
HAL Id: tel-00011002
https://ut3-toulouseinp.hal.science/tel-00011002v1

Submitted on 13 May 2024 (v1), last revised 16 Nov 2005 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Motion Planning Algorithms for General Closed-Chain
Mechanisms

Juan Cortés

To cite this version:
Juan Cortés. Motion Planning Algorithms for General Closed-Chain Mechanisms. Automatic. Institut
National Polytechnique (Toulouse), 2003. English. �NNT : 2003INPT046H�. �tel-00011002v1�

https://ut3-toulouseinp.hal.science/tel-00011002v1
https://hal.archives-ouvertes.fr


Thèse
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devant le Jury composé de :
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Thierry Siméon for being much more than an excellent advisor. Thanks to Jean-Paul
Laumond for being always there, ready to give a bit of geniality. I don’t want to forget to
Luis Montano, who made me meet them.

My gratitude to the directors of the LAAS-CNRS, Jean-Claude Laprie and Malik
Ghallab, and to the head of the group RIA, Raja Chatila, for the material support. And
thanks to people of group RIA and Sysadmin for their frequent helps.

I also thank Lydia Kavraki and Steven LaValle for the review of this thesis. Their
comments and suggestions have inestimable value for me.
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Introduction

Motion Planning is a fundamental issue in Robotics. An intelligent machine must be
able to decide how to move in its environment. The motion planning problem consists
in finding feasible paths for a mobile system, the robot, in a physical world. The notion
of configuration-space [Lozano-Pérez 83] allows a geometrical formulation of the problem
such that it is reduced to find the connectivity of subsets of a n-dimensional manifold. A
detailed formulation of the problem and a collection of basic techniques can be found in
[Latombe 91]. This same formulation can be adopted for problems in other very different
domains [Latombe 99]. For instance, if virtual actors are modeled like robots, then motion
planning techniques become tools for graphic animation [Koga 95, Kuffner 99]. Questions
involving motion of objects often rise during the design of prototypes of products and their
manufacturing using CAD/CAM systems. Motion planners, as integral components of
these software packages, are capable to answer these questions [Gottschlich 92, Ferré 03].
In industrial logistics, motion planing algorithms have an application to assist difficult
maintenance operations [Siméon 01c] or the transport of large objects [Lamiraux 03]. In
medical applications, finding a minimally-invasive path of a surgical tool, given a 3D model
of the patient’s body, can also be seen as a motion planning problem [Tombropoulos 99].
There is a clear resemblance between the structural representation of robots an molecules
[Parsons 94, Kavraki 97]. Motion planing strategies can be used to solve complex prob-
lems in computational Chemistry and Biology [Finn 98, LaValle 00, Apaydin 02]. With
slight variations, the formulation of the motion planning problem can be enlarged to more
complex problems such as manipulation planning [Alami 95, Siméon 03] and kinodymamic
planning [Donald 93, Fraichard 99, LaValle 01b]. Then, extensions of motion planners can
be studied to solve them.

The motion planning problem was first formulated for a single rigid objects whose
only motion constraints arise from the presence of static obstacles. It is usually referred
to as the piano mover’s problem [Schwartz 83, Schwartz 84]. Solving this basic instance
is already a challenging task which has attracted the interest of many scientists over
the last two decades. The development of motion planning algorithms began with this
particular case, and some planners have been proposed that provide an exact solution (e.g.
[Canny 88]). Nevertheless, most of the above mentioned practical applications require
to deal with much more complex instances of the problem that such exact methods are
unable to treat. The difficulty of motion planning depends on the complexity of the mobile
system and on the intrinsic and extrinsic motion constraints. Practical motion planning
algorithms, able to handle such difficulties, have been developed in the last ten years
(e.g. [Kavraki 96, LaValle 98]). These planners use sampling techniques combined with
efficient geometric tools to construct data structures that encode the connectivity of the
feasible subsets in the search-space. The efficacy and generality of sampling-based motion
planning algorithms have been demonstrated by the several research groups working on
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Figure 1: A “robotized” version of the piano mover’s problem. The situation
of the piano in the room is changed by cooperating mobile manipulators.
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them. Although they are becoming well-known techniques, some questions still remain,
and theoretical development must continue in this direction.

A particular kind of constraint that notably increases the difficulty of the motion
planning problem is the closure of kinematic chains. This thesis deals with motion planning
under such constraints.

Motion Planning for Closed-Chain Mechanisms

We address articulated mechanism containing closed kinematic chains. Such a structural
particularity induces intrinsic motion restrictions. Some of the variables in the motion
planning problem are related by non-linear equations that express loop closure constraints.
In general, a complete representation of the solution of loop closure equations is not
available. Thus, even in absence of other constraints, we do not know a priori which are
the feasible arrangements of the mobile elements in the world. Motion planning cannot be
performed without this information, and sampling-based algorithms have to be extended
to deal with this kind of constraints.

Figure 1 illustrates a motion planning problem under kinematic loop closure con-
straints. It is a “robotized” version of the piano mover’s problem, where the piano is
handled by mobile robotic manipulators. The top images represent the initial and the
goal situations of the piano in the room. The bottom image is an snapshot of the pi-
ano’s motion transported by the robots. Virtual closed kinematic chains are created when
several manipulators grasp the piano.

The above example represents one of the applications of motion planning for closed-
chain mechanisms: manipulation planning with several coordinated robots [Koga 94]. But
there are many other applications. Indeed, closed kinematic chains appear in all the do-
mains where motion planning algorithms are applied. In Robotics, parallel manipulators
[Merlet 00] are themselves closed-chain structures in which the end-effector is connected to
the base by at least two independent kinematic chains. In the area of mobile robots, legged
robots [Boissonnat 00] also create kinematic loops whenever two or more legs contact with
the ground. Other application in Robotics with increasing interest is motion planning
for modular reconfigurable robots [Yim 03], which usually form closed chains. As well,
constraints on motions of a robotic manipulator maintaining contact between the manip-
ulated object and another object in the workspace [Xiao 01] can be translated as loop
closure constraints. In the application of motion planning to graphic animation, closed
kinematic chains are formed, for example, when human-like characters act in contact with
each other. The design of prototypes involving closed kinematic chains with CAD/CAM
system could clearly benefit from the incorporation of such extended algorithms for mo-
tion planning. In this same context, some manufacturing constraints [Garber 02] could be
expressed as virtual loop closure constraints. In the industry, large objects are often trans-
ported by several handling devices, so that closure constraints are induced [Cortés 02a].
The conformational analysis of cyclic molecules [Gō 70] requires to deal with articulated
closed-chain structures. Closure constraints are also imposed onto a molecular chain when
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the relative position of certain atoms is fixed [Moult 86].

Despite the above commented interest, this instance of the motion planning problem
raises difficult issues and has been rarely addressed. Only a few approaches [LaValle 99,
Han 01], based on randomized sampling, are today potentially applicable to problems
involving simple closed-chain mechanisms. Several issues remained to properly extend
sampling-based planners to more complex mechanisms under closure constraints. Working
on such extensions was the motivation of this thesis.

Contributions and Thesis Organization

The first part of this thesis contains our theoretical and technical work. The general
problem is formulated in Chapter 1. We extend the formulation of the motion planning
problem to the case of closed-chain mechanisms. Chapter 1 also explains some important
notions used in the rest of the document. Then, Chapter 2 provides an overview of
related works. We present a scope of techniques for solving motion planning problems and
loop closure equations. Our approach is detailed in Chapter 3. We introduce sampling-
based algorithms into our formulation of the motion planning problem in presence of
kinematic closure constraints. The most important technical contribution in this thesis is
also described in this chapter. We have developed a general and simple geometric algorithm
called Random Loop Generator (RLG) for sampling random configurations satisfying loop
closure constraints. RLG overcomes the most challenging aspect for extending sampling-
based motion planning algorithms to closed chains. Some results shown in this chapter
demonstrate the qualities of the approach.

The second part of this thesis deals with the different fields of application that we have
investigated. In Chapter 4, we discuss the application of motion planning algorithms to
parallel mechanisms. These mechanisms can be real structures, such as Gough-Stewart-like
platforms, or virtual kinematic loops formed by several manipulators grasping the same
object. Applied to parallel robots, our algorithms can help designers of these mechanisms,
or can provide useful data for real-time trajectory planning. The same algorithms can also
be used as components of manipulation planning techniques involving several coordinated
robots. Chapter 5 regards manipulation planning for a robot and a movable object. An
algorithm for planning the motions of a single-loop closed kinematic chain is used as a key
component of a manipulation planning approach able to treat continuous sets in the def-
inition of the manipulation task. This planner admits continuous sets for modeling both
the possible grasps and the stable placements of the movable object, rather than discrete
sets generally assumed by the existing planners. Then, intermediate grasp/ungrasp opera-
tions required to solve the problem are automatically identified. Finally, in Chapter 6, an
interesting application is addressed out of the field of Robotics. We propose to use motion
planing algorithms as efficient filters for the conformational exploration of protein loops.
The structural analysis of protein loops is a very active area of research in Computational
Biology. Our geometric algorithms can relieve conformational exploration approaches of
a part of the heavy energetic treatment, and thus, improve their performance.
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Chapter 1

Problem Formulation





In most scientific areas, problems are formulated and solved for models of real sys-
tems. Motion planning problems treated in this document consider geometric models of
physical objects. The first section of this chapter deals with the geometric modeling of
rigid bodies and articulated mechanisms. Our work focus on the motion of mechanisms
affected by kinematic closure constraints. Section 1.2 explains how these constraints are
mathematically expressed on the geometric model of the mechanism.

The motion planning problem is formulated using the notion of configuration-space,
presented in Section 1.3. Using this basic tool, the problem consists in exploring a space
where kinematic constraints have a geometrical interpretation. In Section 1.4 we present
different instances of the problem, centering the explanations on the issues tackled in next
chapters.

1.1 Mechanical Modeling

This section presents notions related with the modeling of objects and mechanical struc-
tures. These notions are commonly used in Robotics, so readers initiated in the domain
will not discover new definitions. However, for beginners or readers in other fields, we
have considered interesting to briefly explain here the basic notions and to give pointers
to books and articles for people who want to go deeply into some concepts.

1.1.1 Rigid Body Model

Elements of the world where motion takes place, often called workspace W in Robotics,
are considered to be rigid objects (motion planning problems for deformable objects
[Holleman 98, Lamiraux 01a] are not considered in this thesis). W is normally repre-
sented as the three-dimensional (3D) Euclidean space R3 and then a rigid object is a
closed subset O ⊆ R3. A rigid object can be represented in many different ways, using for
example: polygonal and polyhedral models, semi-algebraic models or sets of triangles (see
[Hoffmann 89, Mortenson 97] for explanations on some solid modeling methods). Charac-
terizing O in W requires this representation and a set of parameters p defining its spatial
location (i.e. position and orientation). For this, a Cartesian coordinate frame FW is fixed
in the world and another frame FO is attached to the object. The relative position of
these frames can be given by the vector {xo, yo, zo} of the coordinates of the origin of FO
in FW . The relative orientation can be expressed as a 3×3 matrix whose columns are
the direction cosines of the axes of FO in FW . Such a matrix belongs to the so called
Special Orthogonal Group SO(3). Thus, the position-orientation space in a 3D world can
be defined as: SE(3) = R

3 × SO(3). The parameterization of R3 is trivial: the elements
of the vector of Cartesian coordinates. Different parameterizations of SO(3) exist. They
only require three parameters, for instance, consecutive rotations γ, β, α around the axes
of the reference frame (i.e. parameters {roll, pitch, yaw}). Figure 1.1 illustrates this pa-
rameterization. Hence, p contains six independent parameters (three for the position and
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Ẑ′
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Ẑ
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Figure 1.1: Six parameters {xo, yo, zo, γ, β, α} defining
the position and orientation of a solid.

three for the orientation).

The coordinates transformation from FW to FO can be expressed in a compact way
using a homogeneous transformation matrix. This matrix is built from the parameters in
p as follows:

WTO =


cosβ cosα sin γ sinβ cosα− cos γ sinα cos γ sinβ cosα+ sin γ sinα xo
cosβ sinα sin γ sinβ sinα+ cos γ cosα cos γ sinβ sinα− sin γ cosα yo
− sinβ sin γ cosβ cos γ cosβ zo

0 0 0 1


(1.1)

More details about parameterizations of SE(3) and about coordinate transformations
can be found in basic textbooks on Robotics (e.g. [Hunt 78, Paul 81, Gorla 84, Craig 89,
Sciavicco 00, Angeles 03]).

There are two kinds of object in the workspace: mobile objects and static objects. The
former are the links of the articulated mechanism (defined next) that we call the robot 1.
The latter are the obstacles which compose what we call the environment. We designate
the set of links by A and the set of obstacles by B.

1.1.2 Articulated Mechanism

An articulated mechanism is a set of partially connected rigid bodies, called links in the
mechanical terminology. We next explain some concepts related with such mobile systems.

1Even if the mobile system is composed of several robots and other mobile objects.
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Degrees of Freedom: The term degrees of freedom (d.o.f.) in this context makes reference
to the motion of objects. A rigid body freely moving in the world has six d.o.f., which are
the parameters required for defining its location.

Joints: The connection between two neighboring links is called joint, J . A joint limits
the relative mobility of the two objects. Thus, the number of d.o.f. between these links is
reduced. These d.o.f. are called joint variables. Normally, the value of joint variables is
limited by mechanical stops. Thus, each d.o.f. can take values within an interval bounded
by the joint limits.

In Mechanics, the constrained motion between two connected links is normally char-
acterized by two sliding surfaces. The term lower pair is used to describe joints making
this kind of connection. There exist lower pair joints allowing two d.o.f. (cylindrical joints
and universal joints) and three d.o.f. (planar joints and spherical joints). However, due to
mechanical design considerations, articulated mechanisms are generally constructed with
revolute joints and prismatic joints with only one d.o.f.. A detailed classification of joints
is given in [Gorla 84].

Spatial Description: The 3D model of a mechanism is defined by the spatial location of
all its rigid bodies. This information is given by the transform matrix between FW and
each one of the frames attached to links. The only condition for attaching a frame to a
solid is that each point of the solid has fixed coordinates in it. Several conventions issued
from the field of Robot Kinematics give rules for associating frames to connected links
so that parameters describing the geometry of the mechanism are directly obtained from
them.

We have adopted the widely used modified Denavit-Hartenberg (mDH) convention de-
scribed in [Craig 89] for articulated mechanisms made up with revolute and prismatic
joints. Let us call FAi−1 and FAi the frames attached to two links Ai−1 and Ai connected
by a joint Ji. Following this convention, the location of FAi relative to FAi−1 is given by
the homogeneous transformation matrix:

i−1Ti =


cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 −di sinαi−1

sin θi sinαi−1 cos θi sinαi−1 cosαi−1 di cosαi−1

0 0 0 1

 (1.2)

Two of the parameters in this matrix only depend on the geometry of Ai−1 (i.e. they
are constant): ai−1 is called the link length and αi−1 is the link twist. The other two
parameters are related to the interconnection of the links: di, the link offset, and θi, the
joint angle. These two parameters are variable depending on the joint type. For a revolute
joint, θi is variable and di is a constant parameter, and the inverse for a prismatic joint.
Thus, the only variable parameters in this relationship correspond to joint variables.
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Ẑi−1
Ẑi

Ŷi−1

X̂i−1

X̂i

αi−1

ai−1

Ŷi

di

θi

Ai−1
Ai

Ji−1 axis
Ji axis

Figure 1.2: The mDH parameters defining the relative location of two links
connected by a one-d.o.f. joint (following the convention in [Craig 89]).

When a mechanism is built with a joint Ji allowing ndof d.o.f., it can be modeled as
ndof joints of one d.o.f. (revolute or prismatic) connecting ndof − 1 fictive links of zero
length. For instance, a spherical joints can be modeled by three consecutive revolute joints
rotating around three orthogonal axes. We use the notation Ji.j , with j = 1 . . . ndof , for
the elementary joints issued from this decomposition. The matrix i−1Ti is obtained as the
product of the ndof individual transform matrices.

A sequence of n+1 links A0 . . .An connected by n joints J1 . . . Jn is called a kinematic
chain 1Kn. The location of frames attached to links A1 . . .An relative to the base-frame
(attached to A0) is obtained from the sequence of local transformations. For instance, the
transformation to the end-frame (attached to An) is:

0Tn = 0T1
1T2 . . .

n−1Tn (1.3)

Therefore, only joint variables are required for defining the spatial arrangement of a kine-
matic chain. Since articulated mechanisms are composed of kinematic chains, the last
sentence is true for any articulated structure.

Kinematic Diagram: Kinematic diagrams are often used to define the connectivity of
links (also called topology) of articulated mechanism [Erdman 91]. Such diagrams are
graphs of connections where nodes correspond to links and edges represent joints. Some
authors have proposed rules to build such graphs and for the indexing of links and joints
(e.g. [Hervé 78, Gosselin 88]).
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Figure 1.3: Planar mechanisms with revolute joints and their kinematic diagrams:
(a) 4R planar manipulator (open kinematic chain); (b) the equivalent closed mech-
anisms, called 4R planar linkage.

piano (and grippers)

6R arm

planar joint (3 d.o.f.)
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Figure 1.4: Model of complex mechanism composed of three mobile manipulators
handling a piano. The kinematic diagram shows two loops.
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A kinematic chain is said to be closed when it corresponds to a loop in the topological
graph. Otherwise, the kinematic chain is called open. Figure 1.3 shows simple mechanisms
with their topological graphs. An open chain (in Figure 1.3.a) becomes a closed mechanism
(in Figure 1.3.b) if the relative location of the extreme links is fixed. In such case, the
base-frames and the end-frame are attached to a same (fictive) solid A0,n. The kinematic
diagram corresponding to the model of the mechanism composed by the three mobile
manipulators handling a piano, that we presented in the introductory chapter, is shown in
Figure 1.4. The model of the mobile platforms is simplified. The wheels are not considered,
and contact with the floor is modeled by a planar joint. The kinematic diagram shows
two loops which compose a multiple closed kinematic chain, called a multi-loop.

Mobility, Redundancy and Parallelism: We introduce here concepts that are mainly used
to characterize robotic manipulators. However, they can be applied to any articulated
device.

The degree of mobility M of an articulated mechanism is the number of independent
variable parameters of the geometric model. For a mechanism with only open kinematic
chains, all the joint variables are independent. Thus, M is equal to the sum of the number
of d.o.f. allowed by joints. When the mechanism contains closed chains, closure constraints
(that will be explained in Section 1.2) imply a relationship between joint variables. Several
formulas have been proposed for determining the degree of mobility of general mechanisms
from a topological analysis of connections (e.g. [Artobolevski 77, Hunt 78]). For instance,
the next expression is called the general mobility criterion [Hunt 78]:

M =
njoint∑
i=1

ndofi − dnloop = m− dnloop (1.4)

with ndofi the number of d.o.f. of a joint Ji, nloop the number of single loops and d = 3 for
planar mechanisms (i.e. moving in 2D) or d = 6 for spatial mechanisms (i.e. moving in
3D). However, this simple formula (as any of the existent) may fail for mechanisms with
special geometry (e.g. the Bennett’s linkage [Bennett 03] and the molecule of cyclohexane
[Crippen 92]) and the study must be completed by other geometric techniques (e.g. based
on differential analysis [Angeles 88, Gosselin 88]).

If we apply the general mobility criterion to the planar open chain in Figure 1.3.a we
obtain: M = 4 − 3 · 0 = 4, that corresponds to the number of joint variables. However,
M = 1 for the closed linkage in Figure 1.3.b, thus, only one joint variable is independent
and the other three must satisfy equations issued from closure constraints. For the complex
mechanism formed by the mobile manipulators and the piano (in Figure 1.4), M = 27 −
6 · 2 = 15.

When talking about robot manipulators, the last link of the kinematic chain is called
end-effector. The number E of absolute d.o.f. (i.e. with respect to the base-frame) of the
end-effector is a very important characteristic of the manipulator, determining the kind of
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tasks it can perform. When M > E, the manipulator has higher mobility than necessary.
It is said to be kinematically redundant, with degree of redundancy: ρ = M − E. For a
single-loop closed chain the end-effector has a fixed location with respect to the base, thus
E = 0 and ρ = M .

The end-effector of the planar manipulator in Figure 1.3.a has three d.o.f. (three
parameters are sufficient for defining the location of a solid in 2D). Thus this manipulator
is redundant with ρ = 1. Note that this corresponds to the degree of mobility of the
equivalent closed chain. If we consider that the piano is the “end-effector” of the complex
system in Figure 1.4, then E = 6. Thus, this mechanism has a degree of redundancy
ρ = 9.

Some authors (e.g. [Gosselin 88]) have also introduced the notion of degree of paral-
lelism as:

P =


nloop
M−1 if M 6= 1
1 if M = 1 and nloop > 0
0 otherwise

(1.5)

An articulated mechanism is called fully-parallel if P = 1 and partially-parallel if 0 ≤ P ≤
1. Then, the closed chain in Figure 1.3.b can be seen as a single-loop closed chain or
as an elementary fully-parallel mechanism because M = 1 and nloop = 1. The mobile
manipulators with the piano form a partially-parallel structure with P = 1

7 .

Singularities: The three above mentioned concepts (mobility, redundancy and paral-
lelism) are global characteristics of an articulated mechanism. However, there are particu-
lar values called critical points of the set of joint variables for which these properties change.
For these critical points, the mechanisms is kinematically singular. There are different
kinds of singularities that yield to “abnormal” behaviors of articulated mechanisms. For se-
rial manipulators (i.e. open-chain mechanisms), singular configurations are found by differ-
ential analysis of the joint variables. A classification of the different types of singular config-
urations for redundant serial manipulators is given in [Bedrossian 90]. For mechanisms in-
volving closed kinematic chains (e.g. parallel mechanisms), the identification and the clas-
sification of singularities is more complex. There are singularities similar to those of serial
manipulators, called local singularities, but also architecture singularities due to geometric
particularities of the articulated structure [Gosselin 88, Charentus 90, Ma 91, Merlet 92].

The study of singularities has a great importance for the validation of trajectories from
a point of view of controllability [Merlet 94, Sciavicco 00]. Nevertheless, singularities are
not treated in this thesis, so we are not going into more details about them.
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Figure 1.5: Dimensions characterizing a planar 4R linkage.

1.2 Loop Closure Constraints

When an articulated mechanism contains closed kinematic chains (i.e. there are loops in
its kinematic diagram), joint variables involved in these chains are related by the so called
loop closure equations. There are different ways to obtain such equations. For a 4R planar
linkage, loop closure equations are obtained by a simple geometric analysis of the structure
[McCarthy 00]. Next equations give the relationship between angles corresponding to joint
variables for the linkage dimensions represented in Figure 1.5:

θ4(θ1) = arctan
(

2ab sin θ1

2ab cos θ1 − 2gb

)
± arccos

(
g2 + a2 + b2 − h2 − 2ag cos θ1√
(2ab cos θ1 − 2gb)2 + (2ab sin θ1)2

)
+ π

(1.6)

θ2(θ1, θ4) = arctan
(

b sin θ4 − a sin θ1

g + b cos θ4 − a cos θ1

)
− θ1 (1.7)

θ3(θ1, θ2, θ4) = θ1 − θ2 − θ4 + π (1.8)

For a general closed kinematic chain 1Kn, the loop closure equations can be obtained
from the transformations between frames attached to links. Closure imposes the location
of the FAn relative to FA0 to be fixed. Then, the transform matrix 0Tn is constant and
known. 0Tn can also be obtained from the sequence of local transformations (1.3). This
matrix equality can be decomposed in scalar equations, leading to a system of 12 trigono-
metric equations. Normally, trigonometric equations are reduced to polynomial equations
using the tangent-of-the-half-angle substitution [Kovács 93], although the drawback of this
substitution (its singularity at ±π) yields some scientists to search better alternatives.

When there are multi-loops, as in the example of Figure 1.4, the closure equations
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are more complex. Joint variables involved in several loops must satisfy all the closure
constraints simultaneously. Therefore, there is a dependence between the closure equations
of the individual loops that compose the multi-loop. In the mentioned example, the
location of the frame attached to the piano (relative to the floor) obtained traversing the
kinematic chains corresponding to each one of the three mobile manipulators must be the
same. The loop closure equations can be obtained from this multiple equality.

Hence, closure constraints are in general mathematically expressed as a system of
multi-variable non-linear equations which relates the joint variables. This expression can
be written as:

f(Q ) = I (1.9)

where Q is the set of the joint variables, called the joint-space, and I is the identity dis-
placement (i.e. the identity matrix when the equations are expressed in matrix notation).

The Inverse Kinematics Problem

In the case of open kinematic chains, loop closure equations must be solved to obtain
the value of joint variables for a given location of the end-frame. That is called the
inverse kinematics problem which is an important and widely studied problem in Robotics
[Nielsen 97]. Some authors call this instance the existence problem making a distinction
with other formulations, the tracking problem and the point-to-point problem [Siciliano 90,
Ahuactzin 99], involving trajectories.

1.3 The Notion of Configuration-Space

The notion of configuration-space, C, was introduced in the field of Robotics by Lozano-
Pérez [Lozano-Pérez 83]. It is a key tool for the formulation of the motion planning
problem (see Section 1.4). A configuration q is a minimal set of parameters defining the
location of a mobile system in the world. C is the set of all the configurations q.

For a free-flying robot A (i.e. a rigid object whose motion is not limited by any
kinematic or dynamic constraint), q specifies the location of FA relative to FW . Therefore,
q = p and C = SE(3), as explained in Section 1.1. For a set of n free-flying objects
A1 . . .An, the specification of the location of all the frames FAi is given by the vector:
q = {p1, . . . , pn}. Thus, the configuration-space would be the composite space:

C = SE(3)× · · · × SE(3)︸ ︷︷ ︸
n

However, for an articulated mechanism, constraints imposed by joints reduce the number
of variable parameters required to locate bodies. As explained in Section 1.1, these pa-
rameters correspond to the d.o.f. allowed by joints. A configuration q is then given by the
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array of the joint variables, and the configuration-space corresponds to the joint-space, Q.
Let us assume that the mechanism does not contain loops and that joint have no mechan-
ical stops. If r rotational d.o.f. and s translational d.o.f. are allowed by joints, then the
configuration-space (considering the mechanism has a base-link fixed in the world) is:

C = Q = S1 × · · · × S1︸ ︷︷ ︸
r

× R× · · · × R︸ ︷︷ ︸
s

where S1, the unit circle, can be parameterized as a single value θ in the interval [0, 2π),
with modulo 2π arithmetic. Topologically, Q is a m-dimensional smooth manifold, m =
r + s, with a simple representation. For the 4R open chain in Figure 1.3.a, Q can be
represented by a 4-torus. There is a one-to-one correspondence between each point in the
4-torus manifold and distinct configuration of this planar manipulator. See [Burdick 88]
and [Latombe 91] for more details about the topology and representation of Q.

The presence of joint limits does not affect the topological characteristic of Q (i.e.
it is a smooth manifold) but modifies its geometric representation. For the 4R planar
manipulator with joint limits, Q is represented by a 4-dimensional hypercube rather than
a 4-torus.

If the articulated mechanism contains closed kinematic chains, then joint variables
must satisfy loop closure constraints. Such constraints are normally expressed as a system
of algebraic equations (1.9). Thus, C is an algebraic variety embedded in Q. An algebraic
variety is in general difficult to characterize topologically and even more difficult to repre-
sent [Mishra 97, Bochnak 98]. The representation is associated with the method used to
solve the system of equations (see Section 2.2). Next, we comment some characteristics
that are important for the formulation of the motion planning problem.

The Variety of the Configurations Satisfying Closure

Let us go back to the example of the 4R planar linkage (Figure 1.5). We have seen that
this mechanism has one degree of mobility and we have written equations (1.6), (1.7) and
(1.8) which give the value of joint variables θ2, θ3 and θ4 as a function of θ1. However,
the closure constraint is not satisfied for all the values of θ1. For a solution to exist, the
argument of the arc-cosine function in equation (1.6) must be within the range [−1, 1].
This feasibility condition depends on the linkage dimensions. See for example Figure 1.6.
For the linkage to the left (a), all values of θ1 are feasible (we suppose that mechanical
stops limit the allowed values of θ1 to the interval [0, π]). On the contrary, an upper limit
θmax1 is determined by the intersection of circles with radii a and b+ h for the linkage to
the right (b). It could also be a lower limit θmin1 for a linkage whose dimensions make the
circles with radii a and b − h intersect. We call the closure range to the set of values of
one joint variable satisfying the loop closure equations. In general, the closure range is
composed of several real intervals that we call closure intervals.

