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1 Introduction

Dynamical systems are mathematical models of change or motion over time.
They are ubiquitous in physics, computer science, biology, and many other
branches of pure and applied science. In view of several recent developments,
there is great opportunity and demand for powerful tools based on mathematical
and computational logic for a qualitative formal analysis of these systems. The
central question that concerns us is:

Question 1.1. Which logical theories are appropriate for describing and rea-
soning about dynamical systems that appear in various branches of science and
technology?

Each logical theory may have several advantages and disadvantages, and the
criteria for choosing a suitable framework varies by discipline. Thus we will work
both with highly expressive logics stemming from foundations of mathematics,
and less expressive but more computationally effective logics stemming from
computer science.

Specifically, will develop tools for efficient, automated reasoning about con-
tinuous dynamical systems applicable in real-world scenarios, such as the mod-
eling of controlled ecosystems for sustainable farming. We will also study frame-
works for formal reasoning about transfinite dynamics in discontinuous systems.
Such dynamical systems are of interest in proof theory to model Turing progres-
sions, which in turn can be used to produce mathematically natural statements
independent from strong formal theories in the spirit of Gödel’s incompleteness
theorems.

1.1 Verification of dynamical systems

Consider an example from biology, where we model wolf (predator) and sheep
(prey) populations. One natural question we may ask is whether the populations
will eventually disappear from the ecosystem, remain stable, or proliferate. One
approach to answer this question would be to model the problem numerically
and observe the evolution of the two populations over a long period of time. If,
indeed, we observe that they eventually disappear, we have a definite answer.
If, on the other hand, they exhibit (say) a seemingly cyclic behavior, this might
be suggestive that the populations will continue to follow such a cycle forever,
but it may be that we are truly observing a downward spiral and the two species
will become extinct over a long period of time.

Thus while a numerical simulation may provide evidence that our popula-
tions will not die out, we may wish to take a different approach in order to
certify that this will be the case. The prototypical tool for such a certificate
is to provide a mathematical proof; if we prove that, given the laws governing
the evolution of our populations, they will forever cycle around a steady state
and never die out, we can safely assume that this will be the case (provided the
behavior of the system does not change exogenously).
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Figure 1: Direction field for a model of sheep (x) and wolf (y) populations.
When there are many wolves and few sheep, the wolves tend to die out given
lack of food, which then allows the sheep to reproduce freely. Eventually this
leads to more food sources for the wolves, which in turn proliferate, starting the
cycle anew.

The need for such a certificate is seen very clearly in computer science. An
algorithm (say, modeled as a Turing machine or an automaton) may be viewed
as a discrete-time dynamical system, and often we want to ensure that it will
behave according to its specifications; for example, that it will eventually reach
a terminating state, or that it will avoid an unsafe one. Once again we may
simply run the algorithm on distinct outputs and observe whether they tend to
terminate, or we may instead provide a certificate of correctness using logical
tools. While the ‘gold standard’ of mathematical proof is arguably the Zermelo-
Franekel set theory ZFC, this is usually overkill for such a task, and has several
computational disadvantages. Instead, we will focus on weaker formalisms that
are still sufficient for reasoning about dynamical systems.

There are several computational tools available to analyze dynamical sys-
tems, but we are specifically concerned with logical methods for understanding
them which allow for qualitative, certifiable reasoning about their behavior.
These are based on formal languages, which are sets L of formulas, typically
closed under Boolean operations (for example, if ϕ,ψ are formulas, then their
conjunction ϕ ∧ ψ is also a formula), as well as possibly quantifiers or other
constructions. Formulas of L are interpreted over a class C of structures, where
for X ∈ C we write X |= ϕ to say that ϕ is true (or valid) in X. A theory is
a set T ⊆ L of formulas, typically assumed to have certain closure properties
(e.g., if ϕ,ψ ∈ T , then ϕ ∧ ψ ∈ T ). We usually write T ` ϕ instead of ϕ ∈ T .
The intention is for T to prove only true statements, i.e. T ` ϕ implies that
X |= ϕ for all X ∈ C, in which case we say that T is sound; ideally, T should
also be able to prove all true statements, that is, T ` ϕ whenever X |= ϕ for all
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X ∈ C, in which case we say that T is complete.
In order to answer Question 1.1, we must work both with highly expres-

sive logics stemming from foundations of mathematics, and less expressive but
more computationally effective logics stemming from computer science. As is
evidenced from my research results, different applications may have very dif-
ferent priorities, and thus a suitable answer requires what we may call logic
engineering.

1.2 Completeness and Incompleteness in Logical Theories

From Gödel’s incompleteness theorems [51], we know that no computably enu-
merable theory T can be both sound and complete for the structure (N,+,×)
of natural numbers. We may then ask if a certain (formalized) theorem ϕ is
provable within T , obtaining one of two outcomes:

1. T can prove ϕ, in which case T may give us additional information not
included in ϕ itself; for example, we may extract algorithmic or compu-
tational information about ϕ from its proof in T . This information can
often be used to strengthen ϕ and obtain a more powerful result [61].

2. T cannot prove ϕ, in which case ϕ provides us with a natural mathematical
statement that is independent from T . Such a statement may be used to
separate theories; if we know that U can prove ϕ, then ϕ is evidence that
U 6= T . By systematically searching for such statements, this can provide
us with a tool for classifying formal theories.

Thus, understanding the power and limitations of logical systems gives us
benefits in two directions: we obtain new information about dynamical systems
from the logical tools we use to analyze them, and we obtain new information
about the power of logical theories from their ability to reason about dynamical
systems. On the other hand, Gödel’s incompleteness theorems only apply to
arithmetical theories, and thus we may instead use logics that cannot formalize
arithmetic, as is typically the case for modal logics.

In my research, I explore both of these directions; that is, applications of
logic to dynamical systems, as well as applications of dynamical systems to
logic. In this report we will discuss both; for this, let us begin by giving a
general overview of modal logic, and discuss some of my results in the field.
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2 Modal logic

Understanding the world can be viewed as a process of separating those state-
ments that are true from those that are false. However, even two true statements
can be true in different ways; for example, one may say that the statement ‘seven
is a prime number’ has a different status from ‘Barack Obama is not the presi-
dent of the United States’. One may argue that the first statement is necessary,
while the second is not. Alternately, one may point out the fact that the first
statement has always been true, while the second is only true now.

Modal logics aim to capture the different modes of truth that a statement
may have. In its simplest form, given a statement ϕ, we introduce a new state-
ment �ϕ which could be interpreted as ϕ is necessarily true, ϕ is always true,
or ϕ is provably true, among other readings. While the exact interpretation
depends on the application at hand, there is a general theoretical framework for
understanding such logics.

In this section we will give a brief introduction to modal logics with a focus
on neighborhood semantics, which will be useful for understanding the results
presented later in this report.

2.1 Syntax and semantics

Modal logic is an extension of propositional logic with an operator � and its
dual, ♦, so that if ϕ is any formula, �ϕ and ♦ϕ are formulas too. There are sev-
eral semantics for these operators, but possibly the first was studied by Tarski
[72], who proposed a topological reading of modalities. The latter has regained
interest in the last decades, due to its potential for spatial reasoning, especially
when modal logic is augmented with a universal modality [77] or fixpoint op-
erators, as proposed by myself in [32] and studied further by Goldblatt and
Hodkinson[53].

Thus we will consider logics over variants of the language L� given by the
following grammar (in Backus-Naur form). Fix a set P of propositional variables,
and define:

ϕ,ψ := > | p | ϕ ∧ ψ | ¬ϕ | �ϕ,

where p ∈ P; in other words, L� is the least set such that {>} ∪ P ⊆ L�, and
L� is closed under conjunction, negation, and ϕ 7→ �ϕ.

We define ∨,→,♦ using the standard abbreviations (e.g., ♦ ≡ ¬�¬). Often
we will want to interpret formulas of L� as subsets of a ‘spatial’ structure, such
as Rn. To do this, we need to define neighborhoods of points x ∈ Rn. Intuitively,
U is a neighborhood of x if x has positive distance from its complement, X \U .
To make this precise, for x, y ∈ Rn, let δ(x, y) denote the standard Euclidean
distance between x and y. It is well-known that δ satisfies

(i) δ(x, y) ≥ 0,

(ii) δ(x, y) = 0 iff x = y,

(iii) δ(x, y) = δ(y, x) and
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(iv) the triangle inequality, δ(x, z) ≤ δ(x, y) + δ(y, z).

More generally, a set X with a function δ : X × X → R satisfying these four
properties is a metric space. The Euclidean spaces Rn are metric spaces, but
there are other important examples, such as the set of continuous functions on
[0, 1] (with a suitable metric).

Definition 2.1. Given a metric space X and A ⊆ X, we define the interior
of A, denoted i(A), to be the set of points x ∈ X such that for some ε > 0, if
δ(x, y) < ε, it follows that y ∈ A.

The basic properties of i are well-known:

Proposition 2.2. If X is a metric space and i is the interior operator on X,
then, given sets A,B ⊆ X,

(i) i(X) = X,

(ii) i(A) ⊆ A,

(iii) i(A) = i(i(A)) and

(iv) i(A ∩B) = i(A) ∩ i(B).

We will say that any function i : 2X → 2X satisfying these four properties
is an interior operator. Interior operators are more generally defined over any
topological space:

Definition 2.3. A topological space is a pair (X, T ), where X is a set and T
a family of subsets of X satisfying

1. ∅, X ∈ T ;

2. if U, V ∈ T then U ∩ V ∈ T , and

3. if O ⊆ T , then
⋃
O ∈ T .

The elements of T are called open sets. Complements of open sets are closed
sets.

Then, in any topological space, we may define i(A) to be the union of all
open sets contained in A, and we say that U ⊆ X is a neighborhood of x ∈ X
if x ∈ i(U). In any topological space, we may also define the closure of A
by c(A) = X \ i(X \A). From a computational perspective, it can be more
convenient to work with arbitrary topological spaces than with metric spaces,
as finite, non-trivial topological spaces can be defined in a straightforward way,
and thus spatial relations can be represented using finite structures. To be
precise, let W be a set and R ⊆ W ×W be a binary relation; the structure
(W,R) is a frame. Then, if R is a preorder (i.e., a transitive, reflexive relation),
we can define a topology on W by letting U be open if and only if it is of the
form

⋃
u∈U R(u) for some U ⊆W .
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However, if R is not transitive and reflexive, this definition does not neces-
sarily produce a topology. It does, however, give rise to a neighborhood space,
and it will be convenient to define such spaces in full generality in order to give
a uniform treatment of topological spaces and Kripke models.

Definition 2.4. A neighborhood space is a tuple A = (A,l), where l ⊆ A×2A

is a neighborhood relation. We say that l is:

1. monotone if xlX ⊆ Y implies that xl Y ,

2. non-degenerate if for every x ∈ A there is X ⊆ A such that xlX,

3. filtered if whenever xlA and xlB, it follows that xlA ∩B,

4. normal if it is monotone, non-degenerate and filtered, and

5. uniform if the relation l is constant (i.e., w lX implies that v lX for
all w, v ∈ A and X ⊆ A).

We let A inherit the properties of l, so that for example A is monotone if l
is.

This general presentation will allow us to unify semantics over topological
spaces with those over arbitrary relational structures. As mentioned before,
a Kripke frame is simply a structure A = (A,R), where A is a set and R ⊆
A × A is an arbitrary binary relation. We will implicitly identify A with the
neighborhood space (A,lR), where xlR U if and only if

R(x) = {y ∈ A : x R y} ⊆ U.

It is readily checked that lR is always normal. With this in mind, let us define
some important classes of frames.

Definition 2.5. Define K to be the class of all Kripke frames, S4 to be the
class of all Kripke frames with a transitive, reflexive relation, and S5 to be the
class of Kripke frames with an equivalence relation.

The names for these classes are derived from their corresponding modal
logics, which will be defined in Section 2.2. Now we are ready to define the
semantics for L�, or, more generally, languages of the form LΛ, where Λ is a
set of objects we call modals, given by the grammar

ϕ,ψ := > | p | ϕ ∧ ψ | ¬ϕ | [λ]ϕ,

where p ∈ P and λ ∈ Λ.

Definition 2.6. Given a set of modals Λ, a Λ-neighborhood space is a pair
(A, (lλ)λ∈Λ), where for each λ ∈ Λ, (A,lλ) is a neighborhood space.

A valuation on (A, (lλ)λ∈Λ) is any function V : P → 2A (that is, every
propositional variable is assigned a set of points). A Λ-model is a tuple A =
(A, (lλ)λ∈Λ, V ) consisting of a Λ-neighborhood space equipped with a valuation.
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We define the truth set

JϕKA = {w ∈ A : (A, w) |= ϕ}

by structural induction on ϕ as follows:

JpKA = V (p)
Jϕ ∧ ψKA = JϕKA ∩ JψKA
J¬ϕKA = A \ JϕKA
J[λ]ϕKA = {w ∈ A : w lλ JϕKA}.

Given a model A = (A, (lλ)λ∈Λ, V ) and formulas ϕ,ψ ∈ LΛ, we say that ϕ is
equivalent to ψ on A if JϕKV = JψKV . If A is a modal space, ϕ,ψ are equivalent
on A if they are equivalent on any model of the form (A, V ), and if A is a class
of structures, we say that ϕ,ψ are equivalent over A if they are equivalent on
any element of A. When A or A is clear from context, we may write ϕ ≡ ψ,
and if ψ = > we say ϕ is valid.

Often Λ will be a singleton (say, Λ = {0}), in which case we write �,l
instead of [0],l0. Moreover, if lλ is replaced by a binary relation Rλ, then
in the above definition, lλ is to be understood as lRλ . We will also use ∀ to
denote the universal modality, interpreted by the neighborhood relation defined
by w l∀ U if and only if U is the entire space.

