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Abstract
The present work deals with the numerical resolution of the damped wave equation. Thus,
we present various numerical explicit and implicit schemes for problems defined in one-,
two- and three-dimensional domain. In the case of one-dimensional problem, we consider,
on one hand, Dirichlet boundary value conditions and in the other hand, mixed boundary
value conditions. In the two- and three-dimensional cases, we consider only the case of
Dirichlet boundary value conditions. However, in all cases, we analyze the stability and the
truncation error of the presented schemes. Concerning the implicit schemes, we survey the
main classical numerical linear algebra algorithms and show that they can be applied suc-
cessfully to the numerical solution of the target problem, in the two- and three-dimensional
cases on sequential or multiprocessor computers. We briefly consider also the cases where,
on the one hand, the coefficients of the problem are not constant and, on the other hand,
the case where the linear problem is perturbed by a singlevalued or a multivalued diagonal
operator and we explain how to solve implicitly this type of problem on a multiprocessor.
This study is completed by numerical simulations in the case of one-dimensional prob-
lems. Finally, to study the stability of the schemes, we can either use the classical Von
Neumann method or the matricial one when the discretization matrix in space is normal. In
this case, it is necessary to have the eigenvalues of the space discretization matrices. Thus,
an appendix presents the determinination of these eigenelements in academic situations.

*Dedicated to Michela Redivo-Zaglia for her birthday and retirement and for the 65th-birthday of
Hassane Sadok.
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1 Introduction.
The damped wave equation can be used to model many phenomena in electrical engineering,
mechanical engineering and other fields. This is a second-order hyperbolic equation in time,
which in addition to the second-order derivation terms in space and time present in the wave
equation formulation, includes an additional lower-order derivation term with respect to time.
Note that this equation can be classically reduced to a system of two first-order hyperbolic
equations in time, each of which constitutes a transport or advection equation.

Generally speaking, the propagation of waves of any kind is one of the simplest and most
common phenomena with which scientists are confronted. From everyday life (propagation
of sounds, vibrations, waves, radar waves or waves produced in telecommunications) to the
scale of the universe (due to the propagation effects of electromagnetic waves or gravity)
and to that of the atom (due to spontaneous or simulated emissions and interference between
particles) it is the emission and reception of waves that constitutes our privileged means of
knowledge of the world around us.

In electrical engineering, this type of equation is known as the telegrapher equation. This
last equation is derived from Maxwell equations when studying the propagation of electro-
magnetic waves in conductors or transmission lines; in particular, it takes into account the
effects of the line resistance (R), inductance (L), conductance (G) and capacitance (C). In
the framework of Maxwell equations, when we simplify the problem to a one-dimensional
geometry with a linear conductor, we obtain two types of telegrapher equations for voltage V
and current I :

∂2V

∂x2
= LC

∂2V

∂x2
+ (RC + LG)

∂V

∂t
, (1)

∂2I

∂x2
= LC

∂2I

∂x2
+ (RC + LG)

∂I

∂t
. (2)

These equations show how voltage or current disturbances propagate along lines.
This telegrapher equation can be related to Maxwel equations. Indeed, the latter are

derived from :
- Faraday law : ∇× E ≡ curl(E) = −∂B

∂t ,
- Maxwell-Ampère law, taking into account displacement currents : ∇ × H ≡ curl(H) =
J + ∂D

∂t ,
- Gauss law for the electric field : ∇.D ≡ grad(D) = ρ,
- Gauss law for the magnetic field: ∇.B ≡ grad(B) = 0,
where E denotes the electric field, B is the magnetic induction, H is the magnetic field, J
is the current density of the source, D is the electric displacement, ρ is the volume charge
density.

By choosing a simplified model involving propagation in a single direction and combin-
ing Maxwell equations and the constitutive J = σ.E, where σ represents the surface charge
density, we can classically obtain relations similar to those of the telegrapher equations. For
example, in a conductor, inductance L and resistance R are associated with the magnetic and

2



conductive properties of the material, while capacitance C and conductance G are linked to
their dielectric properties. The following applications can be listed:
- Transmission lines (coaxial lines or cables): a conventional transmission line modeled by
the telegrapher equations can be analyzed as a distributed system of inductances and capaci-
tances. In this case, the simplified Maxwell equations give the telegrapher equations directly.
This model is used in the study of coaxial cables, two-wire lines, etc., to describe how elec-
trical signals propagate and dissipate,
- Waveguides: when considering waveguides, by neglecting certain components (such as the
longitudinal field) the telegrapher equation can be seen as an approximation of transverse
electromagnetic wave propagation in guiding structures,
- Long antennas and radio wave propagation: for antennas or long conductors subjected
to radio waves, the telegrapher equation can be used to model signal propagation along the
conductor with losses and capacitive effects.

Note that when the coefficient d = (RC+LG) is strictly positive, and when a coefficient a
associated with the value of V or I is zero, or also if d > a > 0, the above equations represent
the damped wave equation and the telegrapher equation. In fact, the positive coefficient d
represents a deceleration force proportional to the speed and models a damping term. Thus,
this term takes into account additional physical phenomena.

For equations (1) and (2) we can also use a system of two first-order hyperbolic equations,
one describing the evolution of an electric potential and the other that of the current on a power
line, these physical quantities being functions of space and time. This new model is obviously
applicable to the description of the behavior of any line, and takes into account transmission
and reflection phenomena on a transmission line, whether it is used for telegraph, telephone or
any other purpose, as well as power grid distribution lines (see [1] and [2]). However, due to
complex analytical computations, note that the numerical analysis of the resulting numerical
scheme required to the numerical resolution of the damped wave equation is not very easy.

In signal processing, the aim is often to reconstruct a degraded input signal by analyzing
the output signal. This type of subject is classically addressed by the control of a distributed
parameter system. Indeed, in certain situations, thanks to the use of a power line, the knowl-
edge of the precise physical laws of transmission and the continuous data dependencies must
be taken into account. We correct the distortion of the signal along the power line, modeled by
the telegrapher equation, which amounts to modify the input signal to correct the distortion
of the output signal (see [3]).

Advances in brain observation techniques such as Functional Magnetic Resonance Imag-
ing (or Electroencephalogram) have not enabled neuroscientists to obtain high spatial and
temporal resolution of the electrical activity of neurons in the brain. As a result, a model based
on the damped wave equation proposed by Jirsa and Haken in 1996 was able to correctly
describe the function of brain activity at each point and at any time (see [4]).

In mechanics, the coefficient of the first derivative in time present in the damped wave
equation represents the resistance of the ambient medium, typically the air in the case of
a vibrating string, which produces energy dissipation. This may be due to the fact that the
friction of solids in the fluid induces forces opposed to their displacement, the intensity of
which is proportional to their speed.

The telegraph equation is also involved in the case of isotropic small angle scattering from
the Boltzmann transport equation for charged particles for the control of thermonuclear fusion
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schemes and in biologiocal effects of radiation. Charged particles transport also plays a fun-
damental role in magnetic fusion scheme. The interaction mechanism of most concern in the
transport of energetic charged particles in plasma involves small angle scattering collisions.

Except in particular situations, the damped wave equation is difficult to solve analyti-
cally, and numerical solution are provided. However, to the best of our knowledge, there are
few contributions in the literature on the numerical solution of this equation. The aim of the
present study is therefore first to propose a catalog of numerical schemes for solving the
one-dimensional damped wave equation with both Dirichlet and mixed boundary conditions.
From these one-dimensional numerical schemes, we extend this study to the establishment
of numerical schemes for two-dimensional and three-dimensional problems only in the case
of the damped wave equation equipped with Dirichlet boundary conditions; in fact, in two-
dimensional or three-dimensional situations, taking into account other types of boundary
conditions of the mixed type on the part of the boundary is complex to consider, for the
numerical analysis of the schemes in order to be implemented. Indeed, even in the case of
simple geometry of the domain Ω where the equation is defined, the condition concerning the
normal derivative can occur on only one or several faces of the domain Ω, which would make
the presentation of the present study considerably cumbersome; in this case, the numerical
analysis of the schemes must be carried out by using numerical techniques.

In the present study, we consider first explicit numerical schemes, which allow us to cal-
culate the solution provided that a stability condition of the Courant-Friedrich-Levy type
(C.F.L.) is satisfied. The C.F.L. condition is too restrictive, as it requires very small time dis-
cretization steps, which leads to very costly computations. Indeed, to ensure stability, in the
case where the diffusion coefficient is equal to one, we are forced to take time discretiza-
tion step values of the same order as those of the space discretization step. Thus implicit
numerical schemes are also considered and shown to be unconditionally stable, allowing rel-
atively larger time steps to be chosen than those used when using explicit numerical schemes.
However the use of implicit numerical schemes requires the resolution of large sparse lin-
ear systems, the matrices defining these systems having interesting properties, i.e. symmetry,
definite positivity and strict diagonal dominance, which guarantees the invertibility of these
matrices, in addition to sparsity properties. Thus, to complete the presented study, we recall a
number of classical numerical algorithms that can be used to solve large dimensional sparse
linear systems. For both explicit and implicit numerical schemes, this paper is completed by
a study of the truncation error occurring during discretization in space and time, and by an
evaluation of the energy of the system, this property establishing a continuous dependence
on the data of the problem (i.e. the initial conditions, the second member of the problem and
the time interval in which it is defined). Hence, by admitting the existence of the solution of
the problem, the evaluation of the energy classically shows by absurdity that the solution is
unique (see [5]).

The present manuscript is divided into six sections. Sections 2 and 3 allow the estab-
lishment of numerical schemes on the one hand for the one-dimensional problem equipped
with Dirichlet boundary conditions and on the other hand for the one equipped with mixed
type boundary conditions, this latter case not being treated in the literature. In these two
sections, discretization schemes are also shown when the coefficient of the Laplacian is not
constant but also depends on the space and time variables. This type of approximation is
equally valid for two-dimensional and three-dimensional problems. Then section 4 extends
the numerical schemes established in section 2 to two-dimensional and three-dimensional
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problems, and when implicit numerical schemes are used, provides briefly an overview of
the classical algorithms that can be used to implement numerical schemes, such as sequential
relaxation algorithms, alternating directions method, which has the advantage of obtaining
low matrix bandwidths, allowing the use of efficient algorithms for solving the tridiagonal
systems resulting from the algorithm involved like the TDMA method, multigrid method,
classical or preconditioned conjugate gradient method, and finally the parallelization of the
algorithms previously mentioned and in particular the subdomain method with synchronous
or asynchronous communication between the parallel processes. Finally, we consider also
non-linear situations where, on the one hand, the linear part is perturbed by an increasing
diagonal operator and, on the other hand, the solution of the damped wave equation is sub-
ject to inequality constraints, leading to the solution of a multivalued system. Note that in
section 4, an estimated energy is also established, which in fact establishes that the solution
of the problems under consideration depends continuously of the problem data and that these
problems are therefore well-posed in the Hadamard sense. Moreover, classically these energy
estimates make it possible to show uniqueness of the solution (see [5]). Section 5 presents
simulation results limited only to the case of one-dimensional problems. Section 6 concludes
this study and suggests possible extensions. Finally, in section 7, a technical appendix on
the calculation of the eigenelements of the discretization matrices of the convection-diffusion
problem in square or cubic domains is detailed. Thus, these results are used to establish the
stability condition of the proposed numerical schemes in section 4.

2 Damped wave equation equipped with homogeneous
Dirichlet boundary conditions.

In what follows let L = 1.0 and T be two positive real numbers. Consider the following
one-dimensional damped wave equation:


µ.∂

2p(x,t)
∂t2 − θ.∂

2p(x,t)
∂x2 + µ1.

∂p(x,t)
∂t + δ.p(x, t) = ḡ(x, t) , on [0, L]× [0, T ],

p(0, t) = p(L, t) = 0 , for t ≥ 0,
p(x, 0) = p0(x) and ∂p(x,0)

∂t = p1(x) for x ∈ [0, L],

(3)

where µ, θ, µ1 are positive constants and δ ≥ 0. In the sequel, we consider the following
change of variables

c2 =
θ

µ
, d =

µ1

µ
, a =

δ

µ
, g(x, t) =

ḡ(x, t)

µ
, (4)

such that problem (3) can now be written as follows:
∂2p(x,t)

∂t2 − c2.∂
2p(x,t)
∂x2 + d.∂p(x,t)∂t + a.p(x, t) = g(x, t) , on [0, L]× [0, T ],

p(0, t) = p(L, t) = 0 , for t ≥ 0,
p(x, 0) = p0(x) and ∂p(x,0)

∂t = p1(x) for x ∈ [0, L].
(5)
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2.1 Energy inequality.
For the homogeneous problem and when a = 0, let us cite a first result of total energy
decrease.
Proposition 1 When a = 0, let us consider the homogeneous boundary value problem
associated to (5). Assume that p is a sufficiently regular solution on [0, L] × [0, T ] of the
homogeneous boundary value problem associated to (5). Then, the following energy equality

E = (

∫ L

0

|∂p
∂t

|2 dx+ c2
∫ L

0

|∂p
∂x

|2 dx) (6)

is decreasing.
Proof 1 Indeed let us multiply the homogeneous problem by ∂p

∂t and integrate with respect to
x on the interval [0, L] ; so we obtain∫ L

0

∂2p

∂t2
.
∂p

∂t
dx+

∫ L

0

(
∂p

∂t
)2 dx− c2

∫ L

0

∂2p

∂x2
.
∂p

∂t
dx = 0,

by exchanging the operators for integration in space and derivation in time, which is
permissible for regular p, and since

∫ L

0
(∂p∂t )

2 dx ≥ 0, we get:

1

2
.
d

dt
(

∫ L

0

|∂p
∂t

|2 dx)− c2
∫ L

0

∂2p

∂x2
.
∂p

∂t
dx) ≤ 0;

we can also write:∫ L

0

∂2p

∂x2
.
∂p

∂t
dx = [

∂p

∂x
.
∂p

∂t
]L0 −

∫ L

0

∂p

∂x
.
d

dx
(
∂p

∂t
) dx = −

∫ L

0

∂p

∂x
.
d

dx
(
∂p

∂t
) dx;

indeed [ ∂p∂x .
∂p
∂t ]

L
0 = 0 since p(0, t) = p(L, t) = 0 leads to ∂p(0,t)

∂t = ∂p(L,t)
∂t = 0.

