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SUMMARY
Physical activity is associated with beneficial adaptations in human and rodent metabolism. We studied over
50 complex traits before and after exercise intervention inmiddle-agedmen and a panel of 100 diverse strains
of female mice. Candidate gene analyses in three brain regions, muscle, liver, heart, and adipose tissue of
mice indicate genetic drivers of clinically relevant traits, including volitional exercise volume, muscle meta-
bolism, adiposity, and hepatic lipids. Although �33% of genes differentially expressed in skeletal muscle
following the exercise intervention are similar in mice and humans independent of BMI, responsiveness of
adipose tissue to exercise-stimulated weight loss appears controlled by species and underlying genotype.
We leveraged genetic diversity to generate prediction models of metabolic trait responsiveness to volitional
activity offering a framework for advancing personalized exercise prescription. The human and mouse data
are publicly available via a user-friendly Web-based application to enhance data mining and hypothesis
development.
INTRODUCTION

Physical activity is routinely prescribed by physicians to reverse

or prevent complications associated with cardiometabolic disor-
This is an open access article und
ders.1,2 Physical activity is one of the few clinical interventions

effective at improving human health regardless of age,3 sex,4

ethnicity,5 or cardiometabolic status.6 In addition to cardiometa-

bolic health, daily physical activity also reduces cancer
Cell Reports 42, 112499, May 30, 2023 ª 2023 The Authors. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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incidence and recurrence,7 improves cognitive function and

mental health, and protects against neurological disorders.8

Cardiorespiratory fitness, as assessed by maximum oxygen up-

take (VO2max), is reproducibly improved in mouse and human in

response to increasing physical activity, and is one of the stron-

gest predictors of all-cause mortality.9–12 Considering the rise in

metabolic-related disease and overwhelming evidence support-

ing the health benefits of physical activity for mitigating chronic

disease burden, it is concerning that long-term adherence to ex-

ercise prescription by the general population remains relatively

poor.13 Thus, there is an urgent need to understand the molecu-

lar mechanisms improving metabolism as well as best practices

for exercise prescription leading to greater adherence and health

outcomes.

Because previous studies interrogating the benefits of exer-

cise have been performed predominantly on a limited number

of tissues and pathways, typically skeletal muscle and the

cardiorespiratory system, we employed an unbiased assess-

ment of whole animal trait and genome-wide responses to exer-

cise training. We performed a large-scale project where mice

from the HybridMouse Diversity Panel (HMDP) performed volun-

tary wheel running for 30 days. The HMDP is a powerful and

unique genetic resource including 100 diverse inbred strains of

mice. We have previously used the HMDP to perform molecular

dissection of complex cardiometabolic-related traits.14–17

The HMDP enables high-resolution genome-wide association

studies (GWASs) and assessment of gene-by-environment inter-

actions (e.g., physical activity). The HMDP has been particularly

powerful when integrated with multi-omics analyses. In the cur-

rent study, 12 tissues were harvested from each animal of the ex-

ercise (Exc) HMDP providing quantification of 50 distinct whole-

body and tissue-specific physiological traits. Furthermore, we

integrated our ExcHMDP data with the human Skeletal Muscle,

Myokines and Glucose Metabolism (MyoGlu) study, including

longitudinal collection of clinical traits and multiple biopsies of

tissues following acute (one session of exercise training) and

long-term (12 weeks) exercise intervention.18,19 MyoGlu and

ExcHMDP are complementary datasets where both human

and mouse tissue samples were subjected to multi-omics ana-

lyses, and these data were integrated with a variety of pheno-

typic traits.

Relationships between exercise workload and several cardio-

metabolic traits, including but not limited to tissue weights,

plasma lipid levels, and insulin sensitivity, were examined. We

performed global transcriptomic analyses of key metabolic tis-

sues including skeletal muscle, white adipose, brown adipose,

brain, liver, and heart, and integrated these data with phenotypic

trait outcomes following exercise intervention. We identified

mouse genetic factors underlying voluntary exercise behavior

and the molecular and physiologic responses to exercise

training. These findings have been made publicly available in a

user-friendly and simple Web-based application designed to

allow researchers the opportunity to visualize, compare, and

interrogate data between mouse and human. Our study high-

lights the value of cross-species, multi-tissue genetic analyses

and underscores the need for personalized prediction modeling

to improve individual exercise prescription and adherence out-

comes to mitigate disease risk.
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RESULTS

Study design
To understand the role of genetics in exercise adaptation, we

used a 100-strain panel of mice, the HMDP (Table S1A).20

HMDP strains are inbred, allowing for reliable comparisons be-

tween different HMDP studies. Thus, the HMDP is an expand-

able data resource. In our study, termed the exercise (Exc)

HMDP, mice from each strain were randomly divided into two

groups: exercise trained (TRN) or sedentary (SED) (Table

S1A). Mice were allowed to exercise using an in-cage running

wheel for 30 days, a sufficient time to induce exercise training

adaptations.21–23 Following 30 d of exercise intervention,

wheels were locked and mice were euthanized 30 h later to

avoid the confounding effects of the last exercise bout.24

Mice were fasted during the final 6 h of the 30-h recovery period

from the last exercise bout, to ensure a post-absorptive state.

We examined the translational relevance of our studies in

mice by integrating our findings with a longitudinal exercise

intervention study including aerobic exercise as well as

strength training, clinical parameters, and molecular measure-

ments in human subjects. The MyoGlu study included 26 previ-

ously sedentary Norwegian men.18,19 The biopsy schedule

allowed for the examination of tissue transcript response to

acute (45 min of cycling, 70% VO2 max) and long-term exercise

intervention (12 weeks, 4 3 60-min weekly sessions including

strength and endurance training). An overview of the study

design is provided in Figure S1A.

Genetic regulation of voluntary wheel running
We observed substantial strain dependent variation in the

mean volitional daily running distance in TRN ExcHMDP

mice (5.94 ± 3.43 km; Figure 1A), consistent with rodent exer-

cise volume observed in other training studies.25,26 In addition

to comparisons of running distance, running pattern could

also affect the adaptation to daily activity. Thus, we deter-

mined the average running speed (revolutions/s) and percent-

age time running over each 24-h period. Running speed and

time were strongly correlated variables (R2 = 0.54). The herita-

bility of running distance, corresponding to the fraction of

variance explained by genetics, was 0.68 ± 0.05 for the

ExcHMDP.27,28

We performed a GWAS that revealed several significant loci

(Figures 1B and 1C; Table S1B and S1C). As would be pre-

dicted, these data suggest that running distance is a poly-

genic trait. Polygenic traits can be assessed by examining

the cumulative effect of separate single-nucleotide polymor-

phisms (SNPs).29 A genome-wide polygenic score was

computed by summing the effect of each SNP from the

GWAS of running distance (Figures 1B–1D and S2). Regard-

less of the computational method, as few as 100 SNPs were

significantly associated with running distance and genome-

wide polygenic score.