The clause for [λ]ϕ may need some explanation, as one often defines w ∈
J[λ]ϕKA if there is U so that wlλU ⊆ JϕKA. Note, first, that the two clauses are
equivalent over the class of monotone frames, and we have defined the neighbor-
hood structure on both topological spaces and Kripke frames to be monotone
for this reason. However, we will also consider non-monotone structures later in
order to give semantics for weak modal logics, and in this setting we need the
clause given in Definition 2.6.

With this in mind, let us review the axioms for important modal logics over
L� and the extension with a universal modality, L�∀.

2.2 Basic modal axioms

A central focus in much of the literature on modal logics of space lies in finding
sound and complete axiomatizations for several important classes of topologies.
Let us list some of the basic axioms that have appeared in this enterprise:

• Taut all propositional tautolo-
gies

• K �(p→ q)→ (�p→ �q)

• T p→ ♦p

• 4 ♦♦p→ ♦p

• 5 ♦p→ �♦p

• L �(�p→ p)→ �p

• MP
ϕ ϕ→ ψ

ψ

• Nec
ϕ

�ϕ
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A logic is any set Λ of formulas closed under modus ponens, substitution
and necessitation. Given a logic Λ and a formula ϕ, Λ + ϕ is the least logic
containing Λ ∪ {ϕ}. The most ‘basic’ modal logic is

K ≡ Taut + K + MP + Nec;

this is the logic of all (finite) frames and is the standard minimal logic used in
modal reasoning (to be precise, it is the least normal logic; in Section 5, we will
also consider logics that do not extend K). Other key modal logics are:

K4 ≡ K + 4 S4 ≡ K4 + T S5 ≡ S4 + 5 GL ≡ K + L.

The logics we have listed characterize several important classes of spaces. As
usual, a logic Λ is sound for a class of spaces C if all theorems of Λ are valid in
C, and complete if all valid formulas in C are provable in Λ.

Theorem 2.7.

1. The logic K is sound and complete for the class of (finite) K frames [18].

2. The logic K4 is sound and complete for the class of all (finite) K4 frames.

3. The logic S4 is sound and complete for the class of all (finite) S4 frames,
for the class of all all metric spaces, and for Rn for any n > 0 [72].

4. The logic S5 is sound and complete for the class of all (finite) S5 frames.

The operator � is useful for capturing local properties of Rn, whereas ∀ is
useful for describing global behavior. The logic GL also enjoys natural semantics,
as we will see next.

Definition 2.8. Let W be any set. A relation R on W is converse well-founded
if either of the following, equivalent, properties holds:

1. if A ⊆W is non-empty, there is w ∈ A such that R(w) ∩A = ∅.

2. there are no infinite sequences

w0 R w1 R w2 R . . .

The relation R is well-founded if R−1 is converse well-founded.

Transitive, converse well-founded frames can be generalized to a topological
setting. To this end, if (X, T ) is a topological space, x ∈ X and U ⊆ X, say
that U is a punctured neighborhood of x if U ∪ {x} is a neighborhood of x.
Then, transitive, converse well-founded frames can be seen as a special case of
punctured neighborhood structures over scattered spaces, as defined below:

Definition 2.9. Let (X, T ) be a topological space. If A ⊆ X and x ∈ A, we say
that x is isolated in A if there is a neighborhood U of x such that U ∩A = {x}.

A topological space (X, T ) is scattered if whenever A ⊆ X is non-empty,
then A has an isolated point.

10



Then, we have the following completeness resutls:

Theorem 2.10. The logic GL is sound and complete for the class of all (fi-
nite) transitive, converse well-founded frames [76], as well as for the class of all
punctured neighborhood structures based on a scattered space [13].

Next, let us discuss logics with the universal modality. Given a logic L, by
LU we denote the logic extending L to the language with a universal modality
and the axioms T, 5 for ∀. Spatial logics with the universal modality have been
studied by Shehtman [77], where he proves the following:

Theorem 2.11. The logic S4U is sound and complete for the class of all (finite)
S4 frames.

Note, however, that S4U is not complete for Rn for any n, given that this
space is connected; that is, it cannot be partitioned into two disjoint, open sets.
More formally, if Rn = A ∪ B where A,B are open and disjoint, then either
A = ∅ or B = ∅. This property is characterized by the connectedness axiom

C ∀(�p ∨�¬p)→ (∀p ∨ ∀¬p).

Theorem 2.12. The logic S4UC = S4U + C is sound and complete for Rn for
any n > 0.

Next, let us discuss some basic relations for comparing neighborhood spaces.

2.3 Simulation and bisimulation

In this section we will define simulations and bisimulations, both in the Kripke
and in the neighborhood setting.

Definition 2.13. If A = (A,RA, VA), B = (B,RB, VB) are Kripke frames, a
simulation between A and B is a binary relation χ such that

Atoms for every w χ v and every propositional variable p,

w ∈ VA(p)⇔ v ∈ VB(p),

and

Forth if w RA w
′ and w χ v, there is v′ so that v RB v

′ and w′ χ v′.

The relation χ is a bisimulation if it further satisfies

Back if v RB v
′ and w χ v, there is w′ so that w RA w

′ and w′ χ v′.

This definition readily extends to the neighborhood setting. For this, we
borrow terminology from the theory of functions on topological spaces, although
we warn that this usage is not standard.
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Definition 2.14 (Neighborhood bisimulation). Let A = (A,lA) and B =
(B,lB) be neighborhood spaces. Say that a binary relation χ ⊆ A × B is con-
tinuous if, whenever w χ v lB Y , it follows that w lA χ−1[Y ], and open if
whenever w χ v and w lA X, it follows that v lB χ[X].

The relation χ between models (A,lA, VA) and (B,lB, VB) is a simulation
if it is continuous and, whenever p ∈ P and w χ v, then w ∈ VA(p) if and only
if v ∈ VB(p). If moreover χ is open, then χ is a bisimulation.

A point b ∈ B simulates a ∈ A if there exists a simulation χ ⊆ A× B such
that a χ b; we will write (A, a) E (B, b). If a bisimulation β exists between A
and B such that a β b, we will write (A, a) - (B, b).

It is not hard to check that both definitions agree on Kripke frames if we
identify them with their neighborhood structure as we have defined it.

2.4 The tangled closure operator

The language L� can naturally be enriched by adding fixed point operators, in
the spirit of the µ-calculus [83]. However, by results of Dawar and Otto [22], we
know that the fixed points that can be defined in the topological setting can be
reduced to a simpler construction, which is a natural polyadic extension of the
usual topological closure.

Definition 2.15 (Tangled closure). Let (X, T ) be a topological space and S ⊆
2X . Given E ⊆ X, we say S is tangled in E if, for all A ∈ S, A ∩ E is dense
in E. We then define S∗ to be the union of all sets E such that S is tangled in
E.

It is important for us to note that the tangled closure is defined over any
topological space; however, it is instructive to consider the tangled closure over
finite, transitive, reflexive Kripke frames, in which case the tangled closure takes
on a particularly simple form.

Lemma 2.16. Let (W,4) be a finite preorder, x ∈ S and O ⊆ 2W . Then,
x ∈ O∗ if and only if there exist (yO)O∈O ⊆ W such that yO ∈ O, yO 4 x for
all O ∈ O and yO ∼ yO′ for all O,O′ ∈ O.

We can then enrich the modal language to the language L∗�, where � can
be applied to finite sets of formulas, and in the topological setting define

J♦ΓK = {JγK : γ ∈ Γ}∗.

In [31], I proved the following:

Theorem 2.17 (DFD). Given a finite, transitive reflexive Kripke frame A =
(A,4, VA) and a ∈ A, there exists a formula Sim(A, a) ∈ L∗� such that, for
every topological model X = (X, T , V ) and x ∈ X, x ∈ JSim(A, a)KX if and only
if (A, a)E (X , x).

Moreover, such a formula does not always exist in L�, even when A has
only two worlds.
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Note that the property of being bisimilar to (A, a) is definable in L� [31].
As it turns out, these simulation formulas can be a great technical advantage in
completeness proofs for logics over certain extensions of L�. For this, one first
needs to axiomatize the topologically valid formulas of L∗� itself, as I have done
in [32].

Theorem 2.18 (DFD). Given ϕ ∈ L∗�, the following are equivalent:

1. ϕ is valid over the class of finite, transitive reflexive Kripke frames,

2. ϕ is valid over the class of all topological spaces,

3. ϕ is derivable in the logic S4∗, axiomatized by S4 together with the follow-
ing:

Fix♦ ♦Γ→
∧
γ∈Γ ♦(γ ∧ ♦Γ)

Ind♦ Induction for ♦:

�
(
p→

∧
γ∈Γ

♦(p ∧ γ)
)
→ (p→ ♦Γ).

Later we will see that the tangled closure is an essential ingredient in ax-
iomatizing the logic of dynamical systems. Before this, however, let us discuss
a variant of topological semantics, where validity is regarded up to a set of
measure zero.

2.5 The Lebesgue measure algebra

If a set X is endowed with a measure (for example, representing volumes or
probabilities), it is often useful to disregard sets of measure zero. One can use
this to give a different interpretation to modal logics. In this setting, the truth
values of formulas are no longer sets, but rather equivalence classes of sets, as
defined below.

Recall that a measure space is a triple (X,A, µ) where X is a set, A ⊆ 2X

is a σ-algebra (that is, a collection of sets containing ∅ and X which is closed
under set difference and countable unions) and µ : A → [0,∞] (the non-negative
reals with a maximal element ∞ added) satisfying

1. µ(∅) = 0

2. µ(A \B) = µ(A)− µ(B) if B ⊆ A and

3. if (An)n<ω is an increasing sequence of elements of A,

µ

(⋃
n<ω

An

)
= lim
n→∞

µ(An).
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Elements of A will be called µ-measurable. We say µ is σ-finite if there are
countably many sets Sn ⊆ X such that µ(Sn) is finite for all n < ω and X =⋃
n<ω Sn. Measure spaces which are σ-finite cannot contain an uncountable

collection of disjoint sets of positive measure.
We always assume that Euclidean space Rn is equipped with the standard

Euclidean metric and Lebesgue measure; the latter will be denoted | · |.

Definition 2.19 (Measure algebra). Let X = (X,A, µ) be a measure space.
We define the measure algebra of X, which we will denote Aµ, to be the set of

equivalence classes of A under the relation
µ∼ given by E

µ∼ F if and only if
µ((E \ F ) ∪ (F \ E)) = 0.

We will refer to elements of Aµ as regions. Denote the equivalence class of
S ∈ A by [S]µ. Boolean operations can be defined on Aµ in the obvious way;
[E]µu[F ]µ = [E∩F ]µ, [E]µ−[F ]µ = [E\F ]µ. We can also define [E]µ v [F ]µ by
µ(E\F ) = 0. In general we will use ‘square’ symbols for notation of the measure
algebra and ‘round’ symbols for set notation in order to avoid confusion. As a
slight abuse of notation, if o ∈ Aµ and o = [S]µ we may write µ(o) instead of
µ(S); note that this is well-defined, independently of our choice of S ∈ o.

In order to interpret our modal operators, we need to consider measure
spaces which also have a topological structure:

Definition 2.20 (topological measure space). A topological measure space is
a triple (X, T , µ) where X is a set, T a topology on X and µ a σ-finite measure
such that every open set is µ-measurable.

A set S ⊆ X is almost open if S
µ∼ U for some U ∈ T . The region [S]µ is

open if S is almost open.

Equivalently, we can say o ∈ Aµ is open if o = [U ]µ for some open set U .
Given a σ-finite measure space (X,µ) and O ⊆ Aµ, the supremum of O, which
we will denote

⊔
O, always exists. With this operation we can define an interior

operator on any measure algebra:

Definition 2.21 (measure-theoretic interior). Let (X, T , µ) be a topological
measure space and o ∈ Aµ. We define the (measure-theoretic) interior of o
by o� =

⊔
{[U ]µ v o : U ∈ T } .

Proposition 2.22. If (X, T , µ) is a topological measure space and o ∈ Aµ,

1. o� is open,

2. o� v o,

3. (o�)� = o�.

We are now ready to define our measure-theoretic semantics:

Definition 2.23 (measure-theoretic semantics). If (X, T , µ) is a topological
measure space, a measurable valuation on X is a function J·K : L� → Aµ

14



satisfying
Jα ∧ βK = JαK u JβK
J¬αK = [X]µ − JαK
J�αK = JαK�

J∀αK =

{
[X]µ if JαK = [X]µ

[∅]µ otherwise.

A topological measure model is a topological measure space equipped with a
measurable valuation.

The system S4U is sound and absolutely complete for our semantics, as I
proved in [29]:

Theorem 2.24 (DFD). Given ϕ ∈ L�∀, the following are equivalent:

1. S4U 6` ϕ,

2. for every ε ∈ (0, 1) there is a measurable valuation J·K on the interval [0, 1]
equipped with the Lebesgue measure such that | JϕK | ≥ ε.

Although we will not discuss it here, measure-theoretic semantics readily
extend to the dynamical systems setting, as shown by Lando [69]. We now turn
to discussing extensions of L� suitable for the study of such systems.
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3 Logic applied to dynamical systems

Despite the success of second-order arithmetic in formalizing mathematical anal-
ysis, it has certain drawbacks: due to Gödel’s second incompleteness theorem
[51], we know that not every true statement expressible in that formalism will be
derivable, and, moreover, there is no algorithm for telling whether a theory T in
that language can derive a formula ϕ. However, for many applications, a com-
plete, or even decidable, logic is desirable. One strategy for obtaining this is to
reason about dynamical systems in a framework that cannot directly formalize
arithmetic, and modal logics are particularly attractive for this purpose.