Consequently, we obtain finally:

1

2
.
d

dt
(

∫ L

0

|∂p
∂t

|2 dx) + c2

2

d

dt
(

∫ L

0

|∂p
∂x

|2) dx) ≤ 0, (7)

and the derivative with respect to the time of the energy E is nonpositive, so the proof is
complete.
Remark 1 Note that:

Ec = (

∫ L

0

|∂p
∂t

|2 dx)

represents the kinetic energy of the physical system while

Eint = c2(

∫ L

0

|∂p
∂x

|2 dx)

represents the intern energy. Then, E = Ec + Eint and with no external force applied, the
total energy E is decreasing.
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Remark 2 Proposition 1 is stated when a ≡ 0. When a ̸= 0 by a similar way, i.e. by multi-
plying the homogeneous problem by ∂p

∂t and by integrating with respect to x on the interval
[0, L], we have to take into account of the term:

a.

∫ L

0

p(x, t).
∂p(x, t)

∂t
dx =

a

2

∫ L

0

∂p2(x, t)

∂t
dx =

a

2
.
d

dt
(

∫ L

0

p2(x, t) dx).

Thus, in the situation where a ̸= 0, due to the fact that once again
∫ L

0
(∂p∂t )

2 dx ≥ 0 and
according to inequality (7) the result of Proposition 1 can be extended since the term

E = (

∫ L

0

|∂p
∂t

|2 dx+ c2(

∫ L

0

|∂p
∂x

|2 dx) + a

∫ L

0

p2(x, t) dx)

is obviously decreasing; indeed the derivative of E with respect to the time is nonpositive.
When a = 0, let us consider now the situation where an external force is applied to the

system. In this cas we have the following result:
Proposition 2 When a = 0, let us consider the boundary value problem (5). Assume that p is
a sufficiently regular solution on [0, L]× [0, T ] of problem (5). Then, the following inequality
of energy holds:

Etotal(t) ≤ (Etotal(0) + Eexternalforce).e
t, (8)

where Etotal(t) is the total energy at time t defined by:

Etotal(t) =

∫ L

0

(|∂p(x, t)
∂t

|2 + c2|∂p(x, t)
∂x

|2) dx,

Etotal(0) represents the total energy at the initial time t = 0 and Eexternalforce is the energy
due to the external forces defined by

Eexternalforce =

∫ t

0

∫ L

0

g(x, t)2dx.dt.

Proposition 2 can be established by using the classic Gronvall Lemma [6].
Lemma 1 Let t→ ϕ(t) be a nonnegative regular continuous function satisfying{

ϕ(t) ≤ A+B
∫ t

0
ϕ(τ) dτ

ϕ(0) ≤ A
(9)

where A and B are two positive real numbers. Then, for all t ≥ 0 we have:

ϕ(t) ≤ A.eBt.

Proof 2 In a similar way to the proof of the Proposition 1, let us multiply equation (5) by ∂p
∂t

and integrate with respect to x on the interval [0, L]. Concerning the left member obtained in
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the homogeneous case, the previous estimate are unchanged. Thus, we obtain the following
inequality:

1

2
.
d

dt
(

∫ L

0

|∂p
∂t

|2 dx+ c2
∫ L

0

|∂p
∂x

|2 dx) ≤
∫ L

0

g.
∂p

∂t
dx ≤ 1

2
(

∫ L

0

g2dx+

∫ L

0

|∂p
∂t

|2 dx),

since γ.ξ ≤ 1
2 .(γ

2 + ξ2). Then,

d

dt
(

∫ L

0

|∂p
∂t

|2 dx+ c2
∫ L

0

|∂p
∂x

|2 dx) ≤
∫ L

0

g2dx+

∫ L

0

|∂p
∂t

|2 dx.

Let us now integrate the previous relation with respect to the time on the interval [0, t]; then
we obtain:∫ L

0

|∂p(x, t)
∂t

|2 dx + c2
∫ L

0

|∂p(x, t)
∂x

|2 dx) ≤
∫ L

0

|∂p(x, 0)
∂t

|2 dx+ c2
∫ L

0

|∂p(x, 0)
∂x

|2 dx

+

∫ t

0

∫ L

0

g2(x, t)dx.dt+

∫ t

0

∫ L

0

|∂p(x, t)
∂t

|2 dx.dt. (10)

The previous inequality does not change by adding the following positive term to the second
member c2

∫ t

0

∫ L

0
| ∂p∂x |

2 dx.dt. Hence, let

ϕ(t) =

∫ L

0

(|∂p(x, t)
∂t

|2 + c2|∂p(x, t)
∂x

|2) dx,

such that inequality (10) can be written as follows:

ϕ(t) ≤ ϕ(0) +

∫ t

0

∫ L

0

g2(x, t)dx.dt+

∫ t

0

ϕ(τ) dτ ≡ A+

∫ t

0

ϕ(τ) dτ,

where A = ϕ(0) +
∫ t

0

∫ L

0
g2(x, t)dx.dt. Then, by applying the Gronvall lemma recalled

above, we obtain:

ϕ(t) ≤ A.et = (ϕ(0) +

∫ t

0

∫ L

0

g2dx.dt).et

and the proof is complete.
Remark 3 The previous result shows a continuous dependence on initial conditions and
energy input. However, the result obtained in Proposition 2 is not as sharp as the one obtained
in the homogeneous case and presented in Proposition 1.
Remark 4 Once again, let us consider the case where a ̸= 0. In this case, according to the
result stated in Remark 2, the following inequality holds:

1

2
.
d

dt
(

∫ L

0

|∂p
∂t

|2 dx+ c2
∫ L

0

|∂p
∂x

|2 dx+ a

∫ L

0

p(x, t)2 dx) ≤ 1

2
(

∫ L

0

g2dx+

∫ L

0

|∂p
∂t

|2 dx).
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Thus, in a similar way concerning the processing of the right hand side of the previous
inequality, if we denote by:

ψ(t) =

∫ L

0

(|∂p
∂t

|2 + c2|∂p
∂x

|2 + ap2) dx,

thus, by using once again of the Gronvall lemma, we obtain the following estimation:

ψ(t) ≤ B.et = (ψ(0) +

∫ t

0

∫ L

0

g2dx.dt).et

Remark 5 The previous inequalities show that the L2([0, L]× [0, T ])−norm of the solution
is bounded as long as we consider the damped wave equation over a finite horizon [0, T ].
Remark 6 Thus, we have obtained a continuous dependence of the data occurring in the
problem. Consequently, by admitting the existence of the solution, this property shows by
means of classical absurd reasoning the unicity of the solution.

2.2 First numerical explicit scheme.
Let m be a positive integer and h = L

m+1 ; for the numerical solution of the damped wave
equation h is the spatial discretization step. Similarly let N be a positive integer and k = T

N
where here k represents the time discretization step used for the numerical solution of the
damped wave equation. The following difference equations are classically used to approxi-
mate the different derivatives. Indeed, for the second derivative with respect to the time, the
following centered finite difference scheme is classically used

∂2p(ih, nk)

∂t2
≈ pn+1

i − 2pni + pn−1
i

k2
,

while for the first derivative with respect to the time the following classical centered finite
difference scheme is also classically used:

∂p(ih, nk)

∂t
≈ pn+1

i − pn−1
i

2k
;

concerning the approximation of the second derivative with respect to the space, the following
finite difference scheme is also usually used:

∂2p(ih, nk)

∂x2
≈
pni+1 − 2pni + pni−1

h2
.

Thus, using these three previous approximation for 1 ≤ i ≤ m,n > 1, we can define an
explicite scheme for the numerical solution of the damped wave equation (5):{

pn+1
i −2.pn

i +pn−1
i

k2 + d(
pn+1
i −pn−1

i

2.k )− c2(
pn
i+1−2.pn

i +pn
i−1

h2 ) + a.pni = g(ih, nk),

pn0 = pnm+1 = 0 and p0i = p0(ih),
p1
i−p0

i

k = p1(ih).
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Let us multiply the previous relation by k2 and consider also the following change of variable:

γ =
d.k

2
, α =

c.k

h
, β = a.k2 , gni = g(ih, nk), (11)

such that the numerical scheme can be written as follows:

(γ + 1).pn+1
i = k2.gni + α2(pni+1 + pni−1) + (2− 2.α2 − β).pni + (γ − 1).pn−1

i ,

or finally {
pn+1
i = k2

γ+1 .g
n
i + α2

γ+1 .(p
n
i+1 + pni−1) +

2−2.α2−β
γ+1 .pni + γ−1

γ+1 .p
n−1
i ,

pn0 = pnm+1 = 0 and p0i = p0(ih), p
1
i = p0i + k.p1(ih).

(12)

In order to analyze this first numerical scheme, let us calculate the truncation error and
determine its numerical stability conditions.

For the previous scheme, we replace pni by p(xi, tn) in the previous relation at the point
(xi, tn) and we define the truncation error Fn

i as the difference between the first and second
members of these previous quantities as follows:

Fn
i =

p(xi, tn+1)− 2p(xi, tn) + p(xi, tn−1)

k2
− g(xi, tn)− d(

p(xi, tn+1)− p(xi, tn−1)

2k
)

− c2(
p(xi+1, tn)− 2p(xi, tn) + p(xi−1, tn)

h2
)− ap(xi, tn).

Let us consider the limited expansions of the quantities involved in Fn
i . Thus, we have:

p(xi+1, tn)− 2p(xi, tn) + p(xi−1, tn)

h2
=
∂2p(xi, tn)

∂x2
+
h2

24
(p(4)x (x̃i, tn) + p(4)x (x̄i, tn)),

where p
(4)
x denotes the fourth derivative of p with respect to x and xi−1 < x̃i <

xi and xi < x̄i < xi+1. Moreover, with similar notations for the counterpart to time
derivative approximation, we obtain:

p(xi, tn+1)− 2p(xi, tn) + p(xi, tn−1)

k2
=
∂2p(xi, tn)

∂t2
+
k2

24
(p

(4)
t (xi, t̃n) + p

(4)
t (xi, t̄n)),

p(xi, tn+1)− p(xi, tn−1)

2k
=
∂p(xi, tn)

∂t
+
k2

3
p
(3)
t (xi, tn).

Consequently, after simplification and since p(xi, tn) is solution of the considered damped
wave equation, we obtain:

Fn
i =

k2

24
(p

(4)
t (xi, t̃n)+p

(4)
t (xi, t̄n))−

dk2

3
.p

(3)
t (xi, tn)−

c2h2

24
(p(4)x (x̃i, tn)+p

(4)
x (x̄i, tn)).

10



Then taking the absolute value of each partial derivative on [0, L] × [0, T ], we obtain finally
the following estimate:

|Fn
i | ≤

k2

12
Q

(4)
t +

dk2

3
Q

(3)
t +

c2h2

12
Q(4)

x ,

where Q(4)
t denotes the maximum of the absolute value of the fourth derivative of p with

respect to t, Q(3)
t denotes also the maximum absolute value of the third derivative of p with

respect to t and accordingly for Q(4)
x . Finally, if F denotes the maximum value of |Fn

i | for all
i and n, then after appropriate majoration for n > 1, we obtain finally:

F ≤ Q(k2 + h2),

and we can conclude by stating the following result.
Proposition 3 The numerical explicit scheme (12) is consistent.
Remark 7 For n > 1 the numerical scheme (12) is of order 2 in space and time. For n = 1
this scheme is of order 1 in time and of order 2 in space.

In order to analyze the numerical stability of the numerical scheme (12), let us use the
Von Neumann method. Using the considered notations, for n > 1, we can classically write
only the homogeneous semidiscretized scheme in time as follows:

pn+1(x)− 2pn(x) + pn−1(x)

k2
− c2

pn(x+ h)− 2pn(x) + pn(x− h)

h2

+ d
pn+1(x)− pn−1(x)

2k
+ a.pn(x) = 0.

