
HG vs LG 1 0.018 0.024 0.042
(p values) 2 n.s. n.s. n.s.

Table 6: Choosing B in the baseline game based on groups HG (kG
i � KG)

and LG (kG
i < KG).

C.2 Entrance game

Tables 7, 9 and 11 depict player 1’s choice in the entrance game. Note

that these tables ignore counterfactual strategies (i.e., strategies (Out,A) and

(Out,B)). Moreover, these tables include Wilcoxon signed rank tests that com-

pare how often did subjects perform a given strategy (e.g., (In,A)) with how

often did they choose any other strategy (e.g., (In,B) or Out) in any two

treatments. Tables 8, 10 and 12 depict player 2’s choice in the entrance game,

together with Wilcoxon signed rank tests.

Choices
Matching types

Wilcoxon signed rank test
(p values)

team club university
team vs team vs club vs

university club university

(In,A) 23% 23% 21% n.s. n.s. n.s.
(In,B) 39% 30% 20% 0.003 0.157 0.035
Out 38% 47% 59% 0.004 0.083 0.059

Table 7: Player 1’s behavior in the entrance game (69 observations).

Matching types
Wilcoxon signed rank test

(p values)

team club university
team vs team vs club vs

university club university

77% 67% 64% 0.049 0.108 n.s.

Table 8: Choosing B for player 2 in the entrance game (69 observations).
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Groups Choices
Matching types

Wilcoxon signed rank test
(p values)

team club university
team vs team vs club vs

university club university

HS (In,A) 18% 8% 13% n.s. 0.102 n.s.

(38 obs.)
(In,B) 50% 39% 24% 0.007 n.s. 0.034
Out 32% 53% 63% 0.001 0.011 0.157

LS (In,A) 29% 42% 32% n.s. n.s. n.s.

(31 obs.)
(In,B) 26% 19% 16% 0.180 n.s. n.s.
Out 45% 39% 52% n.s. 0.157 n.s.

HS vs LS (In,A) n.s. 0.001 n.s.

(p values)
(In,B) 0.042 0.073 n.s.
Out 0.193 n.s. n.s.

Table 9: Player 1’s behavior in the entrance game based on groups HS (kS
i �

KS) and LS (kS
i < KS).

Matching types
Wilcoxon signed rank test

Groups
(p values)

team club university
team vs team vs club vs

university club university

HS (38 obs.) 76% 71% 68% n.s. n.s. n.s.
LS (31 obs.) 77% 61% 58% 0.083 0.095 n.s.
HS vs LS

n.s. n.s. n.s.
(p values)

Table 10: Choosing B for player 2 in the entrance game based on groups HS

(kS
i � KS) and LS (kS

i < KS).
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Groups Choices
Matching types

Wilcoxon signed rank test
(p values)

team club university
team vs team vs club vs

university club university

HG (In,A) 13% 23% 13% n.s. n.s. n.s.

(38 obs.)
(In,B) 57% 30% 20% 0.002 0.021 0.180
Out 30% 47% 67% 0.002 0.058 0.058

LG (In,A) 31% 23% 28% n.s. n.s. n.s.

(31 obs.)
(In,B) 26% 31% 20% n.s. n.s. 0.102
Out 43% 46% 52% n.s. n.s. n.s.

HG vs LG (In,A) 0.091 n.s. 0.140

(p values)
(In,B) 0.009 n.s. n.s.
Out n.s. n.s. n.s.

Table 11: Player 1’s behavior in the entrance game based on groups HG (kG
i �

KG) and LG (kG
i < KG).

Matching types
Wilcoxon signed rank test

Groups
(p values)

team club university
team vs team vs club vs

university club university

HG (30 obs.) 90% 70% 63% 0.011 0.057 n.s.
LG (39 obs.) 67% 64% 64% n.s. n.s. n.s.
HG vs LG

0.024 n.s. n.s.
(p values)

Table 12: Choosing B for player 2 in the entrance subgame based on groups
HG (kG

i � KG) and LG (kG
i < KG).
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D Behind the veil of ignorance

Tables 13 and 14 represent respectively the payo↵ matrices of the baseline

game and the entrance game when played behind the veil of ignorance.

Player X
Player Y

(A,A) (A,B) (B,A) (B,B)
(A,A) 20 2.5 17.5 0
(A,B) 17.5 0 35 17.5
(B,A) 2.5 10 0 7.5
(B,B) 0 7.5 17.5 25

Table 13: Average payo↵s for row Player X in the transformed baseline game.

Player X
Player Y

((In,A),A) ((In,A),B) ((In,B),A) ((In,B),B) (Out,A) (Out,B)
((In,A),A) 20 2.55 17.5 0 22.5 5
((In,A),B) 17.5 0 35 17.5 22.5 5
((In,B),A) 2.5 10 0 7.5 5 12.5
((In,B),B) 0 7.5 17.5 25 5 12.5
(Out,A) 12.5 12.5 10 10 15 15
(Out,B) 10 10 27.5 27.5 15 15

Table 14: Average payo↵s for row Player X in the transformed entrance game.
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Tables 15 and 16 depict tests of independence of behavioral variables in

the baseline game (playing A/B as player 1 vs playing A/B as player 2) and

the entrance game (playing (In,A)/(In,B)/Out as player 1 vs playing A/B as

player 2) respectively.

Decision as player 1 (A/B)
Matching types

vs decision as player 2 (A/B)
(Pearson’s chi-squared test) team club university

�2 5.694 1.729 0.384
p value 0.017 0.189 0.535

Table 15: Independence of decisions as both players in the baseline game (69
observations).

Decision as player 1 ((In,A)/(In,B)/Out)
Matching types

vs decision as player 2 (A/B)
(Pearson’s chi-squared test) team club university

�2 8.897 0.495 0.950
p value 0.012 0.781 0.622

Table 16: Independence of decisions as both players in the entrance game (69
observations).
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Figures 9 and 10 illustrate the observed behavior in the baseline game and

the entrance game respectively, under the assumption that those games are

played behind the veil of ignorance.

(a) Classification based on self connectedness

(b) Classification based on group connectedness

Figure 9: Behavior in the original position of the baseline game (Team treat-
ment).
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(a) Classification based on self connectedness

(b) Classification based on group connectedness

Figure 10: Behavior in the original position of the entrance game (Team treat-
ment).
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