3.1 Dynamic topological logic

By a dynamical system we mean the following:

Definition 3.1. A dynamic topological system is a tuple (X, T , f) where (X, T )
is a topological space and f : X → X is continuous.

Artemov et al. proposed a bimodal logic S4C for reasoning about dynamical
systems [4]. It includes the interior modality �, and a ‘next-time’ modality,
which we will denote ◦, interpreted using the function f . They the proved that
S4C is decidable, as well as being sound and complete for the class of all dy-
namical systems. Kremer and Mints [67] considered a similar logic, called S4H,
and also showed it to be sound and complete for the class of dynamical systems
where f is a homeomorphism. They also observed that adding a ‘henceforh’
operator, G, would allow us to express and reason about the asymptotic prop-
erties of dynamical systems, including e.g. recurrence phenomena. ‘Eventually’,
the dual of G, is defined by F = ¬G¬. Let us denote the resulting tri-modal
language by L◦G� , and its corresponding logic dynamic topological logic (DTL).

To be precise, a dynamic topological model is a tuple X = (X, f, V ), where
(X, f) is a dynamical system and V is a valuation on X. Semantics for the
temporal operators are given by

• J◦ϕK = f−1 JϕK, and

• JGϕK =
⋂
n<ω f

−n JϕK.

The universal modality ∀ is sometimes included. Unfortunately, it was soon
shown by Konev et. al. that dynamic topological logic is undecidable [62] over
the class of all dynamical systems. Konev et al. also showed that DTL over the
class of dynamical systems with a homeomorphism is not even computably enu-
merable [63]. This led to a search for variants of DTL which retained the capacity
for reasoning about asymptotic behavior but remained decidable. Gabelaia et
al. proposed to consider dynamic topological logics with finite, but unbounded,
time and showed them to be decidable, although not in primitive recursive time
[47]. Kremer instead proposed a restriction to dynamical systems where the
topology is a partition [66], which gives rise to a decidable DTL.
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Despite these negative results, in [28] I proved that DTL is computably
enumerable, for which I earned the Gödel Centenary Research Prize . I
noted that the tangled closure operator had some natural advantages for working
in DTL. With this, I provided an axiomatization for the resulting polyadic logic
in [32]. Tangled modalities have since been pursued by other researchers (see,
for example, [52]). My work in tangled modal logic was then used in [33, 34] to
provide a sound and complete axiomatization for DTL:

Theorem 3.2 (DFD). The logic DTL∗ axiomatized by S4∗, together with the
following:

Temporal axioms

Neg◦ ¬◦p↔ ◦¬p
And◦ ◦(p ∧ q)↔ ◦p ∧ ◦q
FixG Gp→ p ∧ ◦Gp
IndG G(p→ ◦p)→ (p→ Gp)

TCont ♦◦Γ→ ◦♦Γ

Rules

N◦ Necessitation for ◦
NG Necessitation for G

is sound and complete for the class of dynamic topological systems.

Moreover, my work in [35] shows that the tangled modality is in fact an
essential component of this axiomatization, as previously proposed axiomatiza-
tions are incomplete:

Theorem 3.3 (DFD). The logic DTL is not finitely axiomatizable.

However, in the intended applications, one usually does not study arbitrary
dynamical systems, but rather systems that have additional structure. One
important such class of systems is that of minimal systems, i.e., systems that
contain no proper, closed, f -closed subsystems. As an example of a minimal
system, consider the circle S1 parametrized by (cos(θ), sin(θ)), and let f be a
rotation by an angle γ, where γ is an irrational multiple of π. Given x0 ∈ S1,
the orbit of x0 is dense on all of S1; from this it follows that there can be no
proper, non-empty, closed subset of S1 that is also closed under f ; in this sense,
the system is minimal. Let

V (p) = {(cos(θ), sin(θ)) : α < θ < β}

be a small arc in the circle, where p is some propositional variable. Then,
fn(x0) ∈ JpK for some n, and in general, if ∃�p holds, then so does ∀Fp; that
is, ∃�p → ∀Fp is valid over the class of minimal systems. (This is not true
for arbitrary dynamical systems, as we can see by replacing f by the identity
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•

f(x) •

x
ϑ

Figure 2: A rotation f of a disk by an angle ϑ gives rise to a probability-
preserving system, where the probability of a set is defined to be proportional
to its area. Moreover, such a system is not minimal, as (for example) the dashed
circle is a closed, f -closed subsystem.

in the same example and choosing x0 6∈ V (p)). In [30], I proved that when
restricting to this class of systems, DTL becomes decidable, paving the road
towards possible future applications in automated deduction:

Theorem 3.4 (DFD). The set of formulas of L◦G�∀ formulas valid over the class
of minimal systems is decidable.

Nevertheless, the decision procedure is not primitive recursive, and further
simplifications or modifications are needed before such a logic can be imple-
mented.

There are other classes of spaces of mathematical interest where the decid-
ability of DTL has not been established. Minimal systems in the literature are
assumed to be compact and Hausorff, and my results do not apply to such spaces.
Another class is that of measure-preserving spaces, where µ(A) = µ(f−1A) for
all measurable A (here, µ is any measure, e.g. the volume of a set in R3). The
following result is well-known [82]:

Theorem 3.5 (Poincaré). If (X,µ, f) is a measure-preserving dynamical system
on a complete metric space and A ⊆ X is open, then A contains an infinitely
recurrent point, that is, there are x ∈ A and infinitely many values of n such
that fn(x) ∈ A.

A typical example of a minimal system is a rotation of the unit ball in R2,
i.e., the set of points (x, y) such that x2 + y2 ≤ 1. The DTL of such systems
is different from the DTL of arbitrary systems, since in particular the Poincaré
recurrence theorem can be formalized as �p→ ♦◦Fp. The decidability of DTL
over this class is also unknown.

Many of the positive results we have obtained reduce the topological seman-
tics to alternative semantics using non-deterministic quasimodels [28]. Rather
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•

f(x)
•

xαπ

Figure 3: If α is irrational, then a rotation by απ gives rise to a minimal system
on the unit circle.

than interpreting formulas over a structure (X, f) where X is a topological
space, we use structures (W,4, S, `), where 4 is a partial order, S a successor
relation, and ` a ‘labeling function’, used to record the set of formulas that are
to be satisfied at a point w ∈W . We take S to be continuous in the sense that
preimage of open sets is open (where U ⊆ W is open if it is upwards-closed
under 4); such semantics are a special case of topological semantics, and are
known to have a different set of validities if S is a function, but not if it is a
binary relation. With this, I proved that the logic of (not necessarily Hausdorff
or compact) minimal spaces does not have the finite model property, but it does
have the finite quasimodel property, with which I showed that it is decidable.

3.2 Intuitionistic temporal logic

As a general rule, all of the decidable variants of DTL with continuous functions
that are currently known are obtained by either restricting the class of dynam-
ical systems over which they are interpreted, or restricting the logics to reason
about finitely many iterations of f . However, there is another variant of DTL,
which does not have either of these restrictions, yet whose decidability was never
settled. Namely, there is an intuitionistic version of DTL, proposed by Kremer
in unpublished work [65]. It is well-known that propositional intuitionistic logic
can be seen as a fragment of S4 via the Gödel-Tarski translation [80], and indeed
the two share very similar semantics. In particular, intuitionistic logic can be
interpreted over topological spaces. One can use this idea to present a version of
dynamic topological logic which removes the modality �, and instead interprets
Boolean connectives topologically [74].

To be precise, consider the language L◦F whose primitive symbols are

⊥,∧,∨,→, ◦, F,

and for ϕ ∈ L◦F , define ϕ� by recursively replacing each subformula ψ of ϕ
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Class Notation L◦F�∀ L◦F∀ L◦FG

All dynamical
systems

c Undecidable
[62] but c.e. [28]

Decidable Unknown
but c.e.

Dynamical
systems with
a homeomor-
phism

h Non-c.e. [63] Unknown Unknown

Expanding
frames

e Undecidable
[62]

Decidable Decidable
[16]

Persistent
frames

p Non-c.e. [63] Unknown Unknown

Minimal sys-
tems

m Decidable, but
not primitive re-
cursive [30]

Decidable Decidable

Poincaré recur-
rent systems

r Unknown Unknown Unknown

Table 1: This table indicates whether the set of formulas of a given language
is decidable over different classes of dynamical systems. Note that languages
with � use the classical semantics, and languages without it use intuitionistic
semantics.

by �ψ (for example, (p → q)� = �(�p → �q)). Then, if ϕ ∈ L◦F and
X = (X, f, V ) is any dynamic topological model, it follows that

q
ϕ�

y
X is an

open set. With this we can define ITLc to be the set of formulas ϕ ∈ L◦F
such that ϕ� is valid. In [38], I use techniques based on non-deterministic
quasimodels, first introduced in [28], to prove the following:

Theorem 3.6 (DFD). The set of intuitionistically valid L◦F∀ formulas over the
class of all dynamical systems is decidable.

Note that we omit G, which is not intuitionistically definable in terms of F .
The reason for this is that the semantics for G require an infinite intersection,
which is typically not an open set, causing technical difficulties. However, this
issue does not occur over topologies generated by a preorder. Dynamical systems
over such topologies are closely related to expanding products of modal logics [47],
and as such we sometimes call them expanding frames. We proved the following
in [16]:

Theorem 3.7 (Boudou, Diéguez, DFD). The set of intuitionistically valid
L◦FG∀ formulas over the class of all expanding frames is decidable.

It is worth noting the contrast with dynamic topological logics, which are
typically undecidable. Thus intuitionistic temporal logic may be the tool of
choice for automated reasoning about dynamical systems. However, research
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ITLc = ITLQ

ITLh ITLe

ITLp

ITLr

ITLm

ITLR
n

Figure 4: Inclusions among intuitionistic temporal logics we have considered,
with notation as in Table 1.

on intuitionistic temporal logic is at an early stage, and there is much to be
explored; no complete calculus is available, and a lower bound on complexity
is unknown. It is also likely that intuitionistic temporal logic based on special
classes of dynamical systems may lead to more feasible logics; for example, DTL
over the class of minimal systems only decidable in non-primitive recursive time.
It is likely that the intuitionistic temporal logic of minimal systems is feasible.
Moreover, minimality may be expressed succinctly in the intuitionistic setting
by ∃p→ ♦p.

However, even the decidable logics in this table are non-elementary. To this
end, let us see how the validity problem can be greatly simplified by passing the
focus from regions to positions.

3.3 Compass logics of positions

The logics we have described above are tailored for mathematical applications,
but this is not the only setting in which automated reasoning about dynamical
systems may be employed. In artificial intelligence, one is often faced with a
situation where a robot must reason and plan within an ever-changing environ-
ment.

Consider, for example, a robot designed to play a team sport such as bas-
ketball. Such a robot would need to model the positions of other members of
its team, as well as the opposing team, update this information as other players
move, and anticipate possible changes that may occur in their position.

In this setting, mathematical precision takes a back seat to simplicity and
efficiency. For example, the two-dimensional plane may be modeled as a discrete
grid with a high enough resolution. With this in mind, in [7] we developed a
general framework for spatial reasoning based on Zd. In this setting, an agent
is mainly concerned with the position of other agents, modeled as points in the
grid. To this end, fix a set A of ‘agents’. Fix also a dimension d ∈ N; typically
we take d ∈ {2, 3}, but all of our main results apply to arbitrary d. The set
of actions ADL-S∗

d and the set of formulas LDL-S∗

d of DL-S∗d are defined by the
following grammar:
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α ::= ⊕k | 	k | α;α′ | α ∪ α′ | α∗
ϕ ::= p | hi | ¬ϕ | ϕ ∧ ψ | [α]ϕ

Here, k < d denotes a dimension. In this setting, we assume that robots
model space as a discrete grid, and hence the models we consider are based on
Zd. We call these discrete models.

Definition 3.8 (Discrete model). A discrete model is a pair (P, V ) where:

• P : A→ Zd;

• V : P→ 2Z
d

.

For every ~x ∈ Zd, P (i) = ~x means that the agent i is in the position ~x,
whereas ~x ∈ V (p) means that p is true at the position ~x. Formulas are evaluated
with respect to a discrete model (P, V ) and a vector ~x. Below, let ~ei denote the
vector whose ith component is 1, and whose other components are zero.

Definition 3.9 (Rα and truth conditions). Let (P, V ) be a discrete model. For
all spatial programs α and for all formulas ϕ, the binary relation Rα is defined
recursively as follows:

R⊕k = {(~x, ~x+ ~ek) : ~x ∈ Zd},
R	k = {(~x, ~x− ~ek) : ~x ∈ Zd},
Rα1;α2

= Rα2
◦Rα1

Rα1∪α2 = Rα1 ∪Rα2

Rα∗ = (Rα)∗

R?ϕ = {(~x, ~x) ∈ Zd × Zd : (P, V ), ~x |= ϕ}

Extend V to a valuation V + on P∪{hi : i ∈ A} by letting V +(p) = V (p) for
p ∈ P, and letting V +(hi) = {P (i)} for i ∈ A. Then, we identify (P, V ) with
the multirelational Kripke model M = (Zd, (Rα)α∈ADL-S∗

d
, V +), and we define

(P, V ), ~x |= ϕ if and only if (M, ~x)] |= ϕ, in the sense of Definition 2.6.