Taking the Fourier transform of the previous numerical relation, defined by:

p̂(l) =
1

2
√
2π

∫ ∞

−∞
e−jlxp(x) dx , j2 = −1,

and then satisfying:

e±jlhp̂(l) =
1

2
√
2π

∫ ∞

−∞
e−jlxp(x± h) dx,

we finally obtain:

p̂n+1(l)− 2p̂n(l) + p̂n−1(l)

k2
+d

p̂n+1(l)− p̂n−1(l)

2k
−c2 e

jlh − 2 + e−jlh

h2
p̂n(l)+a.p̂n(l) = 0.

Let us multiply by k2 and using the change of variable (11), so we obtain:

p̂n+1(l)−2p̂n(l)+p̂n−1(l)+γ(p̂n+1(l)−p̂n−1(l))−α2(ejlh−2+e−jlh)p̂n(l)+βp̂n(l) = 0.

11



Since ejlh + e−jlh = 2 cos(lh) and 2(cos(lh)− 1) = −4 sin2( lh2 ), we obtain:

p̂n+1(l) = −
2(2α2 sin2( lh2 )− 1 + β

2 )

1 + γ
p̂n(l)− 1− γ

1 + γ
p̂n−1(l)),

and since obviously p̂n(l) ≡ p̂n(l), finally it follows:

(
p̂n+1(l)
p̂n(l)

)
=

(
− 2(2α2 sin2( lh

2 )−1+ β
2 )

1+γ − 1−γ
1+γ

1 0

)(
p̂n(l)
p̂n−1(l)

)
.

Let

B =

(
− 2(2α2 sin2( lh

2 )−1+ β
2 )

1+γ − 1−γ
1+γ

1 0

)
be the amplification matrix. We know classically that a stability condition is given when the
eigenvalues of B are of modulus less than one (see [6]). The characteristic equation of B is
given by:

λ2 +
2(2α2 sin2( lh2 )− 1 + β

2 )

1 + γ
λ+

1− γ

1 + γ
= 0.

The product of the roots is equal to 1−γ
1+γ and the modulus of the two eigenvalues of B are less

than one when the sum of the two eigenvalues is less than two. This leads to:

2α2 sin2(
lh

2
)− 1 +

β

2
≤ 1 + γ.

Then, the numerical scheme is stable in the Von Neumann sense if each following inequality
are satisfied, i.e. if:

2α2 sin2(
lh

2
)− 1 ≤ 1 and

β

2
≤ γ,

which leads to
α ≤ 1 and

β

2
≤ γ,

since obviously sin2( lh2 ) ≤ 1. Returning to the initial notations of problem (5), it follows:

ck

h
≤ 1 and ak ≤ d.

The first relation corresponds to the Courant-Friedrichs-Levy condition (C.F.L.) which must
be classically also verified for the stability of numerical schemes applied for the solution of
the wave equation.

Note also that the stability condition can be obtained by using a different method. Indeed,
we consider the one-dimensional Laplace equation with homogeneous Dirichlet boundary
conditions: {

d2q(x)
∂x2 = f(x) , on [0, L],
q(0) = q(L) = 0.

12



The discretization of the previous problem by the finite difference method leads classically
to the resolution of a linear system where the discretization matrix A is symmetric and
tridiagonal; the entries ai,j of A are given by:

ai,j =

 ai,i = 2.0 for 1 ≤ i ≤ m,
ai,i±1 = −1.0,
ai,j = 0 for all (i, j) such that |i− j| > 1.

The matrix A being symmetric and consequently diagonalizable, the eigenvalues of A are
given by (see annex 7.1):

λl(A) = 4 sin2(
lπh

2
), l = 1, . . . ,m,

while the components of the associated eigenvectors are given by:

v
(l)
i (A) = sin(ilπh), i, l = 1, . . . ,m,

where, in the present situation, m is the size of A. Let us denote by Λ the diagonal matrix
constituted by the eigenvalues of A; so classically, we have:

Λ = S−1.A.S,

with S is the matrix where each column is constituted by each eigenvector.
Consider the homogeneous scheme (12) which can be written vectorially as follows:

Pn+1 =
1.0

γ + 1
(2I − α2A− βI)Pn +

γ − 1

γ + 1
Pn−1.

Let P̄n = SPn; then the previous relation can be written as follows:

P̄n+1 =
1.0

γ + 1
(2I − α2Λ− βI)P̄n +

γ − 1

γ + 1
P̄n−1.

As previously, in the Von Neumann analysis, we can write:(
P̄n+1

P̄n

)
=

(
1.0
γ+1 (2I − α2Λ− βI) γ−1

1+γ I

I 0

)(
P̄n

P̄n−1

)
.

V being an eigenvector of the matrix A, let us search P̄n of the form P̄n = λ.V, where λ is
classically the eigenvalue of the matrix:(

1.0
γ+1 (2I − α2Λ− β.I) γ−1

1+γ I

I 0

)
;

13



thus, λ satisfy the second-degree equation:

λ2 +
(4α2 sin2( lπh2 )− 2 + β)

1 + γ
λ+

1− γ

1 + γ
= 0,

and, we are now reduced to an analogous framework similar to the one used for stability
analysis studied by the Von Neumann method. Consequently, using the same calculations a
necessary stability condition is also given by:

α ≤ 1 and
β

2
≤ γ.

Since the numerical scheme is consistent and stable, we have a convergence result when the
discretization steps in time k and space h tend towards zero (see [5] [7] and [8]).
Proposition 4 The numerical scheme (12), being consistent and stable when

α ≤ 1 and
β

2
≤ γ,

is convergent when k → 0 and h→ 0.
Therefore, the previous result expresses that the stability and the consistency are a necessary
condition for convergence.
Remark 8 Let us express the stability conditions for the initial problem (3) considering the
change of variable (4). We immediately obtain the following conditions:

2

√
θ

µ

k

h
≤ 1 and δk ≤ µ1.

2.3 Second numerical explicit scheme.
For the numerical solution of problem (5), let us now consider another time-explicit numer-
ical scheme where the first derivative with respect to the time is discretized by a decentered
scheme. In this case, we have:

∂p(ih, nk)

∂t
≈ pn+1

i − pni
k

.

Thus, for 1 ≤ i ≤ m and n > 1, we can define an explicite scheme for the numerical solution
of the damped wave equation (5) as follows:{

pn+1
i −2pn

i +pn−1
i

k2 + d(
pn+1
i −pn

i

k )− c2(
pn
i+1−2pn

i +pn
i−1

h2 ) + apni = gni ,

pn0 = pnm+1 = 0 and p0i = p0(ih),
p1
i−p0

i

k = p1(ih).

Let us multiply the previous relation by k2 and consider the change of variable (11) in which
γ is replaced by:

γ̄ = dk, (13)
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such that the numerical scheme can be written as follows:

(γ̄ + 1)pn+1
i = k2gni + α2(pni+1 + pni−1) + (γ̄ + 2− 2α2 − β)pni − pn−1

i ,

and finally for 1 ≤ i ≤ m and n > 1, we obtain:{
pn+1
i = k2

γ̄+1g
n
i + α2

γ̄+1 (p
n
i+1 + pni−1) +

γ̄+2−2α2−β
γ̄+1 pni − 1

γ̄+1p
n−1
i ,

pn0 = pnm+1 = 0 and p0i = p0(ih), p
1
i = p0i + k.p1(ih).

(14)

As previously performed, let us calculate once again the truncation error and determine the
numerical stability conditions of the scheme. In this case, for the approximation of the first
derivative with respect to the time, the following relation is classically valid:

∂p(xi, tn)

∂t
=
p(xi, tn+1)− p(xi, tn)

k
+
k

2
p
(2)
t (xi, tn).

Consequently, after simplification since p(xi, tn) is solution of the considered damped wave
equation, we obtain:

Fn
i =

k2

24
(p

(4)
t (xi, t̃n) + p

(4)
t (xi, t̄n))−

dk

2
.p

(2)
t (xi, tn)−

c2h2

24
(p(4)x (x̃i, tn) + p(4)x (x̄i, tn)).

Then, by taking the absolute value of each partial derivative on [0, L] × [0, T ], we obtain
finally the following estimate:

|Fn
i | ≤

k2

12
Q

(4)
t +

dk

2
Q

(2)
t +

c2h2

12
Q(4)

x ,

where Q(2)
t denotes the maximum absolute value of the second derivative of p with respect to

t. Finally, if F denotes the maximum value of |Fn
i |, for all i and n,we obtain after appropriate

majoration:
F ≤ Q(k + h2),

and we can conclude by stating the following result:
Proposition 5 The numerical explicit scheme (14) is consistent.
Remark 9 For n ≥ 1 the numerical scheme (14) is of order 1 in time and of order 2 in space.

Let us now analyze the numerical stability of the scheme (14) by using the Von Neumann
method. For n > 1, we can write once again the homogeneous semidiscretized scheme in
time as follows:

pn+1(x)− 2pn(x) + pn−1(x)

k2
+ d

pn+1(x)− pn(x)

k
− c2

pn(x+ h)− 2pn(x) + pn(x− h)

h2

+ apn(x) = 0,

Taking the Fourier transform of the previous scheme leads to:

p̂n+1(l)− 2p̂n(l) + p̂n−1(l)

k2
+ d

p̂n+1(l)− p̂n(l)

k
− c2

ejlh − 2 + e−jlh

h2
p̂n(l) + ap̂n(l) = 0;
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by multiplying by k2 the previous relation and by using the change of variable (11) and (13),
we obtain:

p̂n+1(l)−2p̂n(l)+ p̂n−1(l)+ γ̄(p̂n+1(l)− p̂n(l))−α2(ejlh−2+e−jlh)p̂n(l)+βp̂n(l) = 0.

Since ejlh + e−jlh = 2. cos(lh) and 2.(cos(lh)− 1) = −4. sin2( l.h2 ), we have:

p̂n+1(l) =
2 + γ̄ − 4α2 sin2( l.h2 )− β

1 + γ̄
p̂n(l)− 1

1 + γ̄
p̂n−1(l)),

and finally as seen above, we obtain:(
p̂n+1(l)
p̂n(l)

)
=

(
2+γ̄−4α2 sin2( l.h

2 )−β

1+γ̄ − 1
1+γ̄

1 0

)(
p̂n(l)
p̂n−1(l)

)
,

where

B =

(
2+γ̄−4α2. sin2( l.h

2 )−β

1+γ̄ − 1
1+γ̄

1 0

)
is the amplification matrix associated to the scheme. We know that a stability condition is
given when the eigenvalues of B are of modulus less than one. The characteristic equation
associated to B is given by:

λ2 −
2 + γ̄ − 4α2 sin2( lh2 )− β

1 + γ̄
λ+

1

1 + γ̄
= 0. (15)

The product of the roots is equal to 1
1+γ̄ < 1 and the modulus of the two eigenvalues of B are

less than one when the sum of the two eigenvalues is less than two which leads to:

4α2 sin2(
lh

2
) + β ≤ 4 + 3γ̄,

since β and γ̄ are positive numbers. Then, the numerical scheme is stable in the Von Neumann
sense, if each of the following inequality are satisfied:

4α2 sin2(
lh

2
) ≤ 4 and β ≤ 3γ̄,

this leads to
α ≤ 1 and β ≤ 3γ̄,

since obviously sin2( lh2 ) ≤ 1. Returning to the initial notations of problem (5) the numerical
stability of the numerical scheme (14) is guaranteed when:

ck

h
≤ 1 and

β

3
=
ak2

3
≤ γ̄ = dk
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which, by using the initial notations defined in problem (3), leads to:

2

√
θ

µ

k

h
≤ 1 and

δk

3
≤ µ1.

Remark 10 Note that for the numerical scheme (14), we can consider a time step k greater
than the one chosen for the numerical scheme (12), in fact three times larger which is very
much appreciated. However, in this case, the precision is less good since the truncation error
is in O(k).

Note also that, once again, the stability condition can be obtained by using the matricial
method considered in subsection 2.2. Hence, by considering the vectorial formulation of the
homogeneous scheme (14),

Pn+1 =
1

γ̄ + 1
((γ̄ + 2− β)I − α2A)Pn − 1

γ̄ + 1
Pn−1,

in the eigenvector basis, the above relation can be written as follows:

P̄n+1 =
1

γ̄ + 1
((γ̄ + 2− β)I − α2Λ)P̄n − 1

γ̄ + 1
P̄n−1,

and once again, we can write:(
P̄n+1

P̄n

)
=

(
1

γ̄+1 ((γ̄ + 2− β)I − α2Λ) − 1
γ̄+1I

I 0

)(
P̄n

P̄n−1

)
.