Note that equation (1.6) gives two possible values of θ2, and that this variable is in-
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Figure 1.6: Two 4R linkages with different dimensions. The feasible range of
values for θ1 depends on these dimensions.
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Figure 1.7: (a) The two configurations of the 4R linkage satisfying the closure
constraint for a given value of the parameter θ1. (b) For the value θmax1 , the
subchain involving joints J2, J3 and J4 is at a singular configuration.

volved in equations (1.7) and (1.8). Therefore, two possible sets of joint angles IK+ =
{θ+

2 , θ
+
3 , θ

+
4 } and IK− = {θ−2 , θ

−
3 , θ

−
4 } satisfy the loop closure equations for a given valid

value of θ1. If θ1 is swept through its closure range, the loop closure equations will
generate two 1-dimensional manifolds embedded in Q (the 4-dimensional hypercube rep-
resenting the joint-space of the mechanism without closure constraints). For the linkage
in Figure 1.6.a, these manifolds remain separate for all the values of θ1. If the subchain
involving joints J2, J3 and J4 is seen as a non-redundant 3R manipulator, the two mani-
folds physically correspond to motions where this subchain has a configuration “up elbow”
(for IK−) or “down elbow” (for IK+ in Figure 1.7.a). In fact, IK− and IK+ correspond
to the two possible solutions to the inverse kinematics problem for the 3R planar manip-
ulator. However, for the linkage in Figure 1.6.b, the two manifolds meet at one point.
This point corresponds to a singular configuration of the non-redundant 3R manipulator,
illustrated in Figure 1.7.b.
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Results of the above analysis of the 4R linkage can be extrapolated to more complex
closed-chain mechanisms. Several works exist on the topological characterization of the
variety of the configurations satisfying closure constraints (e.g. [Burdick 89, Thomas 93,
Lück 93, Milgram 02]). Next, we summarize some of the conclusions obtained in these
works which mostly focus on the characterization of the set of solutions to the inverse
kinematics problem for redundant manipulators.

For redundant manipulators, there is an infinite number of configurations that lead
to the same location of the end-effector (i.e. that solve the inverse kinematics problem).
These configurations can be grouped into disjoint sets. Such sets are called self-motion
sets because any trajectory inside one of them corresponds to a continuous motion of the
manipulator maintaining a fixed location of the end-effector. In other words, the virtual
closed kinematic chain created for a fixed location of the end-effector is not broken when
the configuration changes inside a self-motion set. Self-motion sets can be seen as smooth
hypersurfaces of dimension ρ intersecting themselves, with ρ the degree of redundancy
of the manipulator (remember that ρ = M if we consider the virtual closed kinematic
chain). The stratification of these sets leads to nsm ρ-dimensional manifolds Mi which
can be connected through sets of lower dimension Sk. The former are called self-motion
manifolds and the latter are sets of singular configurations. Thus, the configuration-space
of a closed-chain mechanism can be expressed as:

C =
nsm⋃
i

Mi (1.10)

If we exclude the singular sets Sk, then the sets of regular configurations in the self-motion
manifolds M′i are disjoint (i.e. M′i ∩M′j = ∅, for i 6= j).

Bounds on the number of disjoint self-motion sets have also been studied. The con-
clusion is that a redundant kinematic chain can have no more self-motion sets than the
maximum number of inverse kinematic solutions of a non-redundant kinematic chain of
the same class. Therefore, a planar closed kinematic chain can have at most two disjoint
self-motion sets and a spatial chain a maximum of sixteen 2.

Some authors have worked on a more detailed characterization of the configuration-
space of closed-chain mechanisms. Notions such as mechanical aspects and assembly modes
have been introduced (e.g. [Borrel 86, Wenger 98, Chablat 98]). However, results are
limited to particular classes of articulated structures. Therefore, the only general assertion
is that the configuration-space C is the union of disjoint lower-dimensional sets embedded
in the joint-space Q. The topological structure of these sets (when including singular
configurations) can be completely general. Indeed, it as been proved that there is a
linkage whose configuration-space is homeomorphic to an arbitrary compact real algebraic
variety with Euclidean topology [Jordan 99].

2The bound to the number of inverse kinematic solutions of a spatial 6R manipulator with general
geometry was proved in [Primrose 86] and a solution method was provided in [Lee 88b, Lee 88a].
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1.4 The Motion Planning Problem

The basic motion planning problem for a free-flying robot A in a static environment
composed by nobst obstacles B1 . . .Bnobst is formulated as follows: given an initial location
and a goal location of A in W, generate a path τ specifying a continuous sequence of
locations of A avoiding collisions with the Bi, or report failure if no such path exists. This
problem is often referred to as the piano mover’s problem [Schwartz 83, Schwartz 84].

Using the notion of configuration-space [Lozano-Pérez 83], A at a particular location
becomes a point q ∈ C. A path τ is then defined as a continuous map τ : [0, 1] −→ C such
that τ(0) = qinit and τ(1) = qgoal, with qinit the initial configuration and qgoal the goal
configuration. For a solution to be feasible, the collision avoidance condition must be
maintained along τ . The notion of C-obstacles is then introduced in order to characterize
the subset of admissible (collision-free) configurations. Each obstacle Bi is mapped to C as
a region:

CBi = {q ∈ C | A(q) ∩ Bi 6= ∅}

where A(q) is the subset of W occupied by A at a configuration q. Then, the C-obstacle
region and the free-space are defined as:

Cobst =
⋃

i∈[1,nobst]

CBi

Cfree = C \ Cobst

Remark that Cobst is a closed subset of C and thus Cfree is open. Therefore, configurations
where A is in contact with the obstacles are contained in Cobst. The contact-space, Ccontact,
is another subset of C that can be defined in a simplistic way as the boundary of Cfree.
τ is said to be a free path if it is completely contained in Cfree and a valid path if it is
contained in Cvalid = Cfree ∪ Ccontact. In the following, we assume that only free paths are
admissible.

Solving the basic motion planning problem formulated in this way consist in exploring
the connectivity of the subset Cfree . A solution exists if and only if qinit and qgoal are
in the same connected component of this subset. The key difficulty involved in such a
formulation is the representation of the C-obstacles. How we will see in Chapter 2, some
classes of motion planning algorithms evade the complexity of an explicit representation
and implicitly represent them using 3D models of the robot and the obstacles combined
with collision detection algorithms.

Reference books in the domain [Canny 88, Latombe 91, Laumond 98a, Gupta 98] give
more details about this formulation of the basic motion planning problem and some of the
extensions commented next.
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1.4.1 Motion Planning under Holonomic Constraints

Our aim is to solve more complex instances of the motion planning problem than the basic
one. Indeed, we tackle the generalized mover’s problem [Reif 79], where the mobile system
(the robot) is not a single rigid body but an articulated mechanism composed of nlink links
A1 . . .Anlink . The relative motion of these links is constrained by the presence of joints.
Restrictions imposed by joints are called holonomic equality constraints [Latombe 91]
and, as we have seen in Section 1.3, they reduce the dimension of the configuration-space.
Some authors seen them as a kind of placement constraints [Laumond 01] because they
limit the set of points where objects can be placed (located) in the world.

The existence of several mobile objects modifies the definition of the C-obstacle region.
In this case, two types of collisions may occur: those due to the intersection of a link Ai
and an obstacle Bj , and those due to the intersection of two links Ai and Aj , called
self-collisions. Thus, the C-obstacle region is defined as:

Cobst =

 ⋃
i∈[1,nlink]

j∈[1,nobst]

{q ∈ C | Ai(q) ∩ Bj 6= ∅}

⋃
 ⋃

[i,j]∈CP

{q ∈ C | Ai(q) ∩ Aj(q) 6= ∅}


(1.11)

where CP denotes the collision pairs [i, j] such that i ∈ [1, nlink − 1] and j ∈ [i+ 1, nlink].

Therefore, with a proper parameterization of C and the new definition of Cobst, the
formulation of the generalized problem is basically the same than for the piano mover’s
problem.

Closure Constraints

Closure constraints are a particular case of holonomic constraints that notably increase
the difficulty of the motion planning problem. A first difficulty consists in computing C,
since a system of non-linear equations must be solved (see Section 1.2). Then, an extra
difficulty arises from the topology of C that is not a smooth manifold as for mechanism
without kinematic loops (see Section 1.3). In the general case, C is composed of several
disjoint subsets (the self-motion sets) with a complex structure. Thus, the connectivity
of Cfree depends firstly on the connectivity of C and then on the presence of C-obstacles.
Furthermore, self-motion sets may involve subsets of different dimension. Therefore, com-
puting Cfree requires to cover several subspaces.

Let us suppose a fictive example with three joint variables {θ1, θ2, θ3} illustrated in
Figure 1.8. Let us consider a function of the form f(θ1, θ2, θ3) = 0, representing a closure
constraint. This function maps to several surfaces embedded in the joint-space Q. Such
surfaces are the different self-motion manifoldsMi. In this example,M1 andM2 intersect
at a singular set S, forming a self-motion set. We have represented obstacles in the joint-
space, that is why we call them Qobst. This Q-obstacle region is simply defined by replacing
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Figure 1.8: Illustration for the formulation of the motion planning
problem in presence of closure constraints.

C by Q in equation (1.11). Cfree is the intersection of Qfree with the differentMi. Several
situations can rise in motion planning queries within this example. The best case is a query
for a path between q1 and q2. These configurations lie in the same self-motion manifold
and on the same connected component of Cfree, thus there is a free path between them. A
path is also feasible between q1 and q3, even if it contains singular configurations. However,
for q4 and q5, the presence of obstacles makes these configurations cannot be connected
by a free path. Finally, a case that does not appear for open kinematic chains can rise
under closure constraints: q1 and q4 lie in the same connected component of Qfree but in
different components of C !

Manipulation Constraints

The manipulation planning problem addressed in Chapter 5 can be seen as a more complex
instance of the motion planning problem. In its simplest version, this problem involves
a robot, a movable object and the obstacles of the environment. The configuration-space
is the composite space of the two mobile systems: the robot and the movable object.
Particular holonomic constraints affect this problem. The movable object cannot move
by itself. Either it is transported by the robot, or it stays at a stable placement. Such
manipulation constraints determine subspaces of feasible configurations for the robot and
the movable object. We will make a detailed formulation of this problem in Chapter 5.
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Holonomic Inequality Constraints

Holonomic inequality constraints determine a subset of allowed locations of the robot
having in general the same dimension than C [Latombe 91]. The restrictions imposed by
the collision with obstacles and self-collisions are of this type. Indeed, any smooth function
F with non-zero derivative applied onto the configuration parameters such that:

F (q) < 0 or F (q) ≤ 0

implies a holonomic inequality constraint. For instance, if a weight is associated with
each configuration, the admissible subset of C could be restricted to configuration over or
under a certain value of this weight. In robotic applications, a weight obtained from the
environment model could represent a suitability or a danger index for robots interacting
with humans [Chatila 02] or moving in unknown areas [Chatila 95]. Another interesting
example arises in the application of motion planning techniques to Structural Biology (see
Chapter 6). Feasible conformations of a molecule (a conformation for a molecule is the
equivalent to a configuration for a robot) are under an energetic level that depends on this
conformation [Leach 96].

In general, we can define for a robot the subset Cfeas of the configurations satisfying
all the holonomic equality and inequality constraints. If the constraints are only of this
type, an arbitrary path τ ⊂ Cfeas is feasible for the robot.

1.4.2 Motion Planning under Differential Constraints

Up to now, we have talked about constraints that reduce the subset of feasible configura-
tions. Other motion constraints may affect the range of feasible paths (i.e. the possibility of
connecting pairs of points in the same connected component of Cfeas). Mainly, constraints
of this type involve velocities or accelerations. We call them differential constraints.

This thesis does not deal with differential constraints. The examples of applications
that we will show stand in the most “popular” instance of the motion planning problem:
with Cfeas = Cfree and without differential constraints. Nevertheless, the formulation and
the algorithms we present could be extended to handle some kinds of these constraints.

Kinematic non-holonomic constraints are the differential constraints that have mostly
been treated within motion planning problems. Mathematically, non-holonomic con-
straints are non-integrable equations involving the first derivatives of the configuration
parameters with respect to time (i.e. velocity parameters) [Laumond 86, Latombe 91,
Laumond 98b]. Thus, some configuration parameters cannot variate independently. The
most representative systems suffering non-holonomic constraints in robotic motion plan-
ning problems are car-like robots [Svestka 97b] and tractor-trailer robots [Lamiraux 97].
Let us imagine now than, in the example of the introductory chapter (see Figure 1), we
replace one of the mobile robotic platforms, that are holonomic, by a car-like robot. Then,
non-holonomic constraints should be treated in addition to closure constraints.
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In general, the knowledge of the connectivity of Cfeas is not sufficient to guarantee the
existence of a feasible path between two given configurations if the mobile system is affected
by non-holonomic constraints. However, last sentence is false under certain conditions. For
small-time controllable systems [Laumond 98b, Laumond 01, Lamiraux 01b], any path in
Cfeas can be approximated by a finite sequence of feasible paths respecting non-holonomic
constraints. For instance, a car moving forward and backward is small-time controllable
while a car moving only forward is not.

Although kinematic non-holonomic constraints are much harder to treat than holo-
nomic constraints, they can also be mapped in C. Therefore, the motion planning problem
can still be formulated and solved using the notion of configuration-space. In contrast, the
representation of dynamic constraints in this space is less evident. Dynamic constraints
are expressed on the second derivatives of the configuration parameters (i.e. they in-
volve accelerations). Some dynamic constraints are integrable, and could be treated as
kinematic constraints. However, generally they require to define a state-space including
configuration parameters and velocity parameters. The motion planning problem consid-
ering dynamic constraints is referred to as the kinodynamic planning problem in literature
[Donald 93, Fraichard 99, LaValle 01b], and it is not treated in this thesis.

There are many other constraints affecting motions in the real world that are more
difficult to characterize by mathematic equations. For instance, when motion planning
algorithms are applied to human-like characters, obtaining realistic animations require the
incorporation of other techniques such as motion capture [Kuffner 99, Pettre 02]. With an
insight into realistic motions, one could devise a piano mover’s problem where the piano
is transported by human-like robots.





Chapter 2

Available Techniques





This chapter aims to provide a state of the art on the available techniques for solving
the problems treated in this thesis. We first present, in Section 2.1 and Section 2.2, an
scope of techniques for solving motion planning problems and loop closure equations. Our
approach to solve the motion planning problem for closed-chain mechanisms (described
in Chapter 3) requires the combination of both kinds of techniques. In Section 2.3, we
present the few existing approaches that tackle this problem.

2.1 Motion Planning Algorithms

The history of motion planning is quite recent. The first works appeared in the late
60’s [Nilsson 69], and the active algorithmic development started in the 80’s, with the
notion of configuration-space [Lozano-Pérez 83]. During these two decades, a very large
number of techniques have been proposed. Latombe’s book [Latombe 91] provides an
excellent overview of the progress on motion planning until the early 90’s. A similar work
collecting posterior theoretical advances and modern algorithms is not available yet. A
couple of books that collect recent articles [Laumond 98a, Gupta 98] and the proceedings
of the Workshop on the Algorithmic Foundations of Robotics [Goldberg 95, Laumond 97,
Agarwal 98, Donald 01] provide a good overview and the essential references of the related
works of the last decade.

The difficulty of motion planning depends on the complexity of the mobile system
and on the intrinsic and extrinsic motion constraints. It has been proved that motion
planning for an articulated mechanisms made of polyhedral links in a 3D environment is
PSPACE-hard [Reif 79]. The applicability of exact algorithms (i.e. complete approaches
that guarantee a solution if one exists and report failure when the problem is unsolvable)
is limited by this computational complexity. The most efficient exact algorithm has time
complexity exponential in the dimension of C [Canny 88].

Several approaches were subsequently proposed aiming to overcome complexity and im-
plementation inconveniences of exact methods. For this, some continuous quantities in the
problem definition, such as object dimensions or configuration parameters, are discretized.
Algorithms based on an approximated cell decomposition of the free configuration-space
(see Chapter 6 in [Latombe 91]) are resolution complete: they are complete for a given
discretization size. Other approaches use a grid to quantize C and perform a search process
over this grid. Efficient heuristic algorithms have been developed based on the potential
field approach [Khatib 86] to carry out this search (see Chapter 7 in [Latombe 91]). Such
algorithms are able to perform very fast, but get easily trapped at local minima. The de-
sign of the potential function is a critical point, and difficult for high-dimensional spaces.
These approaches using cells or grids are applicable in practice to mobile systems involving
only a few variables. The number of cells or grid points becomes enormous for attaining
acceptable resolution in high dimension.
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Practical planners, more general than the previous ones by satisfying a weaker form
of completeness, appeared in the 90’s [Barraquand 91, Kavraki 96, LaValle 98]. These
approaches use randomization to treat the high dimensionality of C (see [Motwani 95] as
one of the first textbooks on randomized algorithms). The term probabilistically complete
was introduced to characterize these sampling-based algorithms, able to find a solution if
sufficient running time is given. Up to date, the development of algorithms for motion
planning has continued in this direction. Work has been done to analyze the behavior of
randomized planners [Kavraki 98, Svestka 98, Laumond 01] and to define sampling strate-
gies allowing to solve difficult problems [Hsu 98, Amato 98, Boor 99]. Currently, some
scientists are taking a direction toward “derandomizing” some sampling-based approaches
for motion planning [LaValle 03b], aiming to gain insight for the control of algorithms and
to improve coverage properties. Section 2.1.1 deals about these (randomized and deter-
ministic) sampling-based approaches. Then, two particular approaches, PRM and RRT,
are detailed in Section 2.1.2. These are the approaches we have chosen to extend for the
treatment of closed-chain mechanism (explained in Chapter3).

2.1.1 Sampling-Based Approaches

Sampling-based algorithms, developed in the last decade, have demonstrated their effi-
cacy for solving motion planning problems in high-dimensional spaces. They capture the
connectivity of the collision-free regions of the configuration-space Cfree without requiring
to explicitly compute this subset. The aim of this section is not to make an exhaus-
tive survey of all the available techniques, but a simple overview which gives an idea on
the last tendencies in motion planning. We present a classification (partially inspired by
[LaValle 03a]) of some of the approaches which have been particularly well accepted in the
Robotics community. The main ideas of each approach are briefly described and we point
to papers which provide full explanations.

Sampling-based approaches can be grouped in two main families: those using sam-
pling techniques for constructing a roadmap in Cfree [Kavraki 96] and those using sam-
pling within incremental search methods for exploring Cfree looking for a particular path
[Barraquand 91, LaValle 98]. The choice mainly depends on the application. Roadmap
methods are more suitable when several motion planning queries involving the same sys-
tem moving in a static environment must be solved. Computing time is spent in a pre-
processing phase and then planning queries can be solved in real-time. They are called
multiple-query methods, although some roadmap-based algorithms have been developed to
efficiently solve particular queries [Bohlin 00]. Incremental search methods are used for
solving single motion planning queries. Single-query methods are in general faster since
they need not preprocessing. However, as they focus on solving a particular problem, the
processed information is less appropriate for later use. A good example of application
for single-query methods are assembly problems [Chang 95], where one must determine
whether there exist a path to remove a part from an assembly for maintenance. Sometimes
it is interesting to combine both kinds of methods. For instance, when only slight modifi-
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cations are produced in the environment, a multiple-query method can be used at a global
level and then single-query methods can rapidly solve local problems arisen from these
slight changes. In the approach for manipulation planning, explained in Chapter 5, we use
such a combined technique. As recently proposed in [Akinc 03], the use of single-query
techniques within a multiple-query motion planning framework can have other advantages
such as the efficient parallelization of the process.

Roadmap Methods

A roadmap method consists of two phases. First, in the roadmap construction phase a
network of one-dimensional curves capturing the connectivity of Cfree is computed. Once
the roadmap has been constructed, a motion planning query can be answered by connecting
the initial and goal configurations, qinit and qgoal, to points in the roadmap and searching
for a path (a concatenation of curves) between them. This is called the query phase. The
search in this second phase can be achieved by classical AI algorithms such as the A∗.
Additionally, a third phase is usually carried out for smoothing the resulting path.

The Probabilistic RoadMap (PRM), developed simultaneously at Stanford and
Utrecht [Overmars 95, Kavraki 95a, Kavraki 96, Svestka 97a], is the principal sampling-
based approaches for motion planing. The simplest algorithm inspired in the PRM ap-
proach builds a graph (the roadmap) whose nodes are randomly sampled configurations
lying in Cfree and whose edges are short collision-free local paths (i.e. simple paths gen-
erated by a local method) linking “nearby” nodes. Samples and local paths are checked
for collisions using effective collision detection algorithms [Jiménez 98, Lin 03]. Because
of the random configuration sampling, the algorithms based on this approach are proba-
bilistically complete under weak conditions for local paths [Svestka 97a].

The main difficulty with an uniform random sampling of C is find connections through
some “critical” regions of Cfree. This difficulty is referred to as the narrow passage problem,
and is common to randomized algorithms. Some algorithms try to increase the samples in
such narrow passages that arise because of C-obstacles. One possibility is to admit some
samples lying in Cobst and to “push” them toward Cfree [Hsu 98]. The same idea has also
been used in the other direction, pushing samples in Cfree toward Cobst, in the Obstacle-
Based PRM approach [Amato 98]. The Gaussian sampling strategy proposed in [Boor 99]
generates samples by close pairs and keep only those for which one of the configuration lies
in Cobst. Other approaches sample the generalized Voronoi diagram (also called the medial-
axis) of Cfree [Wilmarth 99, Lien 03] by retracting randomly sampled configurations using
approximate values of clearance and penetration depth. In [Holleman 00], a PRM-based
approach is proposed that samples at the medial-axis of the workspace. This approach
may be interesting for free-flying robots; however, it is unclear how to generalize this
sampling technique to more general articulated robots.
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Another drawback of random sampling is that an analysis for devising control pa-
rameters of algorithms is very difficult. The Visibility-PRM approach described in
[Nissoux 99, Siméon 00] allows a simple on-line estimation of the amount of Cfree encoded
in the roadmap. This information is useful for defining stop conditions in algorithms. The
principle of this approach is to add samples as nodes of the roadmap only if they serve to
link different connected components or if they are not “visible” by the other nodes. The
number of consecutive failures when trying to add a new node is a parameter for estimat-
ing coverage [Siméon 00]. Another advantage of this technique is that the connectivity of
possibly complex spaces is captured into a small data structure.

Being aware of the heavy cost of collision detection (about 90% of the computing time
for basic PRM algorithms [van Geem 01b]), the Lazy-PRM approach [Bohlin 00] builds
the roadmap initially ignoring the presence of obstacles and delays the collision checking
to the query phase. Thus, the aim of this planner is to solve single queries efficiently while
partially keeping the philosophy of roadmap approaches. For the solution of a particular
query, paths in the roadmap are iteratively searched and checked for collisions until a valid
sequence of local paths is obtained or all the possibilities have been tried. In this last case,
more nodes may need to be added to the roadmap. The validity test on local paths is
progressive, using a technique also proposed in [Nielsen 00]. This technique consists in
incrementally increasing the resolution for collision detection in such a way that invalid
segments can be rapidly detected and removed while valid ones are labeled with and index
indicating the resolution at which they are already been tested.

The term Quasi-random RoadMap (QRM) is introduced in [Branicky 01] to des-
ignate a family of PRM-like algorithms using quasi-random sampling techniques. Quasi-
random sets of numbers (e.g. Hammersley and Halton point sets [Neiderreiter 92]) present
better properties for coverage than pseudo-random numbers normally used in PRM-
based planners. Best performance of planners using such a configuration sampling has
been experimentally proved in spaces of up to ten dimensions [Branicky 01, Geraerts 02,
LaValle 03b]. Also in [Branicky 01], another approach is proposed that goes further in
the “derandomization” of PRM-based algorithms. It is called Lattice RoadMap (LRM)
in [LaValle 03b]. This approach uses lattice points to generate samples. Lattices can
be defined with good coverage properties [Lindemann 04], but their main advantage is
that they provide implicit neighborhood structure which can be exploited in planning
algorithms. The interest of replacing the probabilistic roadmap constructed in the first
phase of the Lazy-PRM approach by a family of quasi-random embedded lattices is dis-
cussed in [Branicky 01], and comparative results are promising. However, as pointed out
in [LaValle 03b], such grid-based sampling techniques are interesting in practice to prob-
lems in spaces with a restricted number of dimensions (say ten). The reason is that the
neighborhood of a grid point increases exponentially with the dimension of C. Thus, non-
lattice sampling techniques, using pseudo-random or quasi-random sequences, are today
the only alternative for constructing roadmaps in very-high-dimensional spaces.
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Incremental Search Methods

Incremental search methods applied to motion planning explore the collision-free regions
of the configuration-space trying to find a feasible path between to given points, qinit
and qgoal. Normally, the exploration is biased to solve this particular planning query
and not to obtain information about the whole space. Most of the algorithms construct
trees whose nodes are configurations computed during exploration. The search can be
performed in only one direction or in the two directions. Unidirectional methods develop a
single tree from one of the two given configurations until the other configuration is reached.
Bidirectional methods construct one tree from qinit and another from qgoal. The solution
is found when the two trees meet at a point. Choosing a unidirectional or a bidirectional
search mainly depends on the characteristics of problem to be solved. For example, if the
robot is highly constrained around qinit and quite free to move around qgoal, it will be
more efficient to build only a tree rooted at qinit and to try connections of nodes to qgoal.

The Randomized Path Planner (RPP) [Barraquand 91] is recognized in most of
the surveys on motion planning as the first randomized algorithm. This planner is based
on a randomized potential field approach. It searches for a path from the initial to the goal
configuration by following the negative gradient of an artificial potential field constructed
over C and uses random walks to escape local minima of the potential function. The RPP
is probabilistically complete and has provided very good results. However, it is now well
known that this planner is hindered by narrow passage problems [Kavraki 96].

The Ariadne’s Clew Algorithm (ACA) [Bessière 93] interleaves two optimization
algorithms. A genetic algorithm called EXPLORE is used to generate landmarks (nodes of
a search tree rooted at qinit) trying to optimize their distribution over Cfree by maximizing
the distance between them. After the generation of a new landmark, another algorithm,
SEARCH, looks for its connection with the goal configuration. The drawback attributed
to this approach is that the optimization process carried out by EXPLORE is costly and
may require some parameter tuning.

The Expansive-Space Tree (EST) planner presented in [Hsu 97, Hsu 00] shares
some ideas with PRM approaches, hoverer it tries to sample only the portion of C that
is relevant for a particular planning query, avoiding the cost of precomputing a roadmap
for the whole free-space. The algorithm iteratively executes two steps, expansion and
connection, in a similar way than ACA. This is a bidirectional planner (i.e. two trees are
built), although a unidirectional version is also implementable. The choice of the node
q to be expanded at one iteration is biased in order to increase samples in few explored
regions. Configurations are randomly sampled in a predetermined neighborhood of q.
Samples with good properties for the coverage of C and with a valid link (i.e. collision-free
local path) to q are kept as new nodes. In the connection step, valid links between nodes
of both trees which are closer than a given distance in C are tested.
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Similarly to the Lazy-PRM planner, the SBL-PRM [Sánchez 03] is another approach
issued from the probabilistic roadmap framework for single planning queries. However,
in this case, a roadmap is not built trying to cover the whole configuration-spaces. This
approach aims to better exploit the delayed collision checking by combining it with an
adaptive sampling technique similar to the one used by EST. The algorithm incrementally
constructs two trees of collision-free configurations rooted at qinit and qgoal, but does
not tests the validity of connections. When the trees meet, the sequence of local paths
connecting the query configurations is checked for collisions. The validity test is iterated
along the whole path, using a a similar technique than [Nielsen 00] and [Bohlin 00]. When
a collision is detected, the corresponding segment is removed and the construction process
goes on until the trees meet again. This algorithm has been applied to problems involving
several manipulator arms operating in the same workspace [Sánchez 02].

The Rapidly-exploring Random Tree (RRT) approach, introduced in [LaValle 98],
has become the most popular single-query motion planner in the last years. RRT-based
algorithms where first developed for non-holonomic and kinodynamic planning problems
[LaValle 01b] where the space to be explored is the state-space (i.e. a generalization of C in-
volving time). However, tailored algorithms for problems without differential constraints
(i.e. which can be formulated in C) have also been developed based on the RRT approach
[Kuffner 00, LaValle 01c]. As the above approaches, RRT-based algorithms combine a
construction and a connection phase. For building a tree, a configuration q is randomly
sampled and the nearest node in the tree (given a distance metric in C) is expanded toward
q. In the basic RRT algorithm (which we refer to as RRT-Extend), a single expansion step
of fixed distance is performed. In a more greedy variant, RRT-Connect [Kuffner 00], the
expansion step is iterated while keeping feasibility constraints (e.g. no collision exists).
As explained in the referred articles, the probability that a node is selected for expansion
is proportional to the area of its Voronoi region. This biases the exploration toward unex-
plored portions of the space. The approach can be used for unidirectional or bidirectional
exploration. For the later case, several combinations of more or less greedy functions have
been proposed in [Kuffner 00, LaValle 01c].