It readily follows from well-known results [47] that the logic DL-S∗d is undecid-
able, and even non-axiomatizable. However, as agents will mainly be concerned
with modeling other agents’ positions, rather than regions in space, we may
disregard the propositional atoms. We may also somewhat simplify the set of
spatial actions. To be precise, we define the language of discrete compass logic
by the sublanguage LCL-P∗

d of LDL-S∗

d , where propositional atoms are omitted and
∗ is only allowed to be applied to atomic programs (i.e., of the forms ⊕k or 	k).
In [7], we prove the following:

Theorem 3.10 (Balbiani, DFD, Lorini). The satisfiability problem for CL-P∗d
is in NP.

The proof in [7] is stated for d = 2, but readily extends to arbitrary d. This
result is quite surprising; note that NP is the best-case scenario for any logic
that extends propositional logic, as is the case of CL-P∗d (if we regard the position
atoms as propositions).
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t = 0

t = 1

X

Target

Figure 5: The robot should be able to recognize that a back-court violation has
occurred based only on the observations at t = 0 and t = 1.

3.4 Lexicographic products of modal logics

As we have mentioned before, dynamic topological systems are related to ex-
panding products of modal logics, which are often undecidable when one of the
products is LTL. While we will not define expanding products here, a differ-
ent way to obtain decidable variants is to work with slightly modified products,
called lexicographic producs. In particular, we are interested in products of (say)
K frames with N. The lexicographic product of a K-frame F = (W,R) with N
is the relational structure F C N = (W ′, R′, S′, <′) defined as follows:

1. W ′ = W × N,

2. R′ is the binary relation on W ′ defined by (s, i) R′ (t, j) iff s R t and
i = j,

3. S′ is the binary relation on W ′ defined by (s, i) S′ (t, j) iff i+ 1 = j,

4. <′ is the binary relation on W ′ defined by (s, i) <′ (t, j) iff i < j.

We then interpret L◦G� -formulas as in Definition 2.6, where � is interpreted by
R′, ◦ by S′ and G by <′. In the case that F is an S4 frame, we obtain a
close relative of DTL. However, as we showed in [5], these products often enjoy
natural axiomatizations:

Theorem 3.11 (Balbiani, DFD). If C is any of

KD,T,KD4,S4,S5,

then the set of L◦G� formulas valid over the class {N C F : F ∈ C} is finitely
axiomatizable, as is the set of valid L◦G�∀ formulas.

Indeed, the results of [5] are more general and apply to a wider class of
logics. Note that ◦ is no longer interpreted using a function, and hence it is not
equivalent to its dual, ◦̂ ≡ ¬◦¬. The key axioms involving temporal modalities
are as follows:
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1. ◦(p→ q)→ (◦p→ ◦q),

2. G(p→ q)→ (Gp→ Gq),

3. ◦̂>,

4. ◦̂◦̂p→ ◦◦̂p,

5. Gp→ GGp,

6. Gp→ ◦p,

7. ◦p→ ◦�p,

8. ◦p→ �◦p,

9. ♦◦p→ ◦p,

10. Gp→ G�p,

11. Gp→ �Gp,

12. ♦Gp→ Gp.

Note that some lexicographically valid formulas are not valid on dynamical
systems, and vice-versa. Nevertheless, the techniques used in [5] suggest that
all of the logics we have mentioned are in PSpace (although we leave a proof
of this for future work), making lexicographic logics an attractive candidate for
‘approximate’ reasoning about topological dynamics.

24



4 Dynamical systems applied to logic

In this section we will be concerned with another fruitful interpretation of modal-
ity, suggested by Gödel. Namely, we may use �Tϕ to mean “ϕ is provable in T”,
where T is Peano arithmetic (PA), or some other arithmetical theory [15]. As
usual, ♦Tϕ is defined as ¬�T¬ϕ. Gödel’s own second incompleteness theorem
may then be formalized as ♦T> → ♦T�T⊥.

In order to formalize this, let us review the language of first-order arithmetic.
We will use the language Πω of first-order arithmetic containing the signature

{0, 1,+, ·, 2·,=},

so that we have symbols for addition, multiplication, and exponentiation, as
well as Boolean connectives and quantifiers ranging over the natural numbers.
Elements of Πω are formulas. The set of all formulas where all quantifiers are
bounded, that is, of the form ∀x<t ϕ or ∃x<t ϕ (where t is any term), is
denoted ∆0. A formula of the form ∃xn∀xn−1 . . . δ(x1, . . . , xn), with δ ∈ ∆0, is
Σn, and a formula of the form ∀xn∃xn−1 . . . δ(x1, . . . , xn) is Πn. These classes
are extended modulo provable equivalence, so that every formula falls into one
of them. Note that the negation of a Σn formula is Πn and vice-versa.

In order to formalize provability within arithmetic, we fix some Gödel num-
bering mapping a formula ψ ∈ Πω to its corresponding Gödel number pψq, and
similarly for terms and sequences of formulas, which can be used to represent
derivations. We also define the numeral of n ∈ N to be the term

n̄ = 0 + 1 + . . .+ 1︸ ︷︷ ︸
n times

.

In order to simplify notation, we will often identify ψ with pψq.
We will assume that every theory T contains classical predicate logic, is

closed under modus ponens, and that there is a ∆0 formula ProofT (x, y) which
holds if and only if x codes a derivation in T of a formula coded by y. Using
Craig’s trick, any theory with a computably enumerable set of axioms is de-
ductively equivalent to one in this form, so we do not lose generality by these
assumptions.

If ϕ is a natural number (supposedly coding a formula), we use �Tϕ as short-
hand for ∃y ProofT (y, ϕ̄). To get started on proving theorems about arithmetic,
we need a minimal ‘background theory’. This will use Robinson’s arithmetic Q
enriched with axioms for the exponential; call the resulting theory Q+. To be
precise, Q+ is axiomatized by classical first-order logic with equality, together
with the following:

• ∀x (x+ 0 = x)

• ∀x (x 6= 0↔ ∃y x = y + 1)

• ∀x∀y (x+ 1 = y + 1→ x = y)

• ∀x∀y
(
x+ (y+ 1) = (x+ y) + 1

)
• ∀x (x× 0 = 0)

• ∀x∀y
(
x× (y+ 1) = (x× y) + y

)
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• 20 = 1 • ∀x
(
2x+1 = 2x + 2x

)
Aside from these basic axioms, the induction schema for Γ is defined by

IΓ: ϕ(0) ∧ ∀x
(
ϕ(x)→ ϕ(x+ 1)

)
→ ∀xϕ(x), where ϕ ∈ Γ.

Elementary arithmetic is the first-order theory

EA = Q+ + I∆0,

and Peano arithmetic is the first-order theory

PA = Q+ + IΠω.

In 1986, Japaridze proposed a poly-modal variant of provability logic with an
increasing sequence of modalities [0]T , [1]T , [2]T , . . ., which we denote GLPω. The
expression [n]Tϕ is interpreted as “ϕ is provable in T from a true Πn statement”
[58]. More precisely, let TrueΠn be the standard partial truth-predicate for Πn

formulas, which is itself of complexity Πn (see [54] for information about partial
truth definitions within EA). Then, we define

[n]Tϕ↔ ∃π
(
TrueΠn(π) ∧�T (π → ϕ)

)
.

Statements of the form “What is provable in T is true” are called reflection
principles. Uniform reflection over T is the schema

RFN(T ) ≡ ∀n
(
�Tϕ(n̄)→ ϕ(n)

)
.

Such principles often give rise to mathematically natural theories, e.g.

PA ≡ EA + RFN(EA), (1)

as shown by Kreisel and Lévy [64]. Beklemishev has shown that this repre-
sentation of PA can be used to give a consistency proof of PA using only a
single transfinite induction [8]. They key insight behind this proof uses Turing
progressions, which are a transfinite-time dynamical system defined over the
set of formal theories, and these in turn can be represented within Japaridze’s
polymodal provability logic and its transfinite extensions, which we discuss next.

4.1 The polymodal provability logic

Given an ordinal Λ, we define a polymodal language LΛ built from propositional
variables in a countably infinite set P and the constant > together with the
Boolean connectives ¬,∧ and a unary modal operator [α] for each α < Λ. As
before, we write 〈α〉 as a shorthand for ¬[α]¬.

Definition 4.1 (GLPΛ). Given an ordinal Λ, GLPΛ is the logic over LΛ given
by the following axioms and rules:

• All substitution instances of propositional tautologies,
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• For all α, β < Λ and formulas ϕ,ψ ∈ LΛ,

(i) [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)
(ii) [α]([α]ϕ→ ϕ)→ [α]ϕ
(iv) 〈α〉ϕ→ [β]〈α〉ϕ for α < β,
(v) [α]ϕ→ [β]ϕ for α ≤ β.

• Modus Ponens and the necessitation rule
ϕ

[α]ϕ
for each modality α < Λ.

Unfortunately, GLPΛ has no non-trivial Kripke models, although its variable-
free or closed fragment (defined below) does [57]. Because of this, the study
of topological semantics of GLPΛ is crucial; fortunately, in this setting we do
have several completeness results. These models are based on ordinals; more
specifically, they rely on considering dynamical systems on the class of ordinal
numbers. Dynamical systems on transfinite time will also be useful for defining
Turing progressions, and hence we discuss transfinite dynamics before continuing
with GLPΛ and its semantics.

4.2 Ordinal dynamical systems

Consider a marble placed on a concave surface (such as the inside of a bowl).
Assuming that both the marble and the bowl are smooth, the marble will roll
towards the bottom and eventually settle there. In fact, if the marble is initially
placed at the very bottom, it will not move at all; such a steady state of a
dynamical system is a fixed point. But suppose that we replace the bowl with
a jagged, uneven surface. Instead of rolling smoothly, the marble may bounce
chaotically; a very small change in the marble’s initial state may send it in an
entirely different direction. Nevertheless, as the marble bounces, it should lose
potential energy, and, as in the smooth case, eventually reach a fixed point;
however, it may be difficult to predict where exactly it will end up.

In either case, we may model the marble’s movement using a flow, that is, a
family of functions {ϕt : t ∈ R} with ϕt+s = ϕt ◦ϕs, so that ϕt(x) would be the
state of the marble at time t if it it were originally in state x. For simplicity,
this flow can be approximated by a discrete-time dynamical system by defining
f(x) = ϕε(x) for suitably small ε (possibly depending on x). In the case of a
smooth bowl, the function f thus defined would be continuous, but this is not
necessarily the case once we replace it by a jagged surface. We may then study
the function f to predict the marble’s behavior. In particular, if we wish to
know where it will stabilize, we may ask whether f has a fixed point, i.e., if
there is x∗ such that x∗ = f(x∗).

If f is indeed continuous, then the marble will reach a fixed point by fω(x0),
where x0 is the marble’s original state and fω(x0) = limn→∞ fn(x0). However,
if it so happens that at this point the surface is jagged, the marble may jump
again to fω+1(x0). This process may continue transfinitely, but if the marble
loses potential energy at each stage, it will finally reach a fixed point at some
countable ordinal ξ∗. In such a setting, it makes sense to consider ordinal flows,
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where t may take transfinite values. Recall that addition, multiplication and
exponentiation can be defined on the ordinals in a natural way (see e.g. [59]).
Thus we may consider families of functions {ϕξ : ξ ∈ On}, where On denotes
the class of ordinal numbers, and such that ϕξ ◦ ϕζ = ϕξ+ζ .

Taking this idea farther, we may let the domain of each ϕξ also be a set of
ordinals. To be precise, let Γ,Λ be ordinals, and say that a Λ-flow over Γ is a
homomorphism ϕ from (Λ,+) into the class of continuous functions on Γ. Of
particular interest is the case when each ϕλ is normal (that is, both continuous
and increasing), in which case we will call ϕ a normal flow. We then have the
following result [42]:

Theorem 4.2 (DFD, Joosten). Given a normal function f : On→ On, there is
a unique normal flow (fλ)λ∈On such that f1 = f and, if (gλ)λ∈On is any other
normal flow with g1 = f , then fλ(γ) ≤ gλ(γ) for all λ, γ.

We call the minimal normal flow given by the theorem the hyperation of f .
We will use (ϕλ)ξ∈On to denote the hyperation of the function γ 7→ ωγ , where
ω is the first infinite ordinal. Beklemishev’s consistency proof uses transfinite
induction over the ordinal ε0 = ϕω(0), which is also the first fixed point of the
function λ 7→ ωλ.

Then, just as in the case of real flows, we may ask for which Γ > 0 there
are normal Γ-flows over Γ. Let us say that such an ordinal is a dynamically
autonomous number. The answer was given by Joosten and I in [42]:

Theorem 4.3 (DFD, Joosten). The first dynamically autonomous number is
Γ0, the least fixed point of the function λ 7→ ϕλ(0).

In fact, for those familiar with Veblen functions [81], which we denote

(ϕλ)λ∈On, we mention that ϕλ = ϕω
λ

for all λ. This gives us an alternative
notation system for ordinals below Γ0. Define ϕ(ξ) = ωξ, so that (ϕζ)ζ∈On

denotes the hyperation of the function ξ 7→ ωξ. Then we obtain the following,
which I showed with my student, Aguilera [1]:

Theorem 4.4 (Aguilera, DFD). Given an ordinal ξ > 0, there are uniquely
defined α, β such that ξ = ϕα(β), where β is either zero or additively decompos-
able.

Recall that a non-zero ordinal is additively decomposable if it cannot be
written as the sum of two smaller ordinals. Thus we may regard the number α
obtained above is the degree of indecomposability of ξ.