Thus, since the eigenvalues of the matix A are given by:

λl(A) = 4 sin2(
lπh

2
), l = 1, . . . ,m,

then the eigenvalues of the amplification matrix is solution of the second-degree equation

λ2 −
(γ̄ + 2− β)− 4α2 sin2( l.π.h2 ))

γ̄ + 1
λ+

1

γ̄ + 1
= 0.

This equation is similar to the characteristic equation (15). Consequently, we can deduce
similar conditions of numerical stability.

Concerning the convergence we can conclude similar results than the one stated in
Proposition 4.
Proposition 6 When the numerical scheme (14) is consistent and stable, i.e.

α ≤ 1 and
β

3
≤ γ̄,

then it is convergent when k → 0 and h→ 0.

17



2.4 First numerical implicit scheme.
Similarly to the discretization considered in subsection 2.2 let us consider the approximation
of the first derivative with respect to the time by a centered finite difference scheme. Hence,
we consider now the following implicit time marching numerical scheme for the solution of
the damped wave equation equipped with homogeneous Dirichlet boundary conditions. Thus,
for n > 1 and 1 ≤ i ≤ m, we have:{

pn+1
i −2pn

i +pn−1
i

k2 + d(
pn+1
i −pn−1

i

2k )− c2(
pn+1
i+1 −2pn+1

i +pn+1
i−1

h2 ) + apn+1
i = g(ih, (n+ 1)k),

pn0 = pnm+1 = 0 and p0i = p0(ih),
p1
i−p0

i

k = p1(ih).
(16)

Note that the truncation error is the same as in subsection 2.2, i.e.

F ≤ Q(k2 + h2),

and we can conclude by stating the following result:
Proposition 7 The numerical implicit scheme (16) is consistent and for n > 1 and is of order
2 in space and in time.
Let us multiply relation (16) by k2 and use the change of variable (11). Thus, the studied
numerical scheme can be written as follows for n > 1 and 1 ≤ i ≤ m,

(γ + 1)pn+1
i − α2(pn+1

i+1 + pn+1
i−1 ) + 2α2pn+1

i + βpn+1
i = k2gn+1

i + 2pni + (γ − 1)pn−1
i ,

or finally for n > 1 and 1 ≤ i ≤ m, we have:{
−α2pn+1

i−1 + (γ + 2α2 + β + 1)pn+1
i − α2pn+1

i−1 = k2gn+1
i + 2pni + (γ − 1)pn−1

i ,
pn0 = pnm+1 = 0 and p0i = p0(ih), p

1
i = p0i + k.p1(ih).

(17)

Thus, at each time step, we have to solve the following linear system:

(α2A+ (γ + β + 1)I)Pn+1 = k2Gn+1 + 2Pn + (γ − 1)Pn−1. (18)

Note that, since A is symmetric positive definite, then the matrix (α2A + (γ + β + 1)I) is
also symmetric positive definite and then invertible. For the solution of such linear system we
can use the TDMA algorithm (see [9]), corresponding in fact to an adaptation of the Gauss
elimination method for tridiagonal matrices.

Let us now analyse the numerical stability of the time marching scheme (17) by the Von
Neumann method. Thus, by considering the associated homogeneous semidiscretized scheme
in time, for n > 1:

pn+1(x)− 2pn(x) + pn−1(x)

k2
+ d(

pn+1(x)− pn−1(x)

2k
) + apn+1(x)

− c2(
pn+1(x+ h)− 2pn+1(x) + pn+1(x− h)

h2
) = 0,
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written as follows:

−α2(pn+1(x+h)+pn+1(x−h))+(γ+2α2+β+1)pn+1(x) = 2pn(x)+(γ−1)pn−1(x),

the Fourier transform of the previous relation leads to:

(2α2(1− cos(lh)) + γ + β + 1)p̂n+1(l) = 2p̂n(l) + (γ − 1)p̂n−1(l),

(4α2 sin2(
lh

2
) + γ + β + 1)p̂n+1(l) = 2p̂n(l) + (γ − 1)p̂n−1(l),

then:

p̂n+1(l) =
2

(4α2 sin2( lh2 ) + γ + β + 1)
p̂n(l) +

(γ − 1)

(4α2 sin2( lh2 ) + γ + β + 1)
p̂n−1(l),

which leads to:(
p̂n+1(l)
p̂n(l)

)
=

(
2

(4α2 sin2( lh
2 )+γ+β+1)

(γ−1)

(4α2 sin2( lh
2 )+γ+β+1)

1 0

)(
p̂n(l)
p̂n−1(l)

)
.

Consequently, the eigenvalues of the amplification matrix satisfy the following second degree
equation:

λ2 − 2

(4α2 sin2( lh2 ) + γ + β + 1)
λ+

(1− γ)

(4α2 sin2( lh2 ) + γ + β + 1)
= 0.

Let us remark that the sum of eigenvalues is equal to 2
(4α2 sin2( lh

2 )+γ+β+1)
and is strictly

positive. The product of the eigenvalues is equal to (1−γ)

(4α2 sin2( lh
2 )+γ+β+1)

. Let us consider two
distinct cases :
- if 1 − γ > 0 ⇔ 1 > γ then the product of eigenvalues is positive and the roots are of the
same sign and moreover positive since the sum is also positive. The numerical stability of the
scheme is guaranteed if the sum of the modulus of the eigenvalues is less than two, i.e.

−2 <
2

(4α2 sin2( lh2 ) + γ + β + 1)
< 2;

we can easily verify that these inequalities are always true since γ and β are positive. Conse-
quently, we can conclude that each eigenvalue has a modulus strictly less than one.
- if 1− γ < 0 ⇔ 1 < γ then the roots of the characteristic equation are of opposite sign, but
since their sum is positive the larger is positive. Once again, we can verify that the following
inequalities:

−2 <
2

(4α2 sin2( lh2 ) + γ + β + 1)
< 2

are obviouly verified. We can therefore conclude by the following proposition:
Proposition 8 The numerical implicit scheme (17) is unconditionally stable.
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Let us determine this unconditional stability property by using the matricial method. Indeed,
let us consider the homogeneous equation associated to (18). Then Pn+1 is given by:

Pn+1 = (α2A+ (γ + β + 1)I)−1(2Pn + (γ − 1)Pn−1).

The matrix (A+ (γ + β + 1)I)−1 is diagonalizable and its eigenvalues are equal to

1

4α2 sin2( lπh2 ) + γ + β + 1
.

As previously seen, writing the resulting homogeneous numerical scheme in the eigenvector
basis, leads to:(

P̄n+1

P̄n

)
=

(
2(Λ + (γ + β + 1)I)−1 (γ − 1)(Λ + (γ + β + 1)I)−1

I 0

)(
P̄n

P̄n−1

)
.

Since Λ is a diagonal matrix, the amplification matrix can be written as follows:

B =

(
2

4α2 sin2( lπh
2 )+γ+β+1

(γ−1)

4α2 sin2( lπh
2 )+γ+β+1

1 0

)

Thus, the eigenvalues of B satisfy the second degree equation:

λ2 − 2

4α2 sin2( lπh2 ) + γ + β + 1
λ− (γ − 1)

4α2 sin2(πh2 ) + γ + β + 1
= 0,

and by using the same approach as for the Von Neumann analysis, we conclude that the
numerical scheme is unconditionally stable.

Concerning the convergence, we can conclude similar results than the ones previously
stated.
Proposition 9 The numerical scheme (17) being consistent and unconditionally stable then
it is convergent when k → 0 and h→ 0.

2.5 Second numerical implicit scheme.
Consider now an other numerical implicit scheme where in the same way as in the subsection
2.3, the first derivative in time is discretized by a decentered scheme. For n > 1 and 1 ≤ i ≤
m, we then obtain the following scheme:{

pn+1
i −2pn

i +pn−1
i

k2 + d(
pn+1
i −pn

i

k )− c2(
pn+1
i+1 −2pn+1

i +pn+1
i−1

h2 ) + apn+1
i = gn+1

i ,

pn+1
0 = pn+1

m+1 = 0 and p0i = p0(ih),
p1
i−p0

i

k = p1(ih).

20



Let us multiply the previous relation by k2 and let again γ̄ = dk such that the previous
numerical scheme can be written as follows for 1 ≤ i ≤ m and n > 1 :{

−α2pn+1
i+1 + (γ̄ + 1 + 2α2 + β)pn+1

i − α2pn+1
i−1 = k2gn+1

i + (2 + γ̄)pni − pn−1
i ,

pn+1
0 = pn+1

m+1 = 0 and p0i = p0(ih), p
1
i = p0i + k.p1(ih).

(19)

Then, once again, at each time step, we have to solve the following linear system:

((γ̄ + 1 + β)I + α2A)Pn+1 = k2Gn+1 + (2 + γ̄)Pn − Pn−1.

Note that the matrix ((γ̄ + 1 + β)I + α2A) is symmetric positive definite and consequently
invertible. For the solution of such linear system, we can use once again the TDMA algorithm.
Note that the truncation error is the same than in subsection 2.3, i.e.

F ≤ Q(k + h2),

and we can conclude by stating the following result:
Proposition 10 The numerical explicit scheme (19) is consistent and the time marching
scheme is of order 1 in time and of order 2 in space.

For the study of the numerical stability of the numerical implicit scheme (19), consider
first the use of the Von Neumann method. Similarly to the previous subsections, we have by
considering the homogeneous numerical scheme:

−α2(pn+1(x+h)+ pn+1(x−h))+ (γ̄+2α2+β+1)pn+1(x) = (2+ γ̄)pn(x)− pn−1(x);

the Fourier transform of the previous relation leads to:

(4α2 sin2(
lh

2
) + γ̄ + β + 1)p̂n+1(l) = (2 + γ̄)p̂n(l)− p̂n−1(l),

and then:

p̂n+1(l) =
2 + γ̄

4α2 sin2( lh2 ) + γ̄ + β + 1
p̂n(l)− 1

4α2 sin2( lh2 ) + γ̄ + β + 1
.p̂n−1(l).

As previously, we can deduce the amplification matrix:

B =

(
2+γ̄

4α2 sin2( lh
2 )+γ̄+β+1

− 1
4α2 sin2( lh

2 )+γ̄+β+1

1 0

)
,

and the eigenvalues of B satisfy the chatactristic equation:

λ2 − 2 + γ̄

4α2 sin2( lh2 ) + γ̄ + β + 1
λ+

1

4α2 sin2( lh2 ) + γ̄ + β + 1
= 0.

The product of the roots is equal to 1
4α2 sin2( lh

2 )+γ̄+β+1
and is positive, so the roots have the

same sign and furthermore, this product is less than one. In addition, the sum of the roots is
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equal to 2+γ̄
4α2 sin2( lh

2 )+γ̄+β+1
and is also positive, so that the roots are positive. The numerical

stability of the implicit numerical scheme (19). Hence, we can be stated by a similar way
than the one considered in subsection 2.4. Hence, we can easily verify that the following
inequalities:

−2 ≤ 2 + γ̄

4α2 sin2( lh2 ) + γ̄ + β + 1
≤ 2

are true, which obviously prove that the eigenvalues of B are of modulus less than one.
Therefore, we can conclude that the numerical scheme (19) is unconditionally stable.
Proposition 11 The numerical implicit scheme (19) is unconditionally stable.
Let us now verify this property of unconditional stability by the matricial method. Expressed
in the eigenvector basis the homogeneous equation associated to the numerical scheme (19)
is written as follows:

P̄n+1 = (Λ + (γ̄ + 1 + β)I)−1((2 + γ̄)P̄n − P̄n−1),

so that the amplification matrix is written as follows:

B =

(
2+γ̄

4α2 sin2( lπh
2 )+γ̄+β+1

− 1
4α2 sin2( lπh

2 )+γ̄+β+1

1 0

)
,

and the eigenvalues of B satisfy the characteristic equation:

λ2 − 2 + γ̄

4α2 sin2( lπh2 ) + γ̄ + β + 1
λ+

1

4α2 sin2( lπh2 ) + γ̄ + β + 1
= 0,

and, as previouly seen, the eigenvalues of B are of modulus less than one, which allows us to
recover the property of unconditional stability.

In addition, the implicit numerical scheme (19) being consistent and unconditionally
stable, it is convergent. Thus, we can still state the following convergence results
Proposition 12 The numerical scheme (19) being consistent and unconditionally stable then
it is convergent when k → 0 and h→ 0.

2.6 Numerical implicit scheme derived from the Gear scheme.
To approximate the first derivative with respect to the time, we now use the following Gear
scheme:

3pn+1
i − 4pni + pn−1

i

2k
=
∂p(i.h, (n+ 1).k)

∂t
− k2

3

∂3p(i.h, (n+ 1).k)

∂t3
+O(k2).