Like for the PRM approach, recent works on the RRT approach have a tendency toward
“derandomized” algorithms [Lindemann 03]. However, the utility of randomization in the
RRT planners is more subtle than in PRM planners. If random samples were simply
replaced by deterministic ones, the RRT approach will loose the essence of its exploration
strategy: the Voronoi biasing. Recently, features of RRT-based algorithms and dynamic
programming algorithms [Bellman 57, Barraquand 93, LaValle 01a] have been compared
in [LaValle 02]. The author identifies complementary advantages and drawbacks of these
techniques and discerns new directions for future research. First works on the development
of such improved RRT-based planners have been published [Cheng 01, Cheng 02], but
several questions remain open.
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2.1.2 PRM and RRT Algorithms

The most successful motion planning approaches in the last years are PRM for multiple-
query problems and RRT for single-query problems. This success is mainly due to their
great efficiency, reliable performance, conceptual simplicity and applicability to many
different types of problems. Indeed, algorithms based on these approaches have been
used to solve more complex instances of the motion planning problem than the classic
mover’s problem. In Robotics, they have been extended to: non-holonomic planning
[Svestka 97b, Sekhavat 98, Lamiraux 01b], kinodynamic planning [LaValle 01b, Hsu 02],
sensor-based motion planning [Yu 00], motion planning under closure constraints (see Sec-
tion 2.3 and Chapters 3 and 4) and manipulation planning [Nielsen 00, Siméon 03] (see also
Chapter 5). They have also been adopted to solve related problems in other areas, as for
example: maintenance problems in industrial logistics [Siméon 01c] or transportation prob-
lems [Lamiraux 03], animation of characters in computer graphics [Kuffner 00, Pettre 02],
or computational Biology [Finn 98, LaValle 00, Apaydin 02, Amato 02, Cortés 03b] (see
also Chapter 6). In this section, we briefly explain the main features of these two ap-
proaches.

Ingredients

The design of PRM-based and RRT-based motion planning algorithms requires some in-
gredients we describe next. Several options are available for some of these basic elements.
The behavior of the algorithm is associated with the selection of these ingredients. Some
choices are more appropriate than others depending on particularities of the problem to
be solved. This fact could be exploited by a meta-planner, as proposed in [Dale 01], which
switches between algorithms with different settings for regions of the configuration-space
with different characteristics.

A recent work published in [Geraerts 02], provides a comparative study of variants
of the basic-PRM algorithm obtained by selecting different options for ingredients. This
study yields very useful conclusions for the design of PRM planners. However, the determi-
nation of this analysis must be relativized since studied examples only involve free-flying
robots (i.e. C is a 6-dimensional space). As far as we know, a similar study has not
been made for RRT-based algorithms. However, as argued in [Kuffner 00, LaValle 01c],
the choice between different expansion heuristics conditions their adequateness to solve
different problems.

The software platform Move3D [Siméon 01b] in which we develop motion planning
algorithms integrates several options for each one of next basic elements. Thus, experi-
ments can be carried out in order to determine good settings of algorithms for each family
of problems.
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Configuration Sampling: The main item of both PRM-based and RRT-based motion
planning algorithms is configuration sampling. The former sample the configuration-space
in order to add nodes to the roadmap and the later use an incremental search approach
biased by the sampled configurations.

The basic PRM approach applies a uniform random sampling. Some of the above
commented variants apply other strategies, either devised to solve problems with narrow
passages [Amato 98, Boor 99, Wilmarth 99, Holleman 00] or looking for better coverage
properties [Branicky 01, LaValle 03b].

For RRT planners, the only effective choice that has been proposed for configuration
sampling is a uniform random sampling, although deterministic sampling strategies are
currently being investigated [LaValle 02, Lindemann 03].

Distance Metric: Distance metrics are used to determine the adjacency of configurations.
The selection of a good distance metric is critical for the performance of PRM-based and
RRT-based algorithms since this information is normally used to decide which connections
or expansions must be tested (see next paragraph). The ideal metric should consider the
existence of motion constraints (i.e. joint limits, obstacles, differential constraints, etc.).
Obviously, designing such a metric remains a very difficult issue. In general, a simple
scaled-Euclidean metric in C provides good results for holonomic planning [Amato 00].
However, under differential constraints, the design of an appropriate metric in C is quite
more complex [Laumond 98b, LaValle 02].

Connection Strategy: The connection strategy consists in the selection of nodes for
testing feasible links by local paths in the case of PRM-based algorithms, or the choice of
the node to be expanded in the RRT approach.

The PRM approach tests the connectivity of a new sampled configuration to nodes in
the roadmap. Since each test for a feasible connection is very expensive, it is important
to reduce the number of tests as much as possible. Thus, only a small set of “best” nodes
is selected. Normally, the nearest nodes of each connected component are chosen. Once a
feasible connection is found, connections with other nodes in the same component need not
be tried. In general, these extra tests increase the computational cost without improving
the roadmap construction process [Overmars 95]. Note that the such a selection of nodes
requires a distance metric to be defined. Other heuristics that do not use a metric can
also be considered. A strategy choosing as best nodes those receiving the highest number
of edges is also proposed in [Nissoux 99].

RRT-based algorithms select a node in the tree to be expanded toward a sampled
configuration. The choice of the nearest neighbor seems the most reasonable strategy, for
with efficient search algorithms have been proposed (e.g. [Atramentov 02]). Due to this
strategy, the behavior of the planner strongly depends on the distance metric. Practical
metrics do not consider the existence of obstacles (i.e. they measure a distance in C and
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not in Cfree) or other feasibility constraints. Reducing metric sensibility of RRT-based
planner has been investigated [Cheng 01, Cheng 02, LaValle 02], but effort must still be
made in this direction.

Steering Method: The steering method is a procedure computing a feasible path in
C between any two configurations considering some intrinsic motion constraints of the me-
chanical system (it considers constraints imposed by joints and non-holonomic constraints
but ignores collision avoidance). In the PRM literature, the steering method is often called
local method because it is the basic tool for generating the local paths. The choice of a
steering method for a given system is in general non unique. This choice may affect the
combinatorial complexity of the algorithm [Laumond 01]. For mobile systems that are not
affected by differential constraints, devising steering methods is in general an easy task.
In most cases, a simple straight-line segment in C is an admissible connection. However,
under differential constraints the design of adequate steering methods is a difficult problem
[Svestka 97b, Sekhavat 98, Laumond 98b]. Indeed, techniques are only available for some
classes of systems depending on controllability issues.

Collision Detection: PRM and RRT approaches do not require an explicit representation
of Cfree. They call a procedure able to determine if the sampled configurations and the
connecting paths lie in Cfree or not. Such a collision checking is made on three-dimensional
models of the robot and the environment.

PRM-based algorithms need to test for collisions each new sampled configurations and
each computed local paths. A variety of static collision detection algorithms are available
for checking configurations [Jiménez 98, Lin 03]. For checking a local path, the simplest
way is to discretize it with uniform resolution and to call the static checker iteratively. On
the one hand, high resolution is necessary in order to guarantee the validity of the path;
on the other, calls to the collision detection algorithms are very time consuming, so that
the number of calls should be restricted for increasing efficiency. More efficient dynamic
collision detection algorithms can be designed adapting the resolution depending on the
distance to C-obstacles [Nissoux 99, van Geem 01b, Schwarzer 02]. These algorithms re-
late the distance between objects in the workspace to lengths of walks on local paths.
Several works show that a test using a dichotomic division of the local path generally
gives a better performance than an incremental test for both uniform and non-uniform
resolution checking [van Geem 01b, Geraerts 02].

RRT-based algorithms perform collision checking while trying to expand a node of
the tree. This expansion process can also benefit from efficient dynamic checkers with
adaptive resolution, in particular when using the RRT-Connect variant, which generates
longer local paths to be tested compared to the RRT-Extend variant.
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Algorithm 2.1: Construct PRM

input : the robot A, the environment B
output : the roadmap G

begin
G← EmptyRoadmap;
while not StopCondition(G) do

qnew ← RandomFreeConfiguration(A,B);
AddNewNode(qnew, G);
Lbest ← ListBestNodes(qnew, G);
for all q ∈ Lbest do

if not InSameComponent(qnew, q, G) then
if FeasibleConnection(qnew, q) then

AddNewEdge(qnew, q, G);

end

Algorithm 2.2: Construct One RRT

input : the robot A, the environment B, qroot
output : the tree G
begin

G← InitTree(qroot);
while not StopCondition(G) do

qrand ← RandomConfiguration(A,B);
qnear ← NearestNeighbor(qrand, G);
qfeas ← qnear;
state← OK;
while state = OK do

qstep ← MakeStep(qfeas, qrand);
if FeasibleConfiguration(qstep) then qfeas ← qstep;
else state← FAIL;

if not TooSimilarConfigurations(qnear, qfeas) then
qnew ← IntermediateConfiguration(qnear, qfeas);
AddNewNode(qnew, G);
AddNewEdge(qnew, qnear, G);

end
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Basic Algorithms

Algorithms 2.1 gives pseudocode for the roadmap construction phase of the basic-PRM
approach. It combines the above explained ingredients so that different behaviors of
the planner are obtained with the different settings. Note that this algorithm could be
completed with an expansion step as proposed in [Kavraki 96].

Algorithms 2.2 builds a search tree in the configuration-space based on the unidirec-
tional RRT approach, originally formulated in the state-space. In such a tailored version,
the function MakeStep performs a walk on a local path connecting qrand and qnear.
This path is computed by a steering method, like in the PRM approach. The presented
algorithm corresponds to the RRT-Connect variant.

Some Properties

The analysis of sampling-based planners is a difficult problem. Main subjects of analysis
involve completeness (i.e. the capacity to find a solution whenever one exists), coverage
and connectivity properties (i.e. the amount of the search-space encoded in the graph
structure) and computational complexity.

Concerning the PRM approach, proofs for probabilistic completeness are given in
[Kavraki 95b, Kavraki 98]. A probabilistically complete planner will find a solution path,
if one exists, in bounded time with high probability. In [Svestka 97a], detailed demonstra-
tions of probabilistic completeness are extended to more general kinds of mobile systems,
affected by non-holonomic constraints.

The notion of ε-goodness is introduced in [Barraquand 97] for the analysis of coverage
properties. Cfree is ε-good if the volume of the visibility set (i.e. the set of configurations
attainable by the steering method) of any configuration in Cfree is greater than some fixed
percentage (1− ε) of the total volume of Cfree. The authors prove that if Cfree is ε-good
the probability that a roadmap computed by the basic-PRM algorithm does not cover this
subset decreases exponentially with the number of nodes.

The notion of expansiveness introduced in [Hsu 97] deals with connectivity. The pro-
posed model is rather technical. It deals with the notion of narrow passages in Cfree and
the difficulty to go through them. It is shown that for expansive Cfree the probability for
a (basic) roadmap not to capture the connectivity of Cfree decreases exponentially with
the number of nodes.

The clearance of a path is also a pertinent factor. In [Kavraki 98] a bound on the
number of nodes required to capture the existence of a path of given clearance is provided.
This bound depends also on the length of the path. In [Svestka 98] the dependence on
the length is replaced by the dependence on the number of visibility sets required to cover
the path. Again the probability to fail in capturing the existence of a path decreases
exponentially with the number of nodes.
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Finally, the dependence of the above notions (ε-goodness, expansiveness and clearance)
on the dimension of C is discussed in [Hsu 99].

All these results are based on parameters characterizing the geometry of Cfree which
are a priori unknown. An approximated knowledge of such parameters could be very
useful for the setting of algorithms, but it seems that a reliable estimation would take at
least as much time as building the roadmap itself [Hsu 99]. An idea could be to try to
estimate these parameters during the construction of the roadmaps. This is the underlying
principle of the Visibility-PRM approach [Nissoux 99, Siméon 00], that allows an on-line
estimation of the coverage.

A recent publication [Ladd 02] unifies some previous works and makes a reformulation
looking for more intuitive parameters and opening a novel framework for the analysis of
PRM-based algorithms applicable to more general problems such as kinodynamic planning.

In [Branicky 01], resolution completeness has been stated for PRM-based algorithms
in which configuration sampling is made using quasi-random sequences. These are the so
called QRM and LRM approaches. The argument for this assertion is that quasi-random
samples are deterministic. The authors also suggest the existence of a relationship between
dispersion and discrepancy of quasi-random samples and coverage and connectivity notions
studied in the above cited works. Theoretical performance characteristics of these new
sampling-based approaches have been recently published in [LaValle 03b].

The theoretical development and analysis of RRT algorithms has been, up to date,
entirely fulfilled by LaValle’s group. Main properties are presented in [LaValle 01c]. RRT
planners are probabilistically complete, and the tree nodes converge to the sampling dis-
tribution (i.e. in theory, to a uniform coverage of C if a uniform random sampling is
used). First algorithms developed by combining ideas of the RRT approach and dynamic
programming algorithms have been proved to be resolution complete [Cheng 02].

2.2 Solution Methods for Loop Closure Equations

As explained in Section 1.2 loop closure constraints yield a system of non-linear polynomial
equations (1.9) relating joint variables. Solving such a set of equations is a very hard
problem with high computational complexity. The main difficulty with non-linearity is
that, even when the system is not underdetermined, it has in general non-unique solutions.
Moreover, the number of solutions may be infinite for mechanisms with special geometry
(e.g. [Bennett 03, Crippen 92]).

The solution of loop closure equations is a usual requirement for the kinematic analysis
and the synthesis of mechanisms. Linkage synthesis [Erdman 91], inverse kinematics for se-
rial manipulators [Angeles 03] and forward kinematics for parallel mechanisms [Merlet 00],
are the more investigated categories of problems leading to such sets of non-linear equa-
tions. Despite the interest and the intensive work in Robot Kinematics and Algebraic
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Constraint Solving, no general solution, convenient for practical use in motion planning is
available yet.

2.2.1 Solutions for Non-Redundant Mechanisms

Non-redundant closed-chain mechanisms have a finite number of solutions to their loop
closure equations (excepting for mechanisms with special geometry). Several kinds of
technique have been developed to predict bounds of the number of solutions and to find
all these solutions for such systems of polynomial equations. Each method has strengths
and weaknesses, and the applicability of most of them is highly dependent on the particular
problem being addressed.

Two main approaches have been classically used: continuation and elimination (see
[Nielsen 97] for a complete survey of these techniques). Polynomial continuation methods
[Wampler 90] are purely numerical procedures able to find all possible solutions of the
set of non-linear equations (in contrast to other numerical methods, such as Newton-
Raphson, which converge to a single solution). These methods are based on homotopy
techniques for gradually transforming a “start” system whose solutions are known to the
system whose solutions are sought. These methods are robust and applicable to any set
of equations. However, since they are iterative procedures, they are too slow in practice.
Elimination approaches use one of the next algebraic methods: the Gröbner Basis method
[Buchberger 82], which is an iterative variable elimination technique, or the resultant
method [Gelfand 94], capable of eliminating all but one variable in a single step. In both
cases, the elimination process normally leads to an univariate polynomial, relatively easy
to solve [Pan 99]. The applicability of the Gröbner Basis method is mainly limited by its
algorithmic complexity. Resultant methods can provide computationally fast techniques,
but they require geometric intuition to find (if possible) the formula for the resultant.

Lately, interval methods for solving systems of non-linear equations have been proposed
as an alternative to continuation and elimination methods. They are based on interval
arithmetic [Moore 79, Hansen 92] and manipulate upper and lower bounds of variables.
Two main classes of interval-based methods have been applied in Robotics: those based
on the interval version of the Newton method [Rao 98, Castellet 98], and those based
on subdivision [Sherbrooke 93, Merlet 01, Porta 02]. They are completely numerical and
robust techniques. Although implemented techniques are still slow, recent improvements
are significantly increasing their efficacy [Porta 03].

Note that all the above mentioned techniques address mechanisms with (more or less)
general geometry. In most industrial applications, mechanisms are normally designed with
particular geometries which allow a closed-form analytical solution to the loop closure
equations. For instance, non-redundant serial manipulators often have the last three
revolute axes intersecting in a same point, which greatly simplifies the solution of the
inverse kinematics problem [Angeles 03].
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2.2.2 Dealing with Redundancy

When the mechanism is redundant, the system of loop closure equations is underdeter-
mined. Thus, there is an infinite number of solutions. Two problems have to be faced:
the first is to obtain the set of all solutions, and the second is to represent such set.

Among the existing methods, only interval methods are able to provide a fully geomet-
ric representation of the solution. Interval methods return a set of boxes that discretize
the continuum of solutions in the joint-space Q of the mechanism. Unfortunately, current
implementations of interval methods are capable of handling only a few (two or three)
degrees of redundancy [Porta 03].

Using elimination methods, the solution of a system with m variables could be in
principle represented by combining a parameterization of ρ independent variables with
equations giving the value of the m−ρ dependent variables. Note that m is the dimension
of Q and ρ is the degree of redundancy of the mechanism. However, such a representation
is not a “proper” one since it is a priori unclear which combinations of parameter values
will provide real solutions of the equations involving dependent variables. Each joint vari-
able has a restricted set of values satisfying closure (this set is called the closure range in
Section 1.3). Besides the closure range of a given parameter generally depends on the val-
ues already assigned to other parameters. Thus, there is a kind of “dependency” between
the independent variables. As mentioned in [Celaya 93], only an “on-line” parameteriza-
tion is possible: before assigning a value to a parameter, its closure range compatible with
the already assigned ones has to be computed. An additional problem is that determining
these sets is as difficult as solving the loop closure equations, and detailed analytical ap-
proaches have been proposed only for planar or spherical closed mechanisms without joint
limits [Celaya 93].

In conclusion, for redundant closed-chain mechanism with ρ greater than two or three,
the solution of the loop closure equations can be only geometrically represented by a set of
points discretizing this solution. This could be made using an exhaustive search method
for the independent variables, following a ρ-dimensional grid for example. However this
solution is prohibitive when ρ is high. The other possibility is then to use randomized
techniques to sample these parameters. The remaining difficulty is how to perform the
sampling of the ρ independent variables in order to obtain real solutions for the dependent
ones.

A Different Formulation

When the aim is only to obtain some of the possible solutions satisfying closure constraints,
the problem can be formulated in a different way. For robotic manipulators, such a problem
is often referred to as redundancy resolution [Siciliano 90]. The loop closure problem is
usually formulated in the velocity domain and solved using the Jacobian pseudo-inverse
[Klein 83], although other very different approaches have also been proposed [DeMers 97].
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However, redundancy resolution involves, in addition to closure, other constraints such as
moving obstacles or energy minimization. The solution techniques are more complex than
necessary for the instance addressed here. Indeed, the redundancy resolution problem is
closer to the motion planning problem than to the inverse kinematics problem, but the
problem is treated locally.

Another formulation has been proposed in Robotics literature to solve the inverse
kinematics problem. Given a metric in the Euclidean space, the problem consists in
minimizing an error function which represents the distance between the current location
and the sought location of the end-effector. Such a formulation is used for example in
[Ahuactzin 99] to solve the point-to-point problem, in which not only a configuration of
the robot satisfying the goal end-effector location must be found, but also a feasible (i.e.
collision-free) path between an arbitrary initial configuration and this goal configuration.

Techniques to solve the point-to-point problem can be used to sample the variety, so-
lution to the loop closure equations, by iteratively choosing different initial configurations.
Nevertheless, since the feasibility of the path from the sampled configuration to the goal
configuration is not important for this particular aim, simpler optimization approaches can
be used. For instance, the use of a randomized gradient descent is proposed in [LaValle 99].
Other optimization-based approach that could be applied is the cyclic coordinate descent
(CCD) [Welman 93]. This approach, with great success in the last years, is based on a
minimization applied to each joint variable separately, which allows simple analytical pro-
cedures to accelerate convergence. The drawbacks of such optimization-based approaches
are that they are exposed to the local minima problem and that the convergence can be
slow. These drawbacks are more significant for highly-redundant mechanisms.

2.3 Motion Planning under Kinematic Closure Constraints

2.3.1 Complete Approaches

Exact algorithms for solving the general instance of the piano mover’s problem (e.g.
[Schwartz 83, Canny 88]), are, in theory, capable to handle closure constraints. These
methods make an algebraic formulation of the motion planning problem in which poly-
nomial equations defining closure constraints can be directly treated as other holonomic
constraints such as those imposed by obstacles. However, as mentioned before, these
approaches are impractical because of their computational complexity. Further develop-
ments have been carried out attempting to reduce the complexity of exact algorithms.
In particular, algorithms presented in [Basu 00] are more interesting for motion planning
problems under closure constraints since they are specifically designed to compute the
connectivity of algebraic varieties, and their complexity mainly depends on the dimension
of the variety rather than on the dimension of the ambient space (the joint-space in our
case). But even for these improved techniques, problems involving complex mechanisms
still remain intractable.
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Lately, a complete path planning method has been proposed for closed kinematic chains
with only spherical joints [Trinkle 02]. The approach is based on a complete understanding
on the singularity sets in the configuration-space of the closed-chain mechanism. Unfortu-
nately, techniques providing such a complete information are only available for the limited
classes of mechanisms treated in the referred paper: spatial mechanisms with spherical
joints and planar mechanisms with revolute joints. Besides, this method neglects collision
avoidance. For computing collision-free motions, the best option proposed by the author
is to use this technique as the local planner within a PRM-based algorithm. Such hybrid
motion planner cannot be considered complete, but only probabilistically complete.

2.3.2 Sampling-Based Approaches

To the best of our knowledge, Koga and Latombe were the first to extend a randomized
algorithm for planning collision-free motions of a closed-chain mechanism. This planner
aimed to generate paths for several cooperating robot arms that manipulate a movable
object among obstacles [Koga 94]. Basically, a feasible path is computed for the movable
object using the RPP algorithm, which generates a concatenation of configurations. For
each one of these configurations, the planner verifies if the the object can be grasped by
the manipulators using a closed-form inverse kinematics solution. This method presents
several drawbacks for more general applications. However, it provides some interesting
ideas exploited in the approach we describe in Chapter 4.

Recently, two sampling-based approaches have been proposed which directly address
the motion planning problem for closed kinematic chains [LaValle 99, Han 01]. Both ap-
proaches extended PRM-based (and one of them also RRT-based) algorithms to handle
closure constraints, but they attack the problem in a quite different way. Optimization
techniques are used in [LaValle 99] for computing nodes and local paths satisfying kine-
matic closure, while [Han 01] applies kinematic tool functions. As we will see below, some
important details in these approaches make them inefficient for complex mechanisms. Nev-
ertheless, they represent a significant advance of the state of the art in motion planning.

Optimization-Based Approach

The first PRM-based approach able to handle mechanisms with closed chains was presented
in [LaValle 99]. More details of the method and the extension of RRT-based algorithms
were subsequently published in [Yakey 00, Yakey 01]. The problem is formulated in the
joint-space Q. Closure constraints are expressed by error functions involving distances
in the Euclidean space and numerical optimization techniques are used to sample and
to connect configurations in the subset of Q satisfying these constraints within a given
tolerance.

In the extended version of the PRM approach, the nodes of the roadmap are obtained
by sampling random configurations that ignore constraints, and then performing a ran-
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domized gradient descent to minimize closure error functions. The edges are computed by
executing a randomized traversal of the constraint surface between two nodes, also using
gradient descent. A technique to randomly sample the tangent space of the constraints
is proposed in the referred papers which increases the efficiency of this process. This ap-
proach is completely general but suffers the drawbacks of optimization-based methods to
solve inverse kinematic problems, mentioned in Section 2.2.

The application of the above method to RRT-based algorithms is discussed in [Yakey 00].
In this work, the random configurations qrand used to bias the exploration are generated
ignoring closure constraints. The argument is that computing feasible configurations is too
expensive and does not provide appreciable benefit (we will show in Chapter 3 that this
last assertion is not totally right). The tangent space sampling is applied to the expansion
of the nearest neighbor qnear toward qrand. The author shows via experimental results that
this technique improves the exploration process in relation to a standard uniform random
sampling.

Kinematics-Based Approach

The approach described in [Han 01] treats closed kinematic chains within a PRM-based
planner. Each loop in the mechanism is broken into two subchains. For computing nodes,
uniform random sampling is used to generate the configuration of one of the subchains
(called active subchain) and then an inverse kinematics problem is solved to obtain the
configuration of the remaining part of the loop (called passive subchain) in order to force
closure. For computing edges, the local planner (the steering method) is limited to act on
the active configuration parameters and the corresponding passive variables are computed
for each intermediate configuration along the local path. Although this approach could
be considered less general than the method in [LaValle 99], it performs more efficiently.

Another new technique proposed in this work is the application of a two-stage strategy
for the construction of the roadmap when the closed-chain mechanism is “mobile” (e.g. two
mobile manipulators grasping an object). In a first phase, a so called kinematic roadmap
is constructed for a fixed location of a (virtual) base of the system without considering ob-
stacles. Next, the environment is populated with copies of the kinematic roadmap using a
random sampling strategy. The global roadmap is computed by connecting configurations
in the different copies of the kinematic roadmap corresponding to the same closure type
using a PRM planner for such a rigid body.

For the efficiency of the kinematic roadmap computation, the passive subchain of each
loop must have closed-form inverse kinematics solution. Thus, passive subchains are in
general articulated mechanisms with degree of mobility M = 6. As the authors admit, this
means an important drawback when the approach is applied to a highly-redundant loop
since the active part is a long kinematic chain. The probability of randomly generating
configurations of a long active subchain for which a configuration of the passive chain
satisfying closure constraints exists (i.e. the inverse kinematics problem can be solved) is
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very low. This fact significantly drops off the performance of the algorithm.

One of the contributions in this thesis is to resolve the main drawback of the approach
in [Han 01]. We have developed a general and simple geometric algorithm called Random
Loop Generator (RLG) for sampling random configurations satisfying loop closure con-
straints [Cortés 02b, Cortés 03a]. RLG performs a “guided”-random sampling of active
subchains that notably increases the probability to obtain solutions for the corresponding
passive subchains. This algorithm is explained in the next chapter, within our approach
for planning the motions of general closed-chain mechanisms.



Chapter 3

Sampling-Based Motion Planning for
Closed-Chain Mechanisms





As explained in Chapter 1, solving motion planning problems for closed-chain mech-
anisms requires to explore the connectivity of subsets on an algebraic variety, and as we
have seen through Chapter 2, only a few techniques allow to tackle complex instances of
this problem. Our approach is placed within the frame of sampling-based motion plan-
ning algorithms. The aim is to improve these techniques with new tools that allow their
application to more complex classes of problems involving kinematic closure constraints.

One of the main contribution of our work is to introduce sampling-based algorithms
into a detailed formulation of the motion planning problem in presence of kinematic clo-
sure constraints, different from the formulation in [LaValle 99, Yakey 01], which had not
been made in this context (see Section 3.1). Some of the ideas in our approach have been
proposed in [Han 01] for the extension of PRM-based algorithms to treat closed kinematic
chains. The most important technical advance concerns the configuration sampling algo-
rithm explained in Section 3.2. This new technique resolves the main drawback of the
method in [Han 01] and can be implemented within different kinds of motion planning
algorithms. Section 3.3 deals with the extension of the PRM approach, and RRT-based
planners are treated in Section 3.4. In these two sections, we present performance tests
that show the interest of integrating our configuration sampling algorithm within these
planners. Then, in Section 3.5, we comment experimental results obtained when solving
motion planning problems. Note that the efficiency and generality of the extended plan-
ners will be further demonstrated in the second part of this thesis through the different
examples of application.

3.1 Overview of the Approach

Our approach for planning the motions of closed-chain mechanisms combines existing
sampling-based algorithms with simple geometric tools and efficient solution methods for
loop closure equations. The algorithms explained in the next sections explore the subset
of the configurations satisfying motion constraints Cfeas and construct data structures
(graphs or trees) that encode the connectivity of this subset.

Let us go back to the fictive motion planning problem introduced in Section 1.4. Fig-
ure 3.1 shows a probabilistic roadmap capturing the connectivity of the search-space.
Black and white points (the nodes) are feasible configurations (we will explain later the
meaning of the different colors). Straight-line segments (the edges) represent feasible con-
nections between pairs of nodes. Explicit information about how to connect the extreme
points while maintaining motion constraints is associated with each edge. Then, a plan-
ning query will be immediately answered by connecting the initial and goal configurations
to nearby nodes and searching for a path in the roadmap.

The use of sampling-based motion planning algorithms is strongly justified since, for
the kind of problems we address (see the second part of this thesis), there is no avail-
able technique providing a complete, exact representation of Cfeas. However, there is an
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Figure 3.1: Probabilistic roadmap capturing the connectivity of Cfeas for the fictive motion
planning problem involving kinematic closure constraints of Section 1.4.

important difficulty involving the sampling of the configuration-space C of closed-chain
mechanisms. Configurations satisfying closure constraints form an algebraic variety em-
bedded in the joint-space Q (i.e. the space of the variables in our problem). Thus, the
probability of obtaining a feasible configuration q ∈ Cfeas by sampling the joint variables
is null. Consequently, this family of algorithms cannot be directly applied in theory.
However, the topological structure of C allows a parameterization via local charts that en-
ables the use of sampling-based planners by combining them with other numerical and/or
algebraic techniques.