For technical reasons, it is convenient to work with a slight modification of
the functions ϕξ. Namely, we work instead with the function e(ξ) = −1 + ωξ

(i.e., e(0) = 0 and otherwise e(ξ) = ωξ), and call its hyperation (eξ)ξ∈Ord the
hyperexponential function. In particular, this function is a right-inverse to the
hyperlogarithm, defined as follows:

Definition 4.5 (Hyperlogarithms). Any ordinal ξ > 0 can be written uniquely
in the form α+ ωβ, and we define `ξ = β. We also set `0 = 0.

Then, we define the sequence 〈`ξ〉ξ∈On to be the unique family of initial func-
tions such that
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1. `1 = `,

2. `α+β = `β`α for all ordinals α, β,

3. (`ξ)ξ∈On is pointwise maximal among all families of functions satisfying
the above clauses.

The correctness of this definition is also shown in [42]. Hyplogarithms give
another family of transfinite dynamical systems. Note that, while eα+β = eα◦eβ ,
we have that `α+β = `β ◦ `α, and in general ordinal addition does not commute,
so the two are not equivalent. Moreover, hyperexponentials and hyperlogarithms
cancel each other out, in the sense that `ξ ◦ eξ(α) = α for all ξ, α. These
operations will be essential later for describing topological models of GLPΛ.

4.3 Turing-Feferman progressions and provability spectra

In his thesis, Turing proposed to extend a theory T by iteratively adding its own
consistency assertions [27]. This gives a strictly increasing sequence of theories,
provided they are consistent, and may be seen as a transfinite dynamical system
on the set of all theories in the language of first- or second-order arithmetic, and
thus many of the tools proposed above can be used to formalize them. To be
precise, let Θ be the set of all formal theories (say, in the language of arithmetic),
and define a transfinite-time flow (τ ξ)ξ<Λ given by

1. τ0(X) = X,

2. τ ξ+1(X) = Xξ + ♦τξ(X)>,

3. τλ(X) =
⋃
ξ<λ

τ ξ(X) for λ a limit ordinal,

where X ∈ Θ.
The flow ~τ can be generalized to obtain the n-progression of X, denoted

(τ ξn)ξ<Λ, where τ ξn is defined as τ ξ but setting

τ ξ+1
n (X) = τ ξn(X) + 〈n〉τξn(X)>.

Joosten has developed a systematic study of Turing-Taylor progressions [60],
i.e. the representation of a theory T in the form

U + τα0(U) + τα1
1 (U) + τα2

2 (U) + . . .

Then, the provability spectrum of T is the sequence (αi)i<ω. In particular, α0 is
the Π0

1 ordinal, or consistency measure, of T . Beklemishev’s consistency proof
of PA uses the fact that PA has ε0 as its Π0

1 ordinal. Thus if we want to
produce similar consistency proofs for stronger theories, a natural first step is
to compute their provability spectra, and this requires understanding the logics
GLPΛ for Λ > ω. Later we will give proof-theoretic interpretations for these
logics, but first let us discuss their Kripke and topologial semantics. We begin
with semantics for the variable-free fragment.
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4.4 The closed fragment

As it turns out, the variable-free, or closed, fragment of GLPΛ, is sufficient for
Beklemishev’s proof-theoretic applications. Let us denote by L0

Λ the fragment of
LΛ that does not allow any propositional variables aside from >, and by GLP0

Λ

the set of derivable formulas within this fragment.
Of particular interest in this fragment are worms. A worm is a formula of

the form
〈λ0〉 . . . 〈λI〉>.

These formulas correspond to iterated consistency statements, and indeed can
be used to study the proof-theoretic strength of many theories related to Peano
Arithmetic, as Beklemishev has shown [8].

Worms are well-ordered by their consistency strength. Let us denote the set
of worms with entries less than Λ by WΛ; then, given worms v,w ∈WΛ, define
vCw if GLPΛ ` w→ ♦v.

The relation C we have just defined is a well-order [8, 45]. Thus we may
compute the order-type of a worm w ∈WΛ:

o(w) = sup
vCw

(o(v) + 1).

It will be convenient to review the calculus for computing o that is given in
[45]. First, if v = 〈ξ1〉 . . . 〈ξN 〉> and w = 〈ζ1〉 . . . 〈ζM 〉>, define

v♦w = 〈ξ1〉 . . . 〈ξN 〉〈0〉〈ζ1〉 . . . 〈ζM 〉>.

Further, if α is any ordinal, set

α ↑ w = 〈α+ ζ1〉 . . . 〈α+ ζM 〉>.

Theorem 4.6 (DFD, Joosten). Let v,w be worms and α an ordinal.
Then,

o(>) = 0 (2)

o(v♦w) = o(w) + 1 + o(v) (3)

o(α ↑ w) = eαo(w). (4)

Here we see an advantage of using e rather than ϕ as a basis of our ordinal
notation system, as these expressions become somewhat more cumbersome with
the latter. Moreover, as shown by Ignatiev in the case of Λ = ω and Joosten
and I for arbitrary Λ, the fragment GLP0

Λ is indeed Kripke-complete. Here, we
present the general version of Ignatiev’s model, as introduced by Joosten and I
in [43].

Definition 4.7 (generalized Ignatiev models). Let Θ,Λ be ordinals.
We define an `-sequence (of depth Θ and length Λ) to be a function

f : Λ→ Θ
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such that, for every ζ ∈ (0,Λ), we have that

f(ζ) ≤ `−ξ+ζf(ξ) (5)

provided ξ < ζ is large enough.1

Given ordinals Θ,Λ, define a structure

IgΘ
Λ = (DΘ

Λ , (<ξ)ξ<Λ)

by setting DΘ
Λ to be the set of all `-sequences of depth Θ and length Λ. Define

f <ξ g if and only if f(ζ) = g(ζ) for all ζ < ξ and f(ξ) < g(ξ).

In [43], we also prove the following, which was proven by Ignatiev in [57] in
the case Λ ≤ ω:

Theorem 4.8 (DFD, Joosten). Let Λ be any ordinal and ϕ ∈ L0
Λ. Then,

GLP0
Λ ` ϕ if and only if Ige

Λ1
Λ |= ϕ.

However, as we have discussed previously, the full logic GLPΛ cannot be
sound and complete for any class of Kripke frames, and hence we turn instead
to topological models of these logics.

4.5 Topological semantics of provability logic

The logic GLPω (or even GLP2) is not Kripke-complete, so much of the study of
these logics relies heavily on topological semantics, including [1], which is based
on the thesis of my student, Juan Pablo Aguilera. It also required a new system
of ordinal notations reported by Joosten and I in [42, 45].

Given an ordinal Θ, there are several natural topologies we may consider
on Θ. We define, first, the topology I0, consisting of all initial segments [0, β)
of Θ. Second, we have the usual order topology (as used, say, on the real
line), generated by sets of the form (α, β) (where we allow α = −1 so that
initial segments are open). However, this readily extends to all λ to produce
the generalized λ-Icard topologies, introduced by Icard for λ < ω in [56] and for
arbitrary λ by myself in [36].

Definition 4.9. Fix ordinals Θ,Λ. For 1 < λ < Λ define a topology Iλ on Θ
by setting, for λ < Λ, Iλ to be the topology generated by sets of the form

(α, β]ξ =
{
ϑ : α < `ξϑ ≤ β

}
.

We will denote the resulting polytopological space (Θ, (Iλ)λ<Λ) by IcΘΛ .

We can view IcΘΛ as a polytopological space, or regard the topologies (Θ, Iλ)
in isolation. The latter gives us semantics for GLP1, and indeed, as I showed
with Aguilera in [1], we obtain strong completeness:

1More precisely, given ζ ∈ (0,Λ) there is ϑ < ζ such that (5) holds whenever ξ ∈ [ϑ, ζ).
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Theorem 4.10 (Aguilera, DFD). Let λ be a nonzero ordinal and Θ > eλω.
Then, GL is strongly complete with respect to (Θ, Iλ).

Moreover, an analogue of Theorem 4.8 holds for generalized Icard spaces:

Theorem 4.11 (DFD, Joosten). Let Λ be any ordinal and ϕ ∈ L0
Λ. Then,

GLP0
Λ ` ϕ if and only if Ice

Λ1
Λ |= ϕ.

Unfortunately, as was the case with Ignatiev’s models, Icard topologies do
not give a model of the full GLPΛ. However, as shown by Beklemishev and
Gabelaia [10] for Λ = ω and myself for countable Λ [36], they can be used as
the ‘backbone’ of a model of the full logic.

Theorem 4.12 (DFD). Given a countable ordinal Λ and a GLPΛ-consistent
formula ϕ ∈ LΛ, there exist a family of topologies (Tλ)λ<Λ on Θ = e1+Λ1 such
that

1. I1+λ ⊆ Tλ for each λ < λ,

2. (Θ, (Tλ)λ<Λ) |= GLPΛ, and

3. there is a valuation V on Θ and θ ∈ Θ such that

(Θ, (Tλ)λ<Λ, V, θ) |= ϕ.

Thus the logics GLPΛ are sound and complete for their topological semantics.
However, the ‘intended’ interpretation of these logics is proof-theoretic, and for
this we turn to the language of second-order arithmetic.

4.6 Subsystems of second-order arithmetic

In order to define proof-theoretical semantics for GLPΛ, it will be convenient to
pass to the language Π1

ω of second-order arithmetic. This language extends that
of first-order arithmetic with new variables X,Y, Z, . . . denoting sets of natural
numbers, along with new atomic formulas t ∈ X and second-order quantifiers
∀X,∃X. As is standard, we may define X ⊆ Y by ∀x(x ∈ X → x ∈ Y ), and
X = Y by X ⊆ Y ∧ Y ⊆ X.

When working in a second-order context, we write Π0
n instead of Πn (note

that these formulas could contain second-order parameters, but no quanti-
fiers over sets). The classes Σ1

n,Π
1
n are defined analogously to their first-

order counterparts, but using alternating second-order quantifiers and setting
Σ1

0 = Π1
0 = ∆1

0 = Π0
ω. It is well-known that every second-order formula is

equivalent to another in one of the above forms.
When axiomatizing second-order arithmetic, the focus passes from induction

to comprehension; that is, axioms stating the existence of sets whole elements
satisfy a prescribed property. Some important axioms and schemes are:

Γ-CA: ∃X∀x
(
x ∈ X ↔ ϕ(x)

)
, where ϕ ∈ Γ and X is not free in ϕ;
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∆0
1-CA: ∀x

(
π(w) ↔ σ(x)

)
→ ∃X∀x

(
x ∈ X ↔ σ(x)

)
, where σ ∈ Σ0

1, π ∈ Π0
1,

and X is not free in σ or π;

Ind: 0 ∈ X ∧ ∀x
(
x ∈ X → x+ 1 ∈ X

)
→ ∀x (x ∈ X).

We mention one further axiom that requires a more elaborate setup. We may
represent well-orders in second-order arithmetic as pairs of sets Λ = 〈|Λ|,≤Λ〉,
and define

WO(Λ) = linear(Λ) ∧ ∀X ⊆ |Λ| (∃x ∈ X → ∃y ∈ X∀z ∈ Xy ≤Λ z),

where linear(Λ) is a formula expressing that Λ is a linear order.
Given a set X whose elements we will regard as ordered pairs 〈λ, n〉, let

X<Λλ be the set of all 〈µ, n〉 with µ <Λ λ. With this, we define the transfinite
recursion scheme by

TRϕ(X,Λ) = ∀λ ∈ |Λ| ∀n
(
n ∈ X ↔ ϕ(n,X<Λλ)

)
.

Intuitively, TRϕ(X,Λ) states that X is made up of “layers” indexed by elements
of Λ, and the elements of the λth layer are those natural numbers n satisfying
ϕ(n,X<Λλ), where X<Λλ is the union of all previous layers. If Γ is a set of
formulas, we denote the Γ-transfinite recursion scheme by

Γ-TR =
{
∀Λ
(
WO(Λ)→ ∃X TRϕ(X,Λ)

)
: ϕ ∈ Π0

ω

}
.

Now we are ready to define some important theories:

ECA0 : Q+ + Ind + ∆0
0-CA;

RCA∗0 : Q+ + Ind + ∆0
1-CA;

RCA0 : Q+ + IΣ0
1 + ∆0

1-CA;
ACA0 : Q+ + Ind + Σ0

1-CA;
ATR0 : Q+ + Ind + Π0

ω-TR;
Π1

1-CA0 : Q+ + Ind + Π1
1-CA.

These are listed from weakest to strongest. The theories RCA0, ACA0 ATR0 and
Π1

1-CA0, together with the theory of weak König’s lemma, WKL0, are the ‘Big
Five’ theories of reverse mathematics, where RCA0 functions as a ‘constructive
base theory’, and the stronger four theories are all equivalent to many well-
known theorems in mathematical analysis. For a detailed treatment of these
and other subsystems of second-order arithmetic, see [78].

ECA0 (the theory of elementary comprehension) is the second-order analogue
of elementary arithmetic, and is a bit weaker than the more standard RCA∗0.
Meanwhile, arithmetical comprehension (ACA0) is essentially the second-order
version of PA, and has the same proof-theoretic ordinal, ε0. Thus the next
milestone in the Π0

1 ordinal analysis program is naturally ATR0, the theory of
arithmetical transfinite recursion. Appropriately, the constructions we will use
to interpret the modalities [λ] for countable λ > ω may be carried out within
ATR0.

33



4.7 Iterated ω-rules

If we wish to interpret [λ]T ϕ for transfinite λ, we need to consider a notion of
provability that naturally extends beyond ω. One such notion, which is well-
studied in proof theory (see, e.g., [75]), considers infinitary derivations with the
ω-rule. Intuitively, this rule has the form

ϕ(0̄) ϕ(1̄) ϕ(2̄) ϕ(3̄) ϕ(4̄) . . .