Although it is well documented that VO2 max, an index of ex-

ercise capacity,30 is largely regulated by the cardiorespiratory

system,31–34 and volitional activity is arguably controlled by the

CNS,35,36 we questioned whether prolonged voluntary wheel

running could also be regulated by exercise capacity of the



Figure 1. The impact of genetic variation and central regulators of voluntary exercise

Female mice from the Hybrid Mouse Diversity Panel (HMDP) were trained (TRN) using in-cage running wheels or remained sedentary (SED) for 30 days.

Transcriptomics data from the MyoGlu study of normal-weight and overweight individuals subjected to both acute and long-term endurance exercise were

integrated for subsequent comparative analyses and made publicly available in a Shiny Web application.

(A) Average daily running distance (km), dashed line indicates average.

(B) GWAS for average daily running distance, solid line indicates significance threshold.

(C) Genome-wide polygenic score for running distance per day (km) of strains stratified by quartile; *p < 0.05, ***p < 0.001, ****p < 0.0001. Only using SNPs with

between r2 < 0.6 and GWAS p < 0.01. Dashed line indicates overall average.

(D) Correlation of average running speed (revolutions/s) with percentage time running (% of 24-h period); solid blue line indicates least-squares regression line.

Dashed lines indicate axis strain average.

(E) Venn diagram showing overlap of candidate gene analysis for average daily running vs. previously published HMDP of RNA sequencing in hippocampus,

hypothalamus, and striatum. Correlations were considered significant at FDR < 0.05.
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periphery. Mean running distance per day from the ExcHMDP

was correlated with heart phenotypes from a prior sex- and

age-matched HMDP.37 Of the nearly 30 heart phenotypes,

none significantly correlated with running distance (p > 0.05; Fig-

ure S3A). We also conducted candidate gene identification anal-

ysis and found no candidate genes in cardiac tissue central in the

regulation of daily running distance (false discovery rate [FDR]
>0.05). These data suggest that voluntary wheel running dis-

tance is predominantly regulated by cardiac-independent fac-

tors in Mus musculus.

Because published findings suggest that ambulatory move-

ment is driven by the CNS,38 we performed candidate gene iden-

tification analysis on three brain regions from prior age-matched

mouse panels.39,40 Several potential candidate genes were
Cell Reports 42, 112499, May 30, 2023 3



Figure 2. Trait heritability and the effect of

genetic architecture on exercise adapta-

tions

(A) Heritability estimates of each trait for sedentary

(blue) and exercise trained (green).

(B) Top QTLs from GWAS of each trait in sedentary

(blue) and exercise-trained (green) animals. Chro-

mosome location of QTL indicated above bar.

Dashed lines indicate significance threshold

(�log10(p value)).

(C) The log 2-fold change of traits across all strains

relative to the sedentary group. *p < 0.05,

***p < 0.001, ****p < 0.0001.
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identified in the three brain regions (FDR < 0.05; Figure 1E;

Table S1B). The hypothalamus possessed the highest number

of candidate genes (n = 81), followed by striatum (n = 56) and hip-

pocampus (n = 41). Several candidate genes were shared be-

tween all three brain regions (n = 8; Figures 1E and 1F). Thus,

our findings suggest that voluntary wheel running is significantly

controlled by all three brain regions studied: hypothalamus,

striatum, and hippocampus.

Because the hypothalamus possessed the highest number of

candidate genes regulating voluntary wheel running, hypotha-

lamic single-cell RNA sequencing was performed on a separate

cohort of sedentary and trained C57BL/6J mice that engaged in

the same exercise protocol as the ExcHMDP animals. Seven-

teen distinct cell populations were identified in the hypothalamus

(Figures S4A and S4C). Differential gene expression analysis

within each cell population revealed significant differences in

transcript abundance between the two groups, TRN vs. SED

(FDR < 0.05; Figure S4B). The gene mt-Rnr2, encoding mito-

chondrial 16S rRNA, Humanin, was significantly increased in
4 Cell Reports 42, 112499, May 30, 2023
nearly all cell types. Recent research has

linked Humanin expression to exercise in-

tensity and aging-related diseases,

including Alzheimer’s.41–43

Leveraging genetic variation to
predict physiological traits
outcomes in response to exercise
A primary goal of the ExcHMDP was to

examine the role of genetics in controlling

physiological responses to exercise inter-

vention.We calculated SNP heritability for

each group (SED vs. TRN) for 50 physio-

logical traits. SNP heritability was similar

for most, but not all, traits between

groups. Thus, group-specific GWAS was

performed (Figure 2A; Table S1C),

revealing unique as well as conserved

loci for each trait in SED vs. TRN

(p < 4.1 3 10�6; Figure 3B; Table S1D).

The majority of traits showed group-spe-

cific quantitative trait loci (QTLs), indi-

cating the presence of a QTL in one group

but not the other. Of note, a specific 3-Mb

region onChr17 had aQTL for seven traits
among both groups. These examples highlight a distinct physi-

ology that is genetically regulated independent of exercise

training status.

In response to exercise, the majority of traits were significantly

different between TRN vs. SED (p < 0.05; Figure 2C). Exercise

reduced liver and plasma lipids, adipose tissue mass, and blood

glucose concentration, but increased heart, liver, and kidney

mass. Because of the significant inter-strain variation in running

distance, we determined whether running distance affected spe-

cific trait outcomes. If the correlation between SED and TRN for a

trait is unchanged when distance is added as a covariate, then

the trait response is largely independent of running distance.

All correlations remained significant when running distance

was added as a covariate (Table S1E). We then determined the

mouse strain by group interaction. We observed that 85% of

physiological traits have a significant interaction betweenmouse

strain and group (SED vs. TRN) indicating a gene 3 exercise

effect after adjustment for multiple comparisons (p < 0.05;

Tables S1E and S1F).



Figure 3. The effects of exercise on physiological trait outcomes

(A and B) Fold change heatmap of each trait by strain (A, ExcHMDP) or group (B, MyoGlu). Positive or negative values indicate increase or decrease in exercise-

trainedmice or after exercise intervention in humans. Cumulative effect of exercise onmetabolic traits with corresponding improved (green) or diminished (yellow)

regions and distance run by mice per day plotted along the top. Dashed lines indicate average of variable.
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Considering the differences in heritability estimates and

phenotypic trait outcomes between the two groups, an unbiased

principal-component analysis (PCA) was performed, revealing a

significant difference between the groups, SED vs. TRN

(p < 0.001; Figure S5A). Strains displayed a variable response

to exercise independent of running distance. Similar to the
ExcHMDP, MyoGlu subjects also displayed a variable response

to exercise, although, in general, cumulative group differences

(post exercise vs. pre-exercise) from the PCA analyses were sta-

tistically significant (p < 0.01; Figure S5B; Tables S1G–S1J).