On the Parameterization of C

Configurations of a closed-chain mechanism are grouped into a finite number of M -
dimensional smooth manifolds Mi, with M the global mobility of the mechanism. These
manifolds can be parameterized, at least locally, by a set of M (independent) parameters.
Points in the different manifolds can be generated by sweeping the M parameters through
their range and evaluating expressions that provide the value of the other (dependent)
variables. Such expressions are the loop closure equations (1.9). An atlas of each one of
these manifolds Mi can be constituted by a finite number (in general not exceeding the
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Figure 3.2: Projection of M1 on the planes θ1θ2 and θ1θ3.

dimension m of Q) of local charts considering different combinations of M parameters 1.
Without loss of generality, sets of M consecutive joint variables can be chosen as local co-
ordinates [Thomas 93]. However, any combination of variables is not permitted, specially
in the case of multi-loop mechanisms.

Following the terminology in [Han 01], we call active variables qa the set of the M joint
variables chosen as parameters of a local chart and passive variables qp the remaining set
of the m−M dependent joint variables, so that {qa, qp} = q ∈ Q.

Main Principle

The core of our approach is to explore the connectivity of Cfeas by sampling configurations
and by testing feasible connections through local parameterizations of C. Motion planning
algorithms are applied on the local parameters qa. Using a roadmap method such as
PRM, the nodes are generated by sampling qa and local paths are obtained by applying
steering methods to these parameters. In a similar way, qa are the configuration parameters
handled by incremental search methods as RRT. Obviously, for each computed value of the
parameters, loop closure equations must be solved for obtaining the whole configuration
of the mechanism q ∈ C. Therefore, the efficiency of the planner partially relies on the
efficient solution of these equations. In most cases, an adequate selection of parameters
permits the application of efficient methods for solving inverse kinematics problems.

Without a topological characterization of C, the number of different sets of parameters
qa required to solve a particular motion planning is a priori unknown. This fact can

1Charts and atlas are usual notions in Differential Geometry which can be found in any textbook (e.g.
[Talpaert 93, Henderson 97]).
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easily be understood by the illustrative example in Figure 3.1. The supposed mechanism
with three joint variables {θ1, θ2, θ3} has a global mobility M = 2. Thus, three different
sets of parameters qa can be chosen: {θ1, θ2}, {θ1, θ3} and {θ2, θ3}. Figure 3.2 shows
the projection of the manifold M1 on the planes θ1θ2 and θ1θ3. For each point of a
parameterization with qa = {θ1, θ2} there is an only configuration q lying onM1 (i.e. this
mapping is injective). One can easily understand that such a parameterization is sufficient
for capturing the connectivity of M1 using sampling-based approaches. A PRM-based
algorithm would construct a roadmap with only one connected component covering the
whole manifold. Any two configurations could also be connected using the RRT approach.
On the contrary, choosing θ1 and θ3 as only parameters could lead to a non-complete
solution. Let us consider that the steering method makes a linear interpolation of the
parameters qa. A solution path between configurations q1 and q2 could be immediately
obtained since they can be directly connected by a local path. However, a path between
q1 and q3 could not be found using sampling-based techniques. The point indicated by the
small square is a singularity of this parameterization. The probability of generating this
point by sampling values of qa = {θ1, θ3} is null, as well as the probability of sampling
two points on a line (local path) passing through this singularity. Finding a feasible path
between q1 and q3 requires to use another set of local parameters.

In practice, the last assertion is not totally true when the test for validating local
paths is discrete. Closure constraints can be violated as other constraints (e.g. collision
avoidance) depending on the resolution at which local paths are discretized. Thus, one only
set of local parameters is sufficient for solving motion planning problems under a certain
tolerance 2 associated with this resolution. However, some parameterizations are more
appropriate than others, and the planner could be more efficient by combining different
sets of parameters qa. We will come back to this discussion later, when talking about
kinematic singularities.

How to Sample qa

Figure 3.2 also illustrates another difficulty related to the definition of the parameters qa.
A parameterization ofM1 using θ1 and θ2 as coordinates allows to solve motion planning
problems on this manifold. However, it is not a proper parameterization. Loop closure
equations have real solutions only for a range of values in the interval of each joint variable,
defined as closure range in Chapter 1. Besides, the closure range of a parameter depends
on the value of the other parameters. If we sample first θ1 and then θ2 for generating a
configuration q1 ∈M1, then θ1 can be sampled in its whole closure range (i.e. the feasible
range for any value of the other joint variables). However, θ2 is valid only in a subset of
its whole closure range determined by the value of θ1.

There is no general and efficient method to define closure ranges of joint variables.
Thus, in practice, the only possibility for sampling configurations is to use a trial method:

2Note that the planners in [LaValle 99, Yakey 00, Yakey 01] also work within a given tolerance.
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sampling parameters qa in the intervals defined for joint variables and solving the loop
closure equations. Nevertheless, when a closure range is very restricted with respect to
the interval of a joint variable, too many samples maybe tested before finding a feasible
configuration. Hence, too much computing time is spent in solving closure equations
leading to imaginary values. This is an important drawback for the efficiency of motion
planners, and mainly for those using a roadmap approach, such as the planner in [Han 01].
We have developed an algorithm called Random Loop Generator (RLG) that resolves this
problem using simple geometrical operations. The RLG algorithm performs a particular
random sampling for qa that notably increases the probability of obtaining real solutions
for qp. The only limitation for this algorithm is to require that the joint variables in qa

and qp correspond to consecutive joints in the mechanism; thus it can not be applied for
any choice of parameters. The selection of active and passive variables for the application
of RLG will be further discussed in Section 3.2, which also describes the RLG algorithm.

Dealing with Kinematic Singularities

Up to now we have limited our discussion to the case of a single manifold. However, C may
be composed of several manifolds. These manifolds are either disjoint, or they intersect at
lower-dimensional subsets corresponding to kinematically singular configurations. There-
fore, exploring the connectivity of Cfeas requires to deal with these singularities.

In our illustrative example (see Figure 3.1), configurations are grouped into four man-
ifolds. Figure 3.3 shows their projections on the planes θ1θ2 and θ1θ3. For each point of a
parameterization with qa = {θ1, θ2} we can have zero, one or two real values of qp = θ3 sat-
isfying loop closure equations within the interval defined by the joint limits. In this case,

θ1 θ1

θ2 θ3

M4
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M3
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M2
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S SM2
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Figure 3.3: Projection of C on the planes θ1θ2 and θ1θ3.
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different solutions of qp for a given value of the parameters qa yield configurations lying
on different manifolds. However, this is not a general rule, see for example the projection
of M3 and M4 on the plane θ1θ3. Into the striped regions, two points of these manifolds
have the same projection. But the most important detail illustrated in this figure is that
M1 and M2 have the same projection on the plane θ1θ2. Each point {θ1, θ2} maps to
two configuration on different manifolds for all the domain under M1 and M2 except
for the singular set S where they intersect, so that configurations in these manifolds are
connected by this singular set. Note that this kinematic singularity corresponds to the
singularity of the parameterization qa = {θ1, θ3} that we have commented above. As we
have mentioned, the probability of sampling a configuration q ∈ S is null, but in this case,
this singularity can be traversed by a local path on a parameterization with qa = {θ1, θ2}
or qa = {θ2, θ3}.

The roadmap in Figure 3.1 has been built using qa = {θ1, θ2} as only set of parameters.
White nodes correspond to one of the solutions of θ3 and black nodes to the other. When
a local path is computed between two configurations at different sides of S, the bifurcation
of the solution is detected, and the singular configuration (marked by the small rectangle
in Figure 3.1) connecting M1 and M2 is then identified.

Let us consider now a worst case. Imagine that, in our three-dimensional example (see
Figure 3.1), M1 and M2 do not intersect along a line but they meet at a point. None of
the three possible parameterizations would allow to identify such a singular point exactly.
We could only aim to find a local path passing through this point within a given tolerance.
But even that is very improbable if paths are discretized with high resolution, aiming to
provide good-quality solutions.

The difference between the two above mentioned cases of connection between manifolds
is that the singular set has dimension M − 1 for the former and M − 2 for the latter. In
theory, sets of kinematically singular configurations can have dimension from M − 1 to
zero. Using sampling techniques for generating configurations on C and steering methods
on subsets of configuration parameters qa, our approach has only the guarantee (forgetting
tolerance) to find connections through singular sets of dimension M−1. The other singular
sets, from dimension M − 2 to isolated singularities, must be identified by other methods.
Unfortunately, identifying singular sets on an algebraic variety is in general extremely
difficult. However, for most of practical applications, techniques developed in the field of
Robot Kinematics could be applied (e.g. [Gosselin 90b, Merlet 92]). Many mechanisms
that can be treated by our approach are too complex for a direct application of these
techniques onto the whole system. But the global analysis is not strictly necessary, the goal
is to identify singularities associated with the different local parameterizations. Indeed, for
a single loop and for a given choice of parameters, singularities can be found by analyzing
the passive variables qp. Singularities appear at points qa where there is a change in the
number of solutions of qp. An appropriate selection of qp should permit to know these
points. Identified singular configurations could then be injected as special nodes in a
roadmap or in a search tree used to connect components on different manifolds
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Nevertheless, as we mentioned at the beginning of this document, the algorithms we
present in this thesis do not deal with singular configurations. This could be an interesting
extension for future work. However, the interest of a treatment of kinematic singularities,
at least for robotic applications, should be to remove singular configurations from paths
rather than to search connections between manifolds.

Planning under Holonomic Inequality Constraints

Because of our definition of configuration-space, every configuration q ∈ C satisfies holo-
nomic equality constraints. It remains now to discern the feasible subset Cfeas determined
by holonomic inequality constraints. The satisfaction of these constraints is checked for
nodes and local paths computed to construct a roadmap or during the expansion of a
search tree. Since feasibility constraints affect the whole configuration q and not only the
parameters qa, loop closure equations must be solved before the checking. Thus, it seems
logical to check closure constraints and other holonomic constraints with the same resolu-
tion along paths. Although, when it is possible, different discretization steps for different
constraints can yield more efficient algorithms.

In standard motion planning problems, holonomic inequality constraints are limited
to collision avoidance and joint limits (i.e. Cfeas = Cfree). The examples of application
we show in the second part of this thesis only consider this instance. In Section 2.1,
we mentioned the importance of collision detection in sampling-based planners, and we
explained that efficient algorithms test collisions along path using an adaptive resolution
instead of a constant discretization step. However, it is not clear how to apply these
dynamic collision detection techniques to problems involving closure constraints. The
difficulty is that the steering method is applied to the subset qa of the joint variables and
we have not a priori information about the variation of the passive variables qp along a
local path. In Section 3.3, we propose a method for collision detection along local paths.

Planning under Non-holonomic Constraints

Even if non-holonomic constraints go beyond the scope of this thesis, we want to give some
guidelines on how they could be considered within our approach.

For a given parameterization, the steering method is applied to the active variables
qa. In principle, steering methods producing any variation of these parameters can be
used. Passive variables qp are limited to follow the variation of qa through the solution
of loop closure equations. Since the design of steering methods for the qa producing a
variation of qp that satisfies a certain type of differential constraint seems highly com-
plex, it is preferable to choose joint variables affected by non-holonomic constraints within
the parameters qa. For some types of non-holonomic constraints, available methods (e.g.
[Sekhavat 98, Laumond 98b, Lamiraux 01b]) can be applied to qa for computing kinemat-
ically feasible local paths.
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3.2 Configuration Sampling Under Closure Constraints

We describe a technique, that we call Random Loop Generator (RLG), for sampling con-
figurations of general closed-chain mechanisms. It is based on a decomposition of the
mechanism into open kinematic chains. The configuration of the open chains involving
active joint variables qa is sampled using a simple geometric algorithm that notably in-
creases the probability of obtaining real solutions for the passive variables qp when solving
the loop closure equations. Later, in Chapter 4, we will explain an adapted version of
RLG for parallel mechanisms, that are a particular class of multi-loops.

3.2.1 Mechanical System Decomposition

RLG handles the single loops in the articulated mechanism separately. For each single
loop, sets of active and passive joint variables are defined consecutively such that they
correspond to segments of the kinematic chain. We call passive subchain the segment
involving the passive variables and active subchains to the other segments. There can be
one or two active subchains depending on the placement of the passive subchain. Look at
Figure 3.4 for a simple illustration. The 6R planar linkage has mobility M = 3. Thus, qa

and qp contain three joint variables each. In this illustration we have chosen θ3, θ4 and
θ5 (the joint variables associated with joints J3, J4 and J5) to be the passive variables.
Then, active variables can be seen as configuration parameters of two open chains rooted
at a (fictive) link A0,6.

The passive subchain is a non-redundant mechanism whose end-frame can span full-
rank subsets of the workspace. In general, this requires three joint variables for a planar
mechanism and six for a spatial mechanism. Efficient methods to solve inverse kinematics
problems for such mechanisms are available [Angeles 03]. Furthermore, in many practical
cases, analytical solutions can be applied if the passive subchain is appropriately chosen.
Imagine for instance an example where an object is handled by two non-redundant robotic
arms with decoupled position/orientation for the end-effector (see examples in Section 3.5).
A sensible choice for sampling C is to make qp alternately correspond to the joint variables

passive subchain

active subchains
J1

J2 J3

J4

J5

J6

A
1

A2 A3 A4

A
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Figure 3.4: Planar 6R linkage: decomposition into active and passive subchains.
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L3

L1

L2

Figure 3.5: Decomposition of a multi-loop. The indexes of the
individual loops indicate the order for generating the configuration.

of one of the arms. Such a choice allows analytical solution for these passive variables and
permits to identify its class (e.g. up elbow or down elbow). Besides, singular configurations
of such parameterizations are know.

When several loops compose the mechanism, an order has to be defined for generating
the configuration of each one of them. In multi-loops, some joint variables are involved in
the configuration of several individual loops. Their value is computed for the single loop
treated first, and then, these common portions of the mechanism become rigid bodies when
treating the other loops. Figure 3.5 shows an example of a planar multi-loop mechanism.
The individual loops are designated by Li. If L1 is treated first, then L2 corresponds to the
loop in Figure 3.4. Once generated the configuration of these two loops, RLG considers
them rigid for the treatment of L3.

Defining a good order for treating portions of a multi-loop is not an easy task. A
good heuristic is to treat first the loop sharing the highest number of joint variables
with other loops. However, there are many other restrictions to consider, concerning the
mobility of the individual loops or the existence of differential constraints for example.
The decomposition of a complex multi-loop requires a careful analysis of the kinematic
diagram of the mechanism considering differential motion constraints.

3.2.2 RLG Algorithm

The algorithm generating the configuration of a single-loop closed chain L for a given
selection of parameters is synthesized in Algorithm 3.1. First, the configuration param-
eters of the active subchains, qa, are computed by the function Sample qa detailed in
Algorithm 3.2. These joint variables are computed sequentially. The idea of the algorithm
is to progressively decrease the complexity of the closed chain treated at each iteration
until only the configuration of the passive subchain, qp, remains to be solved. The two
active subchains are treated alternately. The ideal solution should be to sample each joint
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Algorithm 3.1: RLG SingleLoop

input : the loop L
output : the configurations q[nsol]
begin

qa ← Sample qa(L);
qp[nsol]← Compute qp(L, qa);
if nsol = 0 then return Failure;
else q[nsol]← CompoundConf(L, qa, qp[nsol]);

end

Algorithm 3.2: Sample qa

input : the loop L
output : the parameters qa

begin
1 (Jb, Je) ← InitSampler(L);

while not EndActiveChain(L, Jb) do
Ic ← ComputeClosureRange(L, Jb, Je);
if Ic = ∅ then goto line 1;
SetJointValue(Jb, Random(Ic));
Jb ← NextJoint(L, Jb);
if not EndActiveChain(L, Je) then Switch(Jb, Je);

end

variable from the subset of values satisfying the loop closure equations (i.e. the closure
range). However, computing this subset is as difficult as solving the general inverse kine-
matics problem. Thus, an approximation is used. The approximation must be conservative
in the sense that no region of C is excluded for the sampling. This is required in order to
guarantee any form of sampling-based completeness of motion planning algorithms. The
function ComputeClosureRange returns a set of intervals Ic which approximate the
exact closure intervals. We explain how to obtain them in Section 3.2.3. The closure range
of the joint variable treated at one iteration depends on the configuration of the previously
treated joints. Hence, Ic must be recomputed for all the joints (except the first treated
one) in the generation of each new configuration. Because of the conservative nature of
the approach, it is possible to obtain an empty set in an iteration. In this case, the process
is restarted.

For a sampled value of parameters qa, the value of qp is computed by solving an inverse
kinematics problem for the passive subchain. In general, there are several, nsol, possible
solutions. Thus, nsol configurations are obtained by combining qa with the different solu-
tions for qp.



3.2. Configuration Sampling Under Closure Constraints 61

d)

b)a)

c)

θ2

RWS(5K3)

RWS(6K2)

RWS(2K5)

IK−

IK+

θ1 θ6

Figure 3.6: Steps of the RLG algorithm performing on a 6R planar linkage.

Figures 3.6.a,b,c illustrate how the values of θ1, θ6 and θ2 (the parameters qa) are
sequentially generated for the example of the planar 6R linkage. For each joint variable,
the estimation of the closure intervals (there is only one interval in this example) is com-
puted and a random value is sampled inside this set. Figure 3.6.d shows the two inverse
kinematics solutions for the 3R planar mechanism corresponding to the passive subchain.
In this case, these solutions are obtained by simple trigonometric operations.

3.2.3 Approximated Closure Range

The problem of computing the closure range of a joint variable can be formulated as follows.
Given a closed kinematic chain bKe involving joints from Jb to Je (we consider b < e in this
explanation), two open kinematic chains are obtained by breaking the link Ab between
Jb and Jb+1. A suitable break-point is the physical placement of Jb+1, but any other
point can be chosen. A frame Fc associated with this break-point can be seen as the end-
frame of both open chains. The closure range of the joint variable (or variables, for joints
allowing several d.o.f.) corresponding to Jb is the subset of values making Fc reachable
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by the chain eKb+1. Solving such a problem requires to represent the workspace 3 of this
chain, which is in general very complicated. Indeed, works in Robot Kinematics literature
that determine the workspace of manipulators are limited to particular instances (e.g.
[Ricard 98, Merlet 95]). Thus, we must use an approximated approach. For our purpose,
a simple and fast method is preferred versus a more accurate but slower one.

We solve the problem considering only positional reachability. The reachable workspace 4

of the chain eKb+1 is approximated by a simple bounding volume, that we denote by
RWS(eKb+1). For chains containing any kind of lower-pair joint except planar joints (see
Section 1.1.2), spherical shells are a reasonable option for the RWS. A spherical shell is
defined by the intersection of the volume between two concentric spheres and a cone whose
apex coincides with their common center. Parameters characterizing the spherical shell
are derived from the geometry of the chain. The center is the origin of the base-frame,
which normally corresponds to the origin of FAe , Oe. The external and internal radii, rext
and rint, correspond respectively to the maximum and minimum extensions of the chain.
This extension is measured from Oe to the origin Oc of frame Fc. The axis of the cone
cutting the full shell is a vector Û associated with the base-frame. The half-opening angle
γ is the maximum angle between Û and the vector

−−−→
OeOc. We will further discuss how to

compute the spherical shell dimensions later in this section.
3In the current context, we call workspace to the subset of SE(3) that can be mapped by the end-frame

of a kinematic chain.
4Subset of R3 that can be mapped by the origin of the end-frame.

Oe

Jb axis

Û

Ic

rext

rint

γ

Oc

Figure 3.7: The intersection of a spherical shell and a circle determines
the (approximated) closure range of a rotational d.o.f..
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When the chain eKb+1 involves a planar joint, usually, the positional variation produced
by this joint is very important with relation to the length of the rest of the mechanism.
Imagine for instance a robotic arm placed on a mobile platform (i.e. a mobile manipulator).
If Je is the planar joint, then RWS(eKb+1) is the volume covered by moving RWS(e−1Kb+1)
on the plane xy defined by the joint limits of Je. A box containing such a volume is a
simple and sufficiently good approximation.

Once defined RWS(eKb+1), computing the approximation of the closure intervals for
Jb is very simple. If Jb is a revolute joint, then Oc describes a circle (or a circular arc,
considering joint limits) around its axis. If Jb is a prismatic joint, Oc moves on a straight-
line segment. Then, Ic is obtained from the intersection of a circle or a line with a simple
volume RWS. Figure 3.7 illustrates the case of a revolute joint and a spherical shell. When
Jb is a joint allowing several d.o.f., then each one of the elementary joints Jb.j is treated
sequentially.

Computing the Spherical Shell Dimensions

Particular methods can be adopted for computing the dimensions of the spherical shell for
particular classes of mechanisms. The solution is straightforward for a planar linkage made
up with revolute joints without mechanical stops (like the 6R in the previous illustrations).
The external and internal radii of the annulus are given by:

rext =
nlink∑
i=1

ai ; rint =

{
2amax − rext if 2amax > rext

0 otherwise
(3.1)

where the ai are the link lengths and amax is the length of the longest one. Since the joints
allow full 2π rotation, the half-opening angle γ equals to π.

For general kinematic chains, obtaining the spherical shell dimensions requires to solve
complex optimization problems. Unfortunately, most of the global optimization algorithms
(see [Bliek 01] for an extensive survey) return suboptimal solutions (i.e. lower bounds when
maximizing and upper bounds when minimizing). Remember that we need a conservative
approximation to guarantee sampling-based (e.g. probabilistic) completeness. Besides,
these algorithms are limited in the number of variables they can handle. Thus, giving a
general recipe for arbitrary mechanisms is not easy. We next propose a simple method to
obtain rext and rint that provides in general good results.

The distance between the origin of consecutive frames FAi−1 and FAi is obtained from

the mDH parameters as: li =
√
a2
i−1 + d2

i . If Ji is a prismatic joint, then di is variable.

We denote by l+i and l−i the distances obtained for the maximum and minimum values
of translational d.o.f.. The next expressions are a simple method for obtaining an upper
bound for the maximum extension, r̂ext, and a lower bound for the minimum extension,
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r̂int, of any open kinematic chain:

r̂ext =
nlink∑
i=1

l+i ; rint =

{
2lmax −

∑nlink
i=1 l−i if 2lmax >

∑nlink
i=1 l−i

0 otherwise
(3.2)

Note that these equations provide extensions of an equivalent mechanism where all the
joints producing rotation are replaced by spherical joints without joint limits. The accu-
racy of these bounds could be improved using simple algorithms used in Distance Geometry
(e.g. [Dress 88, Rajan 99]). However, in many cases, these values are bad approximations,
mainly because of the presence of joint limits. We use an artifice that increases the ef-
ficiency of RLG while keeping completeness. More accurate non-conservative values r̃ext
and r̃int can be computed by a simple optimization method such a randomized gradient de-
scent. Then, instead of using a constant value for the dimensions of the spherical shell, we
sample them from a distribution between the approximation r̃int/ext and the conservative
bound r̂int/ext each time they are required within the function ComputeClosureRange

in Sample qa (see Algorithm 3.2). The type of distribution to be used depends on each
particular chain. We have not already made an analysis for definig criteria for this choice.
Nevertheless, we noted that a Gaussian distribution with µ = r̃int/ext and σ2 = 1 provides
in general good results.

In practice, considering the full shell (i.e. γ = π) is a reasonable approximation
for the subchains handled by RLG. Note that we need to compute the volume RWS
for chains involving at least 6 d.o.f. for general spatial mechanisms and 3 d.o.f. for
planar mechanisms. Therefore, only when the joint limits are very restrictive, γ should be
computed for getting a better performance of RLG. However, we do not know a general
strategy for defining Û and computing an upper bound of γ. We only introduce the cone
cutting the full shell in some cases when the kinematic features of the chain are well known,
such as in examples of Chapter 4.

3.3 Extension of PRM-based Algorithms

The main ideas on the application of our approach to sampling-based motion planning
algorithms have been outlined in Section 3.1. In this section we detail some points con-
cerning more particularly PRM-based planners.

The extension of the basic algorithm for the roadmap construction explained in Chap-
ter 2 does not require to modify lines of the pseudocode (Algorithm 2.1). The difference is
that the functions generating nodes (RandomFreeConfiguration) and computing fea-
sible local paths (FeasibleConnection) must consider the presence of kinematic closure
constraints. These functions operate separately with the active and the passive variables.
Indeed, these functions directly handle only the active variables qa. The rest of the vari-
ables, qp, are implicitly determined via the loop closure equations.
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3.3.1 Generating Nodes

Closed-chain mechanisms can be in general decomposed as explained in Section 3.2, and
then RLG can be applied for generating random configurations within the function Ran-

domFreeConfiguration. Normally, several decompositions of this type can be achieved
for the same mechanism so that RLG can work with different parameterizations. The use
of several parameterizations for sampling C could provide a more uniform coverage of
the variety. However, it is not important from the point of view of singularities, since
lower-dimensional subsets of C will (in theory) be never sampled.

Note that, using RLG, we obtain in general nsol configurations sharing parameters qa

and with different configurations for the passive subchains. Then we have two options,
either generating only one new node or trying all these configurations. The random sam-
ples are checked for collisions and, eventually, other holonomic constraints. If we choose
the former option, the first valid sample is the new node qnew. Otherwise, all the valid
configurations are inserted in the roadmap as nodes qnewi , with 0 ≤ i ≤ nsol.

The benefit of using RLG for the global performance of the planner will be demon-
strated through comparative results when solving motion planning problems that we de-
scribe in Section 3.5. Here, we present results of simple tests that allow to analyze the
performance of RLG as a separated module.

Figure 3.8 contains illustrations and results of two tests. They consist in generat-
ing random configurations of spatial kinematic chains satisfying positional constraints.
The mechanisms represent the active chain of a loop. The positional constraint consists
in placing the origin of the end-frame into a sphere. This sphere is interpreted as the
workspace of a imaginary passive chain. In the first test (at left), the goal is to generate
1000 valid configurations for a 7R spatial mechanism (the 7th joint produces a rotation
of the end-frame). The difficulty of the problem is increased by decreasing the radius of
the sphere. In the second test (at right), the mechanism is made up with revolute joints
around arbitrary (non-orthogonal) axes. In this case 10 configurations are wanted. The
volume of the sphere is very restricted and the complexity is increased by increasing the
length (in number of joints) of the chain.

The tables compare the performance of the RLG algorithm versus a uniform random
sampling (as used in [Han 01]). The uniform sampling has been implemented using the
rand() function of the GNU C Library 5. N is the number of sampled configurations and
T is the computing time in seconds 6. It can first be noted that, for these examples, RLG
always provides configurations satisfying the constraints. The reason is that spheres cor-
respond to the kind of volumes handled by the algorithm for approximating the workspace
of subchains. Anyway, as we will show in next chapters, the function Sample qa provides
a high percentage of feasible configurations for all the examples where we have applied
our algorithms, also involving constraints for the orientation of the end-frame. Results

5GNU C Library web site: http://www.gnu.org/software/libc/libc.html
6Tests were performed using a Sun Blade 100 Workstation with a 500-MHz UltraSPARC-IIe processor.
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Radius
Uniform With RLG

N T N T
200 29995 0.01 1000 <0.01
150 94959 0.02 1000 <0.01
100 441157 0.25 1000 <0.01
50 3549709 4.31 1000 <0.01
25 26080062 38.72 1000 <0.01

d.o.f.
Uniform With RLG

N T N T
4 155942 0.28 10 <0.01
15 1957901 24.25 10 0.01
30 4063067 363.34 10 0.03
42 →∞ →∞ 10 0.08

Figure 3.8: Two tests for analyzing the performance of RLG.

in tables show that RLG is not much affected by the difficulty of problems. The second
example shows its capacity to efficiently handled long chains. The increment of computing
time is mainly due to the higher number of operations with matrices required to build the
configuration of the chain when the number of joints increases.

These two tests show that higher is the complexity of the problem, better is the relative
performance of RLG. Moreover, in these two cases, the computations associated with
closure constraints consist in a simple test: is this point into this sphere ? When sampling
the configuration of a closed-chain mechanism, loop closure equations must be solved for
obtaining qp form qa. Then, RLG avoids an enormous number of futile operations which
drop off the performance of the planner.

3.3.2 Computing Local Paths

Each sample qnew ∈ Cfeas is tested for feasible connections with a set of nodes Lbest in
the roadmap. When the information on the topological structure of C is available (it is
possible for particular classes of mechanisms), then only nodes in the same self-motion set
than qnew should be candidates for selection into Lbest. In general, we do not have such
information. Thus, the most reasonable criterion is to choose the nearest nodes given a



3.3. Extension of PRM-based Algorithms 67

distance metric in C, and then to check later, during the validity test of the local path, if
two nodes lie on the same manifold or not.

In principle, connections between pairs of nodes should be tried using every local
parameterization, aiming to undergo singularities (at least those of dimension M − 1).
However, this is not efficient since a lot of computing time will be spent checking the
validity of very similar paths on C. Hence, the connection between qnew and nodes in
Lbest is tried only using one combination of M joint variables as parameters qa. When
looking for a fast planner, it is important to make the selection of qa such that qp can be
obtained by an efficient method. In most cases, it is convenient to make the same choice
of parameters than for the configuration sampling with RLG.