∀xϕ(x)

The parameter λ in [λ]T ϕ denotes the nesting depth of ω-rules that may be
used for proving ϕ. The notion of λ-provability is defined as follows:

Definition 4.13. Let T be a theory of second-order arithmetic and ϕ ∈ Π1
ω.

For an ordinal λ, we define [λ]Tϕ recursively if either

(i) �Tϕ, or

(ii) there are an ordinal µ < λ and a formula ψ(x) such that

(a) for all n < ω, [µ]Tψ(n̄), and

(b) �T (∀xψ(x)→ ϕ).

This notion can be formalized by representing ω-proofs as infinite trees, as
presented by Arai [3] and Girard [49]. Here we will instead use the formalization
from [44], where Joosten and I showed that this can be formalized in second-
order arithmetic for countable λ. To do this, we use a set P as an iterated
provability class. Its elements are codes of pairs 〈λ, ϕ〉, with λ a code for an
ordinal and ϕ a code for a formula. The idea is that we want P to be a set of
pairs 〈λ, ϕ〉 satisfying Definition 4.13 if we set [λ]T ϕ = 〈λ, ϕ〉 ∈ P . Thus we
may write [λ]Pϕ instead of 〈λ, ϕ〉 ∈ P .

Definition 4.14. Fix a well-order Λ on N. Say that a set P of natural numbers
is an iterated provability class for Λ if it satisfies the expression

[λ]P ϕ ↔
(
�Tϕ ∨ ∃ψ ∃ ξ<Λλ

(
∀n [ξ]P ψ(ṅ) ∧ �T (∀xψ(x)→ ϕ)

))
.

Let IPCΛ
T (P ) be a Π0

ω formula stating that P is an iterated provabiltiy class for
Λ. Then, define

[λ]ΛT ϕ := ∀P
(
IPCΛ

T (P )→ [λ]Pϕ
)
.

Note that [λ]ΛT is a Π1
1 formula. Alternately, one could define [λ]ΛT as a Σ1

1

formula, but the two definitions are equivalent due to the following.

Lemma 4.15.

1. It is provable in ACA0 that if Λ is a countable well-order and P,Q are
both iterated provability classes for Λ, then P = Q.

2. It is provable in ATR0 that if Λ is a countable well-order, then there exists
an iterated provability class for Λ.
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The first claim is proven by considering two IPC’s P,Q and showing by
transfinite induction on λ that [λ]P ϕ ↔ [λ]Q ϕ; this induction is readily avail-
able in ACA0 since the expression [λ]Pϕ is arithmetical. For the second, we
simply observe that the construction of an IPC is a special case of arithmetical
transfinite recursion. See [44] for more details.

An arithmetical intepretation is any function V : P → Π1
ω so that V (p) is

always a sentence (i.e., contains no free variables). If we fix a computable well-
order Λ and a theory T in the language of second-order arithmetic, we can
readily extend V to a map V Λ

T : LΛ → Π1
ω by letting V Λ

T commute with all
Booleans and setting

V Λ
T ([λ]ϕ) = [λ̄]ΛTV

Λ
T (ϕ).

In [44], Joosten and I proved the following:

Theorem 4.16 (DFD, Joosten). Let Λ be a computable well-order and T be a
theory extending ACA0 such that it is provable in T that Λ is well-ordered, and
that there is a set P satisfying IPCΛ

T (P ).
Then, for any ϕ ∈ LΛ, the following are equivalent:

1. GLPΛ ` ϕ;

2. for every arithmetical interpretation V ,

T ` V Λ
T (ϕ).

The computability condition in Λ is included due to the fact that in the
proof of Theorem 4.16, we need to be able to prove properties about Λ within
T ; for example, we need for

∀x ∀y
(
x ≤Λ y → �T (x̄ ≤Λ ȳ)

)
to hold. However, we can drop this condition if we allow an oracle for Λ; or, more
generally, for any set of natural numbers. To do this, we add a set-constant O
to the language of second-order arithmetic in order to ‘feed’ information about
any set of numbers into T .

To be precise, given a theory T and A ⊆ N, define T |A to be the theory
whose rules and axioms are those of T together with all instances of n̄ ∈ O for
n ∈ A, and all instances of n̄ 6∈ O for n 6∈ A. Then, for any formula ϕ, we define

[λ|A]ΛTϕ = [λ]ΛT |Aϕ.

Its dual, 〈λ|A〉ΛTϕ, is defined in the usual way. With this, we obtain an analogue
of (1) for ATR0, proven by Cordón-Franco, Joosten, Lara-Mart́ın and myself in
[20]:

Theorem 4.17 (Cordón-Franco, DFD, Joosten, Lara).

ATR0 ≡ ECA0 + ∀Λ ∀X 〈λ|X〉ΛECA0
>.
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We have discussed before how the ω-rule can be iterated along a well-order.
However, we may also consider full ω-logic based on a theory T ; that is, the set
of formulas that can be derived using the ω-rule and reasoning in T , regardless
of the nesting depth of these ω-rules. Let us write [∞]Tϕ if ϕ is derivable in
this fashion. To be precise, we want [∞]Tϕ to hold whenever:

(i) �Tϕ,

(ii) ϕ = ∀xψ(x) and for all n, [∞]Tψ(n̄), or

(iii) there is ψ such that [∞]Tψ and [∞]T (ψ → ϕ).

In words, [∞]T is closed under T and the ω-rule. This notion may be formalized
using ω-trees to represent infinite derivations, as in [3, 49]. We follow a different
approach, using a fixed-point construction as in [37].

Definition 4.18. Fix a theory T , possibly with oracles. Let SPCT (Q) be a Π1
1

formula naturally expressing that Q is the least set such that ϕ ∈ Q whenever
(i) �Tϕ holds, (ii) ϕ = ∀v ψ(v) and for all n, ψ(n̄) ∈ Q, or (iii) there exists
ψ ∈ Q such that ψ → ϕ ∈ Q.

Then, define
[∞]Tϕ ≡ ∀Q

(
SPCT (Q)→ ϕ ∈ Q

)
.

As before, we may also consider saturated provabiltiy operators with oracles,
and we write [∞|A]Tϕ instead of [∞]T |Aϕ. This notion of provability allows us
to represent Π1

1-CA0 in terms of a strong consistency assertion, in the spirit of
(1). I proved the following in [37]:

Theorem 4.19 (DFD). Π1
1-CA0 ≡ ECA0 + ∀X 〈∞|X〉T>.

This tells us that Kreisel and Lévy’s result for Peano arithmetic readily
extends to many natural theories of second-order arithmetic. These results may
well be the first step in consistency proofs for theories of second-order arithmetic
in the style of Beklemishev.
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5 Dynamics of information

As we have seen, modal logics can be used to model dynamics in formal systems.
Now we will show how they can also be used to model dynamics in epistemic
states, e.g., in the beliefs and knowledge of rational agents, including humans
and robots. Central to these dynamics are the notions of learning and forgetting.

5.1 Learning and forgetting

We consider the basic language of epistemic logic L = LA, where A is a non-
empty finite set of ‘agents’. The language LA is a variant of the basic modal
language with one modality Ka for each agent, interpreted as ‘the agent a knows
that’. The language LCA is an extension of LA which introduces an operator CB
(‘common knowledge’) for each B ⊆ A.

We are interested in interpreting L and LC over epistemic frames, which
are Kripke frames (W, (∼a)a∈A), where each ∼a is an equivalence relation. As
usual, an epistemic frame equipped with a valuation is an epistemic model, and
semantics are defined as in Definition 2.6.

It is well-known [26, 73] that multimodal S5, given by the axiomatization
below, is complete for such interpretations:

Axioms
All propositional tautologies
Ka(ϕ→ ψ) → Kaϕ→ Kaψ;
Kaϕ → ϕ
Kaϕ → KaKaϕ;
¬Kaϕ → Ka¬Kaϕ.

Rules: Modus ponens and Necessitation:

ϕ,ϕ→ ψ

ψ

ϕ

Kaϕ

From an epistemic perspetive, if (A, a) E (B, b) (i.e., (A, a) is simulated by
(B, b) in the sense of Definition 2.13), we may think that an agent passing from
the epistemic state (B, b) to the epistemic state (A, a) has gained information,
or learned, as they now entertain fewer possible states of the world. Conversely,
passing from (A, a) to (B, b) may be seen as forgetting. Thus it is of interest to
describe such situations in the context of epistemic logic. In [24], we prove the
following variant of Theorem 2.17:

Theorem 5.1 (van Ditmarsch, DFD, van der Hoek). Let A be a set of at least
two agents. Then:

1. Bisimulation to finite epistemic states (i.e., pointed models) is not defin-
able in LA.

2. Global bisimulation to finite epistemic models is definable using model
validity in LA.
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3. Simulation by finite epistemic states is not always definable, even over LCA .

Note that van Benthem has already shown that bisimulation to finite epis-
temic states (i.e., pointed models) is definable in LCA [11]. Later, in [46], we
present a general framework which allows agents to forget propositional infor-
mation. The act of forgetting is modeled in a non-deterministic fashion: for
example, if a forgets that p ∧ q, this may be because a has forgotten that p, or
because a has forgotten that q, leading to two new epistemic scenarios for a.

Nevertheless, the use of Kripke models implicitly assumes that agents are
perfectly rational. Next, we see how general neighborhood spaces can be used
to weaken this assumption.

5.2 Agents with bounded rationality

Most existing logical theories of epistemic attitudes developed in the area of
epistemic logic assume that agents are omniscient, in the sense that: (i) their
beliefs are closed under conjunction and implication, i.e., if ϕ is believed and
ψ is believed then ϕ ∧ ψ is believed and if ϕ is believed and ϕ→ ψ is believed
then ψ is believed; (ii) their explicit beliefs are closed under logical consequence
(alias valid implication), i.e., if ϕ is believed and ϕ logically implies ψ, i.e.,
ϕ → ψ is valid, then ψ is believed as well; (iii) they believe valid sentences or
tautologies; (iv) they have introspection over their beliefs, i.e., if ϕ is believed
then it is believed that ϕ is believed.

As pointed out in [55, 70], relaxing the assumption of logical omniscience
allows for a resource-bounded agent who might fail to draw any connection
between ϕ and its logical consequence ψ and, consequently, who might not
believe some valid sentences and who might need time to infer and form new
beliefs from her existing knowledge and beliefs.

In order to model such situations, in [12], van Benthem, Pacuit and I define
an evidence space to be a monotone, non-degenerate neighborhood space E =
(W,l). We interpret formulas of the language L�∀ in the usual way, but add
two relations:

1. A w-scenario is a maximal collection X ⊆ 2W of neighborhoods of w that
has the finite intersection property: for each finite subfamily {X1, . . . , Xn}
⊆ X we have that

⋂n
i=1Xi 6= ∅. A collection is called a scenario if it is

a w-scenario for some state w.

Then, define w B v if v ∈
⋂
X for some w-scenario X .

2. Define a binary relation 4 by w 4 v if whenever u l X are such that
w ∈ X, then v ∈ X.

These new relations give us a new structure E4 = (W,l,4, B). The basic
intuitions are as follows:

• That w B v indicates that the agent considers v to be maximally likely
among all possible worlds.
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The idea is that agent in a state w possesses evidence from many possibly
contradictory sources. Thus she cannot simultaneously believe all of the
evidence she has in case that it is incompatible; instead, she will form her
beliefs by putting together as much evidence as possible without obtaining
a contradiction. The (non-deterministic) result of putting her evidence
together is a scenario, but she only believes the information that holds in
all scenarios she may form from her evidence.

• That w 4 v means that any evidence supporting w also supports v. This
means that, given the evidence an agent has access to, v is at least as
likely as w. Note that it does not mean that she finds v to be maximally
likely, since there may be states even more likely than v.

It is convenient to define some special classes of evidence spaces.

Definition 5.2. Let E = (W,l) be an evidence space, and E4 = (W,l,4, B)
be its extended evidence structure.

We say that E is flat if B is serial (i.e., for all w ∈W there is v ∈W such
that w B v).

Let Ev be the class of all evidence models, Evu the class of all uniform
evidence models (as in Definition 2.4), Ev[ be the class of all flat evidence
models, and Evu[ be the class of all flat, uniform evidence models.

With this, we are ready to define evidence logics.

Definition 5.3. Let At be a fixed set of atomic propositions. Let L4B�∀ be the
smallest set of formulas generated by the following grammar

p | ¬ϕ | ϕ ∧ ψ | [B]ϕ | �ϕ | ∀ϕ | [4]ϕ

where p ∈ P.
For λ ⊆ {u, [}, we let ELλ be the set of valid formulas of L4B�∀ over Evλ.

Our main result in [12] is the following:

Theorem 5.4 (van Benthem, DFD, Pacuit). Each evidence logic ELλ has a
natural sound and complete axiomatization and is decidable. Moreover,

1. EL,EL[ and EL[u are sound and strongly complete for their class of evi-
dence models,

2. EL[u is sound and weakly complete for its class of finite evidence models.

Nevertheless, since evidence models are monotone, this means that

∀(ϕ→ ψ)→ (�ϕ→ �ψ)

is valid, so that agents have a sort of logical omniscience: their knowledge is
closed under derivable implication.

In order to remove such omniscience, Balbiani, Lorinin and I consider models
of explicit vs. implicit knowledge [6]; essentially, explicit knowledge is knowledge
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that an agent is aware of possessing, and implicit knowledge is that which fol-
lows deductively from the agent’s knowledge base, but may not be actively
entertained at the moment. We then define models of explicit knowledge as
follows:

Definition 5.5 (explicit knowledge space). Fix a set of agents A. We define
an explicit knowledge space to be a structure

(W, (li)i∈A, (∼a)a∈A)

where:

1. for every i ∈ A, ∼i⊆W ×W is an equivalence relation on W ;

2. for every i ∈ A, li ⊆W ×W is a neighborhood relation such that:

(a) if w li X and v ∈ X then v ∼i w, and

(b) if w li X and v ∼i w then v li X.