These findings highlight the importance of genetic architecture

underlying exercise-induced adaptation.
Cell Reports 42, 112499, May 30, 2023 5
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Next, we determined the correlation structure among traits

within a group (SED vs. TRN) from the ExcHMDP to identify

salient trait-trait relationships. As expected, related traits

showed strong within-group correlations (p < 0.01; Figure S5C).

Daily running distance displayed significant correlations with

traits that were also the most significantly different between

groups (p < 0.01). Traits displaying the largest change in correla-

tion structure were the most significantly different between the

two groups, SED vs. TRN.

All assessed traits for ExcHMDP and MyoGlu studies are pre-

sented as a heatmap (Figures 3A and 3B). Because metabolic

health is typically evaluated using multiple clinical parameters,

we generated an index to reflect the cumulative metabolic effect

of exercise in mice and humans. This metabolic index increased

in 81% of strains following training (Figure 3A) but did not corre-

late with daily running distance (p > 0.05, R2 = 0.01), substantiat-

ing the notion that genetic architecture, in large part, drives phys-

iological adaptation to exercise. Similar to rodents, themetabolic

index was elevated in 90% of human subjects following exercise

training intervention (Figure 3B). Leveraging genetic diversity by

studying a 100-strain mouse panel as well as human subjects

discordant for metabolic health and fitness allowed us to deter-

mine the importance of genetics vs. training volume in driving

physiological responsiveness to daily activity.44

Molecular responses to exercise in skeletal muscle
We explored whether exercise-responsive gene signatures in

skeletal muscle were influenced by BMI for both acute and

longer-term exercise intervention in previously sedentary men.

In both normal-weight and overweight men of the MyoGlu trial,

we identified sets of genes adapting in coordinated fashion

following acute and chronic exercise (FDR < 0.05; Figure 4A;

Table S1F). Acute exercise-responsive genes showed at least

one of the following patterns: (1) sustained change following ex-

ercise that persisted 2 h post, (2) change immediately following

exercise and returning to baseline 2 h post, or (3) change after

the 2-h exercise recovery period only. Early-response genes re-

flected inflammatory and immune processes (e.g., IL-4 and IL-

13), whereas late-response genes were enriched for transcripts

associated with apoptosis and the unfolded protein response.

Transcripts decreasing in expression in response to acute

exercise reflected gene silencing, chromatin folding, and tran-

scriptional or translational regulation. We observed substantial

overlap between normal-weight and overweight men within all

acute exercise-responsive gene sets identified (average overlap

of differentially expressed genes [DEGs] between groups = 46%;

Figures S6A–S6F).
Figure 4. The impact of short-term and long-term exercise on transcri

(A) Gene pattern identification from skeletal muscle of MyoGlu. Top two rows are

column indicates transcripts with sustained increase or decrease. Middle column

only. Right column indicates transcripts increasing or decreasing 2 h after acute ex

line indicates fold change median for gene set. Shaded region around line indica

each box indicates 12-week exercise intervention.

(B and C) Venn diagram showing the overlap among groups for (B) DEGs or (C) G

group.

(D) KDA of DEG colored by group. Key driver genes are enlarged within circles with

term for each shaded region are indicated.
Moreover, we studied the long-term effects of exercise inter-

vention on transcript expression in skeletal muscle of men in

the MyoGlu trial. We identified transcripts changing after long-

term exercise that were not significantly altered by acute exer-

cise (described above) for both normal-weight and overweight

men (FDR < 0.05; Figures S7A and S7D). Long-term exercise-

responsive transcript signatures displayed less overlap between

groups (normal weight vs. overweight) compared with acute ex-

ercise-responding transcript sets (average overlap of DEGs be-

tween groups = 16%; Figures S6G and S6H; Tables S1F–S1G).

In normal-weight men, exercise increased transcripts associ-

ated with processes related to the immune system and inflam-

mation (FDR < 0.05, Figure 6B). Transcripts with decreased

expression in response to exercise intervention for normal-

weight men were enriched for mRNA regulation, protein assem-

bly, andpost-translationalmodification (FDR<0.05; Figure S7C).

In overweight men, the response was markedly different: tran-

scripts increased in expression were enriched for mitochondrial

phenotypes and fatty acid metabolism (FDR < 0.05; Figure S7E).

Transcripts related to glycolysis and gluconeogenesis were

reduced in muscle expression among overweight men (Fig-

ure S7F). Increases in transcripts enriched for nervous system

development, extracellular matrix, and angiogenesis were

observed in both groups, whereas transcripts associated with

DNA repair, organelle protein transport, transcriptional pro-

cesses, and macroautophagy were reduced in both groups

following exercise intervention.

Similar to overweight men, mice from the ExcHMDP showed

an enrichment for metabolic processes including fatty acid

b-oxidation, pyruvate metabolism, mitochondrial membrane

transport, and electron transport (FDR < 0.05; Figure S8).

Approximately 33% of transcripts significantly changed in mice

were also changed in humans following long-term exercise

training (FDR < 0.05; Figure 4B). These DEGs transcending spe-

cies and biological sex were significantly enriched for b-oxida-

tion, mitochondrial membrane transport, purine ribonucleotide

metabolism, carbohydratemetabolism, and oxidative phosphor-

ylation (FDR < 0.05; Figure 4C; Tables S1H and S1I).

Next we identified putative regulatory key driver genes in skel-

etal muscle samples obtained from the ExcHMDP and MyoGlu

participants.45,46 Briefly, key driver analysis (KDA) identifies

gene hubs by overlaying DEGs onto previously generated gene

regulatory networks. KDA ofmuscle adaptation to exercise inter-

vention identified Myoz2 and Esrrb in the mouse, SSC5D and

SRPX2 in normal-weight men, and APLN and ABLIM3 in over-

weight men (FDR < 0.05; Figure 4D). In both normal and over-

weight men, key driver gene networks were associated with
pt response and key drivers of physiological adaptation

normal weight and bottom two rows reflect data from overweight subjects. Left

indicates transcripts increasing or decreasing immediately after acute exercise

ercise cessation. TopGO term and gene set size indicated within. Dark colored

tes interquartile range of fold changes for gene set. Gray shaded region within

ene Ontology (GO) terms. MyoGlu are post baseline vs. pre-baseline for each

the corresponding regulated genes within surrounding shaded region. TopGO

Cell Reports 42, 112499, May 30, 2023 7
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inflammatory signaling and extracellular matrix, whereas mouse

key driver gene networks were related to mitochondrial pro-

cesses and muscle contraction.