Combining this approximation of the first derivative in time at the point (ih, nk) with the
approximations of the second derivatives with respect to the time and to the space, we obtain
the following implicit scheme for the damped wave equation for n > 1 and 1 ≤ i ≤ m :
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{
pn+1
i −2pn

i +pn−1
i

k2 + d(
3pn+1

i −4pn
i +pn−1

i

2k )− c2(
pn+1
i+1 −2pn+1

i +pn+1
i−1

h2 ) + apn+1
i = gn+1

i ,

pn0 = pnm+1 = 0 and p0i = p0(ih),
p1
i−p0

i

k = p1(ih).
(20)

Since the Gear scheme is of order two with respect to the time and due to the result presented
in subsection 2.2, note that the truncation error is given by:

F ≤ Q(k2 + h2),

and consequently, for n > 1, the new scheme derived from the Gear approximation is of order
two in space and time, so that we can conclude by stating the following result.
Proposition 13 The numerical explicit scheme (20) is consistent.
Let us multiply by k2 and by using the change of variable (11), thus the numerical scheme
can be written as follows, for n > 1 and 1 ≤ i ≤ m :{

−α2pn+1
i+1 + (3γ + β + 2α2 + 1)pn+1

i − α2pn+1
i−1 = k2gn+1

i + 2(1 + 2γ)pni − (1 + γ)pn−1
i ,

pn0 = pnm+1 = 0 and p0i = p0(ih),
p1
i−p0

i

k = p1(ih).

This above relation can be written vectorially as follows:

((3γ + β + 1)I + α2A)Pn+1 = k2Gn+1 + 2(1 + 2γ)Pn − (1 + γ)Pn−1.

So, as previously, we can solve this linear system by using the TDMA method.
Consider now the associated homogeneous semidiscretized scheme in time and let us

perform the Fourier transform; this leads to the relation:

(4α2 sin2(
lh

2
) + 3γ + β + 1)p̂n+1 = 2(1 + 2γ)p̂n − (1 + γ)p̂n−1,

or also:

p̂n+1 =
2(1 + 2γ)

4α2 sin2( lh2 ) + 3γ + β + 1
p̂n − 1 + γ

4α2 sin2( lh2 ) + 3γ + β + 1
p̂n−1.

This relation can also be written in the following form.(
p̂n+1(l)
p̂n(l)

)
=

(
2(1+2γ)

4α2 sin2( lh
2 )+3γ+β+1

− 1+γ
4α2 sin2( lh

2 )+3γ+β+1

1 0

)(
p̂n(l)
p̂n−1(l)

)
.

Consequently the eigenvalues of the amplification matrix satisfy the following second degree
equation:

λ2 − 2(1 + 2γ)

4α2 sin2( lh2 ) + 3γ + β + 1
λ+

1 + γ

4α2 sin2( lh2 ) + 3γ + β + 1
= 0.
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The product of the root is positive, so that the eigenvalues have the same sign. In addition the
sum of the roots is positive, and thus the eigenvalues are positive. Consequently, the implicit
numerical scheme is stable when

−2 ≤ 2(1 + 2γ)

4α2 sin2( lh2 ) + 3γ + β + 1
≤ 2.

We can easily see that these inequalities are always verified and we conclude that the implicit
scheme derived from the Gear scheme (20) is unconditionally stable. In addition, since this
scheme is consistent, then it is also convergent when h→ 0 and k → 0.

Once again, we can obtain the same result of unconditional stability by using the matricial
method and state the same conclusion of convergence of the numerical implicit scheme when
h→ 0 and k → 0.

2.7 Numerical schemes with variable coefficients of the damped wave
equation.

In the previous subsections the coefficients involved in the damped wave equation are
assumed to be constant. Consider now the case where these coefficients depend on the space
and time variables, i.e. c ≡ c(x, t), d ≡ d(x, t), a ≡ a(x, t), γ ≡ γ(x, t) (or also γ̄) and β ≡
β(x, t). Classically, there are many ways to take into account the fact that these coefficients
are not constant. However, for the construction of numerical schemes, we need to ensure that
the analysis of the stability of these new schemes is easy. Hence, this is an additional dif-
ficulty. Thus, in the sequel, we will simply denote by cni the value of c(xi, tn). Similarly,
we will use dni , ani , γni , and βn

i to denote the values of d, a, γ, β at the point (xi, tn). In this
situation, where the coefficients of the damped wave equation are not constant, the matrix
method is ineffective for studying the numerical stability of the schemes, since the variable
coefficients of the matrices no longer make it possible to simply obtain the expression of the
eigenvalues of the discretization matrices. We are therefore required to use the Von Neumann
method. Thus, for each time step, we write the above schemes, replacing the constant coeffi-
cients by their values at the point (xi, tn) and we then consider that, only at this moment tn,
these values of the coefficients are constant. This eliminates the difficulty of performing the
Fourier transform with coefficients depending on the space variable.

Therefore, taking into account the approach adopted to study the numerical stability of
the previous numerical schemes, it is very simple to establish the stability conditions:
- for the first numerical explicit scheme, the stability is conditional if

max
i,n

(cni )
k

h
≤ 1 and max

i,n
(ani )k ≤ min

i,n
(dni ),

- for the second numerical explicit scheme, the stability is conditional if

max
i,n

(cni )
k

h
≤ 1 and max

i,n
(ani )

k

3
≤ min

i,n
(dni ),

- for the first, the second implicit schemes and also the implicit scheme derived from the Gear
scheme, the stability is unconditional.
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Remark 11 We refer to [10] for the definition of a three level implicit difference scheme
unconditional stable ofO(k2+h2) for the solution of the damped wave equation with variable
coefficients equipped with Dirichlet boundary conditions. In such numerical scheme fictious
points are needed at each time step along the boundary.

3 Damped wave equation equipped with mixed boundary
conditions.

Consider the one-dimensional damped wave equation equiped with homogeneous mixed
boundary conditions:

µ.∂
2p(x,t)
∂t2 − θ.∂

2p(x,t)
∂x2 + µ1.

∂p(x,t)
∂t + δ.p(x, t) = ḡ(x, t) , on [0, L]× [0, T ],

p(0, t) = 0 and ∂p(L,t)
∂x = 0 , for t ≥ 0,

p(x, 0) = p0(x) and ∂p(x,0)
∂t = p1(x) for x ∈ [0, L],

(21)

where µ, θ, µ1 are positive constants and δ ≥ 0. In the sequel, we consider once again the
change of variables (4) such that problem (21) can now be written as follows:

∂2p(x,t)
∂t2 − c2.∂

2p(x,t)
∂x2 + d.∂p(x,t)∂t + a.p(x, t) = g(x, t) , on [0, L]× [0, T ],

p(0, t) = 0 and ∂p(L,t)
∂x = 0 for t ≥ 0,

p(x, 0) = p0(x) and ∂p(x,0)
∂t = p1(x) for x ∈ [0, L].

(22)

3.1 Energy inequality.
According to the results of subsection 2.1, we have the following result concerning the total
energy:
Proposition 14 When a = 0 let us consider the homogeneous boundary value problem
associated to (22). Assume that p is a sufficiently regular solution on [0, L] × [0, T ] of the
homogeneous boundary value problem associated to (22). Then, the energy equality

E = (

∫ L

0

|∂p
∂t

|2) dx+ c2(

∫ L

0

|∂p
∂x

|2) dx)

is decreasing.
Moreover when a ̸= 0 and g(x, t) = 0 on [0, L] × [0, T ] then E defined in Remark 2 is

also decreasing.
If a = 0, let us consider once again the problem (22) where now g(x, t) ̸= 0 on

[0, L]× [0, T ]. Then, the energy inequality (8) is again valid where once again Etotal(t) and
Eexternalforce are defined by a similar way than in Proposition 2.

Moreover when a ̸= 0 and g(x, t) ̸= 0 on [0, L]× [0, T ] then the result of Remark 4 holds.
Proof 3 The proof of this Proposition is exactly the same as that of Proposition 1 and 2 by
taking into account the remarks 2 and 4.
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3.2 Third numerical explicit scheme.
By taking into account the Neumann condition at the point x = L, we have to calculate
the approximate solution for m + 1 discretization points instead of m in the case of the
Dirichlet boundary conditions. In agreement with section 2, the approximation of the second
derivative with respect to x at the discretization points i = 1, . . . ,m is unchanged. For the
approximation of ∂p(L,t)

∂x , there are several methods available. In the sequel, we consider the
addition of a phantom point at point number m + 2 and to take into account the fact that the
first derivative in space at x = L is null, we impose the condition pm = pm+2. Therefore, at
point number m+ 1 the discretization scheme is given by :

∂p(L, t)

∂x
≈ 2pm+1 − 2pm

h2
.

In this case, for the discretization of the following one-dimensional Laplace equation{
d2q(x)
∂x2 = f(x) , on [0, L],

q(0) = 0 and ∂q(L)
∂x = 0,

with mixed boundary conditions, the discretization matrix by finite difference method,
denoted Amixt, is still positive definite and tridiagonal; the entries ai,j of Amixt are given by:

ai,j =


ai,i = 2.0 for 1 ≤ i ≤ m+ 1,
ai,i±1 = −1.0 for 1 ≤ i ≤ m,
am+1,m = −2.0,
ai,j = 0.0 for all (i, j) such that |i− j| > 1.

The matrix Amixt is not symmetric and not normal but diagonalizable. The eigenvalues
of Amixt are given by (see annex 7.2):

λl(Amixt) = 4 sin2(
(2l − 1)πh

4
), l = 1, . . . ,m+ 1,

while the components of the associated eigenvector are given by:

v
(l)
i (Amixt) = sin((2l − 1)ih

π

2
), i, l = 1, . . . ,m+ 1,

where m+ 1 is the size of Amixt. Let us denote by Λmixt the diagonal matrix constituted by
the eigenvalues of Amixt.
Remark 12 The condition pm = pm+2 helps to eliminate the unknown pm+2 in the equation
written in point number m+ 1. We could also use the classic approximation in space:

∂p(L, t)

∂x
≈ pm+1 − pm

h
;

using such approximation leads to a truncation error inO(h) while our choice allows to have
a truncation error in O(h2).
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In a similar way than in subsection 2.2, we consider first a discretization of the first deriva-
tive with respect to the time by a centered finite difference scheme. Thus, using these previous
approximation, we can define an explicit scheme for the numerical solution of the damped
wave equation (22). Indeed, for n > 1, the explicit numerical scheme is defined as follows:

pn+1
i −2pn

i +pn−1
i

k2 + d(
pn+1
i −pn−1

i

2k )− c2(
pn
i+1−2pn

i +pn
i−1

h2 ) + apni = gni , 1 ≤ i ≤ m,
pn+1
m+1−2pn

m+1+pn−1
m+1

k2 + d(
pn+1
m+1−pn−1

m+1

2k )− 2.c2
pn
m−pn

m+1

h2 + apnm+1 = gnm+1, for i = m+ 1,

pn0 = 0 and p0i = p0(ih),
p1
i−p0

i

k = p1(ih), 1 ≤ i ≤ m+ 1.

Let us multiply the previous relation by k2 and consider also the change of variable (11); then
finally, for n > 1, the numerical scheme can be written as follows:

pn+1
i = k2

γ+1g
n
i + α2

γ+1 (p
n
i+1 + pni−1) +

2−2α2−β
γ+1 pni + γ−1

γ+1p
n−1
i , 1 ≤ i ≤ m,

pn+1
m+1 = k2

γ+1g
n
m+1 +

2α2

γ+1p
n
m + 2−2α2−β

γ+1 pnm+1 +
γ−1
γ+1p

n−1
m+1,

pn0 = 0 and p0i = p0(ih), p
1
i = p0i + k.p1(ih), 1 ≤ i ≤ m+ 1.

(23)

Since pm = pm+2, for n > 1 and 1 ≤ i ≤ m + 1, we can also writte the previous relations
as follows:  pn+1

i = k2

γ+1g
n
i + α2

γ+1 (p
n
i+1 + pni−1) +

2−2α2−β
γ+1 pni + γ−1

γ+1p
n−1
i ,

pnm = pnm+2,
pn0 = 0 and p0i = p0(ih), p

1
i = p0i + k.p1(ih).

(24)

By taking into account the approximation of the derivative, according to the evaluation
performed in the subsection 2.2 and by using the same notation, the truncation error is again
given by:

F ≤ Q(k2 + h2),

and we can conclude by stating the following result:
Proposition 15 The numerical explicit scheme (24) is consistent and for n > 1, the
numerical scheme is of order 2 in time and space.
To study the stability of the numerical scheme by the Von Neuman method, for n > 1, let us
write, as previously done, the homogeneous semidiscretized scheme in time. By taking the
Fourier transform this leads finally to:

p̂n+1(l) = −
(4α2 sin2( l.h2 )− 2 + β)

1 + γ
p̂n(l)− 1− γ

1 + γ
p̂n−1(l)),

and finally we obtain:(
p̂n+1(l)
p̂n(l)

)
=

(
− (4α2 sin2( lh

2 )−2+β)

1+γ − 1−γ
1+γ

1 0

)(
p̂n(l)
p̂n−1(l)

)
,
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where

B =

(
− (4α2 sin2( lh

2 )−2+β)

1+γ − 1−γ
1+γ

1 0

)
is the amplification matrix. By performing exactly the same computations, as those considered
in the subsection 2.2, we finally obtain the same stability conditions:

α ≤ 1 and
β

2
≤ γ.