The function FeasibleConnection applies a steering method onto the parameters
qa. The passive variables qp follow the variation imposed by loop closure equations along
the local path. Figure 3.9 illustrates the different situations that possibly occur when
testing the connection between two configurations in the example of Figure 3.1. The figure
shows the projection of M1 and M3 on the plane θ1θ2, which are the variables chosen
as the parameters qa. In this case, the steering method produces a linear interpolation
of these parameters. Configurations q1 and q2 are directly connected by a feasible local
path, as well as q1 and q3. The difference is that the path between q1 and q3 goes across a
singularity. When testing this local path, a bifurcation for the solution of θ3 is detected.
This point of bifurcation, the singular configuration, allows to connect components of the
roadmap on M1 and M2. The other local paths illustrated in the figure are not feasible.

q1

q2 q3

q4

q5

Figure 3.9: Different situations can rise when testing the validity of local paths.
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q1 and q4 are separated by a C-obstacle that forbids their direct connection. Nevertheless,
they can be connected through q3. On the contrary, q1 and q5 will never be connected
since they belong to disjoint manifolds.

Dynamic Collision Detection

Verifying that a local path produced by a variation of qa remains in C requires to solve
the loop closure equations for each intermediate point in this path. For ensuring the
validity of a solution, this test must be carried out with a sufficiently high resolution εclos.
Making collision detection along the local path with this same constant resolution is very
expensive in terms of computing time. Since we do not know a priori the variation of
q along a local path, but only the variation of qa, we can not apply dynamic collision
detection algorithms used for open-chain mechanisms. However, we can adopt some of the
ideas in these procedures for making a more efficient collision checking along local paths
than using constant resolution.

For an intermediate configuration q in a local path τ between configurations qnew
and qend ∈ Lbest, we measure de minimum distance dcoll between the links of the artic-
ulated mechanism and the obstacles. This distance can be obtained using complicated
methods that return an exact or very accurate value [Guibas 99, Lin 03], or by approx-
imated methods, less accurate but much more efficient. Using oriented bounding boxes
(OBB) [Gottschalk 96] is a good trade-off. When moving on τ from q making n steps with
discretization εclos, we obtain consecutive configurations qε·n. We measure the maximum
variation of the position of links, dmove, between configurations q and qε·n. Collision check-
ing with static obstacles can be delayed until dmove ≥ dcoll. For self-collision avoidance,
the distance between OBBs of links corresponding to the collision pairs defined for the
mechanism can be used in a similar way.

When PRM-based algorithms are applied to open-chain mechanisms, a possible choice
for testing the validity of local paths concerns the manner of walking on them. The
test can be done incrementally from qnew toward qend or using a dichotomic division.
In general problems involving closed kinematic chains, when the class of solution of the
passive variables cannot be identified, τ has to be tested incrementally. The reason is that
the class of solution for a configuration qε·n corresponding to the current local path can
only be identified in relation with the previous configuration qε·(n−1). For particular cases,
if we are able to recognize the different solution classes for qp, a dichotomic division can
be used to test local paths. In general, this kind of test allows to more rapidly identify
invalid local paths.

When all the valid configurations qnewi sampled by RLG are kept, several local paths
can be tested simultaneously. For the same choice of parameters qa than qnewi , we have
in general n′sol configurations qendj , j = 1 . . . n′sol, with identical value of these parameters
and different value of passive variables qp. Since loop closure equations have to be solved
for the same values of qa when walking on these “parallel” local paths, it is more efficient
to check them simultaneously.
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3.4 Extension of RRT-based Algorithms

Most of the explanations on our extension of PRM-based algorithms to handle closed-chain
mechanisms can be extrapolated to the RRT approach. In a similar manner, the planner is
applied on local parameterizations of C. The basic algorithm of Chapter 2 (Algorithm 2.2)
can be used making some considerations that we comment next.

3.4.1 Tree Expansion

The first step in an iteration of the algorithm constructing a search tree is to sample a
configuration qrand. In contrast to the PRM approach, this configuration is not aimed
to be a new node of the tree. It is only used as a local goal for the exploration. Thus
qrand needs not satisfy either closure or other constraints (e.g. collision avoidance). Then,
the nearest node qnear is tried to be expanded toward qrand on a “local path” linking
both configurations. The same considerations as for local paths in the PRM approach
can be made here: the appropriate selection of local parameters qa is important for the
performance of the planner. Also the same procedure for collision checking along local
paths can be applied within this extended RRT approach.

An uniform sampling of the joint variables is generally used in the RRT-based planners
developed for open-chain mechanisms. However, under closure constraints, results of our

qroot
qrand

qnew

qnear

Figure 3.10: Expansion of a node in search tree using an RRT-based algorithm.
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tests show that sampling (at least) close to the variety C improves the exploration. As
argued in [Yakey 00, Yakey 01], sampling configurations qrand ∈ C is expensive. Nonethe-
less, we do not need to sample the whole configuration qrand. While we expand the search
tree on a local chart, only parameters qa really require to be sampled. Thus, we should
replace qrand by qarand in Algorithm 2.2. Note that this implies that the nearest node must
be selected using a distance metric only applied to this set of joint variables instead of the
whole configuration. If we choose parameterizations as explained in Section 3.2.1, such
that the function Sample qa of the RLG algorithm can be applied, then we are sure of
generating samples into the projection of C on the hyperplane of the variables qa, or at
least in a neighborhood. Figure 3.11 illustrates the expansion process of a search tree
computed for the same example that we have used in explanations of the PRM approach
(Figure 3.9). The tree is expanded on a local chart whose parameters are qa = {θ1, θ2}.
These parameters are sampled using RLG for generating qrand. Then, the nearest neigh-
bor qnear is selected. The new node qnew is an intermediate configuration in the feasible
portion of the local path between qnear and qrand.

Figure 3.11 shows the results of a test proving the better performance of the planner
when RLG is applied to generate qrand. The test was made with the 7R mechanism of
Figure 3.8. It consists in constructing a tree containing 100 nodes exploring the subset of
configurations for which the end-effector remains inside the sphere of radius = 50. The
figure shows plots of the configurations corresponding to the 100 nodes. Using RLG, the
portion of C covered by the tree is wider than using uniform sampling. Furthermore,
sampling with RLG makes the construction faster: 0.68 seconds versus 1.10 seconds with

q with uniform sampling q with RLG

Figure 3.11: Plots of 100 configurations that are the nodes of search trees constructed
by an RRT-based algorithm exploring an space under positional constraints.
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uniform sampling. The reason of this difference is that the use of RLG reduces the number
of iterations of RRT-based algorithms. New potential nodes qfeas are rejected when they
are too similar to qnear, in order to prevent the generation of an excessive number of nodes
in some regions. The construction using RLG required to sample 188 configurations while
470 were necessary with the uniform sampling.

3.4.2 Other Issues Under Analysis

In this section, we outline other issues concerning the design of improved RRT-based
algorithms. More work is required for extracting determinant conclusions. However, the
preliminary results show that we work in a good direction.

Pruning Branches

An important problem of RRT-based algorithms is their difficulty for expanding the search
tree beyond “tight corners” of Cfeas[Yakey 00]. This undesired phenomenon arises because
of the use of metrics that do not consider motion constraints for the selection of qnear.
The problem is accentuated in presence of kinematic closure constraints, since the search-
space is more restricted that for open-chain mechanisms. In [Yakey 00], the author tries
to solve the problem by adding new nodes to the tree, but it is not clear how to do this.
We try to resolve this drawback doing the contrary: removing nodes. Our interpretation
of the problem is that, is such difficult situations, the same nodes are repeatedly selected
for futile expansion. Defining a heuristic to identify these “saturation” nodes is not easy.
However, we can be confident with randomization to erase them. Figure 3.12 shows a
simple example 7 that clearly illustrates this unsuitable behavior of the RRT approach.
The robot is a box moving on a plane. The problem consists in getting the box out of
the saw-like obstacle. The shape of this obstacle hinders the expansion of the search tree.
The detail of the top image shows the high density of nodes in the corners. The nodes
selected for expansion a highest number of times are marked by a frame. The fact that
these nodes correspond to the closest configurations to the obstacle is not hazardous.

We have developed a technique that yields in general good results. The idea is to
interleave expansion and pruning phases for constructing the search trees. After a given
number of iterations, the expansion of the tree is stopped and we apply what we call a
visibility-pruning. This process, inspired by the Visibility-PRM [Nissoux 99, Siméon 00],
consists in testing connections between the leaves (i.e. extreme nodes) of the tree. Only
connections of branches that have been expanded before the last pruning (between them
and with the old branches) have to be tested. If two leaves are “visible”, one of the
corresponding branches is pruned. The choice of the branch to be pruned is made at
random. The number of iterations for expansion before pruning can be automatically
adapted depending on the evolution of the tree size. The bottom image in Figure 3.12

7This example has been made by Leonard Jaillet.
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Figure 3.12: The top image shows a dense search tree required to solve an a priori
simple problem. The bottom image shows the tree computed with the integration
of the visibility-pruning.

shows the search tree computed for this example after integrating the visibility-pruning
in the basic RRT algorithm. The number of times that different nodes are selected for
expansion is much more homogeneous than without pruning the tree. We have applied this
new technique to very different motion planning problems (involving closure constraints
or not). The average reduction of computing time is about 30%. We believe the success
of this technique is that, by pruning the tree, some problematic nodes are eliminated and
we give other ones a chance for expansion. Another advantage of this technique is that
the size of the search trees is notably reduced.

Estimating Coverage - Stop Condition

In some applications (see for example Chapter 6), the RRT approach can be used to
capture the connectivity of a constrained space, rather that to solve a particular motion
planning problem. For this kind of applications, it would be interesting to estimate the
amount of space encoded in the search tree. As for the PRM approach, making such
a estimation remains a difficult issue. Nevertheless, we can define a simple condition
for stopping the algorithm. A counter nfail is introduced for the number of consecutive
times the algorithm fails when trying to expand the tree. Then, the iterative process
can be interrupted when nfail exceeds a given threshold. Combining this stop condition
with the visibility-pruning seems to be a reasonable method to determine the end of the
exploration. An analytical or experimental study in order to find a relationship between
nfail and coverage, as made in [Nissoux 99, Siméon 00], remains for future work.
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3.5 Motion Planning Examples

Here we present motion planning problems involving closed kinematic chains which are
solved by the algorithms explained in preceding sections. The PRM approach is applied to
one of them and the RRT approach to the others. In both cases, results demonstrate the
good performance of these extended planners and the interest of using our configuration
sampling algorithm, RLG.

The next examples are solved using one only set of parameters qa. The configuration
sampling, with or without RLG, is applied to this same set of variables. Note that RLG
does not require any particular setting. For these examples, RLG has been applied using
only the conservative bounds r̂int/ext of the extensions of subchains for obtaining the
volumes RWS. The tests have been made with the software Move3D [Siméon 01b], in
which our algorithms have been implemented. We have used the same setting of the
PRM and RRT planners for all the tests. We do not discuss about this setting here, the
goal of the experiments is to compare the performance of the planners with and without
incorporating RLG.

In the example illustrated by Figure 3.13, two holonomic mobile manipulators coop-
erate to transport an object. The system composed by the two manipulators grasping
the object is modeled as a single closed kinematic chain. A suitable decomposition of this
virtual loop for configuration sampling is to choose one the arms as the passive subchain.

Figure 3.13: Two mobile manipulators coordinate through narrow passages.
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Then, the configuration of the mobile robotic platforms, one arm and the rigidly grasped
object is generated by the function Sample qa. The configuration of the passive arm qp is
obtained by a closed-form inverse kinematics solution. About 50% of the active subchain
configurations qa are reachable by the passive subchain (i.e. the inverse kinematics prob-
lem has real solutions). We wanted to known the probability of success using an uniform
random sampling for the parameters qa. If the frames associated with the mobile platforms
are independently defined in this workspace, this probability is infinitesimal. However, we
can consider that one of the mobile robotic platforms moves relatively to the other. Since
these platforms are holonomic, their relative motion can simply be modeled by a prismatic
joint. Note that this simplification is not necessary using RLG. Even with an appropriate
setting of the limits of the fictive prismatic joint, less than 0.5% of the samples yield a
configuration satisfying loop closure constraints. This fact has an important repercussion
when solving motion planning problems using the PRM approach.

In this example, avoiding the arc-like obstacle requires precise configurations, with
some joint values of the manipulator arms close to their limits (see the right image in
Figure 3.13). Consequently, a narrow passage in Cfree must be traversed. To find narrow
passages using a probabilistic roadmap approach generally needs to try a very high num-
ber of random configurations. Using the extended Visibility-PRM algorithm, a roadmap
containing 80 nodes was computed that allows to rapidly solve motion planning queries
between any two points in the workspace. For this, more than 1000 random configurations
in C were tried. Using RLG the roadmap was computed in 25 seconds, the same process
took 3 minutes with the uniform sampling.

Another example involving a virtual closed kinematic chain is illustrated in Figure 3.14.
Two robotic arms coordinate for manipulating a twisted bar among two vertical bars that
restrict its motion. The goal is to solve a motion planning query between configurations in
Figure 3.14.a and Figure 3.14.f. The figure shows a sequence of intermediate configurations
of the solution of this puzzle-like problem. The difficulty of this problem depends on the
distance between the vertical bars. We have made tests with three settings: 150mm,
175mm and 200mm (the model scale is 1:1). The next table shows results of tests with
the extended version of the RRT algorithm using bidirectional search. We have compared
the performance of a uniform random sampling versus RLG for generating qarand. In this
example, qarand corresponds to the configuration of one of the arms grasping the bar. N
is the number of iterations for expanding the search trees. T is the computing time.
The numerical results have been averaged over a serial of tests. These results show the
importance of an appropriate sampling considering the presence of kinematic loops. In
addition, let us note that the planner using uniform random sampling returned Failure in
several tests with dbars = 150 because the maximum size allowed for the trees (determining
the stop of the algorithm) was reached.
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Figure 3.14: Sequence of the solution to a difficult motion planning
problem for two robotic arms manipulating an object among obstacles.

dbars
Uniform With RLG

N T N T gain T
200 2719 42.26 118 3.23 × 13
175 4995 102.92 424 6.30 × 16
150 9761 312.76 615 9.14 × 34

Figure 3.15 clearly shows the difference between the two types of sampling. This figure
shows the search trees computed for solving a very similar but even more difficult problem
than the one above. For representing these trees (computed in a 12-dimensional space),
the location of the end-frame of one of the arms corresponding to each node and the
connections are displayed. The manipulators have to pass the bar from the one side of the
columns to the other side. The bottom-left image shows the two search trees, one rooted at
qinit and another rooted to qgoal, computed with the extended bidirectional-RRT algorithm
using uniform random sampling. The planners was unable to find the solution in this case
(i.e. the trees are not connected). The bottom-middle image shows the trees computed
using RLG for sampling. The algorithm also stopped before finding the solution. However,
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Figure 3.15: Trees computed by the bidirectional version of the RRT algorithm extended
to closed kinematic chains. From left to right: using uniform random sampling; sampling
with RLG; sampling with RLG and integrating the visibility-pruning.

the image shows that the coverage is much better. A wider region was explored with the
same number of nodes (2000) and taking less computing time (180 versus 210 seconds).
The bottom-right image shows the trees computed by the RRT algorithm using RLG and
the visibility-pruning. In this last case, the solution was found (i.e the two trees met).
The reduction of the size of the trees is remarkable: less than 600 nodes are sufficient to
solve the problem. The solution was found in less than 2 minutes.

The presented examples correspond to coordinated manipulation problems. We will
further discuss the interest of applying our motion planning algorithms within manipula-
tion planning techniques in Chapters 4 and 5. The examples in this section only involve
single-loop mechanisms. Nevertheless, our approach can be applied to multi-loops. The
problem with the three mobile manipulators and the piano illustrating the introduction
of this thesis (Figure 1) could be solved using the techniques explained in this chapter.
However, the virtual multi-loops modeling the composite mechanisms has particular char-
acteristics: it can be seen as a parallel mechanism. We have developed a variant of the
RLG algorithm for this kind of structures. This extension is explained in Chapter 4.

Finally, it should be noted that the closed-chain mechanisms in the above examples are
simple in comparison with other examples in the second part of this thesis. In particular,
the portions of molecular chain handled in Chapter 6 can be seen as highly-redundant
closed kinematic chains. A single loop can involve several dozens of joint variables. RLG
is able to treat efficiently also such complex mechanisms.
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3.6 Discussion

All along this chapter, we have explained an approach to extend sampling-based motion
planning algorithms to handle closed-chain mechanisms. We have centered particular
attention in PRM-based and RRT-based algorithms, but main ideas are applicable to
other planners. A considerable effort has been made to give general directives, without
focusing on a particular implementation.

The main technical contribution of our work concerns RLG. The “guided”-random
sampling performed by this algorithm notably increases the efficiency of motion planners
for closed kinematic chains. RLG is general and easy to implement, and its potential
applications go beyond motion planning. For instance, it could be used within Monte
Carlo simulations applied to molecular chains.

The performance of RLG mainly depends on how well the volumes RWS approximate
the workspace of the different subchains. We have given a general procedure to compute
these volumes that provides good results in all the examples of mechanisms treated in this
thesis. However, more exhaustive tests on different classes of mechanisms are required to
extract more precise conclusions about RLG. This work remains for the future. Note that
the only tuning parameter in RLG, if necessary, concerns the choice of the distribution
between the accurate value and the conservative bound to sample each dimension of the
RWS.

A particular attention has been made for keeping completeness properties of the ex-
tended planners. If the motion planning problem is formulated within only one self-motion
manifold, the extended versions of the PRM and the RRT algorithms remain probabilis-
tically complete. This is possible because RLG is guaranteed to generate samples on the
whole variety C 8. When a motion planning problem involves several self-motion mani-
folds, possible connections have to be found through lower-dimensional subsets of singular
configurations. In this case, probabilistic completeness can be guaranteed only for a given
tolerance related to the resolution at which local paths are discretized. The difficulty repre-
sented by the existence of singularities could be overcome if a topological characterization
of C were available. More elaborated algorithms, working separately on the subspaces of
different dimension, should be devised exploiting such information. This is unfortunately
possible in practice only for particular cases.

We bear in mind an improvement of RLG for a near-future work. It concerns the
quality of samples. Our current implementation of RLG applies a “standard” pseudo-
random sampling (using the rand() function of the GNU C Library). We aim to make
RLG properly handle quasi-random sequences in order to get a better coverage of the
variety C. This improvement goes in the direction of most recent sampling-based motion
planners [LaValle 03b].

Another improvement involves the selection of active and passive variables. In different
8We consider the methods for solving inverse kinematics do not miss solutions.
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sections of this chapter, we have given guidelines to make this selection for sampling and
connecting configurations. However, at this stage, we are not able to propose a general
methodology suitable for direct implementation. The choice of parameters has to be
made for each particular problem. The study of a general automatic method, based on an
analysis of kinematic diagrams of mechanisms, remains for future work.
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A parallel mechanism is an articulated structure in which a solid, the end-effector, is
connected to the base by at least two independent kinematic chains (see Section 4.2). The
most representative parallel mechanism is the 6-d.o.f. parallel manipulator known as the
Gough-Stewart platform [Gough 56, Stewart 65, Dasgupta 00]. However, the definition
of parallel mechanism can also be applied to more complex multi-loop mechanisms. For
instance, the virtual structure formed by several manipulators while handling a same
object. Our approach for planning the motions of closed-chain mechanisms, described
in Chapter 3, can be applied to the most general instances of parallel mechanisms. For
increasing efficiency, we have developed a variant of the RLG algorithm for this type of
multi-loop structures. It is presented in Section 4.3.

In Section 4.1, we discuss the interest of applying sampling-based motion planning
algorithms to parallel mechanisms. These novel techniques are general tools, able to treat
problems that currently require ad hoc solutions. Different examples involving complex
systems are commented in Section 4.4. Data of the performance of the algorithms solving
these problems demonstrate the efficacy of the approach.

4.1 Interest of the Application

The motions of a parallel robot or of several serial manipulators handling an object are
affected by the same kind of constraints. In both cases the (real or virtual) structure is a
multi-loop with the characteristics that we explain in Section 4.2. Our approach can be
applied to solve interesting open problems concerning these robotic systems.

4.1.1 Encoding the Workspace and Planning the Motions
of Parallel Manipulators

Parallel manipulators [Merlet 00] have some advantageous characteristics with relation to
serial-structure robots, mostly used in industrial applications, such as: high stiffness, high
motion accuracy and high load/structure ratio. Thus, they are particularly interesting
for handling heavy objects [Bostelman 01], or for operations requiring very high preci-
sion, in surgery for example [Lazarevic 97]. The drawback of parallel mechanisms is that
their workspace is quite reduced. Besides, the workspace analysis of a given architecture
is a difficult problem. The set of reachable positions of the end-effector (also called the
platform) is highly dependent on its orientation. Normally, subsets of the workspace are
studied separately. Some works address the reachable workspace for a given fixed orienta-
tion of the end-effector (e.g. [Gosselin 90a, Masory 95]). Other, are limited to the possible
orientations for a given fixed position (e.g. [Merlet 95]). Indeed, only planar mechanisms
have been analyzed in fairly general manner [Merlet 98], while spatial structures remain
largely ignored [Merlet 99].

Our extended motion planning algorithms could be a useful tool in computer-aided de-
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Figure 4.1: Illustration of the visibility-roadmap computed for a Gough-Stewart
platform encoding the subset of the self-collision-free configurations.

sign of parallel manipulators. Since there is a direct relationship between the configuration-
space of the mechanism and the workspace of the platform (see Section 4.2), the PRM
approach can be applied to construct a roadmap that encodes this subset. Indeed, the
workspace is implicitly represented by the roadmap. Moreover, using such a technique,
not only constraints of the kinematic structure (i.e. loop closure) can be considered, but
also other constraints such as self-collision avoidance, which are important for the design.
We call the self-collision-free workspace WPsc−free the subset of possible locations of the
platform (often called poses) for which there are not collisions between elements of the
articulated structure, also called interferences by some authors in this field.

Figure 4.1 illustrates the above application. The mechanism is a model of a Gough-
Stewart platform. Nodes of the roadmap (i.e. feasible configurations) shown in the right
image correspond to possible locations of the platform. The left image represents an invalid
configuration, because of collisions between the legs, that leads to an impossible platform
location. Such a location would be contained in the workspace when only considering
loop closure constraints, but it is not a valid point in WPsc−free. The roadmap in the
figure has been computed by a Visibility-PRM algorithm extended to handle closed-chain
mechanisms. It contains only 11 nodes in one connected component. This roadmap covers
more than the 99.99% of WPsc−free 1.

Despite the increasing interest on parallel mechanisms, as far as we know, no ef-
fective general technique has already been proposed to solve motion planning problems
[Merlet 02]. Indeed, most of the effort has been focused in the development of techniques
for trajectory verification (e.g. [Merlet 94, Merlet 01]): verify if a given trajectory of the
platform lies completely within the workspace of the robot. Motion planning is how-
ever a more difficult problems. It consists in determining if a feasible trajectory of the

1According to our tests.
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Figure 4.2: Initial an goal configurations, and trace of the solution path
of a motion planning problem for a Gough-Stewart platform.

platform exists between two given locations. Global trajectory planning approaches have
been proposed for particular classes of mechanisms (e.g. [Lee 96, Dasgupta 98]). Such
techniques normally check the presence of singular configurations along the trajectory but
most of them neglect collision avoidance. Only a few works consider such motion con-
straints [Wenger 98, Chablat 98]. However, since they rely on an explicit representation
of the workspace of the mechanism, their applicability is limited to simple problems.

Figure 4.2 illustrates a motion planning problem for a Gough-Stewart platform. Find-
ing a solution to this problem with our algorithms only requires the 3D model of the
robot and the environment, and the inverse geometric model (i.e. a function providing
solutions to the inverse kinematics -existence- problem) for the legs of the platform, which
is straightforward in this case. The path to extract the ring mounted on a Gough-Stewart
platform from the s-shaped obstacle is computed in only a few seconds. In Section 4.4 we
give numerical data of the performance of PRM-based and RRT-based algorithms when
solving this problem and other more difficult ones. As we will show, the generality of these
techniques allow to handle complex structures made up with serial or parallel associations
of Gough-Stewart platforms.
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Figure 4.3: Four robotic arms manipulating an object.

4.1.2 Solving Coordinated Manipulation Planning Problems

Coordinated manipulation requires to compute the motion of several robots simultaneously
handling an object. In such a situation, a virtual closed-chain mechanism is formed. The
grasps of the movable object can be modeled either as a fixed attachment (i.e. the object
and the gripper form an only rigid body) or by a joint, if some degrees of freedom are
allowed between the gripper and the object. Look for example at Figure 4.3. The four
robotic arms and the object compound an articulated structure that could be considered
a parallel mechanism. Indeed, if we consider firm grasps, the composite mechanism has
mobility M = 6, and according to equation (1.5) the degree of parallelism is P = 3

5 ,
thus, it is a partially parallel mechanism. The analogy with a parallel robot is obvious:
the movable object correspond to the platform and the robotic arms to the legs of the
mechanism.

Problems for coordinated multi-arm manipulation have mostly been formulated from
the point of view of control [Khatib 88, Schneider 92, Desai 99, Chang 00]. The motion
planning issue has been rarely tackled. The approach closely related to ours was presented
in [Koga 94]. A motion planning algorithms is proposed that computes paths for a movable
object grasped by several robotic arms. It is a worthy pioneer work in the application of
randomized motion planning algorithms to solve manipulation planning problems. How-
ever, the method for computing these coordinated constrained motions is rather naive.
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A collision free path is first computed for the movable object (using the RPP algorithm)
regardless loop closure constraints inferred by the manipulators. Then, the possibility of
maintaining grasps along this path is checked. Obviously, even unconstrained motions of
a free-flying object can difficultly be followed by the end-effectors of several arms simulta-
neously. And, normally, the higher the number of manipulators, the lower the chance of
generating a feasible paths for the object while grasped by all of them.

Using our approach, motions of the multi-loop mechanism are also commanded (at
least partially) by the movable object. The degrees of freedom of the (virtual) platform
are chosen as configuration parameters qa within our method. However, these motions are
generated bearing in mind the architecture of the manipulators (i.e. closure constraints).
Besides, the algorithms we have presented in Chapter 3 are more general than the technique
in [Koga 94], since no restriction is imposed for the manipulators, while they have to be
non-redundant in this referred work.

In this chapter, we only deal with the motions of the composite closed-chain mech-
anism: robots & movable object. However, the main interest of our technique is its
integration into more complicated algorithms for planning manipulation tasks (as made
in [Koga 94]). Chapter 5 shows a successful application of our algorithms for planning the
motions of a single-loop mechanisms within a manipulation planner for one robot and one
movable object. The present extension for multiple robots and one object could be inte-
grated into more sophisticated manipulation planning approaches, such as the combined
geometric/symbolic planner explained in [Gravot 02, Gravot 03].

4.2 Description of Parallel Mechanisms

Elements: A parallel mechanism is composed of a base A0, a platform P and nk kine-
matic chains Ki 2 linking them. We call Fbi and Fei the frames corresponding to the
connections of each chain Ki to A0 and P respectively. FA0 and FP are the frames asso-
ciated with A0 and P (see Figure 4.4).

Pose: The spatial location (or pose) of P is defined by a vector:

qP = {xP , yP , zP , γP , βP , αP}.

The three first elements represent the position of FP relative to FA0 . The orientation is
given by three consecutive rotations around the coordinate axes of FP 3.

Workspace: The platform P is considered to be the end-effector of the parallel mecha-
nism. Hence, the workspaceWP is defined as the subset of SE(3) mapped by FP . In other

2We simplify notation with relation to preceding chapters, the chains should be denoted by biKei .
3The approach is valid for other parameterizations of the orientation (e.g. Euler angles).
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Figure 4.4: General description of a parallel mechanism.

words,WP corresponds to the set of all the possible poses qP of the platform. The bounds
of this region depend on the workspacesWKi of the chains Ki, and on the dimensions of P.

Configuration: We consider the configuration q of a parallel mechanism is defined by the
platform pose and the configuration of the chains Ki:

q = {qP , qK1 , . . . , qKnk}

Therefore, the workspace WP can be directly extracted from the configuration-space C.