Molecular responses to exercise in adipose tissue
Long-term exercise significantly reduced adipose tissue mass in

humans andmice (Figures 2C, 3A, and 3B). To identify molecular

transducers of this physiological adaptation to daily activity, we

performed transcriptomics on gonadal white adipose tissue

(gWAT) from the ExcHMDP and subcutaneous white adipose tis-

sue (scWAT) from MyoGlu subjects. ExcHMDP gWAT gene

expression was enriched for mitochondrial and lipid metabolism

(FDR < 0.05; Figure 5A). Differentially expressed transcripts were

associated with acetyl-CoA and pyruvate transport, cholesterol

metabolism, tricarboxylic acid (TCA) cycle, and purine nucleo-

side metabolism (FDR < 0.05; Figure 5D). For overweight men,

several lysosomal enrichment terms in addition to ERK1/2

signaling, blood vessel formation, and leukocyte activation

emerged (FDR < 0.05; Figures 5C and 5F). Transcripts signifi-

cantly changed by exercise intervention in normal-weight men

were enriched for IL-1 signaling, amino acid, and ketone meta-

bolism, as well as transcriptional regulation (FDR < 0.05;

Figures 5B and 5E). Integrated analysis of transcript expression

and enrichment between mice and humans revealed few DEG

and Gene Ontology (GO) terms overlapping between species,

a finding in contrast to skeletal muscle displaying high inter-spe-

cies DEG and GO term concordance (Figure 5G; Table S1I). KDA

was performed to identify potential regulatory transcripts for the

exercise response in white adipose. Both normal-weight and

overweight men displayed key drivers involved in immune and

inflammatory responses, whereas mouse key drivers included

cholesterol and triglyceride metabolism, and the TCA cycle (Fig-

ure 5H). We connected the exercise-induced changes in both

mRNA expression and adipose tissue mass by performing

candidate gene identification analysis. Seven transcripts were

predicted to regulate adipose tissue weight loss during exercise

intervention, includingClic4, Frmd4a,H2-Ob,Mill1,Prxl2a,Snx9,

and Tomm5 (FDR < 0.05; Figure S9A).

GWASperformed on gWAT from theExcHMDP revealed differ-

ences in associated loci between groups, SED vs. TRN, suggest-

ing different mechanisms of genetic regulation or adipose mass

as a consequence of exercise training (Figure 2B). Next, GWAS

was performed to interrogate the genetic architecture underlying

the within-strain difference in gWAT mass between SED and

TRN. No loci reached statistical significance (p > 4.13 10�6; Fig-

ure S9B). We then calculated a genome-wide polygenic score for

each strain from this specific GWAS. Using�400 SNPs, we iden-
Figure 5. The impact of long-term exercise on white adipose tissue tra

(A) Volcano plot of transcript expression in gonadal white adipose tissue across a

are color coded with certain functional groups emphasized.

(B and C) Volcano plot of gene expression from subcutaneous white adipose tis

nificant transcripts (FDR < 0.05) are color coded.

(D–F) Gene enrichment analysis of DEGs from the (D) exercise HMDP, (E) MyoGlu

are displayed (FDR < 0.05).

(G) Venn diagram showing the overlap among groups for DEG or GO terms.

(H) KDA of DEGs colored by group. Key driver genes are enlarged in diamonds an

GO term for each shaded region is indicated.
tified a strong correlation between the genome-wide polygenic

score and the difference in gWAT mass (p < 0.01, R2 = 0.52;

Figure S9C). This relationship was consistent irrespective of the

method employed for determination of genome-wide polygenic

score. These findings suggest a strong interaction between ge-

netics and exercise for adipose tissue weight loss during training

intervention (Figure S9). Considering that the difference in adi-

pose tissuemass following training (gWAT delta) did not correlate

significantly with daily running distance in the ExcHMDP

(p > 0.05, R2 = 0.04; Figure S9D), a further and more robust

dissection of the interaction between genetics and exercise, as

well as biological sex, in the control of adipose tissue weight

loss is warranted.

Molecular responses to exercise in liver
The impact of long-term exercise on liver is understudied and

less well appreciated compared with other metabolic tissues

responsible for the mechanical work of physical activity.47–49

The ExcHMDP showed differences in hepatic physiological

and molecular phenotypes (Figure 2C). Transcriptomic analysis

of liver showed fewer DEGs compared with skeletal muscle

and gWAT (FDR < 0.05; Figures 6A and S12A). Enrichment anal-

ysis of DEGs in female mouse liver following training were related

to mitosis, cell division, cell cycle, and cytokinesis (FDR < 0.05;

Figure 6B). Nearly 60% of all hepatic enrichment terms were

associated with mitosis and cell cycle. KDA of the liver transcrip-

tome consistently identified transcripts associated with mitotic

processes such as Mki67, a known regulator of chromosomes

during mitosis and a marker of cell proliferation (FDR < 0.05; Fig-

ure 6C). Candidate gene analysis for regulators of liver lipids and

hallmarks of non-alcohol fatty liver disease revealed 10 gene

candidates for the five liver lipids (p < 0.01; Figure 6D).

Molecular response to exercise in heart
Exercise reproducibly improves cardiovascular function.50,51

Because heart weight was increased in TRN vs. SED animals

(increased in 85% of HMDP strains; Figure 2C), we conducted

cardiac transcriptomics. Similar to the liver, the heart showed

relatively few DEGs compared with skeletal muscle and gWAT

for SED vs. TRN mice (FDR < 0.05; Figure S11A). Enrichment

analysis of DEGs displayed several inflammatory and immune

processes (leukocyte regulation, macrophage activation, and

TNFa and other cytokine products), calcium signaling and regu-

lation, muscle growth and development, and angiogenesis

(FDR < 0.05; Figure S11B). These biological processes overlap

with those identified in skeletal muscle. Candidate gene identifi-

cation analyses of exercise-induced cardiac hypertrophy
nscripts and key driver genes

ll female strains relative to the sedentary group. Significant genes (FDR < 0.05)

sue in normal-weight and overweight humans relative to baseline values. Sig-

normal weight, and (F) MyoGlu overweight. Only significantly enriched groups

d the corresponding regulated genes within surrounding shaded regions. Top
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Figure 6. The impact of long-term exercise on liver transcripts and key driver genes

(A) Volcano plot of hepatic transcripts across all strains following exercise training relative to sedentary. Significant transcripts (FDR < 0.05) are colored yellow.

(B) Gene enrichment analysis of DEGs from liver samples of the ExcHMDP. Only significantly enriched groups are displayed (FDR < 0.05).

(C) KDA of DEGs colored by group. Key driver genes are enlarged within diamonds and corresponding regulated genes are within surrounding shaded regions.

Top GO term for each shaded region is indicated.

(D) Candidate gene analysis (ovals) for liver lipid traits (diamonds).
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identified five potential regulatory transcripts: IL31ra, Fam167b,

Tafa5, Crip3, and Nanos1 (p < 0.01; Figure S11C).