By returning to the initial notations of problem (22), the numerical stability condition are
written as follows:

ck

h
≤ 1 and ak ≤ d,

the first one corresponding to the Courant, Friedrichs and Levy (C.F.L.) condition.
Note also that the stability condition can be obtained by using the matricial method.

Hence, let consider the homogeneous numerical scheme (23) writen vectorially as follows:

Pn+1 =
1

γ + 1
(2I − α2Amixt − βI)Pn +

γ − 1

γ + 1
Pn−1.

By writing the previous relation in the basis of the eigenvectors of Amixt, we obtain:

P̄n+1 =
1

γ + 1
(2I − α2Λmixt − βI)P̄n +

γ − 1

γ + 1
P̄n−1,

which, as previously done, can be written as follows:(
P̄n+1

P̄n

)
=

(
1.0
γ+1 (2I − α2Λmixt − βI) γ−1

1+γ I

I 0

)(
P̄n

P̄n−1

)
,

which leads to the the characteristic equation:

λ2 +
(4α2 sin2( (2l−1)πh

4 ))− 2 + β)

1 + γ
λ− γ − 1

1 + γ
= 0,

and we obtain a stability condition identical to the one obtained by Von Neumann method.
Since the numerical scheme is consistent and conditionally stable, we have a convergence

result when the discretization steps in time and space tend towards to zero. Thus, we can state
the following result:
Proposition 16 The numerical scheme (24) being consistent and stable when

α ≤ 1 and
β

2
≤ γ,

is convergent when k → 0 and h→ 0.
Therefore, the previous result expresses that stability and consistency are a necessary
condition for convergence.

28



Remark 13 Let us express the stability conditions for the initial problem (21) with initial
notations; we obtain immediately:

2

√
θ

µ

k

h
≤ 1 and δk ≤ µ1.

3.3 Fourth numerical explicit scheme.
For the numerical solution of problem (22), the only change with respect to subsection 3.2
relates to the discretization of the term ∂p

∂t where here, as in subsection 2.3, this term is
discretized by a decentered scheme. Thus, for n > 1, the numerical scheme can be written as
follows:

pn+1
i −2pn

i +pn−1
i

k2 + d(
pn+1
i −pn

i

k )− c2(
pn
i+1−2pn

i +pn
i−1

h2 ) + apni = gni , 1 ≤ i ≤ m,
pn+1
m+1−2pn

m+1+pn−1
m+1

k2 + d(
pn+1
m+1−pn

m+1

k )− 2c2
pn
m−pn

m+1

h2 + apnm+1 = gnm+1,

pn0 = 0 and p0i = p0(ih),
p1
i−p0

i

k = p1(ih), 1 ≤ i ≤ m+ 1.

Let us again multiply the previous relation by k2 and consider also the change of variable (11)
except for γ replaced by (13). Hence, finally, for n > 1, the numerical scheme can be written
as follows:

pn+1
i = k2

γ̄+1g
n
i + α2

γ̄+1 (p
n
i+1 + pni−1) +

γ̄+2−2α2−β
γ̄+1 pni − 1

γ̄+1p
n−1
i , 1 ≤ i ≤ m,

pn+1
m+1 = k2

γ̄+1g
n
m+1 +

2α2

γ̄+1p
n
m + γ̄+2−2α2−β

γ̄+1 pnm+1 − 1
γ̄+1p

n−1
m+1,

pn0 = 0 and p0i = p0(ih), p
1
i = p0i + k.p1(ih), 1 ≤ i ≤ m+ 1.

(25)

Since pm = pm+2, we can write, for n > 1 and 1 ≤ i ≤ m+ 1 : pn+1
i = k2

γ̄+1g
n
i + α2

γ̄+1 (p
n
i+1 + pni−1) +

γ̄+2−2α2−β
γ̄+1 pni − 1

γ̄+1p
n−1
i ,

pnm = pnm+2,
pn0 = 0 and p0i = p0(ih), p

1
i = p0i + k.p1(ih).

(26)

According to the result of subsection 2.3, the truncation error is given by:

F ≤ Q(k + h2),

and we can conclude by stating the following result:
Proposition 17 The numerical explicit scheme (26) is consistent and is of order 1 in time and
of order 2 in space.

For the study of the stability of the numerical scheme using the Von Neumann method,
for n > 1, as previously, let us write the homogeneous semidiscretized scheme. By taking the
Fourier transform, this leads to:

p̂n+1(l) =
(γ̄ + 2− 4α2 sin2( lh2 )− β)

1 + γ̄
p̂n(l)− 1

1 + γ̄
p̂n−1(l)),
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and finally, we obtain:(
p̂n+1(l)
p̂n(l)

)
=

(
(γ̄+2−4α2 sin2( lh

2 )−β)

1+γ̄ − 1
1+γ̄

1 0

)(
p̂n(l)
p̂n−1(l)

)
.

Let

B =

(
(γ̄+2−4α2 sin2( lh

2 )−β)

1+γ̄ − 1
1+γ̄

1 0

)
be the amplification matrix. The characteristic equation of B is given by:

λ2 −
(γ̄ + 2− 4α2 sin2( lh2 )− β)

1 + γ̄
λ+

1

1 + γ̄
= 0.

The product of the roots is equal to 1
1+γ̄ < 1. Thus, the roots have the same sign, the sum of

the roots is equal to (γ̄+2−4α2 sin2( lh
2 )−β)

1+γ̄ . We have to verify the two inequalities:

−2 ≤
(γ̄ + 2− 4α2 sin2( lh2 )− β)

1 + γ̄
≤ 2.

The inequality from the right leads to −4α2 − β ≤ 0, which is always true and the inequality
from the left leads to:

4α2 sin2(
l.h

2
) + β ≤ 4 + 3γ̄,

which leads to
α2 ≤ 1 and β ≤ 3γ̄,

since obviously sin2( l.h2 ) ≤ 1. By returning to the initial notations of the problem (22), the
numerical stability of the numerical scheme is obtained when:

ck

h
≤ 1 and

β

3
=
ak2

3
≤ γ̄ = dk,

which, by using the initial notations defined in problem (21), leads to:

2

√
θ

µ

k

h
≤ 1 and

δk

3
≤ µ1.

Remark 14 Once again, note that for the numerical scheme (26), we can consider a time step
k three times larger than the one to take for the numerical scheme (24). Therefore, it is very
much appreciated; however, the precision is less good since the truncation error is in O(k).

Let us find the stability condition using the matricial method. We can write the homoge-
neous scheme vectorially as follows:

Pn+1 =
1

γ̄ + 1
((2 + γ̄)I − α2Amixt − βI)Pn − 1

γ̄ + 1
Pn−1.
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In the basis of the eigenvectors of Amixt, we obtain the following relation:

P̄n+1 =
1

γ̄ + 1
((2 + γ̄)I − α2Λmixt − βI)P̄n − 1

γ̄ + 1
P̄n−1,

which can also be written as follows:(
P̄n+1

P̄n

)
=

(
1

γ̄+1 ((2 + γ̄)I − α2Λmixt − βI) − 1
1+γ̄ I

I 0

)(
P̄n

P̄n−1

)
,

where

B =

(
1

γ̄+1 ((2 + γ̄)I − α2Λmixt − βI) − 1
1+γ̄ .I

I 0

)
is the amplification matrix. Thus, the characteristic equation of B is given by:

λ2 −
(γ̄ + 2− 4α2 sin2( (2l−1)πh

4 )− β)

1 + γ̄
λ+

1

1 + γ̄
= 0,

and similarly to the Von Neumann method, we find the following stability conditions:

α ≤ 1 and β ≤ 3γ̄.

Concerning the convergence, we can conclude similarly than previously stated:
Proposition 18 The numerical scheme (26) being consistent and stable when α ≤ 1 and β ≤
3γ̄ then it is convergent when k → 0 and h→ 0.

3.4 Fourth numerical implicit scheme.
In a similar way to the approach considered in the subsection 2.4, let us construct as follows
an implicit scheme, in the case where the first derivative with respect to the time is discretized
by a centered scheme. Then, for n > 1, we obtain:

pn+1
i −2pn

i +pn−1
i

k2 + d(
pn+1
i −pn−1

i

2k )− c2(
pn+1
i+1 −2pn+1

i +pn+1
i−1

h2 ) + apn+1
i = gn+1

i , 1 ≤ i ≤ m,
pn+1
m1 −2pn

m+1+pn−1
m+1

k2 + d(
pn+1
m+1−pn−1

m+1

2k )− 2c2
pn+1
m −pn+1

m+1

h2 + apn+1
m+1 = gnm+1, i = m+ 1,

pn+1
0 = 0 and p0i = p0(ih),

p1
i−p0

i

k = p1(ih), 1 ≤ i ≤ m+ 1.

Let us again multiply the previous relation by k2 and consider also the change of variable
(11); then, finally since pm = pm+2, the implicit numerical scheme can be written as follows
for n > 1 and 1 ≤ i ≤ m+ 1 :


−α2pn+1

i+1 + (γ + 1 + β + 2α2)pn+1
i − α2pn+1

i−1 = k2gn+1
i + 2pni + (γ − 1)pn−1

i ,
pn+1
m = pn+1

m+2,

pn+1
0 = 0 and p0i = p0(ih),

p1
i−p0

i

k = p1(ih),
(27)
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and thus, Pn+1 is solution of the linear system:

((γ + β + 1)I + α2Amixt)P
n+1 = k2Gn+1 + 2Pn + (γ − 1)Pn−1,

of size (m + 1). Since the matrix ((γ + β + 1)I + α2Amixt) is strictly diagonal dominant,
consequently it is invertible and we can solve the linear system by the TDMA method.

Note also that the truncation error is given by:

F ≤ Q(k2 + h2),

and the implicit numerical scheme (27) is consistent.
Proposition 19 The implicit numerical scheme (27) is consistent and of order 2 in time and
in space.

Let us now study the stability of the numerical implicit scheme (27) by the Von Neumann
method. Thus, let us consider the homogeneous scheme semidiscretized with respect to the
time; we then obtain for n > 1 :

−α2pn+1(x+h)+(γ+1+β+2α2)pn+1(x)−α2pn+1(x−h) = 2pn(x)+(γ−1)pn−1(x),

which, after performing the Fourier transform, leads to:

p̂n+1(l) =
2

(4α2 sin2( l.h2 ) + γ + β + 1)
p̂n(l) +

γ − 1

(4α2 sin2( l.h2 ) + γ + β + 1)
p̂n−1(l),

and the amplification matrix is defined as follows:

B =

(
2

(4α2 sin2( l.h
2 )+γ+β+1)

γ−1
(4α2 sin2( l.h

2 )+γ+β+1)

1 0

)
,

and the characteristic equation is given by:

λ2 − 2

(4α2 sin2( l.h2 ) + γ + β + 1)
λ− γ − 1

(4α2 sin2( l.h2 ) + γ + β + 1)
= 0.

We are therefore in a situation similar to the one encountered in subsection 2.4 with the
same sum and product of eigenvalues for B which allows us to conclude on the unconditional
stability of the implicit numerical scheme.
Proposition 20 The numerical implicit scheme (27) is unconditional stable.
As above, this property of unconditional stability can be obtained by the matricial method. In
the eigenvector basis, the homogeneous system is written as follows:

P̄n+1 = ((γ + β + 1)I + α2Λmixt)
−1.(2P̄ n+ (γ − 1)P̄n−1),

and the amplification matrix is given by:

B =

(
2

(4α2 sin2(
(2l−1)πh

4 )+γ+β+1)

γ−1

(4α2 sin2(
(2l−1)πh

4 )+γ+β+1)

1 0

)
.
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As it was stated before, the eigenvalues of this matrix are of modulus strictly less than one,
allowing us to conclude, once again, that the implicit numerical scheme is unconditionally
stable. In addition, we have the following result:
Proposition 21 The numerical implicit scheme (27) being consistent and unconditionally
stable is also convergent when k → 0 and h→ 0.

3.5 Fifth numerical implicit scheme.
The construction of this new scheme is similar to the one considered for the scheme (27)
except that the first derivative in time is discretized by a decentered scheme. For n > 1, the
implicit numerical scheme is defined as follows:


pn+1
i −2pn

i +pn−1
i

k2 + d(
pn+1
i −pn

i

k )− c2(
pn+1
i+1 −2pn+1

i +pn+1
i−1

h2 ) + apn+1
i = gn+1

i , 1 ≤ i ≤ m,
pn+1
m+1−2pn

m+1+pn−1
m+1

k2 + d(
pn+1
m+1−pn

m+1

k )− 2c2
pn+1
m −pn+1

m+1

h2 + apn+1
m+1 = gn+1

m+1,

pn+1
0 = 0 and p0i = p0(ih),

p1
i−p0

i

k = p1(ih), 1 ≤ i ≤ m+ 1.