4.3 RLG Variant for Parallel Mechanisms

We make a particular treatment of parallel mechanisms with relation to what has been
explained in Section 3.2 for general multi-loop systems. Next we describe a proper method-
ology for determining active and passive variables of the configuration of these structures.
Such a selection of parameters is used for the sampling of configurations by a variant of
the RLG algorithm. Normally, the same parameterizations are suitable for computing
connections with local paths when computing a roadmap with a PRM-based algorithm,
or for expanding a search tree with a RRT-based one. In all the examples shown in Sec-
tion 4.4, the motion planning problems are solved using the same set of parameters for
both sampling and connecting configurations.
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4.3.1 Mechanism Decomposition - Choice of Parameters

The parameters defining the platform pose qP are selected as active variables. Once the
platform pose is defined, the chains Ki have to be treated as single-loop closed kinematic
chains between frames Fbi and Fei . When the chains Ki are non-redundant kinematic
chains (e.g. the legs of a Gough-Stewart platform or the robotic arms of the example in
Figure 4.3), then there are no other active variables than qP . In general, the chains Ki
can be redundant. Each one of them can be decomposed as described in Section 3.2 for
a single loop. Thus, we can separate joint variables as follows: qKi = {qaKi , q

p
Ki}. Hence,

variables defining the configuration q of a parallel mechanism are divided into active and
passive such that:

qa = {qP , qaK1
, . . . , qaKnk

}

qp = {qpK1
, . . . , qpKnk

}

4.3.2 RLG Parallel Algorithm

We give the pseudocode of the algorithm generating random configurations of a parallel
mechanism in Algorithm 4.1. First, qP is computed by the function Sample qP that
we detail later. This function performs a guided-random sampling, similarly to function
Sample qa (Algorithm 3.2). The goal is to make the platform reachable by all the chains
Ki simultaneously. The configuration of these chains, that must satisfy loop closure con-
straits, is computed by the algorithm SingleLoop RLG (Algorithm 3.1). In the case of
non-redundant chains, the inverse kinematics solutions are directly returned. For a Gough-
Stewart platform, a simple analytical solution provides normally a single configuration for
each leg. An analytical solution is also possible for determining the configuration of the
robotic arms in the example of coordinated manipulation. However, in this case there
are up to eight solutions. The analytical method allows to discern between the different

Algorithm 4.1: RLG Parallel

input : the robot A
output : the configurations q[nsol]
begin

qP ← Sample qP(A);
for i = 1 to nk do

qKi [nsoli ]← SingleLoop RLG(Ki);
if nsoli = 0 then return Failure;

q[nsol]← CompoundConf(A, qP , qK1 [nsol1 ], . . . , qKnk [nsolnk ]);

end
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Figure 4.5: Decomposition of a 6R planar linkage seen as a parallel mechanism,
and steps of the RLG Parallel algorithm performing on it.

classes of solution. When Ki is redundant, SingleLoop RLG returns a finite number
upon the infinite feasible configurations. These configurations correspond to a sampled
value for qaKi and the nsoli inverse kinematic solutions for qpKi .

Sampling the Platform Pose

The function Sample qP acts in a very similar way than Sample qa. The parameters
are sampled progressively from the computed closure range approximations. The main
difference is that the closure range depends now on the satisfaction of closure constraints



4.3. RLG Variant for Parallel Mechanisms 91

that simultaneously involve several individual loops. Also in this case, simple volumes,
that we called RWS, bounding the reachable workspace of chains Ki are used in the
process. The algorithm first generates the position parameters of qP and then it computes
the orientation parameters. We describe below these two steps. The explanations are
illustrated on Figure 4.5, which shows the different steps of the algorithm RLG Parallel

applied to a 6R planar linkage. This single-loop mechanism can also be seen as a simple
parallel mechanism: the middle link is the platform P, which is connected to the base A0

by two chains, K1 and K2. These chains are non-redundant 3R planar mechanisms.

Platform Position: All the frames Fbi have fixed location with respect to FA0 . Then,
a plane Π can be computed by interpolating the position of the frame origins Obi (when
nk > 3). The platform position relative to Π is generated in two steps: first coordinates
xΠ and yΠ, and then coordinate zΠ. Since the coordinates transformation from a frame
FΠ associated with this plane to FP is constant, xP , yP and zP are directly obtained from
xΠ, yΠ and zΠ.

Coordinates xΠ and yΠ are sampled in a rectangular region Ixy which is computed as
follows. Let us call RWS(K′i) the bounding volumes of the individual chains Ki considering
FP as the end-frame, instead of Fei . Ixy is a rectangle bounding the intersection of
the projections of the RWS(K′i) on Π. Thus, Ixy is a conservative approximation of the
orthogonal projection of WP on Π. Figure 4.6 illustrates the computation of Ixy when
the volumes RWS are spherical shells. For clarity purpose, we have only represented the
external surface of one of these volumes.

The coordinate zΠ is then computed by considering the intersections of the line perpen-

FΠ

Π

OB3
OB4

Ixy

OB1

OB2

Figure 4.6: Illustration of the operations to obtain Ixy for a
general spatial parallel mechanism with four legs.
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dicular to Π passing through the sampled a point {xΠ, yΠ} with each volume RWS(K′i).
When one or several volumes are not intersected, a new point in Ixy can be resampled a
given number of times. The common intersection between this line and all the volumes
defines one or several intervals Iz in which we sample zΠ.

Platform Orientation: For a given position of P, its orientation is generated by progres-
sively computing the three elementary rotations around the coordinate axes of FP : γP ,
βP and αP .

The rotation of P around the x-axis of FP produces a circular motion the origin Oei of
each frame Fei . The intersection of this (segment of) circle with each volume RWS(Ki) is
computed as described in Section 3.2.3 for the single-loop version of RLG (see Figure 3.7
where the origins Oe and Oc are respectively replaced by Obi and Oei). We call Iγi the
result of the individual intersections. When none of the Iγi is null, γP is sampled in the
common intersection of these sets, noted Iγ . The same process is repeated for βP and αP ,
bearing in mind that FP must be reoriented after each step.

4.3.3 Associations of Parallel Mechanism

The presented technique can also be extended to handle more complex systems obtained
by the associations of parallel mechanisms.

When n parallel mechanisms are connected in series (see Figure 4.7), each platform
Pi, i = 1 . . . n−1, becomes the base for the next platform. The process for generating
the configuration is progressively carried out for each platform, from the base (P1) to the
top (Pn). When the sampled pose of a given Pi is not valid, the process does not restart
completely; it is only iterated from Pi−1.

When several parallel mechanisms are disposed in parallel (see in Figure 4.8) they
form a “multi-parallel” system. Each mechanism becomes a chain Ki of the main system.
Therefore, their platforms are passive elements. RWS(Ki) is obtained by intersecting
the RWS of the legs of the individual platforms. In general, this volume can also be
approximated by a spherical shell.

4.4 Results

Our approach has been implemented in the generic motion planning software Move3D
[Siméon 01b]. In this section we comment some of the results obtained for very different
parallel mechanisms. Computing times correspond to tests performed using a Sun Blade
100 Workstation with a 500-MHz UltraSPARC-IIe processor. Numerical results of each
example have been averaged over 10 runs.
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4.4.1 Parallel Manipulators

The first experiment aims to demonstrate the performance of the approach to compute
self-collision-free motions of the Gough-Stewart platform. The roadmap of the example in
Figure 4.1, practically covering the whole subset WPsc−free, was computed in 22 seconds
by the closed-chain extension of the Visibility-PRM algorithm. The construction required
the generation of 17442 configurations of the mechanism, of which 2328 were found to
be collision-free. Using our sampling strategy, RLG, the function Sample qP was called
30840 times. That means more than 50% of success for sampling random configurations
of the Gough-Stewart platform satisfying closure constraints. We made similar tests using
uniform random sampling to generate the platform pose 4. In this case, less than a 2% of
the samples produced valid configurations of the mechanism. This fact yields an important
detriment to the performance of the planner. Constructing a similar roadmap is about 25
times slower !

Once the roadmap is computed, this data structure can be used to generate almost
in real-time feasible motions avoiding collisions between the parts of the mechanism. In
presence of obstacles, such a roadmap approach also allows us to solve motion planning
problems like the one illustrated in Figure 4.2. This problem is particularly hard for a
sampling-based approach because the motion getting the ring out of the s-shaped bar
requires extreme deformations of the Gough-Stewart platform. A roadmap containing the
solution path was computed in 60 seconds.

The two next examples exploit the capacity of sampling-based motion planning algo-
rithms to solve problems in very-high-dimensional spaces. The manipulator in Figure 4.7
is a model of the Logabex-LX4 [Charentus 90]. The structure is composed of four Gough-
Stewart platforms connected in series and an end-effector provided of a single wrist that
allows one rotation. The model of each individual Gough-Stewart platform involves 24
joint variables: 3 for each leg 5 and 6 for the platform. Thus, the dimension of the joint-
space Q of this robot is m = 97. The mobility (i.e. the dimension of the manifolds
embedded in Q that compose C) is M = 25. Planning queries for moving the manipula-
tor with the grasped bar from one to another opening of the bridge were solved by the
extended RRT-based algorithm in less than one minute (about 50 seconds in average).
In the example illustrated by Figure 4.8, two teams of three Gough-Stewart platforms
cooperate in an assembly task. This type of association has been proposed in [Chai 01] for
the assembly of large and heavy components in industry. The motion to assemble the two
puzzle-like pieces was computed in only 15 seconds by the RRT-based algorithm. Remark
in the figure that the clearance between the pieces is very small.

4Samples are taken in a 6-dimensional box bounding the subset of feasible poses of P.
5The joint variables corresponding to the sperical joint between each leg and the platform need not be

considered in the model.
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Figure 4.7: Model of the robot Logabex-LX4 and trace of a collision-free path.

Figure 4.8: Two teams of three Gough-Stewart platforms have
to assemble large puzzle-like pieces.
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4.4.2 Coordinated Manipulation

Tests made with the model in Figure 4.3 continue demosntrating the good performance
of RLG. Note that the number of joint variables in this model is m = 30 (6 for each
manipulator and 6 for the movable object), and the mobility is M = 6. For generating
100 random configurations of the virtual parallel mechanism composed by the four 6R ma-
nipulators and the movable object, 326843 locations of the platform generated by uniform
sampling were necessary. Using RLG, only 107 random poses were computed. In terms
of computing time, the former test took 75.12 seconds, while the latter only took 0.19
seconds. The problem illustrated in the figure, where the manipulators have to unhook
an object and to insert it into the cylindrical axis, was solved using both approaches,
PRM and RRT. For computing a roadmap containing the solution path to this problem,
more than 4000000 poses generated by uniform random sampling were necessary and the
process took more than 20 minutes. Using RLG for sampling configurations, less than 500
random platform poses were generated and the roadmap was built in less than 20 seconds.
The difference is less important when applying the RRT approach on this example. We
used a bidirectional search to solve the problem. The process for expanding the trees
was iterated 95 times using a uniform random sampling for qarand versus 43 when calling
the function Sample qP . The computing times for obtaining the solution path were 1.78
seconds and 0.99 seconds respectively.

Figure 4.9 illustrates a similar problem in which one of the robots has been replaced
by a human-like character. The human arm is modeled as a 7R articulated mechanism.
Thus, it is kinematically redundant. However, the inverse geometric model in our current
implementation (inspired by IKAN [Tolani 00]), handles this redundancy. For a desired
location of the hand, only one inverse kinematics solution is returned corresponding to a
realistic posture. Therefore, the human arm is considered non-redundant for the planner,

Figure 4.9: Human-like character interacts with robots in a manipulation task.



96 Chapter 4. Motion Planning for Parallel Mechanisms

so that the only active variables are the parameters qP , as in the preceding example. The
motion shown in the figure was computed in a few seconds by RRT.

The last results we comment in this chapter correspond to the example opening this
thesis: the version of the piano mover’s problem with three mobile manipulators (see
Figure 1). This problem combines two types of difficulty with relation to the previous
examples. First, the “legs” of the virtual parallel structure are redundant, since they
correspond to the mobile manipulators. And second, the complexity of the scene makes
collision checking of local paths very hard. Besides, obstacles are strategically placed in
order to hinder the motion of robots for changing the orientation of the piano (the piano
is rotated of 180o between the initial and goal locations). Note that the piano pedals
restrain the classes of feasible trajectories. The redundancy is efficiently handled by RLG.
Parameters qaKi correspond to the mobile bases and passive variables qpKi to the 6R arms.
A roadmap that permits to solve this motion planning problem and most other possible
queries in this scene was computed using the extended Visibility-PRM algorithm in 5
minutes.

4.5 Discussion and Prospects

We have seen along this chapter how the approach described in Chapter 3 allows to extend
PRM-based and RRT-based algorithms to solve efficiently motion planning problems in-
volving complex mechanisms with multiple loops. Although it was suggested in previous
related works [Han 01, LaValle 99, Yakey 01], to the best of our knowledge, this is the
first time sampling-based motion planning algorithms are effectively applied to parallel
mechanisms.

The major improvement to do concerning the applications to parallel manipulators is
to include a more efficient method to validate local paths. This is not a hard task, since
trajectory verification algorithms (e.g. [Merlet 01]) can be directly applied on these paths.
The presence of singular configurations can be simultaneously checked in the verification
process.

The general definition of parallel mechanisms we have adopted makes our techniques
applicable to systems more complex than parallel (Gough-Stewart-like) robots. Sophis-
ticated manipulation planning methods (e.g. [Gravot 03]) could integrate our geometric
algorithms for solving parts of complicated problems involving several robots and several
movable objects in the same workspace.



Chapter 5

Manipulation Planning





Manipulation planning concerns the automatic generation of the sequence of robot
motions allowing to manipulate movable objects among obstacles. The presence of mov-
able objects leads to a more general and computationally complex version of the motion
planning problem than the instances formulated in Chapter 1. Indeed, the robot has the
ability to modify the structure of its configuration-space depending on how the movable
object is grasped and where it is released in the environment. Motion planning in this con-
text appears as a constrained instance of the coordinated motion planning problem. The
solution of a manipulation planning problem (see for example [Alami 89, Latombe 91])
consists of a sequence of sub-paths satisfying such restrictions: movable objects cannot
move by themselves; either they are transported by robots or they must rest at some stable
placement. Motions of the robot holding the object at a fixed grasp are called transfer
paths, and motions of the robot while the object stays at a stable placement are called
transit paths.

Consider the manipulation planning example illustrated by Figure 5.1. The manipu-

Figure 5.1: How to manipulate the bar from its initial position (top, left) to the goal
(bottom, left)? The solution (right) requires several pick and place operations.
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lator arm has to get a movable object (the bar) out of the cage, and to place it on the
other side of the environment. Solving this problem requires to automatically produce the
sequence of transit/transfer paths separated by grasp/ungrasp operations, allowing to get
one extremity of the bar out of the cage; the manipulator can then re-grasp the object
by the extremity that was made accessible by the previous motions, perform a transfer
path to extract the bar from the cage, and finally reach the specified goal position. In
particular, the motion shown in the second image illustrating the solution requires itself
four re-grasping operations to obtain a sufficient sliding motion of the bar. This example
shows that a manipulation task possibly leads to a complex sequence of motions includ-
ing several re-grasping operations. A challenging aspect of manipulation planning is to
consider the automatic task decomposition into such elementary collisions-free motions.

Most of existing algorithms (see Section 5.1) assume that finite sets of stable placements
and possible grasps of the movable object are given in the definition of the problem.
Consequently, a part of the task decomposition is thus resolved by the user since the initial
knowledge provided with these finite sets has to contain the grasps and the intermediate
placements required to solve the problem. Referring back to the example, getting the bar
out of the cage would require a large number of grasps and placements to be given as
input data.

The approach described in this chapter deals with a continuous setting of the manip-
ulation problem while covering the scope of the previous proposed approaches. It allows
us to devise a manipulation planner that automatically generates among continuous sets
the grasps and the intermediate placements required to solve complicated manipulation
problems like the one in Figure 5.1. The approach relies on a topological property first
established in [Alami 89] and recalled in Section 5.2. This property allows us to reduce
the problem by characterizing the existence of a solution in the lower-dimensional subset
of configurations where the robot grasps the movable object placed at a stable position.
There exists a bijective map between this subset and the configuration-space of a virtual
closed-chain mechanism composed by the robot grasping the movable object affected by the
placement (stability) constraints. Thus, we can apply the algorithms explained in Chap-
ter 3 to compute a roadmap encoding the connectivity of this subset. Section 5.3 describes
the proposed approach and Section 5.4 details the planning techniques developed to imple-
ment the approach. Finally, Section 5.5 presents experimental results and comments on the
performance of the planner. Complementary information on this approach and its imple-
mentation can be found in [Siméon 01a, Sahbani 02, Siméon 03, Sahbani 03, Siméon 03].

5.1 Historical Development

One of the challenging issues of manipulation planning is to integrate the additional diffi-
culty of planning the grasping and re-grasping operations to the path planning problem.
This interdependency between path planning and grasp planning was first touched upon
by work done in the 80’s for the development of automatic robot programming systems.
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In particular, the Handey system [Lozano-Perez 92] integrated both planning levels and
was capable to plan simple pick and place operations including some re-grasping capabil-
ities. The geometric formulation of manipulation planning [Alami 89, Latombe 91], seen
as an instance of motion planning problem extended by the presence of movable objects,
provided a unified framework allowing to better tackle the interdependency issues between
both planning levels.

Motion planning in presence of movable objects is first addressed as such in [Wilfong 88].
In this work, an exact cell decomposition algorithm is proposed for the particular case of a
polygonal robot and of one movable object translating in a polygonal workspace, assuming
a finite grasp set of the movable object.

The manipulation graph concept is introduced in [Alami 89] for the case of one robot
and several movable objects manipulated with discrete grasps and placements. In this
case, the nodes of the manipulation graph correspond to discrete configurations and the
edges are constructed by searching for transfer (or transit) paths between nodes sharing
the same grasp (or placement) of the movable object(s). Following this general frame-
work, the approach was implemented for a translating polygon [Alami 89] and a 3-d.o.f.
planar manipulator [Alami 95]. An exact cell decomposition algorithm is also proposed
in [Alami 95] for the specific case of a translating polygonal robot capable to manipulate
one movable polygon with an infinite set of grasps.

The manipulation planning framework is extended in [Koga 92, Koga 94] to multi-
arm manipulation where several robots cooperate to carry a single movable object amidst
obstacles. In this work, the number of legal grasps of the objects is finite and the movable
object has to be held at least by one robot at any time during a re-grasp operation.
The planner proposed in [Koga 94] (that we also referred in Chapter 4) first plans the
motions of the movable object using an adapted version of a randomized potential field
planner (RPP), and then finds the sequence of re-grasp operations of the arms to move
the object along the computed path. This planner relies on several simplifications, but
it can deal with complex and realistic problems. Another heuristic planning approach
proposed in [Barraquand 94] is to iteratively deform a coordinated path first generated in
the unconstrained composite configuration-space of robots and objects using a variational
dynamic programming technique that progressively enforces the manipulation constraints.

Variants of the manipulation planning problem have been investigated. In [Lynch 95],
grasping is replaced by pushing and the space of stable pushing directions imposes a set of
non-holonomic constraints that introduce some controllability issues to the problem. The
heuristic algorithm described in [Chen 91] considers a problem where all the obstacles can
be moved by a circular robot in order to find its way to the goal.

Two other contributions extend recent planning techniques to manipulation planning.
In [Ahuactzin 98], the Ariadne’s Clew algorithm is applied to a redundant robot ma-
nipulating a single object in a 3D workspace. The method assumes discrete grasps of
the movable object; it is however capable to deal in realistic situations with redundant
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manipulators for which each grasp possibly corresponds to an infinite number of robot
configurations. Finally, [Nielsen 00] proposes a practical manipulation planner based on
the extension of the PRM approach. The planner constructs a manipulation graph be-
tween discrete configurations; connections are computed using a Fuzzy-PRM planner that
builds a roadmap with edges annotated by a probability of collision-freeness. Computing
such roadmaps improves the efficiency of the planner for solving the possibly high number
of path planning queries (in changing environments) required to compute the connections.

Contribution

The manipulation planning techniques above mostly address the discrete instance of the
problem. Only the algorithms in [Alami 95, Ahuactzin 98] consider more difficult instances
for which the nodes of the manipulation graph (i.e. the places where the connections be-
tween the feasible transit and transfer paths have to be searched) correspond to a collection
of submanifolds of the composite configuration-space, as opposed to discrete configura-
tions. Such manifolds arise when considering infinite grasps and continuous placements of
the object. This continuous setting is only addressed in [Alami 95] for the specific case of
a translating robot in a polygonal world. Manifolds also arise in [Ahuactzin 98] because
of the redundancy of the robot although the planner assumes a set of pre-defined discrete
grasps.

It this chapter, we describe a general approach for dealing with such continuous set-
tings of the manipulation planning problem. This planning approach considers continuous
placements and grasps, and it is also able to handle redundant robots. It relies on a
structuring of the search-space allowing us to capture efficiently the connectivity of the
submanifolds in a probabilistic roadmap computed for virtual closed-chain mechanisms.
The resulting planner is general and practical for solving complicated manipulation plan-
ning problems in restrained environments. For example, one can describe the set of stable
placements by constraining the movable object to be placed on top of some horizontal faces
of the static obstacles. Such placement constraints define a 3-dimensional submanifold of
the object’s configuration-space (two translations in the horizontal plane and one rotation
around the vertical axis). Also, one can consider sets of continuous grasping domains
such that the jaws of a parallel gripper have a contact with two given faces of the object.
Such grasp constraints also define a 3-dimensional domain (two translations parallel to
the grasped faces and one rotation around the axis perpendicular to the faces).

5.2 Problem Statement

Notations: Let us consider a 3D workspace with a robot A and a movable object O mov-
ing among static obstacles. The robot (supposed an open-chain mechanisms) has degree
of mobility M and its configuration is defined by the array of the joint variables qrob. O is
a free-flying object that can only move when it is grasped by the robot. Its configuration
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qobj is defined by the six location parameters. Let Crob and Cobj be the configuration-spaces
of the robot and the object, respectively. The composite configuration-space of the system
is C = Crob × Cobj and we call Cfree the subset in C of all the collision-free configurations.
The domain in C corresponding to valid placements of O (i.e. stable placements where
the object can rest when ungrasped by the robot) is denoted by CP . The domain in C cor-
responding to valid configurations of O grasped by the robot A is denoted by CG. Both
CP and CG are lower-dimensional manifolds in C.

Manipulation Constraints: A solution to a manipulation planning problem corresponds
to a constrained path in Cfree. Such a solution path is an alternate sequence of two types
of sub-paths verifying the specific constraints of the manipulation problem, and separated
by grasp/ungrasp operations:

• Transit Paths where the robot moves alone while the object O stays stationary at a
stable position. The configuration parameters of O remain constant along a transit
path. Such motions allow to place the robot at a configuration where it can grasp
the object. They are also involved when changing the grasp of the object. Transit
paths lie in CP . However, a path in CP is not generally a transit path since such path
has to belong to the submanifold corresponding to a fixed placement of O. Transit
paths induce a foliation 1 of CP (see Figure 5.2.a).

• Transfer Paths where the robot moves while holding O with the same fixed grasp.
Along a transfer path, the configuration ofO changes according to the grasp mapping
induced by the forward kinematics of the robot 2. Thus, there is a relationship
between qobj and qrob. Transfer paths lie in CGand they induce a foliation of this
submanifold (see Figure 5.2.b).

Problem: Consider the two sets of constraints defining the stable placements and feasible
grasps. A manipulation planning problem is to find a manipulation path (i.e. an alternate
sequence of transit and transfer paths) connecting two given configurations qinit and qgoal
in CG ∪CP (see Figure 5.2.c). Manipulation planning then consists in searching for transit
and transfer paths in a collection of submanifolds corresponding to particular grasps or
stable placements of the movable object. Note that the intersection CG ∩ CP between
the submanifolds defines the places where transit paths and transfer paths should be
connected. The manipulation planning problem appears as a constrained path planning
problem inside and between the various connected components of CG∩CP (see Figure 5.2.d).

1A foliation of a n-dimensional manifold is an indexed family of disjoint pathwise-connected submani-
folds, called leaves (see [Candel 00] for details).

2Coordinates transformation between the base-frame and the end-frame of the robot, expressed by
equation (1.3).
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a) The placement space CP b) The grasp space CG

c) CG ∪ CP d) CG ∩ CP has five connected components

Figure 5.2: Moving along transit (resp. transit) paths induces a foliation of the placement
(resp. grasp) space. Both foliations intersect themselves in CG ∩ CP .

Reduction Property: Two foliation structures are defined in CG ∩ CP : the first one is
induced by the transit paths; the second one is induced by the transfer paths. As a
consequence, any path lying in a connected component of CG ∩ CP can be transformed
into a finite sequence of transit and transfer paths (the proof of this property 3 appears
in [Alami 95]). Therefore two configurations which are in a same connected component of
CG ∩ CP can be connected by a manipulation path.

It is then sufficient to study the connectivity of the various components of CG ∩ CP by
transit and transfer paths. Let us consider a transit (or transfer) path whose endpoints
belong to two distinct connected components (CG ∩CP )i and (CG ∩CP )j of CG ∩CP . From
the reduction property above one may deduce that any configuration in (CG ∩CP )i can be
connected to any configuration in (CG ∩ CP )j by a manipulation path.

3Note that this property holds for a single movable object under the hypothesis that the robot does not
touch the static obstacles.
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a) Set of configurations reachable by a
transit path starting at a configuration
in CG ∩ CP

b) Adjacency of CG∩CP components via
transit paths

c) Set of configurations reachable by a
transfer path starting at a configuration
in CG ∩ CP

d) Adjacency of CG∩CP components via
transfer paths

� ��

q2

q5

q3

q4

q6

q1

e) Examples of manipulation paths f) The Manipulation Graph

Figure 5.3: The topology of C induced by the manipulation problem constraints can be
captured by a so-called Manipulation Graph.
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Manipulation Graph: It is then possible to build a graph MG whose nodes (to which
we will refer later as mega-nodes) are the various connected components of CG ∩ CP , and
whose edges indicate the existence of a transit (or transfer) path whose endpoints belong to
different components (CG ∩CP )i and (CG ∩CP )j . Figure 5.3 illustrates the graph structure
for the example introduced in Figure 5.2. Examples of manipulation paths are shown in
the bottom-left picture: q1 is not a valid configuration for the manipulation problem (it
does not belong to CG∪CP ). Configuration q6 is in CG; nevertheless it cannot escape from
its leaf in CP . A manipulation path exists between q3 and q5 and between q2 and q4. No
manipulation path exists between q5 and q4.

Let qinit and qgoal be two configurations in CG∪CP . There exists a manipulation path
between qinit and qgoal iff there exist two mega-nodes (CG ∩ CP )init and (CG ∩ CP )goal in
MG, called the manipulation graph, such as:

- there exists a transit (or transfer) path from qinit to some point in (CG ∩ CP )init,

- there exists a transit (or transfer) path from some point in (CG ∩ CP )goal to qgoal,

- (CG ∩ CP )init and (CG ∩ CP )goal belong to a same connected component of MG.

Combinatorial Issues: How to capture the various connected components of CG ∩ CP ?
How to capture their adjacency by transit and transfer paths? These are the two key issues
in manipulation task planning. All the techniques overviewed above fall in this general
framework.

5.3 A General Approach to Manipulation Planning

We now describe our approach for solving manipulation problems in the general setting
of continuous grasp and placement constraints. The proposed approach relies on the
structure of CG ∩ CP discussed in the previous section. The main idea is to exploit the
reduction property of Section 5.2 to decompose the construction of the manipulation graph
at two levels:

- compute the connected components of CG ∩ CP .

- determine the connectivity of CG ∩ CP components using transit and transfer paths.

A Two-Level Sampling-Based Manipulation Roadmap: The manipulation graph MG
is computed, as in [Nielsen 00], using a sampling-based motion planning algorithms. But
our construction of this roadmap integrates a specific step allowing us to directly capture
the connectivity of the subset CG ∩ CP inside the graph. The structure of a manipulation
graph computed using this approach is illustrated by Figure 5.3.
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2      2
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Figure 5.4: A probabilistic roadmap as a manipulation graph: mega-nodes belong to
CG ∩ CP while edges model paths belonging to either CG ∩ CP , CP or CG. Two types of
adjacency are considered: direct CG ∩ CP paths (plain segments) or elementary sequences
of Transit-Transfer (or Transfer-Transit) paths (dashed segments).

The roadmap MG is composed by a small number of mega-nodes (the connected com-
ponents of CG ∩ CP ) connected together with transit or transfer paths. Each component
(CG∩CP )i is captured into a sub-roadmap computed using a “local” planner that generates
feasible CG∩CP motions (the black edges in Figure 5.3) between randomly sampled config-
urations in CG ∩CP (the black points). These sub-roadmaps are connected via transit and
transfer paths (the dotted edges) using some intermediate nodes (in white). The inter-
mediate nodes are defined as follows. Consider two configurations in different connected
component of CG∩CP . These configurations correspond to fixed grasps and placements of
the movable object, noted (gi, pi)i=1,2. Using motions outside CG ∩ CP , they can only be
connected by following the particular leaves of CP and CG issued from both configurations.
We then define the intermediate nodes as (g1, p2) and (g2, p1). An edge between (g1, p1)
and (g2, p2) is added if at least one of the intermediate nodes (g1, p2) or (g2, p1) belongs
to CG ∩ CP and is reachable from (g1, p1) and (g2, p2) by a collision-free transit/transfer
path. The connection between two randomly sampled configurations of CG ∩ CP is then
possible if one of the three types of adjacency (Figure 5.3) exists:

• Type1: a direct path from (g1, p1) to (g2, p2) lying on CG ∩ CP is collision-free.

• Type2a: a transfer path from (g1, p1) to (g1, p2) followed by a transit path from
(g1, p2) to (g2, p2) are both collision-free.