Molecular responses to exercise in brown adipose
tissue
Brown adipose tissue (BAT) has received increasing attention in

the literature, especially with respect to its role in energy expen-

diture.52–54 We observed a small but significant increase in BAT

mass following training in the ExcHMDP (p < 0.05; Figure 2C).

The increase in BAT mass prompted us to investigate the effect

of exercise on the BAT transcriptome. Unexpectedly, BAT had

the most DEG of all tissues assessed (FDR < 0.05;

Figures S12A and S13A). Downregulated BAT transcripts

following exercise training were significantly enriched for several

RNA regulatory processes, including poly(A) tail shortening,

splicing, RNA polymerase II transcription, and histone H4 acety-
10 Cell Reports 42, 112499, May 30, 2023
lation (FDR < 0.05; Figure S12B). BAT transcripts upregulated

following exercise training were significantly enriched for meta-

bolic processes including pyruvate metabolism, the mevalonate

pathway, glycolysis, pentose phosphate pathway, cholesterol

biosynthesis, gluconeogenesis, mitochondrial biogenesis, fatty

acid metabolism, and glycogen metabolism (FDR < 0.05; Fig-

ure S12C). Considering the noted species and biological sex dif-

ferences described in the literature regarding the role of BAT in

the regulation of energy expenditure and its involvement inmeta-

bolic adaptation to exercise training, additional comparative

studies are needed.55

Integrated analysis and Web application
A primary goal of our research was to improve understanding of

the integrated physiological responses to exercise. Thus, we

compared DEGs and GO enrichment categories between
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tissues within the ExcHMDP. Skeletal muscle, and brown and

white adipose tissue were most similar (Figures S13A and

S13B). Although heart and liver were different from all other tis-

sues. Only four transcripts (Slc25a1, Acly, Ccn1, and Dusp1)

were differentially expressed between SED and TRN in all tissues

except liver (Table S1M).

We reasoned that exercise likely elicits harmonized tissue re-

sponses throughout the body to coordinate metabolic respon-

siveness. Thus, it is possible that gene programs are synchro-

nized between tissues during exercise by changes in cell

communication. To gain insight into coordinated tissue re-

sponses, we interrogated inter- and intra-tissue relationships be-

tween gene modules (p < 0.01; Figure S13C). We identified 20

modules that possessed at least one significant inter-tissue cor-

relation. Furthermore, we identified certain modules residing at

the nexus of multiple inter-tissue correlations. The presence of

inter-tissue module connections suggests a secreted factor-

mediated pattern of communication, a topic currently under

investigation by our research team.

Similar to our analysis of physiological traits (Figure S5A), we

performed an unbiased PCA using the transcriptomes of five tis-

sues from the ExcHMDP (Figure S13D). These analyses showed

clustering by strain rather than group (SED vs. TRN). However,

when interrogating the top 500 DEGs from each tissue (the

average number of DEGs in a tissue), a significant separation

by group (exercised vs. sedentary) was observed (p < 0.001; Fig-

ure S13E). These findings reflect the existence of a conserved

exercise program masked by exercise unresponsive strain-

and tissue-dependent transcripts.

The overarching goal of the ExcHMDP was to develop an

expandable, user-friendly, and open-access resource for the

scientific community. All transcriptomic data from mice and vi-

sual representation of tissue transcripts from humans are pub-

licly available at https://exchmdpmg.medsch.ucla.edu/app/.

This Web site application enables side-by-side comparisons of

expression and DEGs between tissues, species, exercise

groups, and exercise time points (Figures 7A and 7B) and was

designed for ease of data mining to advance hypothesis gener-

ation by the research community.

DISCUSSION

Combining the power of genetics, multi-omics, deep phenotyp-

ing, and data integration, we provide species-specific, as well

as species-conserved, pathways associatedwith exercise adap-

tations including (1) phenotypic responses to exercise for physio-

logically relevant traits; (2) tissue-specificmolecular responses to

exercise in skeletal muscle, white adipose tissue, BAT, liver, and

heart; as well as (3) adaptations as a consequence of interactions

between exerciseworkloadandgenetic variation (Figure 7C). The

integrationof phenotypic andmolecular data identified regulatory

genes for whole-organism and tissue-specific phenotypic effects

of exercise (e.g., adipose tissue mass reduction). Bioinformatic

analyses led to the identification of putative regulators of volun-

tary physical activity, most strongly controlled by the hypothala-

mus. Finally, data have been made publicly available in a Web-

based application allowing for hypothesis development and

exploration (https://exchmdpmg.medsch.ucla.edu; Figures 7A
and 7B). This Web application provides opportunity for users to

compare different datasets between species, tissues, exercise

groups, and exercise time points. This Web application is

expandable andwill be utilized as a study repository as additional

HMDP data become available.

The major goal of this research was to improve understanding

of the effects of genetic architecture onmetabolic tissue adapta-

tion to long-term physical activity. Our findings in mouse and hu-

mans substantiate known physiological outcomes of exercise

(e.g., reductions in adipose mass and circulating lipids, and in-

creases in lean mass and insulin sensitivity).56–60 We also pro-

vide evidence supporting the impact of exercise on relatively

understudied tissues and traits (e.g., liver, spleen, and kidney ad-

aptations). Genetic investigation of metabolic traits revealed that

most QTLs were not shared between TRN and SED. This sug-

gests exercise-specific regulatory mechanisms for phenotypic

traits and a transition of physiological status from sedentary to

exercise trained. Group-specific QTLs have been observed

in previous HMDP studies where interventions to induce trait

outcomes reflective of disease pathobiology were studied.37

Moreover, in translation to humans, exercise-specific QTLs

may provide a conserved resilience when non-specific stress

is imposed compared with untrained individuals, as previously

proposed.61,62

In addition to group outcomes, another major finding of our

work relates to individual phenotypic responses to exercise in

both humans and mice (Figures 7C, S5A, S5B, S13D, and

S13E). For example, strains MRL/MpJ, BALB/cJ, and BXD152/

RwwJ were similar in body mass and running wheel distance,

speed, and duration. However, in contrast to BALB/cJ and

MRL/MpJ strains, in which exercise contributed minimally to

metabolic health outcomes, BXD152/RwwJ mice improved

markedly in the aggregate metabolic health index following

training. In the MyoGlu trial, where exercise intervention was

tightly controlled, one normal-weight individual experienced a

reduction in insulin sensitivity (assessed by the gold-standard

method hyperinsulinemic-euglycemic clamp) and liver fat,

whereas a second normal-weight individual showed improve-

ment in insulin sensitivity. Although the existence of a true exer-

cise non-responder is contended,63 our findings reflect a differ-

ential effect of exercise on metabolic health underpinned by

genotype.28 Our findings corroborate similar observations of

prior gene-environment interaction studies.17,45 This point is

further emphasized by examining two genetically similar strains,

BXD56/RwwJ and BXD102/RwwJ, where both strains exhibited

similar beneficial effects of exercise training, despite running 0.9

and 11.6 km per night, respectively. How physical workload af-

fects the multi-ome to produce unique signaling and communi-

cation nodes requires further dissection. In an effort to advance

precision medicine, methodologies to predict individual meta-

bolic responsiveness to exercise or development of algorithms

to derive a genome-wide polygenic score will advance the disci-

pline of personalized exercise prescription.