In a similar way than before, by multiplying by k2 and by taking into account the previous
change of variables (11) and (13), for n > 1 and 1 ≤ i ≤ m+ 1, the final implicit numerical
scheme can be written as follows:

−α2pn+1
i+1 + (γ̄ + 1 + β + 2α2)pn+1

i − α2pn+1
i−1 = k2gn+1

i + (2 + γ̄)pni − pn−1
i ,

pn+1
m = pn+1

m+2,

pn+1
0 = 0 and p0i = p0(ih),

p1
i−p0

i

k = p1(ih),

(28)

and Pn+1 is solution of the linear system of size (m+ 1) :

((γ̄ + β + 1)I + α2Amixt)P
n+1 = k2Gn+1 + (2 + γ̄)Pn − Pn−1.

Since the matrix ((γ̄ + β + 1)I + α2Amixt) is strictly diagonal dominant, consequently, it is
invertible and we can solve the linear system by the TDMA method.

Note also that the truncation error is given by:

F ≤ Q(k + h2),

and we can conclude by providing the following Proposition.
Proposition 22 The implicit numerical scheme (28) is consistent and of order 1 in time and
of order 2 in space.

Similarly than in subsection 2.5, let us study first the stability of scheme (28) by using
the Von Neumann method. Hence, considering, once again, the homogeneous semidiscretized
scheme in time and by taking the Fourier transform of the resulting writing, leads to:

p̂n+1(l) =
2 + γ̄

(4α2 sin2( l.h2 ) + γ̄ + β + 1)
p̂n(l)− 1

(4α2 sin2( l.h2 ) + γ̄ + β + 1)
p̂n−1(l).
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In a similar way than the one in subsection 2.5, we obtain the following amplification matrix:

B =

(
2+γ̄

4α2 sin2( l.h
2 )+γ̄+β+1

− 1
4α2 sin2( l.h

2 )+γ̄+β+1

1 0

)
,

where the eigenvalues of B satisty the characteristic equation:

λ2 − 2 + γ̄

4α2 sin2( l.h2 ) + γ̄ + β + 1
λ+

1

4α2 sin2( l.h2 ) + γ̄ + β + 1
= 0.

Thus, by a reasoning analogous to the one considered in subsection 2.5, we obtain another
unconditional stability property.
Proposition 23 The implicit numerical scheme (28) is unconditionl stable.

Once again, we can find this property by using the matricial method. Indeed by writting
the homogeneous scheme in the basis of eigenvectors this leads to:

P̄n+1 = ((γ̄ + β + 1)I + α2Λmixt)
−1((2 + γ̄)P̄n − P̄n−1),

and the amplification matrix is given by:

B =

(
2+γ̄

4α2 sin2(
(2l−1)πh

4 )+γ̄+β+1
− 1

4α2 sin2(
(2l−1)πh

4 )+γ̄+β+1

1 0

)
,

with a characteristic equation given by:

λ2 − 2 + γ̄

4α2 sin2( (2l−1)πh
4 ) + γ̄ + β + 1

λ+
1

4α2 sin2( (2l−1)πh
4 ) + γ̄ + β + 1

= 0.

As previously seen, we check that the eigenvalues of B are of modulus less than one.
Once again the consistence and the unconditional stability give rise to the following result:

Proposition 24 The numerical implicit scheme (28) being consistent and unconditionally
stable, is also convergent when k → 0 and h→ 0.

3.6 Numerical implicit scheme derived from the Gear scheme.
As previously seen in subsection 2.6 let us approximate the first derivative with respect to the
time, by the following Gear scheme of order two with respect to the time. This yields:

3pn+1
i − 4pni + pn−1

i

2k
=
∂p(ih, (n+ 1)k)

∂t
− k2

3

∂3p(ih, (n+ 1)k)

∂t3
+O(k2).

Then, by combining this previous approximation of the first derivative with respect to the
time with the previous numerical scheme for the discretization of equation (22), for n > 1,
this leads to:
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pn+1
i −2pn

i +pn−1
i

k2 + d(
3pn+1

i −4pn
i +pn−1

i

2k )− c2(
pn+1
i+1 −2pn+1

i +pn+1
i−1

h2 ) + apn+1
i = gn+1

i , 1 ≤ i ≤ m,
pn+1
m+1−2pn

m+1+pn−1
m+1

k2 + d(
3pn+1

m+1−4pn
m+1+pn−1

m+1

2k )− 2c2(
pn+1
m −pn+1

m+1

h2 ) + apn+1
m+1 = gn+1

m+1, i = m+ 1,

pn0 = 0 and p0i = p0(ih),
p1
i−p0

i

k = p1(ih), 1 ≤ i ≤ m+ 1.

and since pm = pm+2, we obtain finally, for n > 1 and 1 ≤ i ≤ m+ 1 :


pn+1
i −2pn

i +pn−1
i

k2 + d(
3pn+1

i −4pn
i +pn−1

i

2k )− c2(
pn+1
i+1 −2pn+1

i +pn+1
i−1

h2 ) + apn+1
i = gm+1

i ,
pn+1
m = pn+1

m+2,

pn0 = pnm+1 = 0 and p0i = p0(ih),
p1
i−p0

i

k = p1(ih), 1 ≤ i ≤ m.
(29)

The Gear scheme being of order two with respect to the time then, due to the result pre-
sented in subsection 2.6 concerning the order of approximation of the second derivative with
respect to the time and to the space, the truncation error verifies once again:

F ≤ Q(k2 + h2);

thus, this new scheme derived from the Gear scheme is of order two in space and in time, so
that we can conclude by stating the following result:
Proposition 25 The numerical explicit scheme (29) is consistent.
Let us multiply by k2 and by using the change of variable (11), the numerical scheme can be
written as follows, for n > 1 and 1 ≤ i ≤ m+ 1 :

−α2pn+1
i+1 + (3γ + β + 2α2 + 1)pn+1

i − α2pn+1
i−1 = k2gn+1

i + 2(1 + 2γ)pni − (1 + γ)pn−1
i ,

pn+1
m = pn+1

m+2,

pn0 = 0 and p0i = p0(ih),
p1
i−p0

i

k = p1(ih).
(30)

This relation can be written vectorially as follows:

((3γ + β + 1)I + α2Amixt)P
n+1 = k2Gn+1 + 2(1 + 2γ)Pn − (1 + γ)Pn−1.

Consider now the associated homogeneous semidiscretized scheme in time and let us perform
the Fourier transform. This leads to the following relation:

(4α2 sin2(
lh

2
) + 3γ + β + 1)p̂n+1 = 2(1 + 2γ)p̂n − (1 + γ)p̂n−1,

or also

p̂n+1 =
2(1 + 2γ)

4α2 sin2( lh2 ) + 3γ + β + 1
p̂n − 1 + γ

4α2 sin2( lh2 ) + 3γ + β + 1
p̂n−1.
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This relation can also be written in the following form:(
p̂n+1(l)
p̂n(l)

)
=

(
2(1+2γ)

4α2 sin2( lh
2 )+3γ+β+1

− 1+γ
4α2 sin2( lh

2 )+3γ+β+1

1 0

)(
p̂n(l)
p̂n−1(l)

)
.

Consequently, the eigenvalues of the amplification matrix satisfy the following second degree
equation:

λ2 − 2(1 + 2γ)

4α2 sin2( lh2 ) + 3γ + β + 1
λ+

1 + γ

4α2 sin2( lh2 ) + 3γ + β + 1
= 0.

The product of the root is positive, so that the eigenvalues have the same sign. In addition,
the sum of the roots is positive, and the eigenvalues are positive. Thus the implicit numerical
scheme is stable when

−2 ≤ 2(1 + 2.γ)

4.α2. sin2( l.h2 ) + 3.γ + β + 1
≤ 2.

We can easily see that these inequalities are always verified and we can conclude that the
implicit scheme derived from the Gear scheme (30) is unconditionally stable. Moreover, since
this scheme is consistent, then it is also convergent when h→ 0 and k → 0.

Once again, we can obtain the same result of unconditional stability by using the matricial
method and state the same conclusion of convergence of the numerical implicit scheme when
h→ 0 and k → 0.
Remark 15 In a similar way to the study presented in the subsection 2.7, we can also draw up
numerical schemes when the coefficients of the damped wave equation are no longer constant.
As in the subsection 2.7, we establish identical conditional numerical stability conditions for
the third and fourth explicit schemes and an unconditional stability property for the fourth,
the fifth implicit schemes and the implicit numerical scheme derived from the Gear scheme.

4 Numerical schemes for the solution of the multidimensional
damped wave equation.

Let us now consider the multidimensional damped wave equation equiped with only homo-
geneous Dirichlet boundary conditions in a bounded domain Ω; let ∂Ω be the boundary of Ω.
In what follows in the bi-dimensional case Ω = [0, L]× [0, L] while in the three-dimensional
case Ω = [0, L]3. Hence, in all cases the problem to solve numerically is formulated as
follows:

µ∂2p(x,t)
∂t2 − θ∆p(x, t) + µ1

∂p(x,t)
∂t + δp(x, t) = ḡ(x, t) , on Ω̄× [0,T],

p(x, t) = 0 on ∂Ω for t ≥ 0,
p(x,0) = p0(x) and ∂p(x,0)

∂t = p1(x) for x ∈ Ω,

(31)
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where in the bi-dimensional case x= (x, y) while in the three-dimensional case x= (x, y, z).
Consider the change of variable (4) so that the previous problem is written as follows:

∂2p(x,t)
∂t2 − c2∆p(x, t) + d∂p(x,t)

∂t + ap(x, t) = g(x, t) , on Ω̄× [0,T],
p(x, t) = 0 on ∂Ω for t ≥ 0,
p(x,0) = p0(x) and ∂p(x,0)

∂t = p1(x) for x ∈ Ω.

(32)

Remark 16 In the present section, we restrict ourselves to the case of Dirichlet boundary
conditions, since if we consider the case of mixed boundary conditions, we would have to con-
sider situations where more than one part of the boundary is subject to a Neumann condition;
such a situation would considerably complicate the presentation of the paper. In such cases,
the stability of the schemes can be analyzed by computing by a numerical way the eigenval-
ues of the discretization matrix in space and then, by using these values to check the stability
conditions. However, we refer to section 7 for the determination of the eigenelements of the
discretization matrices considered here in simple geometric shapes.

4.1 Energy inequality.
First of all, let us extend the results of the subsection 2.1 to the two-dimensional and three-
dimensional cases.
Proposition 26 For (32) assume that p(x, t) is sufficiently regular on Ω× [0, T ]. Then let

Etotal(t) =

∫
Ω

|∂p(x, t)
∂t

|2 dx+ c2
∫
Ω

|∇(p(x, t))|2 dx+ a

∫
Ω

p2(x, t)dx,

and

Eexternalforce =

∫ t

0

∫
Ω

g2(x, s)dxds;

then, we have,
Etotal(t) ≤ (Etotal(0) + Eexternalforce).e

t.

Consequently, we obtain a continuous dependance on initial conditions and supply of energy.
In addition when (32) is homogeneous the energy Etotal is decreasing.
Proof 4 Assume that p(x, t) is sufficiently regular and let us multiply (32) by ∂p

∂t and integrate
on the domain Ω. Since the function p is regular, by exchanging the operators for integration
in space and derivation in time, we obtain:

d

dt
(

∫
Ω

|∂p
∂t

|2 dx) + c2
d

dt
(

∫
Ω

|∇(p)|2 dx) + a
d

dt
(

∫
Ω

p2 dx) ≤ 2

∫
Ω

g
∂p

∂t
dx.

By integrating with respect to the time, we get:∫
Ω

|∂p(x, t)
∂t

|2 dx+ c2
∫
Ω

|∇(p(x, t))|2 dx+ a

∫
Ω

p2(x, t) dx

≤
∫
Ω

p21(x) dx+ c2
∫
Ω

|∇(p0(x))|2 dx+ a

∫
Ω

p20(x) dx+ 2

∫ t

0

∫
Ω

g(x, s)
∂p(x, s)

∂t
dx ds.
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Let us consider now the term: ∫
Ω

g(x, s)
∂p(x, s)

∂t
dx ds;

according to Schwarz inequality, and then classically maximizing, we have:∫ t

0

∫
Ω

g(x, s)
∂p(x, s)

∂t
dx ds ≤ (

∫ t

0

∫
Ω

g2(x, s) dx ds)
1
2 (

∫ t

0

∫
Ω

|∂p(x, s)
∂t

|2 dx ds) 1
2 ,

≤ 1

2
(

∫ t

0

∫
Ω

g2(x, s) dx ds+

∫ t

0

∫
Ω

|∂p(x, s)
∂t

|2 dx ds)).

Finally, applying the above majoration, this leads to:∫
Ω

|∂p(x, t)
∂t

|2 dx+ c2
∫
Ω

|∇(p(x, t))|2 dx+ a

∫
Ω

p2(x, t) dx

≤
∫
Ω

p21(x) dx+ c2
∫
Ω

|∇(p0(x))|2 dx+ a

∫
Ω

p2
0(x)dx+

∫ t

0

∫
Ω

g2(x, s)dxds

+

∫ t

0

∫
Ω

|∂p(x, s)
∂t

|2 dx ds.