• Type2b: a transit path from (g1, p1) to (g2, p1) followed by a transfer path from
(g2, p1) to (g2, p2) are both collision-free.
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Once the manipulation roadmap is computed, queries are solved by searching for a
path in MG. The obtained solution alternates elementary manipulation paths (i.e. tran-
sit/transfer paths computed when traversing edges of MG using Type2 adjacencies) with
CG∩CP paths (i.e. paths computed inside the nodes of MG using Type1 adjacencies). Note
that the direct CG∩CP paths correspond to simultaneous changes of grasp and placement;
they are therefore not feasible from the manipulation point of view. However, thanks to
the reduction property, any such Type1 paths can be transformed in a post-processing
stage into a finite sequence of Type2 transit and transfer paths.

Capturing the Topology of CG ∩ CP via a Virtual Closed-Chain Mechanism: The
main critical issue of the approach is to capture into a probabilistic roadmap the topology
of CG ∩ CP which is a subset of the global configuration-space C with a lower dimension.
The idea here is to explore CG ∩ CP as such. For this, we consider that CG ∩ CP is the
configuration-space of a single system consisting of the robot together with the movable
object placed at a stable position. Maintaining the stable placement while the movable
object is grasped by the robot induces a virtual closed kinematics chain (see Figure 5.5).

We now explain how the virtual closed-chain mechanism is defined. A grasp of the
movable object can be represented by a homogeneous transformation matrix OTAe defining
the location of the end-effector Ae relative to the coordinate system of the object FO.
For a fixed grasp, OTAe is a constant matrix. However this transformation can involve
variables parameterizing a continuous set of grasps. We call qgrasp this set of parameters
and we denote as OTAe(qgrasp) the transformation depending on these variables. Given
a transform matrix defining the location of the robot base in the world WTA0 and the
forward kinematics function for the robot A0TAe(qrob), we can define a mapping:

G(qrob, qgrasp) = WTA0 · A0TAe(qrob) · OT−1
Ae (qgrasp)

which determines the subset of locations of the object while grasped by the robot. Note
that, in the previous sentences, we have intrinsically defined a parameterization for the
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Figure 5.5: Schema of the virtual loop whose configuration-space matches with CG ∩ CP .
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submanifold CG. CG corresponds to the subset of free configurations q = {qrob, qobj} for
which the configuration qobj of O changes according to the grasp mapping induced by the
forward kinematics of the robot and by the grasp of the object: qobj = G(qrob, qgrasp).
CG is therefore parameterized by the array of variables {qrob, qgrasp}.

In a similar way, the subset of stable placements of O can be defined by a mapping:

P (qplace) = WTO(qplace)

where qplace denotes the array of variable parameters defining of a continuous set of sta-
ble placements. The submanifold CP corresponds to configurations where qobj changes
according to this mapping: qobj = P (qplace).

A same configuration qobj of the the movable object can be obtained from the two
different mappings, G(qrob, qgrasp) and P (qplace), iff O is simultaneously grasped by the
robot and located at a stable placement. This condition characterizes configurations in the
subset CG ∩ CP . Then, configurations in CG ∩ CP can be defined by an array of variables
{qrob, qgrasp, qplace} satisfying the constraint: G(qrob, qgrasp) = P (qplace). Such a constraint
establishes a relationship: f(qrob, qgrasp, qplace) = 0, which has the same form than loop
closure equations ( 1.9). Thus, we can conceive a virtual kinematic loop L whose joint
variables are:

qL = {qrob, qgrasp, qplace}

L involves the robot, the movable object and virtual joints between O and Ae, and be-
tween A0 and O, with joint variables qgrasp and qplace respectively. Hence, capturing the
topology of CG ∩ CP requires to explore the variety of the configurations qL satisfying clo-
sure constraints. A roadmap whose components encode the connectivity of collision-free
subsets on this variety can be constructed by the approach explained in Chapter 3. In the
next section we give details about this particular application.

Connections with Transit and Transfer Paths: Computing such connections requires
to solve multiple point-to-point path planning problems, as for the case of manipulation
planning with discrete sets of grasps and placements (e.g. [Nielsen 00]). Here, the issue is
to provide efficient solutions for searching such collision-free transit (or transfer) paths in
the various leaves of CP (or CG).

Our approach exploits the fact that each planning problem has to be performed in a
partially modified environment. The structure of Cfree is in general slightly affected by
variations of qobj . A “static” roadmap is used as a global basis for solving these problems.
It is combined with an incremental search algorithm that performs at a local level for
solving problems occasioned by these slight changes in Cfree. This planning technique is
also further explained in the section below.
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Figure 5.6: Virtual closed-chain system and a feasible motion in CG ∩ CP :
the bar moves on the floor while sliding into the gripper’s jaws.

5.4 The Planning Techniques

We now detail the planning techniques developed to implement the approach. The two
basic primitives required for computing the Type1 and Type2 are described first. Then, we
explain how both primitives are combined by the algorithm used to build the manipulation
roadmap.

Closed-Chain Planner for Type1 Motions: As explained above, our approach requires
to apply motion planning techniques for a single-loop mechanism in order to capture the
topology of CG ∩ CP . The extended PRM-based planner explained in Chapter 3 is a very
suitable tool for this aim. Indeed, the practical efficacy of our manipulation planning
approach results from the good performance of this algorithm. We apply the extended
version of the Visibility-PRM algorithm for capturing CG ∩ CP . The interest of this par-
ticular algorithm is first to control the quality of the roadmap in term of coverage; and
second, to capture the connectivity of possibly complex spaces into a small data structure.
We believe that the small size of the visibility-roadmaps, combined with the proposed
structuring of CG ∩CP contributes to the overall efficiency of our approach by limiting the
number of costly path-planning queries to be performed during the second stage, when
searching the connections with collision-free transfer or transit paths.

The virtual loop L has kinematic features that incite to make the next selection of
parameters for the RLG algorithm (Algorithm 3.1):

qaL = {qarob, qgrasp, qplace}
qpL = qprob
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Figure 5.7: A visibility-roadmap computed on CG ∩ CP (left) and two configurations
inside two different connected components of CG ∩ CP (right).

In the example illustrated by Figure 5.1, the robotic manipulator is non-redundant. Thus,
there are no parameters qaL. On the contrary, for a mobile manipulator, the configuration
parameters of the mobile base should be in qaL.

Figure 5.6 shows the virtual closed-chain system for this example. The bar moves in
contact with the floor while sliding within the gripper. The sliding motion of the gripper
results from an additional degree of freedom qgrasp introduced in the system to characterize
the infinite set of grasps. In this example qgrasp is chosen to allow a translation of the
parallel jaw gripper along the bar. Similarly, the set of stable placements corresponds to
the planar motions parameterized by three variables into qplace (two horizontal translations
and a vertical rotation), that maintain the contact of the bar with the floor. The motion
shown in the right image of Figure 5.6 is a feasible motion in CG ∩CP . It is not admissible
for a direct execution. However, thanks to the reduction property it can be transformed
into a finite sequence of feasible transit and transfer paths.

Figure 5.7 shows the visibility-roadmap encoding CG∩CP for the example of Figure 5.1.
The computed roadmap has four connected components: two main components separated
by the long static obstacle, and two other small components that correspond to placements
of the movable object inside the cage obstacle while it is grasped by the arm through the
open passage in the middle of the cage. These two small components (inside the dashed
circle of the left image) correspond to locations of the bar having similar position but
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different orientations, about 180o apart. The associated configuration of the closed-chain
system is shown in the top-right image. The bottom-right image corresponds to a node of
the main component with the bar placed at the same position, but using a different grasp.
Connecting this node to the small component is not possible (into CG∩CP ) because of the
cage obstacle that limits the continuous change of grasp. Such re-grasping requires the
computation of collision-free paths outside CG ∩ CP as explained below.

Connection Planner for Type2 Motions: Computing Type2 connections requires a basic
routine to find elementary collision-free transit and transfer paths. Each of the planning
problems corresponds to a particular grasp or placement of the movable object. Then, the
queries have to be performed in a partially modified environment. The motivation of the
two-stage method used by the connection planner is simply to amortize the cost of dealing
with such partial changes by re-using at each query some of the paths pre-computed during
the first stage regardless of the movable object.

First, we compute a roadmap for the robot and the static obstacles, without considering
the presence of the movable object. Then, before to solve a given (transit or transfer) path
query, the roadmap is updated by checking whether each edge is collision-free with respect
to the current position of the movable object. Colliding edges are labeled as blocked in
the roadmap.

init

goal

goal

init

goal

init

Figure 5.8: A static roadmap is computed in the configuration space of the robot (top,
left). During queries, it is labeled according to collisions including O. If the query fails,
there is no solution (top, right). Otherwise, either there exists a solution path in the
roadmap avoiding labeled edges (bottom, left) or not (bottom, right). In the later case
the colliding part of the path is locally updated using an RRT-like technique.
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The search for a given path is then performed within the labeled roadmap. As illus-
trated by Figure 5.8, three cases possibly occur. When the search fails, this means that
no path exists even in the absence of the movable object; the problem has no solution.
Similarly, when the computed path does not contain any blocked edge (dashed edges in
Figure 5.8) then a solution is found. Now let us consider the intermediate situation where
the solution path necessarily contains blocked edges. In such case, the algorithm tries
to solve the problem locally using a RRT-based planner to connect the endpoints of the
blocked edges. Such a call to the RRT planner can be seen a dynamic updating of the
roadmap. The main interest of using the RRT approach is that it performs well locally.
This means that the approach quickly finds connections between nearby nodes.

Manipulation Planning Algorithm: The algorithm incrementally constructs the manipu-
lation roadmap MG by interleaving the two steps of the approach: computing CG∩CP con-
nected components (Type1 adjacency) and linking them (Type2a-b adjacencies). Follow-
ing the principle of Visibility-PRM, the algorithm stops when it is not able to expand the
graph after a given number of tries. This number of failures is related to an estimated
coverage of the search-space [Siméon 00] (in our case, the CG ∩ CP subset). The function
Expand MG (in Algorithm 5.1) performs one expansion step of MG. Candidate nodes
are first sampled in CG ∩ CP and the different types of connections to the graph are then
tested.

The algorithm possibly considers several classes of continuous grasps and/or place-
ments. For each one, the corresponding transform matrices (OTAe or WTA0) and sets of
parameters (qgrasp or qplace) are defined as input data of the manipulation problem MP .
Each couple grasp-placement induces a particular closed-chain system Lg−p, and conse-
quently, a class of node in CG ∩ CP . A candidate node is generated as follows by the
function RandomFreeConfiguration for one of these virtual loops, chosen at random.
Then, AdjacencyChoice selects a type of adjacency (Type1 or Type2) by performing

Algorithm 5.1: Expand MG

input : the problem data MP , the manipulation graph MG

output : the manipulation graph MG

begin
qnew ← RandomFreeConfiguration(MP );
adj type← AdjacencyChoice(MP,MG);
nlinked comp ← TestConnections(qnew, adj type,MG);
if nlinked comp 6= 1 then

AddNewNodeAndEdges(qnew, adj type,MG);
UpdateGraph(MG);

else return Failure;
end
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a biased random choice. The bias for this choice depends on the evolution of the size of
MG. The aim is to minimize the computing time for constructing the manipulation graph
(see [Siméon 03] for further details).

The function TestConnections checks the connection between the new (potential)
node and each connected component ofMG using the selected type of adjacency. When the
expansion step is performed using Type1 motions, candidate nodes for checking connection
must belong to the same class grasp-placement, i.e. they have been generated for the same
loop Lg−p. Following the visibility principle, the candidate node is added to the graph only
if the random sample qnew was linked to none or to more than one connected component.
In the second case, the linked components are merged.

Once MG built, manipulation planning queries can be performed using the three
following steps. First, the start and goal configurations are connected to MG using the
planner for Type2 motions, and the manipulation graph is searched for a path between both
configurations. Then, Type1 portions of the solution path are decomposed into sequences
of transit and transfer paths by a simple dichotomic procedure detailed in [Sahbani 02,
Siméon 03]. Finally, the solution is smoothed by a procedure that eliminates unnecessary
motions (see also in [Sahbani 02]).

5.5 Results

In this section, we will only comment results of tests performed on the example with
the manipulator, the bar and the cage, which has illustrated this chapter. More results
of the application of our manipulation planning approach are presented in [Sahbani 02,
Siméon 03].

The manipulation problem shown in Figure 5.1 is particularly complicated. Several
consecutive re-graspings motions through the middle of the cage are necessary to move
the bar to a position where it can be grasped by its extremity. The planner automati-
cally computes the required configurations from only one continuous placement domain
(the floor) and one grasping zone all along the bar. The path to get the bar out of the
cage is found in the subset CG ∩ CP , and then transformed during the post-processing
step in a sequence of transit and transfer paths. Using other state-of-the-art planners
(e.g. [Ahuactzin 98, Nielsen 00]), the user should determine and define “by hand” all the
punctual placements and grasps of the movable object required to solve the manipulation
task. Such discrete placements and grasps are rather close and precise in this example.

We introduced a tuning parameter in the algorithm Expand MG in order to analyze
the importance of exploring continuous CG∩CP regions within our approach. This param-
eter, that we call α ∈ [0, 1), modifies the behavior of the function AdjacencyChoice.
With α set to zero, the roadmap builder only considers connections of MG’s nodes with
transit/transfer paths. In this case the algorithm behaves as the discrete approaches in
which punctual placemets and grasps of the movable object are randomly sampled in a
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Figure 5.9: Performance of the algorithm depending on the percentage of CG ∩ CP explo-
ration (Type1 paths) wrt. to transit/transfer (Type2 paths) used to build the manipulation
roadmap for the example of Figure 5.1. The abscissa corresponds to the parameter α.

given domain. When α tends toward 1, the algorithm rarely selects such Type2 connections
before a sufficient coverage of CG ∩ CP has been reached.

The curve displayed in Figure 5.9 plots the time 4 spent by the algorithm to build the
manipulation roadmap allowing to solve our illustrative problem. As one can note onto
the curve, the computation time significantly decreases for runs performed with higher
values of α. This performance improvement can be explained by the fact that many
searches of collision-free motions along the leaves of CP and CG are avoided thanks to the
direct exploration of the subset CG ∩CP . Note however that when α tends towards 1, the
probability of selecting Type2 adjacencies remains very low until a sufficient coverage of
CG ∩ CP with Type1 adjacencies has been reached. Since Type2 adjacencies are required
to link the CG ∩ CP connected components, the performance decreases again when α→1.
The reason is that the algorithm spares time to reach such good coverage inside CG ∩
CP instead of trying connections outside this subset. In all the experiments performed
with the planner, this degradation of performance was observed to become significant
for values of α close to 1 (see [Sahbani 02]). The experimental study conducted on the
difficult manipulation problem of Figure 5.1 tends to show that when the problem is
rather constrained, it is qualitatively advantageous to spend time on the connectivity of
the CG∩CP subset before checking connections with feasible manipulation paths. As shown
by the curve, the gain can be very important in such constrained situations. It is however
observed to be less significant on simpler problems. As often with the randomized methods,
the choice of the best value for this parameter remains an issue that would need to be
further investigated. In our experiments with the planner, runs are generally performed
with a value of α set to .9 .

4Each time value was averaged over ten runs performed using different seeds to initialize the random
generator.
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For α = .9, this difficult manipulation problem was solved in less than 2 minutes. Less
than 25% of the computing time was spent in exploring CG∩CP , while the few connections
by transit/transfer paths still remain the most expensive process. The final path contains
20 elementary paths with 8 re-graspings of the movable object.

5.6 Discussion and Prospects

We have presented a new approach to manipulation planning. The power of the approach
lies in the fact that it can deal with continuous settings of the manipulation problem. It
relies on a structuring of the search-space allowing to directly capture into a probabilistic
roadmap the connectivity of the submanifolds that correspond to the places where transit
paths and transfer path can be connected. This structuring allows us to design a ma-
nipulation planner that automatically generates inside continuous domains, the particular
grasps and placements that make the problem solvable. Experimental results show the
effectiveness of the approach for solving difficult manipulation problems.

There remain several possible improvements, in particular to improve the performance
of the connection planner, which is the most costly operation. This addresses the issue
of improving the efficiency of PRM planners when facing dynamic changes of the envi-
ronment. Also, although the approach as the potential to handle general models of the
grasp and placements spaces, the planner is currently implemented for the particular case
of planning pick and place operations for polyhedral objects. One could however imagine
applications requiring to consider other models. It would therefore be interesting to fur-
ther investigate how the manipulation planner can be extended to handle richer models of
the grasp and placement spaces. Finally, our manipulation planner is currently restricted
to a single movable object manipulated by a single robot. Considering the case of multiple
movable objects and robots first requires studying the conditions under which the reduc-
tion property can be extended to such situations. Another possibility to solve such more
general instances of the manipulation planning problem under investigation is to combine
geometric approaches with a symbolic task planning level [Gravot 02, Gravot 03]. The
approach explained in this chapter (as the techniques in Chapters 3 and 4) is suitable for
direct integration into these new hybrid algorithms.



Chapter 6

Geometric Exploration of
Molecular Motions





Prime techniques in structural investigations of molecules require the exploration of
their conformational space C 1. Conformational search methods [Leach 96] explore C aim-
ing to identify the stable structures of molecules, which determine their properties and
functions. Molecular simulations [Frenkel 96] explore C while performing conformational
changes on a molecule when the environmental conditions are modified. The analysis
of such variations of the molecular structure is essential for the understanding of many
biological processes.

Since the goal of the conformational search is to find minimum energy structures,
the exploration is much more efficient when it is executed in a subset of C excluding
energetically unacceptable conformations. Conformational changes explored in simulations
can take place only if there is not a high energetic barrier to overcome. Therefore, families
of approaches treating these problems will greatly benefit from efficient techniques able to
provide samples and paths in that C avoid some unfeasible conformations.

The conformational analysis of a whole macromolecule is a very difficult problem. From
a methodological point of view, two stages are usually necessary. The first stage corre-
sponds to the identification of rigid regular segments (i.e. secondary structural elements)
capable of participating in the molecular framework. Comparative-modeling methods
[Contreras-Moreira 02] have clearly demonstrated that accurate models can be predicted
for these regular portions of the structure. The second stage is devoted to the remaining
segments, so called loops, assumed to be much more flexible. Because of their irregular
structure, available techniques to predict low energy conformations of long loops are lim-
ited and much less efficient. Figure 6.1 shows two representations of amylosucrase from
Neisseria polysaccharea, the protein on which we have worked (see Section 6.5). The
left image is a space-filling model with atoms represented as spheres. The right image
represents the protein structure: cylinders and arrows correspond to secondary structure
elements, α-helices and β-sheets respectively; the rest are the loops.

When the global molecular architecture is assumed to be known and only portions
(loops) are studied separately, the integrity of molecular chains must be maintained. The
first and last atoms of the treated segment of a molecular chain must remain bonded
with their neighbor atoms. Breaking these bonds requires a very high amount of en-
ergy. Hence, a strong constraint is imposed for the conformational exploration. This
same constraint is present in the analysis of cyclic molecules. It is often referred to as the
loop closure constraint, and basically, its formulation is the same as in Robot Kinematics
(see Section 1.2). Three main kinds of method can be applied in Computational Biol-
ogy and Chemistry for computing conformations satisfying loop closure: analytical (e.g.
[Gō 70, Manocha 95, Wedemeyer 99]), optimization-based (e.g. [Shenkin 87, Zheng 93,
Canutescu 03]) and database methods (e.g. [Oliva 97, van Vlijmen 97]). The difficulty of
this problem increases with the length of the treated molecular chain, and most of the
available techniques are limited, or at least strongly penalized, by this.

1A conformation for a molecule is the equivalent to a configuration for a robot. We designate both, the
configuration-space and the conformational space, by C.
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Figure 6.1: Amylosucrase from Neisseria polysaccharea:
VdW model (left) and structure representation (right).

In addition to breaking bonds, another large amount of energy is required to get two
non-bonded atoms significantly closer than the sum of their Van der Waals (VdW) radii.
A violation of this condition is called steric clash. Feasible conformations of a molecular
segment cannot contain either internal clashes, which we call self-clashes, or clashes with
atoms of the rest of the molecule. A possible kind of filter for such unacceptable confor-
mations consists of evaluating the repulsive term of the VdW energy and discarding them
if they exceed a given cutoff value [Bruccoleri 87]. However, this energetic constraint can
also be treated by geometric procedures. The use of “clash grids”, computed from the
distances between atoms, to achieve this filtering was proposed in [Moult 86]. An interest-
ing alternative is the use of collision detection algorithms on a 3D model of the molecule
[Lotan 02]. Obviously, the higher the number of atoms, the more critical the efficiency of
the technique.

Note that the two above mentioned constraints, loop closure and collision avoidance,
are the constraints affecting robot motions the we address from the beginning of this
document. In this chapter we propose the application of our motion planning algorithms
to molecular models. Although the method could be applied to any molecular segment
or cyclic molecule, we are mainly interested in the application to long protein loops.
This particular interest is discussed in Section 6.1. Then, in Section 6.2 we explain how
molecules can be modeled like robots. We give some details about particularities of the
application of our geometric algorithms to conformational sampling (Section 6.3), and to
explore conformational changes of protein loops (Section 6.4). First experimental results
(Section 6.5) demonstrate the efficacy of the approach handling a 17-residue loop with
would play a very important role in the activity of an enzyme under current study by
biologists. Finally, our objectives for future work are commented in Section 6.6.
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6.1 Interest in Protein Loops

Loops play key roles in the function of proteins. They are often involved in active and
binding sites. Therefore, when predicting a protein structure, an accurate loop modeling
is necessary for determining its functional specificity.

Modeling loops in proteins is one of the main open problems in Structural Biology.
Comparative-modeling methods (see [Contreras-Moreira 02] for a survey) often fail in the
prediction of protein loop structures when the percentage of sequence identities between
known and predicted protein family members is low. Indeed, it is well established that
there is no reliable approach for modeling long loops (more than five residues) available
at this time [Tramontano 01].

The alternatives to comparative-modeling are de novo (or ab initio) methods [Baker 01].
Such methods carry out a search of low energy conformations for a given amino-acid se-
quence. Many different approaches have been proposed for modeling protein loops. One
of the most developed techniques is described in [Fiser 00]. This reference paper also pro-
vides a concise survey of loop modeling methods. The accuracy of de novo methods mainly
depends on the energy function they use. Therefore, improvements in the results provided
by these approaches require the design of fine energy models. Progress in the conforma-
tional exploration strategies may also be necessary in order to increase the efficiency of
these techniques which are today computationally expensive.

Even more important than predicting the stable conformation of a loop for given en-
vironmental conditions, is determining the nature of feasible conformational changes. In
many enzymes for example, surface loops undergo conformational changes to achieve catal-
ysis [Osborne 01]. Furthermore, loop motions are, in general, important in any protein
interaction. Introducing loop flexibility into docking approaches will provide the more
accurate structural analysis required for predicting protein interactions [Janin 03].

Aim of our Approach

The techniques proposed in this paper aim to be new tools for the structural analysis of
long polypeptide segments, and in particular of protein loops. The efficiency of geomet-
ric algorithms developed in the field of Robotics can relieve conformational exploration
approaches of a part of the heavy energetic treatment.

First, a conformational sampling technique that provides random conformations achiev-
ing loop closure and clash avoidance constraints is proposed in Section 6.3. Families of ap-
proaches requiring conformational sampling, such as Monte Carlo algorithms [Metropolis 53]
or Stochastic Roadmap techniques [Apaydin 02], would directly benefit from such fil-
tered conformations. Our approach builds loop conformations depending not only on
its structure but also on the conformation of the rest of the protein. A sufficient num-
ber of random samples uniformly distributed on the conformational space will provide
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very useful information about the allowed conformations of this loop in its environment.
For instance, this information could be represented and used in the form of Ramachan-
dran plots [Ramachandran 68]. Approaches using this kind of statistical distribution (e.g.
MODELLER [Fiser 00]) could improve their performance.

The geometric analysis can be pushed further. In Section 6.4, we propose an algo-
rithm to explore the connectivity of the sub-space of geometrically feasible conformations.
Given a starting conformation, the possible deformations maintaining loop closure and
clash avoidance constraints are explored and encoded in a data structure. Information
in this data structure should be useful for many existing conformational exploration ap-
proaches. Furthermore, new methods should be designed inspired by the basic principles
of this geometric approach. In a similar direction, a conformational search method, that
shares ideas with sampling-based motion planning algorithms for closed kinematic chains
[LaValle 99], has been proposed in [LaValle 00] for small molecules (ligands) under geo-
metric constraints. In this case, constraints are imposed on the relative position of atoms
in order to match a determined pharmacophore.

6.2 Molecular Modeling

6.2.1 Kinematics Inspired Model

A molecule is a set of atoms Ai partially connected by bonds. Commonly, a point desig-
nates the position of an atom and a straight-line segment the bond between two atoms.
A sequence of bonded atoms is called a molecular chain. Three parameters, usually called
internal coordinates, define the relative position of consecutive atoms in a molecular chain:

• Bond length: the distance between two consecutive (bonded) atoms Ai−1 and Ai.

• Bond angle: the angle between two consecutive bonds Ai−2-Ai−1 and Ai−1-Ai.

• Dihedral angle: for four consecutive atoms Ai−2, Ai−1, Ai and Ai+1, the dihedral
angle around the bond Ai−1-Ai is the angle formed by planes Ai−2-Ai−1-Ai and
Ai−1-Ai-Ai+1.

θi

Ai−1 Ai+1

Ai

di

Ai−2

αi−1

Figure 6.2: Molecular chain model. The mDH parameters are
directly obtained from the internal coordinates.
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The widely adopted rigid geometry assumption (see [Scott 66] as one of the first refer-
ences) considers that only dihedral angles are variable parameters. Under this assumption,
a molecule can be seen as an articulated mechanism with revolute joints whose axes corre-
spond to bonds. The model of a molecular chain can be built from the internal coordinates
using kinematic conventions. As we said in Chapter 1, we follow the modified-Denavit-
Hartenberg (mDH) convention described in [Craig 89]. A Cartesian coordinate system Fi
is attached to each atom Ai. Then the relative location of consecutive frames Fi−1 and
Fi can be defined by the homogeneous transformation matrix (1.2), where di is the bond
length, αi−1 is the supplement of the bond angle and θi is the dihedral angle as defined
above, being ai−1 = 0 (see Figure 6.2).

A molecular chain between atoms A0 and An is then modeled as a kinematic chain,
1Kn, in which joint variables correspond to dihedral angles. The conformation of the chain
is determined by the array q of the θi.

Such a kinematic modeling to molecular chains has been proposed and applied by
many scientists (e.g. [Manocha 95, Finn 98, LaValle 00]). Nevertheless, it is not the most
efficient method for updating conformations. Often, some portions of molecular models
are treated as rigid solids, peptide units for instance (see below). Then, attaching a coor-
dinate system to each atom in the molecule yields superfluous operations. A recent work
[Zhang 02] proposes a method for associating frames to rigid units, called atomgroups by
the authors. Then, the relative location of atoms in an atomgroup only requires positional
coordinates.
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=
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Figure 6.3: The elements in a protein are amino-acids connected via peptide bonds. Under
the rigid geometry assumption, the peptide units are considered planar and only angles φ
and ψ are variable.
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Particularities of Proteins

A protein is formed by one or several polypeptide chains joined together. A polypeptide
chain is a sequence of amino-acids (also called residues). The twenty amino-acids found in
proteins have a similar structure. They have a common backbone of an organic carboxylic
acid group and an amino group attached to a saturated carbon atom Cα; and a side-
chain (marked as R in Figure 6.3) specific to each particular amino-acid. Side-chains have
very different structure, and normally they also involve rotational bonds. Consecutive
amino-acids in the polypeptide chain are held together by chemical bonds between the
carboxy group of the one and the amino group of the other. The resulting C-N bond has
a double-bond character making it particularly rigid. It is called a peptide bond. Under
the rigid geometry assumption, the whole arrangement of the four C,O,N,H atoms as well
as the two attached carbons Cα in a peptide unit is considered planar, i.e. the peptide
bond is fixed with ω = 0 or π 2. Thus, the protein backbone, formed by the enchainment
of amino-acid’s backbones, only rotates around N-Cα bounds (angle φ) and Cα-C bounds
(angle ψ). With a finest modeling, peptide bond angles ω can slightly variate. Figure 6.3
illustrates the structure of two-peptide-unit segment.

The kinematic model of a protein is then composed of a set of chains: the main-chain
(the backbone) and the side-chains, which are built upon it. The conformation can be
specified by an array:

q = {qbkb, qsch1 , . . . , qschn}

where qbkb is the backbone conformation and qschi is the conformation of each side-chain.

6.2.2 Van der Waals Model

The VdW model consists of a representation of the molecule by the union of solid spheres
associated with atoms. A VdW radius is assigned to each atom type. This geometric model
of the molecule is the simplest and most ordinary space-filling diagram [Edelsbrunner 98].
In molecular models treated by our approach, such spheres are the mobile bodies of the
articulated polypeptide segment and the static obstacles corresponding to the rest of the
atoms in the molecule, which compose what we call the environment. The left image in
Figure 6.1 corresponds to the VdW model of amylosucrase.

From an energetic point of view, the sum of the VdW radii of two atoms represents the
equilibrium distance of the electromagnetic interaction between them. This interaction is
strongly repulsive in close proximity and weakly attractive for an intermediate range of
distances. Distances between non-bonded atoms that are substantially shorter than the
sum of their VdW radii are impossible.