Transcriptomic profiling of the liver following long-term exercise

revealed that �60% of GO terms derived from differentially ex-

pressed transcripts were associated with mitosis and the cell cy-

cle. Moreover, KDA of liver transcriptomics identified hub genes

involved in the cell cycle. Two hepatic modules enriched for cell
Cell Reports 42, 112499, May 30, 2023 11
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Figure 7. Overview of Shiny Web application and summary of findings.

(A) Screen shot of the Web application showing dot plots of transcriptomics data from BAT, gWAT, heart, liver, and skeletal muscle (SkM) of sedentary vs.

exercised (trained) mice.

(B) Screen shot of time variable comparisons for human muscle transcriptomic findings in table format (left) and volcano plot (right). The website enables users to

browse, mine, as well as download transcriptomics data from mice and humans.

(C–F) Summary of the main findings divided into four broad categories: (C–F) volitional exercise, (D) genotype-specific exercise response, (E) physiological

responses to exercise intervention, and (F) molecular adaptations to repeated physical activity.

12 Cell Reports 42, 112499, May 30, 2023

Resource
ll

OPEN ACCESS



Resource
ll

OPEN ACCESS
cycle and mitosis genes were identified. Liver mass was signifi-

cantly increased in TRN vs. SED animals despite reductions in

lipid content.64 Although the increase in tissue weight following

exercise was initially thought to be a consequence of hepatic

glycogen supercompensation, as previously described,65,66 our

findings suggest liver hyperplasia. Although we cannot rule out

an increase in non-parenchymal cells following training, our

observation of an increase in traditionally quiescent hepatocytes

post exercise training requires further interrogation. One potential

explanation could be a physiological adaptation by the liver to

meet the increased metabolic demand of physical activity.

Considering recent findings showing that exercise prevents and

or delays hepatocarcinogenesis independent of weight loss, our

observations may be of important clinical relevance.67,68

We utilized the ExcHMDP to better understand how genetics

control transcriptome remodeling in BAT following long-term ex-

ercise. Although there are conflicting findings with respect to ex-

ercise adaptation in beige adipose tissue and BAT, we found that

mouse BAT, over all other tissues studied, was increased in

mass and displayed the greatest number of DEGs in response

to exercise intervention. Considering the evidence that exercise

activates BAT in rodents,52,53 but not humans,54,55 a more

nuanced understanding of species differences as well as

responsiveness to environmental cues (e.g., ambient tempera-

ture and diet) requires greater consideration.52–54,69,70 Our tran-

scriptomic analysis of BAT suggests an increase in glucose and

fatty acidmetabolismwith concomitant downregulation of genes

associated with transcription suppression. Our findings support

that continued research investigating the role of BAT during ex-

ercise, as well as its contribution to systemic metabolism and

disease prevention, is warranted.

Previous studies have interrogated factors driving volitional

physical activity in both mice and humans with emphasis on

the genetic architecture underlying this trait.25,26,71–73 Advanced

intercross mice and human epidemiological observations re-

vealed a moderate to high heritability for physical activity and

dozens of QTLs. QTLmapping revealed five significant and eight

suggestive QTLs for body weight (Chr 4, 7.54 Mb; confidence in-

terval [CI] 3.32–10.34 Mb; Bwq14), body composition, wheel

running duration (Chr 16, 33.2 Mb; CI 32.5–38.3 Mb), body

weight change in response to exercise (1: Chr 6, 77.7Mb; CI

72.2–83.4 Mb and 2: Chr 6, 42.8 Mb; CI 39.4–48.1 Mb), and

food intake during exercise (Chr 12, 85.1 Mb; CI 82.9–89.0

Mb). The intrinsic motivation to participate in leisure time phys-

ical activity is driven by an interaction between genetic, environ-

mental, and socioeconomic factors.74 Our findings confirm a

68% heritability for daily running distance in female mice, one

of the highest heritability values of all traits assessed in the

ExcHMDP. We integrated these data with previous HMDPs

and identified a strong connection between daily running dis-

tance and gene expression in specific regions of the CNS, spe-

cifically the hypothalamus. The connection between daily

running distance and the CNS transcriptome was more signifi-

cant than its connection to the cardiovascular system, lean mus-

cle mass, or specific circulating hormones and metabolites. The

hypothalamus has previously been associated with volitional

physical activity in both humans and rodents.75,76 Our bio-

informatic analyses identified 81 candidate genes in hypothala-
mus associated with daily running distance. Although the hypo-

thalamus may be a central regulator of daily running distance in

the mouse, our findings suggest additional inputs from other

brain regions, including the hippocampus and striatum, as well

as peripheral tissues. Continued investigation into the central

and integrative signals from the periphery that drive voluntary

physical activity and improved strategies promoting lifelong ex-

ercise prescription adherence are warranted.

In conclusion, this researchmakes publicly available a longitu-

dinal, cross-species, and integrated analysis of adaptations to

acute and long-term exercise intervention with specific

emphasis on genetic regulators of metabolic health. Importantly,

we showed that there are exercise-conserved gene signatures

and metabolic trait adaptations from mouse to human. More-

over, certain metabolic traits are highly influenced by genetic ar-

chitecture, and thus, despite performance of amatched exercise

workload, trait adaptation can be genotype specific. Thus, iden-

tification of genetic drivers underlying metabolic health adapta-

tion to exercise intervention in diverse human populations is crit-

ical. The overarching goal is that the vast data repository we

generated will serve as a resource to be leveraged for target vali-

dation and novel hypothesis generation as well as to drive

personalized exercise prescription to patently reduce metabolic

disease burden.