We define LBKA to be the modal language with one modality Bi and one
modality Ki for each i ∈ A. Formulas of LBKA are interpreted over explicit
knowledge models according to Definition 2.6, with Bi interpreted using li and
Ki interpreted using ∼i.

The set of valid formulas for these semantics is denoted DL-S∗.

The intuition is that Biϕ holds if the agent i explicitly knows that ϕ, while
Kiϕ means that ϕ is deducible from i’s knowledge. Then, in [6] we prove the
following:

Theorem 5.6 (Balbiani, Lorini, DFD). The logic DL-S∗ enjoys a strongly com-
plete axiomatization for the class of explicit knowledge models.

Moreover it has the finite model property, and hence is decidable.

Indeed the axiomatization for DL-S∗ is fairly standard, except that the K
axiom fails for Bi. Instead, it is replaced by the weaker

Ki(ϕ↔ ψ)→ (Biϕ↔ Biψ),

which means that agents are incapable of distinguishing between logically equiv-
alent statements. Nevertheless, it is not generally the case that Ki(ϕ → ψ) →
(Biϕ→ Biψ) holds, meaning that agents’ knowledge is not closed under logical
consequence.

Thus evidence logics and explicit knowledge logics give us natural frame-
works in which to model agents with imperfect evidence, or with bounded rea-
soning resources, respectively. Such frameworks can be used, for example, to
model scenarios in cryptography, where an eavesdropper is assumed to have
limited computational capacity. However, in the next section, we will discuss
cryptographic protocols that are safe even against intruders without such limi-
tations.
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5.3 Applications to secure communication

As we have seen, dynamical systems can be used to model change in informa-
tion. This has very concrete applications, including information security. In
cryptographic systems, two or more agents (‘Alice’, ‘Bob’, etc.) must commu-
nicate in such a way that a potential eavesdropper (‘Eve’) is unable to obtain
the data being shared. To verify that a cryptographic system is correct, we
need to model the messages being sent and Eve’s capabilities for processing
such messages. Many encryption methods used in practice are based on the
difficulty of solving NP problems using conventional computers; on another ex-
treme, we have unconditionally secure cryptosystems, where Eve may not obtain
the protected data from the messages being sent by Alice and Bob.

In order to share information, Alice and Bob must exchange messages, each
of which modifies the state of agents’ knowledge. When a larger number of
agents is involved, the exchange may require more steps, and we must ensure
that at no point does Eve learn sensitive information. By viewing this as a dy-
namical system, we can employ many of the tools mentioned above to guarantee
that such a communication protocol is secure.

One setting where these methods have already been successful uses a deck
of cards to model information; namely, the Russian cards problem [23]. This
is a family of combinatorial puzzles about secure secret-sharing between card
players. It is parametrized by a triple of natural numbers (a, b, e), which we call
its size, and can be stated as follows:

The generalized Russian cards problem

Alice, Bob and Eve each draw a, b and e cards, respectively, from a
deck containing a total of a + b + e. All players know which cards
were in the deck and how many of them the other players drew, but
may only see the cards in their own hand.

Alice and Bob want to know exactly which cards the other holds.
Meanwhile, they do not want for Eve to learn who holds any card
whatsoever, aside of course from her own cards.

However, they may only communicate by making true, clear, public
announcements, so that Eve can learn all the information that they
exchange.

Can Alice and Bob achieve this?

Many solutions to this problem are known, depending on the specific choice of
parameters (a, b, e), called a size [2, 79]. A solution takes the form of a protocol.

Formally, a deal is a partition δ = (A,B,E) of the deck, such that Alice’s
hand A has a elements, Bob’s hand B has b and Eve’s hand E has e. The
agents are not able to distinguish between different deals where they hold the
same hand. We model this by equivalence relations between deals; since from
Alice’s perspective, (A,B,E) is indistinguishable from (A,B′, E′), we define

(A,B,E)
Alice∼ (A′, B′, E′) if and only if A = A′. We also define analogous

equivalence relations for Bob and Eve.
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Definition 5.7 (Protocol). Fix a formal language L, which for simplicity could
be the set of natural numbers. An announcement is a pair (i, ϕ), where i is
either Alice or Bob and ϕ ∈ L.

A sequence of announcements ~α = (i0, ϕ0), (i1, ϕ1), . . . , (in, ϕn) is a run.
We shall write Run<N the set of runs of length less than N .

A protocol of length N (with (a, b, e) as parameters) is a pair of functions
(j, π) assigning to every deal δ and every run ~α ∈ Run<N an agent j(~α) ∈
{Alice,Bob} and a finite, non-empty set π(δ, ~α) ⊆ L such that if δ′

j(~α)∼ δ, then
π(δ′, ~α) = π(δ, ~α).

Thus once a deal has been given, a protocol assigns to each run a player
who is to make the next announcement and a set of possible announcements for
the player to make; players then choose their announcement randomly. These
announcements are determined exclusively by the information an agent has
access to, which is assumed to be only (i) their hand, (ii) the parameters a, b, e,
(iii) the announcements that have been made previously and (iv) the protocol
π being executed.

Protocols are non-deterministic in principle and hence may be executed in
many ways; an execution of a protocol is a pair (δ, ~α), where δ is a deal, ~α =
(i0, ϕ0), . . . , (in, ϕn) a run and, for all k < n, ik+1 = j

(
(i0, ϕ0), . . . , (ik, ϕk)

)
and

ϕk+1 ∈ π
(
δ, (i0, ϕ0), . . . , (ik, ϕk)

)
.

Now we must define what it means for a protocol to be a solution to the
Russian Cards Problem. The first property that must hold is that Alice and
Bob know each other’s cards (and hence the entire deal) after its execution:

Definition 5.8 (Informativity). An execution ((A,B,E), ~α) is informative for
Alice if there is no execution ((A,B′, E′), ~α) with E′ 6= E.

Similarly, an execution ((A,B,E), ~α) is informative for Bob if there is no
execution ((A′, B,E′), ~α) with E′ 6= E.

A protocol of length N is informative if every execution of length N is in-
formative both for Alice and for Bob.

The second property is that, given k cards x1 . . . xk (possibly with repeti-
tions) which Eve does not hold, she should consider it possible that either Alice
holds it or she does not:

Definition 5.9 (k-safety). Let k be a natural number. An execution ((A,B,E), ~α)
of a protocol (j, π) is k-safe if for every x1, . . . , xk 6∈ E there is

1. a deal δ′ = (A′, B′, E) such that x1, . . . , xk ∈ A′ and (δ′, ~α) is also an
execution of (j, π), as well as

2. a deal δ′′ = (A′′, B′′, E) such that xi 6∈ A for some i ≤ k and (δ′′, ~α) is
also an execution of (j, π).

The protocol (j, π) is safe if every execution of (j, π) is safe.

We usually write safe instead of 1-safe. Then, in [19], we proved the follow-
ing:
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Theorem 5.10 (Cordón-Franco, van Ditmarsch, DFD, Soler-Toscano). Assume
that a, b, e, p, d, k are such that p is a prime power, a = kpd, a + b + e = pd+1

and

e < kpd − k2pd−1, (6)

max{e+ k, ek} ≤ p. (7)

Then, there is a k-safe and informative protocol for (a, b, e).

The protocol uses ideas from finite linear algebra; roughly, Alice arranges her
cards into a union of k hyperplanes in a finite vector space in order to produce
her announcement.

Safety can also be described in probabilistic terms. For this, we need to
assign weights to the possible outcomes of a protocol. Say a weighing function
for a protocol (j, π) is a function w assigning a number w(ϕ, δ, ~α) ∈ (0, 1] to
each ϕ ∈ π(δ, ~α) such that ∑

ϕ∈π(δ,~α)

w(ϕ, δ, ~α) = 1

and if δ′
j(~α)∼ δ and ϕ ∈ π(δ, ~α), then w(ϕ, δ′, ~α) = w(ϕ, δ′, ~α).

We may use weights to define probabilities on sets of runs in the standard
way. Safety is then equivalent to the statement that for all E, x 6∈ E and every
execution ~α of the protocol,

0 < Pr(x ∈ A|E, ~α) < 1

(where Pr(X|Y ) denotes conditional probability). This is equivalent to weak
1-security as defined by Swanson and Stinson [79], which is not the only notion
of security they discuss.

Observe that weak security does not depend on the particular weights we
assign to announcements. However, this changes for perfect security [79], which
demands that Eve does not gain probabilistic information, so that

Pr(x ∈ A|E, ~α) =
a

a+ b
.

Nevertheless, it is shown in [79] that this notion of security is quite restrictive,
as it is difficult to provide solutions when Eve holds five or more cards. To this
end, my student Esteban Landerreche and I introduced the notion of ε-strong
security.

Definition 5.11. Let ε > 0 and a size (a, b, e). A protocol π is ε-strongly
secure for (a, b, e) if for every deal δ, every card x not in E, and every an-
nouncement A with Pr(A|E) 6= 0, we have that∣∣∣∣Pr(x ∈ A|E,A)

Pr(x ∈ A|E)
− 1

∣∣∣∣ < ε. (8)

43



a b e q α δ ρ Lower Upper

8 117 3 2 3 7 3/8 0.9968 1.0041
9 231 3 3 2 5 1/3 0.9986 1.0357
16 489 7 2 4 9 7/16 0.9926 1.0081
25 3,091 9 5 2 5 9/25 0.999 1.0482
32 2,001 15 2 5 11 9/20 0.9895 1.0109
64 8,105 23 2 6 13 7/20 0.9952 1.0048

Figure 6: Choices of parameters (a, b, e) with b < a2+β and e ≈ ρa such that
there is an informative and at least 0.05-strongly safe protocol for (a, b, e), as in
Theorem 5.12. We show the lower and upper bounds for (8).

Essentially, ε-strongly secure protocols are perfectly secure up to a margin
of error of ε. Our main results in [68] is as follows:

Theorem 5.12 (Landerreche, DFD). Let ε, β > 0 and ρ ∈ (0, 1) be rational
numbers. Then:

1. There are infinitely many values of a such that for any e < ρa there is
b < a2+β so that there is an informative and ε-strongly safe strategy for
(a, b, e).

2. There are infinitely many values of a such that for any e < aρ there is
b < a1+β such that there is an informative and ε-strongly safe strategy for
(a, b, e).

We can further extend the Russian cards to a multi-agent setting. The se-
cure aggregation of distributed information problem, introduced by Goranko and
I [41] considers agents A1, . . . ,An, each holding ai cards, who must then inform
each other of their hand without Eve, who holds the remaining e cards, to learn
the ownership of any card. Solutions to this problem may well lead to appli-
cations in e.g. password safeguarding [14], and this model of communication is
amenable to analysis using our formal tools. Although there is some exploratory
work, many more advances are needed for applications. In [41] we gave a natural
generalization of the notions of informativity and safety, obtaining the following:

Theorem 5.13 (DFD, Goranko). Given m there is N such that for any size
~a = (a1, . . . , am, 0) (i.e., such that Eve holds no cards) such that

s =

m∑
i=1

ai > N

and each player holds at least 1
2

√
s/m cards, there is a safe and informative

protocol for ~a.

The notion of perfect safety also readily extends to the multiagent setting,
as I showed in [39], where I showed the following:
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(a, b1, . . . , bm) m q d

(18, 4, 5) 2 3 2
(54, 13, 14) 2 3 3
(162, 40, 41) 2 3 4

(486, 121, 122) 2 3 5

(a, b1, . . . , bm) m q d

(48, 5, 5, 6) 3 4 2
(192, 21, 21, 22) 3 4 3
(100, 6, 6, 6, 7) 4 5 2

(500, 31, 31, 31, 32) 4 5 3

Figure 7: Some choices of suitable parameters for which perfectly safe solutions
exist. Note that there are m+ 1 agents, as Alice is counted separately.

Theorem 5.14 (DFD). Given a set A = {A,B1, . . . ,Bm} of m+1 agents, there
are infinitely many values of a such that there is an informative and perfectly
safe protocol for some size (a, b1, . . . , bm) such that

{a, b1, . . . , bm} ⊆ (a, 4m2a).

6 Perspectives

In my research, I have explored multiple connections between logic and dynam-
ical systems. This has led to the development of numerous tools and techniques
designed for applications in automated reasoning, artificial intelligence and other
fields. The focus of my future research will be to fine-tune and fully implement
said tools so that these applications may be fully realized in the near future.

6.1 Feasible logics for dynamical systems

As we have seen in Theorem 3.6, the set of intuitionistically valid L◦F∀ formulas
over the class of all dynamical systems is decidable, unlike the classical validities
of L◦F�∀. This suggests that intuitionistic temporal logic is the ‘right’ tool for
automated theorem-proving in dynamical systems, and thus these logics will
be the focus of my future research in the field. Moreover, L◦F∀ is expressive
enough to characterize minimality and Poincaré recurrence, two key properties
which sparked interest in dynamic topological logic. This makes intuitionistic
temporal logic arguably be the first decidable logic suitable for reasoning about
non-trivial asymptotic behavior of dynamical topological systems. Nevertheless,
our techniques are model-theoretic and do not yield an axiomatization, raising
the following:

Question 6.1. Is there a natural axiomatization for the set of valid formulas
of L◦FG∀ and/or its fragments?

Note also that the decision procedure we have given is not elementary. Nev-
ertheless, there is little reason to assume that this procedure is optimal. Hence,
a sharp lower bound on the complexity of intuitionistic temporal logic remains
to be found.
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Question 6.2. What is the complexity of the intuitionistic validity problem for
L◦F∀ ?