The controversy when using such models concerns the choice of the VdW radii. Differ-
2When ω = π (like in Figure 6.3), the peptide unit is in form trans. This is the normal form found in

proteins. The form cis (with ω = 0) seldom appears in peptide units involving proline.
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ent equilibrium distances are obtained from the different proposed equations of the VdW
forces. Besides, such distances are associated with pairs of atoms, and thus a certain
amount of ambiguity is introduced when determining values for individual atoms. Several
slightly different tables of the VdW radii are available in literature (see [Bondi 64] for
example).

Even more ambiguous can result the choice of the limiting contact distance between
non-bonded atoms. This distance is obviously shorter than the sum of the VdW radii.
Several tables of such distances are also available. In [Ramachandran 68] for example, au-
thors propose normal limits and extreme limits for various inter-atomic contacts obtained
from an analysis of a number of examples of crystal structures.

For our experiments, we model molecules using a percentage (usually 70%) of the VdW
radii proposed in [Bondi 64]. This volume reduction is not only justified by the mentioned
energetically possible penetrations between VdW spheres, but also by a relaxation of
constraints imposed by the rigid geometry assumption. Collisions between such reduced
VdW spheres must be avoided if they are separated by more than three bonds. This
condition must be satisfied between the atoms of the articulated segment and between
these atoms and the static atoms of the rest of the molecule.

6.3 Conformational Sampling

Algorithm 6.1 computes a random conformation of a polypeptide segment (the protein
loop) achieving loop closure and clash avoidance constraints on the 3D model. First,
the backbone conformation qbkb is generated by the algorithm SingleLoop RLG (Algo-
rithm 3.1). We explain particularities of the treatment of protein models with RLG in
Section 6.3.1. The nbkb conf conformations returned by SingleLoop RLG are then tested
for clashes of backbone atoms between themselves and with atoms in the environment. For
each feasible conformation of the backbone, random conformations of the side-chains are
tested. These chains are built iteratively until all of them are free of clashes. Section 6.3.2
explains the process.

6.3.1 Backbone Conformation

General explanations of the algorithm SingleLoop RLG (see Section 3.2) stay for the
application to a molecular chain model. Active and passive joint variables are chosen as
consecutive dihedral angles in the backbone. For a polypeptide backbone model under
the rigid geometry assumption, only dihedral angles φ an ψ are variable. The passive
subchain, which has to involve 6 degrees of freedom, is then composed of the backbone
of three residues. Although the passive subchain can be placed anywhere in the closed
kinematic chain, in this case, it seems more suitable to place it in the middle. Next we
comment particular considerations concerning the two main functions in the algorithm
SingleLoop RLG: Sample qa and Compute qp.
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Algorithm 6.1: Random Loop Conformation

input : the loop A, the rest of the protein B
output : the conformations q[nsol]
begin

qbkb[nbkb conf ]← SingleLoop RLG(A.bkb);
nsol ← 0;
for i = 1 to nbkb conf do

if not ClashCheck(qbkb(i),A.bkb,B) then
if qsch ← GenerateSideChains(qbkb(i),A,B) then

nsol ← nsol + 1;
q(nsol)← CompoundConf(A, qbkb(i), qsch);

if nsol = 0 then return Failure;
end

Sample qa : As we explained in Section 3.2.3, the crux of the RLG algorithm is to com-
pute the bounding volumes RWS used for estimating the closure range of joint variables.
We proposed a simple general procedure for obtaining the spherical shell dimension rext
and rint, corresponding to me maximum and minimum extension of the kinematic chain.
This procedure is also appropriated for a polypeptide backbone. Particularities in the
geometry of this chain allow to simplify some operations. Indeed, for segments containing
more than three residues (the size of the passive subchain) rint can be simply considered
zero without decreasing the performance of the technique. Then, it only remains to obtain
rext. We choose frames Fc, where the loop is broken, as the frames attached to atoms. The
maximum distance between the extreme atoms of a segment of polypeptide backbone 3 is
often obtained for a conformation with all the dihedral angles at π. We call this length
rπ. However, this assumption is not always true, in particular if a slight rotation around
peptide bonds is allowed. Thus, rπ is an accurate approximated value that we can use as
r̃ext. The upper bound of the maximum r̂ext, required for guaranteeing completeness, can
be obtained as the sum of the distances between consecutive Cα atoms (i.e. the length of
peptide units). Obviously, when the chain begins or ends with a fragment of peptide unit
(i.e. only one or two of the three concerned atoms in the backbone are contained in the
chain), the length of this portion is added. Then, we can sample rext from a distribution
between rπ and r̂ext.

This approximated method to obtain rext is not dependent on a particular kind of
geometry of peptide units. It can be applied to standard models or to structures acquired
from the Protein Data Bank (PDB) 4. Figure 6.4 illustrates the application to backbone
segments with standard Pauling-Corey geometry [Pauling 60].

3Without proline. This case, studied apart, is not detailed here.
4PDB web site: http://www.rcsb.org/pdb
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Figure 6.4: Maximum extension of polypeptide backbone with Pauling-Corey geometry.

Compute qp : The kinematic model of the three-residue backbone corresponding to the
passive subchain in our approach can be seen as a 6R manipulator of general geometry.
The inverse kinematics problem for such a type of articulated mechanism has received the
most attention in Robot Kinematics. Some authors have called it “the Mount Everest of
Kinematics” [Roth 94]. The first attempt to solve this problem was made by Pieper in
the 60’s [Pieper 68]. Today, a variety of computationally efficient solutions are available
[Nielsen 97].

We apply an algebraic elimination method to solve the general 6R inverse kinematics
problem. Like many of related methods, it is inspired by the works of Lee and Liang
[Lee 88b, Lee 88a]. The principle of this solution is described in [Renaud 00] 5. The
elimination of variables starts in a similar way to that in related works (e.g. [Raghavan 89,
Manocha 94]). However, Renaud goes further in the elimination process, arriving at an
8×8 quadratic polynomial matrix in one variable instead of the 12×12 matrix in the
referred methods. The problem can then be treated as a generalized eigenvalue problem
(as previously proposed in [Manocha 94]), for which efficient and robust solutions are
available [Kwakernaak 94]. Another important advantage of the method in relation to all
previous approaches is that it requires a minimum number of divisions in the elimination
process. In particular, divisions by zero are avoided in order to guarantee robustness.

5The author is currently working on an extended version with full technique details.
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6.3.2 Side-Chain Conformation

The function GenerateSideChains builds the conformation of the side-chains upon
a feasible backbone conformation. Random conformations are generated (by randomly
sampling the the side-chain dihedral angles) and tested until one without forbidden over-
lappings is found. A progressive construction is carried out. Instead of rebuilding all the
side-chains when the collision test is positive, only the conformation of a side-chain which
clashes is resampled. The resampling and collision detection process is performed follow-
ing an arbitrary order of the side-chains, intending to prevent a privileged conformational
sampling. When two side-chains collide together, but self-clashes or clashes with the back-
bone and the environment do not exist, only one of them is resampled. The process is
iterated a certain number of times before returning that a clash-free conformation of the
side-chains cannot be found.

In our current implementation of the approach, clashes in a sampled conformation are
checked by a generic collision detection algorithm [van Geem 01a], which operates well
within geometrically complex 3D scenes.

6.4 Conformational Space Exploration

Sampling-based motion planning techniques explained in Chapter 3 can be applied to
explore the subset of loop conformations satisfying closure and clash avoidance constraints.
Such conformations correspond to the subset Cfree in our formulation (see Chapter 1). In
protein models, Cfree is very reduced with relation to C. The restricted free space between
spheres of the VdW model makes feasible motions very constrained. Thus, the RRT
approach is more suitable for this application.

The starting point qroot for the search can be a randomly sampled feasible conforma-
tion (e.g. generated by the technique explained in Section 1.3) or a known conformation
(e.g. acquired from the PDB). Since C maybe composed of several disjoint manifolds and
collision-free portions of each manifold can be also disjoint, the RRT algorithm can explore
only a connected region in Cfree. If the aim is to explore the whole subset, then several
starting points are required. An algorithm combining RRT and PRM techniques could be
devised to achieve the exploration of the whole sub-space.

Note that the improvements of RRT-based algorithm we mentioned in Section 3.4.2
are particularly important for the current application. On the one hand, estimating the
coverage of the explored manifold is necessary in order to determine a stop condition. On
the other, limiting the number of nodes in the search tree while ensuring a good coverage
increases the search speed and yields a data structure easier to handle.
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Exploration with Flexible Geometry

Considering fixed values for bond lengths, bond angles and double bond torsion angles
is a well accepted assumption that reduces the complexity of the structural analysis of
molecules. However, it implies a severe restriction for conformational space exploration
[Bruccoleri 85]. The rigid geometry assumption can be relaxed by allowing a slight varia-
tion of these parameters within given intervals. Handling these new variables is not a hard
problem for our exploration algorithm, proceeding as follows. To generate a conformation
qrand, parameters di, αi and ωj of the molecular model (see Section 6.2) are first randomly
sampled within the defined intervals. Then, the approach explained in Section 1.3 can be
used. In the incremental variation of the selected conformation qnear toward qrand, the
new parameters are treated like the rest of the active variables (i.e. they are handled by
the steering method).

6.5 First Results: Loop 7 Motions of Amylosucrase from Neis-
seria Polysaccharea

Amylosucrase (AS) is a glucansucrase that catalyzes the synthesis of an amylose-like poly-
mer from sucrose. In the Carbohydrate-Active enZYme database (CAZy) 6, this enzyme
is classified in family 13 of glucoside-hydrolases (GH), which mainly contains starch con-
verting enzymes (hydrolases or transglycosidases). Remarkably, this enzyme is the only
polymerase acting on sucrose substrate reported in this family, all the other glucansucrases
being gathered in GH family 70. Which structural features are involved in AS specificity
is an important fundamental question. Indeed, the structural similarity of AS to family 13
enzymes is high. The 3D structure reveals an organization in 5 domains [Skov 01]. Three
of them are commonly found in family 13: a catalytic (β/α)8 barrel domain, a B domain
between β-strand 3 and α-helix 3 (loop 3) and a C terminal Greek key domain. Two addi-
tional domains are found in AS only: a helical N-terminal domain and a domain termed B’
formed by an extended loop between β-strand 7 and α-helix 7. Domain B’ partially covers
the active site located at the bottom of a pocket and is mainly responsible for this typical
architecture. Recently, co-crystallization of AS with maltoheptaose revealed the presence
of two maltoheptaose binding sites, the first one (OB1) in the main access channel to the
active site and a second one (OB2) at the surface of domain B’. Soaking AS crystals with
sucrose also revealed the presence of a second sucrose binding site (SB2) different from the
active site initially identified [Skov 02]. The comparison of the various structures obtained
suggests that the motion of a 17-residue fragment of domain B’, starting at residue Gly433

and ending at residue Gly449, consecutive to oligosaccharide binding, could facilitate su-
crose translocation from SB2 to the active site. In the following part, this fragment will be
called loop 7. This loop could play a pivotal role responsible for the structural change and
the polymerase activity. In this context, molecular simulation of loop 7 motion appears

6CAZy web site: http://afmb.cnrs-mrs.fr/∼cazy/CAZY/index.htm
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Figure 6.5: Loop 7 in amylosucrase from Neisseria polysaccha-
rea and important residues in our study.

to be crucial to gain new insight into AS structure-function relationships.

Figure 6.5 shows location of loop 7 in the crystallographic structure of AS. This figure
also indicates the location of the residues we mention in the next paragraphs. The model
for our tests was created from the PDB file containing this structure (PDB ID: 1G5A),
considering loop 7 as an articulated mechanism and the rest of the atoms as static ele-
ments. Atoms were modeled with 70% of their VdW radii. Images on the left in Figure 6.6
represent the articulated VdW model of the loop and a portion of its environment. Under
our modeling assumptions, the results of the geometric exploration showed that only slight
conformational variations of the loop are possible if the backbone integrity is maintained
and steric clashes are avoided. The image on the right in Figure 6.6.a shows the skeleton
of the articulated segment and a representation of one of the search trees computed for
this test. Nodes of the tree are graphically represented by the positions explored by the
Cα atom of Ser441, the middle residue of the loop. This result contradicts pre-supposed
significant loop fluctuations. Of course, our approach is not deterministic and therefore
we cannot guarantee that such a motion does not exist. However, after several exhaustive
tests, we can assert that the probability of its existence is very low. The average size of
the constructed trees is of 1000 nodes (without visibility-pruning). Computing one of such
trees required about 4000 iterations of the algorithm expanding the RRT (Algorithm 2.2),
and more than 20000 complete collision tests were made. The average computing time was
1 hour 7. It should be noted that computing time is mostly spent in collision detection.

7Tests were performed using a Sun Blade 100 Workstation with a 500-MHz UltraSPARC-IIe processor.
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Figure 6.6: Exploration with (a) and without (b) the side-chain of Asp231.

The generation of random conformations is very fast. For this loop, computing a con-
formation satisfying closure (including the update of all the frames and atom positions)
attached to atoms) takes less than 0.1 seconds. The conformational sampling used by the
exploration algorithm (i.e. a call to function Sample qa) demands less than 0.01 seconds
per conformation.

Several structural elements, and mainly loop 3 (residues 183-262), restrain the mobility
of loop 7. Residue Asp231 was identified as the main “geometric lock”, responsible for
the loop 7 enclosing. The side-chain of this residue was removed from the model in
order to simulate a possible conformational change of this chain or even of the whole
loop 3. The conformational exploration in this case showed that the loop is able to
effectuate the expected motions keeping geometric constraints. The Cα atom of Ser441

can be dislocated more than 9Å from its crystallographic position. Several tests were
performed in order to see if the random nature of the approach could have an important
influence on the nature of the results. Similar motions were obtained for all of them.
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Figure 6.7: Simulated conformational gating of loop 7 in amylosucrase.

The loop moves almost as a rigid body with hinges at the extreme residues. Considerable
variations of the backbone dihedral angles are concentrated in residues 433-436 and 446-
449. Figure 6.6.b shows the representation of the search tree constructed in one of these
tests. The images in Figure 6.7 correspond to four frames of the conformational change
encoded in the RRT. Therefore, an “opening/closing” mechanism similar to other enzymes
(e.g. [Derreumaux 98, Osborne 01]), termed conformational gating, is suspected for this
loop. The role that residue Asp231 could play in this mechanism is being investigated.
Directed mutagenesis experiments, replacing residue Asp231 by glycine, are currently being
developed.

6.6 Discussion and Prospects

We have proposed techniques that provide powerful filters for conformational search meth-
ods. Our solution of the loop closing problem is complete (in the sense that no possible
solution is missed), computationally efficient and its performance is only slightly affected
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by the length of the molecular chain. Concerning the avoidance of steric clashes, collision
detection algorithms combined with smart sampling techniques constitute an attractive
alternative to methods producing optimization-based rearrangements.

Current improvements of the technique are related to clash avoidance. We are devel-
oping a tailored collision detection algorithm for molecular models which should perform
faster tests. In addition, a different progressive process for building backbone conforma-
tions is going to be tried. In contrast to the described sampling approach, clashes between
the backbone atoms and the static environment will be checked after each step of the RLG
algorithm.

In our current implementation, values for all variable dihedral angles in the side-chains
and the backbone are randomly sampled in the interval (−π, π]. As in other related
techniques, our approach could handle information of the statistically preferred values of
these angles (e.g. from Ramachandran plots by residue type). Using this information,
many local steric clashes should be implicitly avoided.

Concerning the exploration technique, we are working on improved RRT-based algo-
rithms (commented in Section 3.4.2). The visibility-pruning aims to resolve drawbacks of
this approach, and preliminary results seem promising. We are also working on a stop
condition for the algorithm depending on a estimation of the coverage.

Our algorithms treat conformations of a molecular segment in a static environment.
The extension of these algorithms to handle the flexibility of side-chains in this environ-
ment could be done without difficulty. Handling several loops which share the same region
of the space (e.g. antibody hypervariable loops [Bruccoleri 88]) is an interesting extension
we expect to develop.

First results of the application of our robotic approach to molecular models show
the potential of this technique. A fast geometric process can help to find the answer to
important biochemical questions such as: which are the crucial residues in the biochemical
reaction ? and what is the nature of conformational changes ?

Although our next goal is to improve this geometrically constrained exploration, the fi-
nal aim is to incorporate the energetic analysis into the incremental search techniques. An
energy function can easily be integrated into sampling-based motion planning algorithms.
Indeed, impressive results have been obtained by conformational search methods inspired
by these techniques applied to computer assisted drug design [Finn 98, LaValle 00], pro-
tein folding [Apaydin 02, Amato 02] and ligand-protein docking [Apaydin 01, Bayazit 01].
Given an energy function, geometrically feasible conformations generated by our approach
could be evaluated and labeled, and then only the subset of the conformational space
Cfeas below a certain energetic limit should be explored.
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We have presented an extended formulation of the motion planning problem under kine-
matic loop closure constraints and we have introduced a framework for the application of
sampling-based algorithms on it. The use of sampling-based planners to solve this problem
is strongly justified since no practical method is available yet to obtain a representation
of the configuration-space of general closed-chain mechanisms. The guidelines and tech-
niques that we have provided are general, independent of a particular implementation. In
addition, we have given details on how to extend PRM-based and RRT-based algorithms
to treat closed kinematic chains. The results obtained when solving difficult problems
with these extended planners demonstrate the efficacy of the approach.

The algorithms that we have presented aim to be general tools, with application in
many different domains. In the second part of this thesis we have discussed the application
to the domains that we have already investigated. However, there are many other areas
whose techniques should greatly benefit from the integration of our algorithms.

Our work on parallel mechanisms represents the first effective application of sampling-
based motion planning algorithms to this kind of articulated structures. The generality
of our approach is demonstrated by the complexity of the systems that it is able to treat,
such as the model of the Logabex-LX4 (Figure 4.7), whose configuration-space is a 25-
dimensional variety embedded in a 97-dimensional manifold. The same approach allows
to solve difficult coordinated manipulation problems, such as the “robotized” version of
the piano mover’s problem (Figure 1), that remained unsolved.

The extended motion planning algorithms that we have explained have been inte-
grated within a novel manipulation planning approach. The clever idea is to explore the
connectivity of the subset where the manipulation sub-paths meet via a virtual closed-
chain mechanism consisting of the robot together with the movable object placed at a
stable position. Our manipulation planner automatically generates, among continuous
sets, the grasps and the intermediate placements of the movable object required to solve
complicated problems. It is the first general manipulation planner with this capability.

We have developed applications out of the field of Robotics. Motion planning tech-
niques can be used as new tools that can help to solve important open problems in Com-
putational Biology. The algorithms that we have presented can act as efficient filters for
conformational search methods by making a geometric treatment of some strong energetic
constraints. Techniques for predicting protein structures and protein interactions could
greatly benefit from the integration of our geometric algorithms.
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Future Research

Several points remain for future research. Some of them concern the RLG sampling
algorithm. RLG has provided good results in all our experiments. Nevertheless, a deeper
analytical work is necessary. The difficulty of this work arises from the great diversity
of mechanical systems that should be studied in order to determine general properties.
Because of the conservativeness of the approximations handled in the sampling process, the
capacity of RLG to sample the whole configuration-space seems reasonable. However, we
still have to work on a formal analysis of the technique. A characterization of the efficiency
of RLG and the properties of samples (e.g. uniformity) depending on the accuracy of the
bounds used by the algorithm also remains to be done.

The implemented version of RLG uses pseudo-random sequences to generate samples.
The drawback of using such random samples within motion planning algorithms is that the
performance of these algorithms is difficult to characterize. New forms of sampling that
allow an easier analysis and control of algorithms must be investigated. Quasi-random se-
quences or multi-resolution grids, proposed in recent articles [Branicky 01, Lindemann 03,
LaValle 03b], seems to be an interesting way to follow. The use of these other sampling
methods within RLG should be studied in the future.

Another subject that requires future work concerns singularities. General techniques
permitting to globally identify subsets of singular configurations should be a perfect com-
plement to our algorithms. When the goal is to explore the connectivity of the whole
configuration-space, they could allow to establish connections between disjoint subsets of
regular configurations. For many practical applications (e.g. trajectory planning of paral-
lel robots), they could allow to avoid paths passing through singularities. Unfortunately,
as far as we know, such general global techniques are not available. Existing approaches
are either local or dedicated to particular mechanisms (e.g. [Gosselin 90b, Alizade 85]).
A general methodology for the treatment of singularities within sampling-based motion
planning algorithms remains an open topic.

Recent interval methods [Merlet 01, Porta 03] appear to be another matter to study
for the improvement of motion planning techniques for closed-chain mechanisms. Interval
methods provide a complete approximated representation of the variety of the config-
urations satisfying loop closure equations. They compute a set of boxes that contain
the continuum of solutions. Such a representation is very suitable for the application of
sampling-based motion planning algorithms. Although the applicability of interval meth-
ods stays still limited by the number of variables that they can handle, future developments
seem promising.

Concerning the applications, following the way that we have started on the develop-
ment of algorithms for the conformational analysis of protein loops evokes a big interest.
The first goal to attain is to get efficient algorithms that have some kind of guaranty
(e.g. probabilistic or resolution completeness) to capture the whole geometrically feasible
subset of the conformational space of one loop. Then, the aim will be to extend these
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algorithms to several loops in the same protein. The final goal is to handle several pro-
teins that interact while changing the conformation of loops on their surfaces. Although
the principle for the efficacy of our approach is to stay in a geometric formulation, the
use of simplified energetic potentials should be also studied. These energies could allow
to consider important constraints for the conformational analysis that cannot be treated
geometrically.

Another application with great demand in the present is graphic animation. The gen-
eration of realistic motions for human-like characters, requires further investigation on the
combination of motion planning algorithms and other techniques, such as motion capture
[Pettre 02]. Complex planners that consider closure/contact constraints or manipulation
constraints must be devised for treating several characters able to interact with each other.
Based on the approaches presented in this thesis, more sophisticated motion planning and
manipulation planning algorithms could be developed for such multi-character systems,
suitable for the integration of particular constraints that produce realistic motions.

Finally, in the fields of Robotics and virtual prototyping, another application of our
algorithms would be to compute motions of objects in contact. Existing approaches for
contact motion planning (e.g. [Ji 01]) do not consider the constraints (such as collision
avoidance, workspace limits or singularities) imposed by the manipulator that handles the
mobile object. Simultaneously considering contact constraints and these other motion con-
straints can be made via a virtual closed-chain mechanism, consisting of the mobile object
and the manipulator. Constraints imposed in the motion of this composed mechanism in
order to maintain a determined class of contact can be expressed like kinematic loop clo-
sure constraints. The techniques that we have presented, combined with other techniques
to identify classes of contacts (e.g. [Xiao 01]), could solve this kind of problems.





Bibliography
[Agarwal 98] P. Agarwal, L.E. Kavraki & M. Mason. Robotics: The algorithmic

perspective. WAFR1998. A.K. Peters, 1998.

[Ahuactzin 98] J.M. Ahuactzin, K. Gupta & E. Mazer. Manipulation Planning for
Redundant Robots: A Practical Approach. International Journal
of Robotics Research, vol. 17(7), pages 731–747, 1998.

[Ahuactzin 99] J.M. Ahuactzin & K. Gupta. The Kinematic Roadmap: A Mo-
tion Planning Based Approach for Inverse Kinematics of Redun-
dant Robots. IEEE Transactions on Robotics and Automation,
vol. 15(4), pages 653–669, 1999.

[Akinc 03] M. Akinc, K.E. Bekris, B.Y. Chen, A.M. Ladd, E. Plaku & L.E.
Kavraki. Probabilistic Roadmaps of Trees for Parallel Compu-
tation of Multiple Query Roadmaps. Proc. 11th Int. Symp. on
Robotics Research, 2003. In press.
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[Buchberger 82] B. Buchberger. Gröbner Bases: An Algorithmic Method in Poly-
nomial Ideal Theory. In N. K.Bose, editor, Recent Trends in Multi-
dimensional Systems Theory, pages 184–229. D. Reidel Publishing
Company, 1982.

[Burdick 88] J.W. Burdick. Kinematic Analysis and Design of Redundant Robot
Manipulators. PhD thesis, Stanford University, 1988.

[Burdick 89] J.W. Burdick. On the Inverse Kinematics of Redundant Manipu-
lators: Characterization of the Self-Motion Manifold. Proc. IEEE
Int. Conf. on Robotics and Automation, pages 264–270, 1989.

[Candel 00] A. Candel & L. Conlon. Foliations 1. American Mathematical
Society, 2000.

[Canny 88] J.F. Canny. The complexity of robot motion planning. MIT Press,
1988.

[Canutescu 03] A.A. Canutescu & R.L. Dunbrack Jr. Cyclic Coordinate Descent:
A Robotics Algorithm for Protein Loop Closure. Protein Science,
vol. 12(5), pages 963–972, 2003.

[Castellet 98] A. Castellet & F. Thomas. An Algorithm for the Solution of
Inverse Kinematics Problems Based on an Interval Method. In
M. Husty & A.J. Lenarcic, editors, Advances in Robot Kinemat-
ics, pages 393–403. Kluwer Academic Publishers, 1998.



Bibliography 143

[Celaya 93] E. Celaya & C. Torras. On Finding the Set of Inverse Kinematics
Solutions for Redundant Manipulators. In J. Angeles, G. Hommel
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to Solve Manipulation Problems. Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pages 2311–2316, 2002.

[Gravot 03] F. Gravot, S. Cambon & R. Alami. aSyMov: A Planner that Deals
with Intricate Symbolic and Geometric Problems. Proc. 11th Int.
Symp. of Robotics Research, 2003. In press.



Bibliography 147

[Guibas 99] L.J. Guibas, D. Hsu & L. Zhang. H-Walk: Hierarchical Distance
Computation for Moving Convex Bodies. Proc. 15th ACM Symp.
on Computational Geometry, pages 265–273, 1999.

[Gupta 98] K. Gupta & A.P. del Pobil. Practical motion planning in robotics.
John Wiley & Sons, 1998.

[Han 01] L. Han & N.M. Amato. A Kinematics-Based Probabilistic
Roadmap Method for Closed Kinematic Chains. In B.R. Donald,
K.M. Lynch & D. Rus, editors, Algorithmic and Computational
Robotics: New Directions (WAFR2000), pages 233–245. A.K. Pe-
ters, 2001.

[Hansen 92] E.R. Hansen. Global optimization using interval analysis. Marcel
Dekker, 1992.

[Henderson 97] D.W. Henderson & D. Taimina. Differential geometry: A geomet-
ric introduction. Prentice Hall, 1997.
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Résumé :

Un système robotique agit par le mouvement dans un monde physique. La capacité de
planification de mouvement est donc une composante essentielle de l’autonomie du système
et constitue un domaine de recherche très actif en Robotique. Le champ d’application de
ces méthodes dépasse aujourd’hui le cadre de la Robotique et intéresse des domaines
aussi diversifiés que la CAO, la logistique industrielle, l’animation graphique ou la biologie
moléculaire. Dans tous ces domaines on est confronté au mouvement de systèmes com-
plexes contenant des châınes cinématiques fermées. Cette thèse traite de la planification
de mouvement pour de tels systèmes.

La première partie présente notre contribution théorique et technique. Après avoir
proposé une formulation générale de la planification de mouvement sous contrainte de fer-
meture cinématique, nous décrivons une méthode qui s’inscrit dans le cadre des techniques
d’exploration par échantillonnage. Les outils algorithmiques que nous proposons permet-
tent une application efficace de ces techniques à des systèmes mécaniques complexes.

La deuxième partie traite de l’utilisation de ces outils pour la résolution de divers
problèmes. En Robotique, nos algorithmes ont été appliqués à la synthèse de mouvement
de mécanismes parallèles, à la manipulation coordonnée ainsi qu’à la planification de tâches
de manipulation d’objets. Enfin, nous abordons une application originale à la biologie
structurale pour l’étude des capacités de mobilité de boucles protéiques. Les résultats
obtenus à travers ces applications montrent l’efficacité et la généralité de notre approche.

Summary :

A robot essentially acts by moving in a physical world. The motion planning capability
is thus a fundamental issue for the autonomy of the system, and represents a very active
area of research in Robotics. Furthermore, the interest in motion planning techniques goes
beyond robotic applications. Currently, these techniques are applied in other very different
domains such as: CAD/CAM, industrial logistics, graphic animation, or computational
Biology. Complex articulated mechanisms containing closed kinematic chains appear in
all these domains. This thesis treats motion planning for such systems.

The first part contains our theoretical and technical work. We introduce sampling-
based planners into a general formulation of the motion planning problem in presence of
kinematic closure constraints. The algorithmic tools that we propose allow an efficient
application of these techniques to complex closed-chain mechanisms.

The second part deals with the different fields of application that we have investigated.
In Robotics, our approach has been applied to motion synthesis of parallel robots, coordi-
nated manipulation and manipulation planning. Finally, we discuss an original application
to Structural Biology for the conformational analysis of protein loops. The results of our
experiments prove the efficacy and the generality of the approach.
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