Limitations of the study
Limitations of our work should be considered when interpreting

our findings, and these are primarily related to the scale of the

ExcHMDP project. Specifically, because we studied 100 mouse

strains over numerous months, we were unable to ascertain and

synchronize mouse estrous cycles. Our position is that the

inherent genetic differences between strains and the metabolic

effects of exercise training far outweigh the impact of estradiol

cyclicity on complex trait outcomes observed for the

100-strain mouse panel. To understand volitional exercise drive,

the mouse panel performed wheel running; however, not all

strains performed equal volumes of exercise. Many prior rodent

studies controlled workload by using a treadmill and forced ac-

tivity typically motivated by a stressful stimulus (e.g., electric

shock). Differences in exercise modality and stress response

to activity will likely preclude inter-study comparisons with the

ExcHMDP, as marked differences in hormone and tissue re-

sponses associated with forced vs. volitional activity are

known.77 Forced running during early adolescence in well-stud-

ied Sprague-Dawley rats showed a sexual dimorphism in weight

and body volume as well as relative adipose tissue mass

following training.78 These findings in female rats in the context

of forced wheel running are not supported by our observations

in mice engaging in volitional activity. Published work suggests

that sex-dependent effects of exercise on body composition

might vary depending on animal age, strain,79 and exercise

mode (i.e., voluntary vs. forced).4,80,81 We intend to interrogate

differences between volitional and forced activity in rats and

mice in addition to the time course of transcript alteration in

the post-acute and chronic exercise-trained conditions in collab-

oration with theMoTrPAC consortium. The primary advantage of

our work using theHMDP is that we can compare gene-gene and

gene-trait relationships across a variety of mouse panel studies
Cell Reports 42, 112499, May 30, 2023 13
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to contrast the effects of exercise with dietary or drug interven-

tion by sex.

Because most metabolic tissues include a heterogeneous mix

of cell types, and because exercise alters the cell composition of

most tissues, our bulk RNA sequencing approach limits our

insight of exercise-induced adaptation in cell composition within

tissues.82,83 Findings from single-cell and single-nuclei

sequencing, as well as spatial transcriptomic studies, will help

resolve questions related to cell composition within the tran-

scriptional landscape of a tissue.

Last, translational relevance is always a concern when

comparing rodents with humans. We compared men with female

mice employing different modes of exercise, which presumably

affected trait outcomes and reduced the number of DEGs over-

lapping between species after training. In light of these limitations,

we consider the differentially expressed transcripts that were

identified between SED vs. TRN mice and humans to be robust,

conserved, and selectively exercise-responsive transcripts inde-

pendent of sex, species, andmode of activity. In ongoing studies,

we are more rigorously exploring the impact of sex on the tran-

scriptomic response to exercise within and between species. It

is likely that our current work missed sex-specific adaptations

that may ultimately lead to new hypotheses about drivers of voli-

tional activity as well as hormone- and sex chromosome-specific

drivers of exercise-induced health benefit.
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Lead contact
Additional information and requests for resources and reagents should be directed to Andrea L. Hevener (ahevener@mednet.

ucla.edu).

Materials availability
This study did not generate new reagents.

Data and code availability
d RNAsequencing data can be found at https://exchmdpmg.medsch.ucla.edu/app/ aswell as online data repositories ExcHMDP

data GEO:GSE230102, GSE64770, GSE16780, GSE121098, and MyoGlu data GSE227419.

d The original code has been deposited at Zenodo is publicly available as of the date of publication. DOI is listed in the key re-

sources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects MyoGlu
Briefly, the MyoGlu study18 included healthy sedentary (<1 bout of exercise per week the previous year) men (40–65 years) divided

into two groups stratified by BMI: overweight (BMI 29.5 ± 2.3 kg/m2) or normal weight controls (BMI 23.6 ± 2.0 kg/m2). Both groups

(n = 26) underwent combined strength and endurance training for 12 weeks, including two endurance bicycle sessions (60 min) and

twowhole body strength training sessions (60min) per week. A 45min bicycle test at 70%of VO2maxwas performed before and after

the 12-week intervention period. Skeletal muscle (vastus lateralis) and subcutaneouswhite adipose tissue biopsies were taken before

and after a 12-week of exercise intervention, 48h after the last bout of activity. Assessment time points included: baseline at rest,

baseline immediately after a 45 min exercise session, 2 h after the 45 min exercise session, at rest 12 weeks after exercise interven-

tion, immediately following another 45 min exercise session 12 weeks after exercise intervention, and 2 h after the 45 min exercise

session 12 weeks after exercise intervention. MyoGlu was a controlled clinical trial (clinicaltrials.gov: NCT01803568) and adhered to

the Declaration of Helsinki. The National Regional Committee for Medical and Health Research Ethics North, Tromsø, Norway

approved the study, with reference number: 2011/882. Written informed consent was obtained from all participants before any

study-related procedure.

Mouse strains
All studies were approved by the Institutional Animal Care and Use Committee (IACUC) and the Animal Research Committee (ARC) at

the University of California, Los Angeles (UCLA). Female mouse strains of the ExcHMDP are listed in Table S1A and were acquired

from The Jackson Laboratories (Bar Harbor, ME, USA) or through Dr. Rob Williams at the University of Tennessee Health Science

Center at 10 weeks of age. Mice were maintained on a strict 12-hr light/dark cycle (6am to 6pm) with ad libitum access to standard

rodent chow (Teklad 8604, Envigo, Indianapolis, IN, USA) and water. Sedentary mice were housed 1-4 animals per cage. Exercised

mice were individually housed with continuous access to an in cage running wheel monitored by VitalView� Activity Software (Starr

Life Sciences, Oakmont, PA, USA) for 30 days beginning training at 12 weeks of age. After 30 days, running wheels were locked be-

tween 6-9 am local time. 24h post exercise cessation, cages were replaced and chow removed from all animals 6h prior to eutha-

nasia. Animals were euthanized between 12-4 pm local time. Samples were removed in the following order: blood from the abdominal

aorta, gonadal white adipose tissue, quadriceps, inguinal white adipose tissue, heart, lungs, liver, spleen, kidney, colonic feces, hin-

dlimb (gastrocnemius-plantaris-soleus), and brown adipose tissue. Whole blood was deposited into K3 EDTA-coated tubes and

centrifuged for five minutes at 3000 G with plasma collected on ice. All samples excluding plasma and colonic feces were quickly

rinsed in sterile saline, pat-dried, weighed, and frozen in liquid nitrogen. All samples were stored at -80�C for subsequent analysis.

Daily running distance was calculated as the average running distance per day over the experiment timeframe. Average running

speed was calculated by normalizing all 15 second intervals with values > 0 relative to 1 second. Percent of time running was calcu-

lated by dividing the sum of 15 second intervals > 0 by the sum of all 15 second intervals.

METHOD DETAILS

Plasma hormone and metabolite analyses
Liver and plasma metabolite analyses

Plasma metabolites and HOMA-IR17 for humans and mice as well as liver lipids for mice only were analyzed45 using commercially

available kits as per manufacturer instructions.
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Euglycemic-hyperinsulinemic clamp studies
Euglycemic-hyperinsulinemic clamp studies were performed after an overnight fast. A fixed dose insulin (40 mU/m2 x min�1) was

infused, and glucose infusion (200 mg/mL) was adjusted to maintain euglycemia (5.0 mmol/L for 150 min).18 Insulin sensitivity is re-

ported as glucose infusion rate (GIR; mg x kg�1 x min�1) during the last 30 min of the clamp. Whole blood glucose was measured by

glucose oxidase method (YSI 2300, Yellow Springs, OH), and plasma glucose was calculated (whole blood glucose x 1.119).