In case that such a bound is untractable, there are other natural variants
of dynamic topological logic which may have lower complexity. One could view
the topological semantics of intuitionistic logic as a restriction of the classical
semantics to the algebra of open sets. However, this is not the only important
topologically-defined algebra: the sub-algebra of regular open (or closed) sets
has already been studied in the context of spatial reasoning [25, 71], and Lando
has studied dynamic topological logic modulo sets of measure zero [69]. Re-
duced semantics modulo meager sets (i.e., countable unions of nowhere-dense
sets) would also be meaningful in the context of dynamical systems. For the
definitions and basic properties of these algebras, we refer the reader to a text
such as [50].

A separate strategy for finding tractable fragments could be to impose ad-
ditional syntactical restrictions to L◦F∀ , such as limiting the number of embed-
ded implications. Minimality is characterized using only one implication, and
Poincaré recurrence uses two, so that such restricted systems might suffice for
applications. This strategy has been successfully employed to obtain tractable
fragments of the polymodal provability logic GLP [21], which, like DTL, is topo-
logically complete but not Kripke complete [10]. This raises the following:

Question 6.3. Can tractable and useful variants of ITLc be obtained by

(a) using different spatial algebras, or

(b) restricting the syntax to suitable fragments?

Most of the classes of systems we have considered give rise to logics different
from ITLc, as depicted in Figure 4. Only the following questions are left open
by this analysis:

Question 6.4. Do the following inclusions hold:

(a) ITLe ⊆ ITLr or ITLe ⊆ ITLm,

(b) ITLeF ⊆ ITLR
n

F ?

Above, the subindex F means that G is not included in the language (oth-
erwise, the inclusion fails). Aside from this, Figure 4 is complete (in the sense
that all inclusions are shown), aside from possibly (a), and remains complete if
we replace the logics by the respective L◦F∀ -fragments, except for possibly (a)
or (b). Given that these logics are mostly distinct, it is an interesting open
problem whether intuitionistic temporal logics over special classes of systems
are more feasible than their classical counterparts. For example, DTLm is de-
cidable, unlike the unrestricted DTL: perhaps ITLm also has lower complexity
than ITLc? Similarly, it is not known if DTL over Poincaré recurrent systems is
decidable, but settling the decidability of intuitionistic temporal logic over this
class may be a more accessible problem.
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Question 6.5. Which of the unknown logics of Table 1 are decidable, and what
is their complexity?

Once the theoretical aspects of these logics are well-understood, the next step
is to implement them and test them in applications. For this, I will collaborate
with researchers in dynamical systems to develop benchmark expressions to be
proven or refuted by our automated theorem-provers. With this, we will finally
be ready to settle the following:

Question 6.6. From the above-mentioned variants of ITL mentioned avove,

(a) which are better suited for representing the problems that arise in dynam-
ical systems research, and

(b) which perform more efficiently in solving said problems?

6.2 Calibration of formal systems

Japaridze’s stratified modal logic GLPω has been successful in proof-theoretic
applications, and its extension to GLPΛ for countable Λ should suffice for ana-
lyzing predicative theories of arithmetic (i.e., systems up to ATR0). However,
for more powerful theories, we should consider expressions of the form [Ω]ϕ,
where Ω is uncountable. Extensions of GLPΛ which accommodate uncountable
ordinals will be useful for studying theories capable of proving strong fixed point
theorems and would give notation systems for large proof-theoretic ordinals [17].

One possible approach for formalizing such modalities stems from generaliz-
ing Beklemishev’s “brackets” notation from [9]. Here, consistency assertions are
generated exclusively from parentheses: ‘(’ and ‘)’. These may be combined in
many ways, interpreted as different reflection principles, and naturally ordered
by consistency strength: for example, (()) > ()() > (). The resulting order-type
of such expressions is Γ0.

Theories of proof-theoretic strength beyond Γ0 are often regarded as im-
predicative, which roughly means that, implicitly or explicitly, they regard the
real numbers, R (or, equivalently, 2N) as a complete totality. Ordinal nota-
tion systems for such theories are characterized by including representations for
uncountable ordinals, including ω1, denoted Ω, as well as collapsing functions,
including the collapse ψΩ : Ord → Ω which can be used to define countable
ordinals in terms of uncountable ones. The prototypical impredicative ordinal
is the Bachmann-Howard ordinal, ψΩ(ϕω(Ω + 1)) (using our hyperexponential
notation).

The symbol Ω can also be represented proof-theoretically by setting [Ω]ϕ to
be true if ϕ is derivable in unrestricted ω-logic. We can then extend Beklemi-
shev’s brackets notations so that (w) represents:

(a) 〈ow〉 if ow is countable,

(b) 〈ψΩow〉 otherwise.
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ω
 ε0

 Γ0




ψΩ(ϕω(Ω + 1))


 ψΩ(Ωω)


 ϕΩ(ω)



Figure 8: Some ordinals represented as spiders.

The countable reflection principles representable in the extended system
would have order-type greater than ψΩ(ϕω(Ω + 1)); to be precise, the first or-
dinal that we may not represent using this notation system is ψΩ(ϕΩ(0)). This
idea readily extends to represent even stronger reflection principles, by instead
using a hierarchy of parentheses ()ξ with ξ ≤ ω, interpreted using higher col-
lapsing functions ψΩn in the style of Buchholz [17]. For this, we would more
likely interpret provability logics within the language of set-theory, which al-
lows us to naturally reason about multiple cardinals. This naturally extends
to two-layered modalities of the form

(
w
v

)
, where w represents the ‘height’ of a

derivation and v its ‘width’, allowing us to represent extremely strong reflection
principles as well as very large proof-theoretic ordinals, well beyond the strength
of Π1

1-CA0. We call these notations spiders [40].
Our extensions of Japaridze’s graded modal logics will be used to give alter-

native representations of strong formal theories that are amenable to a proof-
theoretic calibration. As a first milestone, we will pursue an analysis of the
theory ATR0 of arithmetical transfinite recursion.

Question 6.7. What is the provability spectrum of ATR0 relative to EA?

This analysis involves three theories: the ‘consistency unit’, U the ‘target
theory’, T , and the ‘base theory’, B (over which the meta-theory is developed).
In [8], Beklemishev uses first-order Peano Arithmetic as T , Elementary Arith-
metic as U and EA+ as B. In Elementary Arithmetic, one may only apply
induction to formulas without unbounded quantifiers along with an axiom as-
serting the totality of the exponential function, and EA+ has an additional
axiom asserting he totality of the superexponential. Using the equivalence

PA ≡ EA + RFN(EA),

he gives a consistency proof of Peano Arithmetic by induction on worms (which,
as mentioned before, are well-ordered). This induction is of order-type ε0, and
thus one obtains a consistency proof of PA which is quite a bit different from
Gentzen’s classic proof [48]. From this, one may readily compute the provability
spectrum of PA relative to EA.

When extending this analysis to a second-order setting, we will always take
our finitary base theory B to be PRA or a proper subtheory, such as EA+. At
first, we will take ATR0 as our target theory, and as consistency unit ECA0.
Analogously to Beklemishev’s work, we will make use of Theorem 4.17. However,
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Second-order arithmetic J I Set theory
ACA0 ATR0 Π1

1-CA0 KP KPω KPi ???
1. Represent using reflection
2. Compute Π0

1 ordinal
3. Prove consistency

Table 2: The ordinal analysis program is represented in this table. A darker
square represents a higher risk, so that tasks corresponding to a white square
are previous work, whereas tasks in black are speculative. Note that the table
is not meant to be exhaustive; there are many intermediate theories which may
be added to the list according to how the project progresses.

despite the similarities to the analysis of Peano Arithmetic, many of the steps
required in a semi-finitary consistency proof do not yet have an analogue for
treating ATR0. Our approach will be to prove that ATR0 is conservative over a
system similar to ECA0 + {〈γ〉ECA0> : γ < Γ0}, which is more amenable to the
form of transfinite induction used by Beklemishev. Using this, we conjecture
that EA+ + TI(Γ0,∆

0
0) proves the consistency of ATR0.

Question 6.8. Can the consistency of ATR0 be proven using iterated reflection,
in the spirit of Beklemishev’s consistency proof for PA?

Similarly, our strategy for our analysis of Π1
1-CA0 will be to find large enough

Λ so that Π1
1-CA0 is conservative over ECA0 + {〈λ〉ECA0

> : λ < Λ}, possibly
Λ = ψΩ(Ωω). However, the situation here should be substantially more difficult
to deal with than in the predicative case. The Π1

1 ordinal of Π1
1-CA0 uses a

notation system which includes notations for some uncountable ordinals, which
must be dealt with in a computable framework. Nevertheless, these ordinals
may be represented using spiders, and the reflection principles they give rise to.

The next step is to pass to the language of set theory, to Kripke-Platek set
theory and stronger systems. Some of our target theories are the following:

1. Kripke-Platek set theory KP, a weak form of Zermelo-Fraenkel set theory
which allows comprehension only for ∆0 predicates and does not include
the powerset axiom.

2. Kripke-Platek set theory with infinity, KPω.

3. Extensions of Kripke-Platek whith axioms asserting the existence of large
ordinals, such as KPi, which posits that the universe is computably inac-
cessible.

My goal is to give an affirmative answer to the following:

Question 6.9. Are reflection principles suitable for computing provability spec-
tra and proving the consistency of impredicative theories of arithmetic and set-
theory?
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6.3 Secure aggretation of distributed information

The secure aggregation of distributed information is a generalization of the Rus-
sian cards problem. In its general form, it reads as follows:

A team of m agents draw a1, . . . , am cards, respectively, from a deck
Ω, while Eve, the eavesdropper, draws the rest of the cards. The
agents wish to communicate their hand to each other, without Eve
learning any protected information. Can the team achieve this?

While it is generally accepted that the team wishes for all agents to learn the
entire deal (although there are variants of the problem), the safety conditions
that must be met vary, both regarding the qualitative information that Eve may
learn and the quantitative certainty with which she may learn it. Regarding the
first, we may consider:

(a) deal-security. Eve must not know the entire deal after the exchange.

(b) partial k-card-security. Given a set of at most k cards held by an agent
A, Eve should not learn that A holds the k cards.

(c) full k card-security. Given any set of at most k cards not held by Eve,
Eve should consider it possible that any of the other agents holds all of
the k cards.

Regarding her level of certainty, we may consider the notions introduced in
Section 5.3:

(i) weak security

(ii) ε-strong security

(iii) perfect security.

The ideal goal of the project would be to settle the following question:

Question 6.10. For each combination of safety conditions as defined above,
determine the set of parameters for which a solution to the secure aggregation
of distributed information problem exists.

However, it is possible that a full answer to this problem is unfeasible, and
as such we may instead give some partial answers. Specifically, I will focus on
those aspects which would make card-based protocols most competitive with
respect to alternative methods. Some of the drawbacks of current solutions are
the following:

1. The number of cards held by the agents is often heavily biased towards a
single agent.

2. The eavesdropper must hold a very small portion of the deck.
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3. Methods for perfect security are overly restrictive, relying on the construc-
tion of designs.

To this end, I propose to build upon current techniques in order to fill these
gaps. The first question I will consider is the following:

Question 6.11. Is the secure aggregation of distributed information problem
solvable in cases where there are more than two communicating agents and the
eavesdropper has cards?

I am currently exploring the answer to this question with my student, Es-
teban Landerreche. As a first approach we aim to develop partially card-safe
methods, to be later improved to obtain ε-strong security. The next question
deals with tweaking the set of possible parameters:

Question 6.12. Is the secure aggregation of distributed information solvable in
cases where the agents’ hands grow linearly on Eve’s?

Current techniques yield a quadratic blow-up of the deck with respect to
Eve’s hand. However, current work with van Ditmarsch suggests that this may
be greatly improved if we weaken the amount of information that is to be shared
among the agents. Note that this question is asymptotic, and refers to infinite
families of solvable instances, rather than specific configurations.

If Question 6.12 has a negative answer, a weaker version, also not settled by
current methods, is as follows:

Question 6.13. Are there fully card-safe solutions to the secure aggregation of
distributed information problem such that the communicating agents’ hands are
linearly bounded with respect to each other?

As before, we clarify that the question is meant to be interpreted asymp-
totically. Note that the answer is positive if we drop the security condition to
weak card safety, as witnessed by Theorem 5.13. However, even in this setting,
Eve is assumed to not hold any cards.

Finally, in case that any of these questions have a negative answer, it would
also be convenient to have a proof of that. Current techniques are very limited
in this respect, as impossibility results are only known with respect to two-step
protocols. Thus, we conclude with the following question:

Question 6.14. Can we find suitable criteria or techniques for establishing that
a certain instance of the secure aggregation of distributed information problem
is unsolvable, regardless of the number of steps allowed in a protocol?

6.4 Concluding remarks

My research has been devoted to exploring the relationship between dynamical
systems and logic. As it turns out, there is an intricate web of interaction
between the two. This has led to a fruitful research career, producing many
exciting developments:
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1. Computational tools for automated deduction for theorems about dynam-
ical systems.

2. Analytic tools inspired on dynamical systems for the study of logical the-
ories.

3. Efficient conceptual frameworks in which to model changes in knowledge,
belief and information.

4. Applications to information-theoretic communication.

Each of these directions has posed many technical challenges, which have
led to new techniques in several branches of computer science and mathematics.
Nevertheless, it is clear that there are many more questions to answer. In the
medium term, I foresee this efforts leading to powerful new tools to understand
dynamical systems, logical theories, and changes in information.
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