Tissue trait analyses
Trait by trait correlations

Biweight midcorrelation was calculated for pairwise trait correlations within each group using the WGCNA package in R. The seden-

tary and exercised trait correlation matrix was visualized using the ‘ComplexHeatmap’ package84 in R. For trait by trait correlations

involving a group difference (sedentary subtracted from trained value for each strain, or trait delta), a random pairing method was

used. Briefly, for each strain, a sedentary mouse was randomly chosen and the value for that trait was subtracted from a randomly

chosen trained mouse. This process was continued without replacement for each group until all mice were utilized. If the sedentary

group number was greater than the trained group number, a randomly chosen trained mouse was used twice. If the sedentary group

number was less than the trained group number, a randomly chosen sedentary mouse was used twice. This enabled all mice within a

strain to be included. Where strain averages for traits were employed, this process was repeated 1000 times with the results from all

trials averaged to give a final group difference for each strain.

Heart phenotype correlations
Heart phenotypes from a previous sedentary, untreated HMDP (age matched)37 were correlated with running distance per day, as

well as trait-by-trait comparisons between sedentary vs. trained mice of the ExcHMDP.

Cumulative exercise effect: Metabolic traits
The cumulative exercise effect onmetabolic traits was calculated as follows using traits where the general exercise effect is known.85

For the ExcHMDP, the traits included muscle mass, fat mass, liver triglycerides, and plasma insulin, triglyceride, glucose, and HDL.

Heart, quadriceps, and gastrocnemius mass were added to comprisemuscle mass. Gonadal white adipose tissue and inguinal white

adipose tissue were added to comprise fat mass. The strain average was determined for each trait within a group. Next, the strain

percent change was determined for each trait. All traits were then summed giving a single final value for each strain indicated as the

cumulative exercise effect. For MyoGlu, the same process was performed. Traits included fat free mass, fat mass, liver fat, glucose

infusion rate (GIR), HDL, and plasma triglyceride (TG).

Single cell and bulk RNAsequencing and data processing
RNA Isolation, library preparation, and sequencing

Whole quadriceps, gonadal white adipose tissue, heart, brown adipose tissue, and a portion of the liver were pulverized at the tem-

perature of liquid nitrogen. Tissue was homogenized in Trizol (Invitrogen, Carlsbad, CA, USA), RNA was isolated using the RNeasy

Isolation Kit (Qiagen, Hilden, Germany), and RNA concentration and quality were assessed (RIN >7.0 used in downstream applica-

tions). Libraries were prepared using KAPA mRNA HyperPrep Kits and KAPA Dual Index Adapters (Roche, Basel, Switzerland) per

manufacturer’s instructions. A total of 800-1000 ng of RNA was used for library preparation with settings 200-300 bp and 12 PCR

cycles. The resultant libraries were tested for quality. Individual libraries were pooled and sequenced using a HiSeq 3000 or

NovaSeq 6000 S4 following in house, well established protocols by the UCLA Technology Center for Genomics and Bioinformatics

(TCGB).

Single cell RNA sequencing
Six female C57BL/6J mice were subjected to the same exercise protocol as ExcHMDP animals. Following animal euthanasia, the

hypothalamus from 3 sedentary and 3 exercise trainedmice underwent a DropSeq single cell protocol.86 The resulting genematrices

for each sample were combined yielding two groups and these were further analyzed using Seurat v2.3.4.87 The mouse brain atlas

was used to annotate cells within each cluster.88 Two marker genes were used to identify each cluster.

Heritability
SNP-heritability was calculated for mice of the ExcHMDP.15

Genome wide association analyses

Genome wide association analyses were conducted.15 Quantitative trait loci (QTLs) were considered distinct between groups if the

significant locuswasmore than 20Mb from a locus in the other group and below the suggestive significance threshold (p < 4.1x10�5).

Candidate gene identification

Candidate genes in GWAS loci were prioritized based on known biologic function or correlation in co-expression with a specific trait.

In particular, genes whose cis-regulation was correlated with the trait were considered as highly likely candidate genes.89 Briefly,

when only exercise trained animals were used, SNPs within 1 Mb (cis-acting) of a gene with a cis-eQTL (P < 1E�4) were identified.

The median of the allele-specific expression for each SNP of that gene was calculated and those values were then correlated with a
20 Cell Reports 42, 112499, May 30, 2023
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particular trait. For candidate genes identified using both sedentary and exercised animals, sedentary gene expression was sub-

tracted from trained gene expression giving the exercise-induced change in gene expression. The trait in question underwent the

same analysis where the sedentary value was subtracted from the trained value. Resulting values from the gene expression and

the trait were then used as described above in downstream applications.

Genome wide polygenic score

Genome wide association analyses were conducted.15 Quantitative trait loci (QTLs) were considered distinct between groups if the

significant locuswasmore than 20Mb from a locus in the other group and below the suggestive significance threshold (p < 4.1x10�5).

Heritability
SNP-heritability was calculated for mice of the ExcHMDP.15

QUANTIFICATION AND STATISTICAL ANALYSES

Statistical analysis of the biological data
Phenotype-phenotype correlations15 and principal component analyses were performed using the FactoMineR v2.3 and factoextra

v1.0.7 packages in R.90 Groups differences were determined using the Vegan v2.5-6 package in R. Key driver analyses were con-

ducted45,46 and the final resulting networks were visualized using Cytoscape 3.8.0.91

For the ExcHMDP and MyoGlu, raw RNAseq reads were inspected for quality using FastQC v0.11.9 (Barbraham Institute, Barbra-

ham, England). Reads were aligned and counted using kallisto v0.4592 against the Ensembl mouse transcriptome (v97) to obtain

counts and transcripts per million (TPM). Samples were analyzed for differential expression using DeSeq2 v1.28.093 and were cor-

rected using limma v3.44.194 accounting for library prep batch and sequencing flow cell lane.

Gene enrichment analysis was conducted using Pantherdb (http://pantherdb.org/). A false discovery rate (FDR) < 0.05was consid-

ered significant. Unless otherwise noted, values presented are expressed as means ± SEM. The two-sample Student’s t-test was

used to examine the difference between the two groups. All analyses were performed using R v4.0.0, and p values <0.05 were

considered statistically significant unless specifically stated. Figures were compiled andmade using Graphpad Prism v9 (San Diego,

CA, USA) or Adobe Illustrator v24.3 (San Jose, CA, USA).

ADDITIONAL RESOURCES

A publicly available interactive web browser for tissue gene expression exploration of MyoGlu and ExcHMDP datasets analyzed in

this study was created for hypothesis generation. Description: https://exchmdpmg.medsch.ucla.edu/app/. MyoGlu was a controlled

clinical trial (clinicaltrials.gov: NCT01803568) and the ethical committee statement can be found at https://link.springer.com/article/

10.1007/s00125-020-05296-0.
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