Now, by applying the Gronwall lemma, this leads to:∫
Ω

|∂p(x, t)
∂t

|2 dx+ c2
∫
Ω

|∇(p(x, t))|2 dx+ a

∫
Ω

p2(x, t) dx

≤ (

∫
Ω

p21(x) dx+ c2
∫
Ω

|∇(p0(x))|2 dx+ a

∫
Ω

p20(x) dx+

∫ t

0

∫
Ω

g2(x, s)dxds).et.

In addition, in the case where g(x, t) ≡ 0 obviously, the total energy is decreasing and the
proof is complete.

4.2 Fifth explicite scheme.
In what follows, we will consider both the two-dimensional and the three-dimensional cases
when the first derivative is discretized by a centered scheme. In the sequel, we will also use
the notations of subsection 2.2.

4.2.1 Two-dimensional damped wave equation.

In this case, for 1 ≤ i, j ≤ m and n > 1, the numerical scheme is defined by:{
pn+1
i,j −2pn

i,j+pn−1
i,j

k2 + d(
pn+1
i,j −pn−1

i,j

2k )− c2(
pn
i,j+1+pn

i+1,j−4pn
i,j+pn

i−1,j+pn
i,j−1

h2 ) + apni,j = gni,j ,

pn0,j = pnm+1,j = pni,0 = pni,m+1 = 0 and p0i,j = p0(ih, jh),
p1
i,j−p0

i,j

k = p1(ih, jh).
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Let us multiply the previous relation by k2 and consider also the change of variable (11), such
that the previous numerical scheme can be written as follows:

(γ+1)pn+1
i,j = k2gni,j+α

2(pni+1,j+p
n
i−1,j+p

n
i,j+1+p

n
i,j−1)+(2−4α2−β)pni,j+(γ−1)pn−1

i,j ,

or finally, for 1 ≤ i, j ≤ m and n > 1, as:{
pn+1
i,j = k2

γ+1g
n
i,j +

α2

γ+1 (p
n
i+1,j + pni−1,j + pni,j+1 + pni,j−1) +

2−4α2−β
γ+1 pni,j +

γ−1
γ+1p

n−1
i,j ,

pn0,j = pnm+1,j = pni,0 = pni,m+1 = 0 and p0i,j = p0(ih, jh), p
1
i,j = p0i,j + kp1(ih, jh).

(33)
This relation can be written vectorially, as follows:

Pn+1 =
k2

γ + 1
Gn +

1

γ + 1
((2− β)I − α2A2D)Pn +

γ − 1

γ + 1
Pn−1, for n > 1, (34)

where A2D is the discretization matrix of the Laplacian.
By concerning the truncation error, we obtain the same result than the one obtained in

subsection 2.2, i.e.
F ≤ Q(h2 + k2).

Thus, this yields the following Proposition:
Proposition 27 The explicit numerical scheme (33) is consistent and for n > 1 and it is of
order 2 in space and in time.
For the study of stability, we limit ourselves to the use of the matricial method. Indeed, the
eigevalues of the matrix A2D are given by (see annex 7.3):

λk,l(A2D) = 4(sin2(
kπh

2
) + sin2(

lπh

2
)), 1 ≤ k, l ≤ m,

and the associated components of the eigenvectors are given by:

vk,li,j = sin(ikπh) sin(jlπh), 1 ≤ i, j, k, l ≤ m.

Thus expressed in the basis of the eigenvectors of A2D, the homogeneous relation (34) is
written as follows:

P̄n+1 =
1

γ + 1
((2− β)I − α2Λ2D)P̄n +

γ − 1

γ + 1
P̄n−1.

Similarly to the previous sections, we obtain finally the following relation:(
P̄n+1

P̄n

)
=

(
1.0
γ+1 ((2− β]I − α2Λ2D) γ−1

1+γ I

I 0

)(
P̄n

P̄n−1

)
,

and the eigenvalues λ of the amplification matrix thus satisfy the second degree equation:

λ2 +
(4α2(sin2(kπh2 ) + sin2( lπh2 ))− 2 + β)

1 + γ
λ+

1− γ

1 + γ
= 0.
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By a similar way than in subsection 2.2, the stability condition is obtained when the sum of
the roots is less than two, i.e.

−2 ≤ −
(4α2(sin2(kπh2 ) + sin2( lπh2 ))− 2 + β)

1 + γ
≤ 2.

This leads to the following result:
Proposition 28 The explicit numerical scheme (33) being consistent and stable when

α ≤
2
√
2

2
and

β

2
≤ γ,

is also convergent when h→ 0 and k → 0.

4.2.2 Three-dimensional damped wave equation.

In the three-dimensional case, the approach is similar than in the previous subsection. Since
the consistency of the numerical scheme is obviously still verified then the truncation error is
again given by:

F ≤ Q(h2 + k2).
Thus, we will simply indicate the formulation of the numerical scheme and we will establish
the stability conditions.

The numerical explicit scheme can be defined vectorially as:

Pn+1 =
k2

γ + 1
Gn +

1

γ + 1
((2− β)I − α2A3D)Pn +

γ − 1

γ + 1
.Pn−1, (35)

where A3D is the discretization matrix of the Laplacian. If we detail and keep the same
notations, for 1 ≤ i, j, k ≤ m and n > 1, we have:


pn+1
i,j,k = 1

γ+1 (k
2gni,j,k + α2(pni+1,j,k + pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1),

+(2− 6α2 − β)pni,j,k + (γ − 1)pn−1
i,j,k)

pn0,j,k = pnm+1,j,k = pni,0,k = pni,m+1,k = pni,j,0 = pni,j,m+1 = 0,

p0i,j,k = p0(ih, jh, kh), p
1
i,j,k = p0i,j,k + kp1(ih, jh, kh).

(36)
In this case, the eigevalues of the matrix A3D are given by (see annex 7.4):

λk,l,s(A3D) = 4(sin2(
kπh

2
) + sin2(

lπh

2
) + sin2(

sπh

2
)), 1 ≤ k, l, s ≤ m,

and the associated components of the eigenvectors are given by:

vk,l,si,j,q = sin(ikπh) sin(jlπh) sin(sqπh), 1 ≤ i, j, q, k, l, s ≤ m.
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Consequently, expressed in the basis of eigenvectors, the homogeneous relation (35) is written
as follows:

P̄n+1 =
1

γ + 1
((2− β)I − α2Λ3D)P̄n +

γ − 1

γ + 1
P̄n−1.

Thus, by a similar way than for the two-dimensional case, we obtain the following relations:(
P̄n+1

P̄n

)
=

(
1.0
γ+1 ((2− β]I − α2Λ3D) γ−1

1+γ I

I 0

)(
P̄n

P̄n−1

)
,

and the eigenvalues λ of the amplification matrix thus satisfy the second degree equation:

λ2 +
(4α2(sin2(kπh2 ) + sin2( lπh2 ) + sin2( sπh2 ))− 2 + β)

1 + γ
λ+

1− γ

1 + γ
= 0.

By using a similar way than in subsection 2.2, the stability condition is obtained when the
sum of the roots is less than two. This leads to:

−2 ≤ −
(4α2(sin2(kπh2 ) + sin2( lπh2 ) + sin2( sπh2 ))− 2 + β)

1 + γ
≤ 2.

Thus similarly, we obtain the following result:
Proposition 29 The explicit numerical scheme (36) being consistent and stable when

α ≤
2
√
3

3
and

β

2
≤ γ,

is also convergent when h→ 0 and k → 0.

4.3 Sixth explicit scheme.
Consider also the two-dimensional and the three-dimensional case when, as previously seen
in subsection 2.3, the first derivative is discretized by a decenterd scheme. Similarly to the pre-
vious subsections and for the same reasons, we will limit ourselves to defining the numerical
schemes and to studying the stability condition.

4.3.1 Two-dimensional damped wave equation.

In this case, for 1 ≤ i, j ≤ m and n > 1, the numerical scheme is defined as follows:{
pn+1
i,j −2pn

i,j+pn−1
i,j

k2 + d(
pn+1
i,j −pn

i,j

k )− c2(
pn
i,j+1+pn

i+1,j−4pn
i,j+pn

i−1,j+pn
i,j−1

h2 ) + apni,j = gni,j ,

pn0,j = pnm+1,j = pni,0 = pni,m+1 = 0 and p0i,j = p0(ih, jh),
p1
i,j−p0

i,j

k = p1(ih, jh).
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Let us multiply the previous relation by k2 and consider the change of variable (11) with
γ̄ = d.k. Finally, the numerical scheme is defined as follows, for 1 ≤ i, j ≤ m and n > 1 :{
pn+1
i,j = k2

γ̄+1g
n
i,j +

α2

γ̄+1 (p
n
i+1,j + pni−1,j + pni,j+1 + pni,j−1) +

γ̄+2−4α2−β
γ̄+1 pni,j − 1

γ̄+1p
n−1
i,j ,

pn0,j = pnm+1,j = pni,0 = pni,m+1 = 0 and p0i,j = p0(ih, jh), p
1
i,j = p0i,j + kp1(ih, jh).

(37)
Once again, this previous relation can be written vectorially as follows:

Pn+1 =
k2

γ̄ + 1
Gn +

1

γ̄ + 1
((γ̄ + 2− β)I − α2A2D).Pn − 1

γ̄ + 1
Pn−1.

According to the result mentioned in subsection 2.3 and by using the same way as
previously, the truncation error is given by:

F ≤ Q(k + h2),

and once again, the explicit numerical scheme (37) is consistent and of order 1 in time and of
order 2 in space.

For the study of the numerical stability of the explicit numerical scheme (37), we will
use again the matricial method. Indeed, in the basis of eigenvectors of the matrix A2D, the
following relation is obviously true in consideration of the homogeneous previous recurence:(

P̄n+1

P̄n

)
=

(
1.0
γ̄+1 ((γ̄ + 2− β]I − α2Λ2D) − 1.0

1+γ̄I
I 0

)(
P̄n

P̄n−1

)
,

and the eigenvalues λ of the amplification matrix thus satisfy the second degree equation:

λ2 −
(γ̄ + 2− 4α2(sin2(kπh2 ) + sin2( lπh2 ))− β)

1 + γ̄
λ+

1

1 + γ̄
= 0,

which involves that:

α ≤
2
√
2

2
and

β

3
≤ γ̄.

Consequently, when the previous stability condidions are satisfied, the explicit numerical
scheme is convergent when h→ 0 and k → 0.

4.3.2 Three-dimensional damped wave equation.

In this case, for 1 ≤ i, j, k ≤ m and n > 1, the numerical scheme is given by:


pn+1
i,j,k−2pn

i,j,k+pn−1
i,j,k

k2 + d(
pn+1
i,j,k−pn

i,j,k

k )− c2(
pn
i,j+1,k+pn

i+1,j,k−6pn
i,j,k+pn

i−1,j,k+pn
i,j−1,k

h2 )

−c2(p
n
i,j,k+1+pn

i,j,k−1

h2 ) + apni,j,k = gni,j,k,

pn0,j,k = pnm+1,j,k = pi,0,k = pi,m+1,k = pni,j,0 = pni,j,m+1 = 0,

p0i,j,k = p0(ih, jh, kh),
p1
i,j,k−p0

i,j,k

k = p1(ih, jh, kh),
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which leads to:
pni,j,k = 1

γ̄+1 (k
2gni,j,k + α2(pni+1,j,k + pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+(γ̄ + 2− 6α2 − β)pni,j,k − pn−1
i,j,k),

pn0,j,k = pnm+1,j,k = pni,0,k = pni,m+1,k = pni,j,0 = pni,j,m+1 = 0,

p0i,j,k = p0(ih, jh, kh),
p1
i,j,k−p0

i,j,k

k = p1(ih, jh, kh).

This expression can be written vectorially as follows:

Pn+1 =
k2

γ̄ + 1
Gn +

1

γ̄ + 1
((γ̄ + 2− β)I − α2A3D)Pn − 1

γ̄ + 1
Pn−1.

According to the result mentioned in subsection 2.3 and by using the same way, the truncation
error is given by:

F ≤ Q(k + h2),

and once again, the previous explicit numerical scheme is consistent and of order 1 in time
and of order 2 in space.

Let us consider now the study of the numerical stability by using the matricial method. In
the basis of the set of eigenvectors of matrix A3D the homogeneous recurence is written as
follows: (

P̄n+1

P̄n

)
=

(
1.0
γ̄+1 ((γ̄ + 2− β]I − α2Λ3D) − 1.0

1+γ̄I
I 0

)(
P̄n

P̄n−1

)
,

and the eigenvalues λ of the amplification matrix thus satisfy the second degree equation:

λ2 −
(γ̄ + 2− 4α2(sin2(kπh2 ) + sin2( lπh2 ) + sin2( sπh2 ))− β)

1 + γ̄
λ+

1

1 + γ̄
= 0,

which involves:

α ≤
2
√
3

3
and

β

3
≤ γ̄.

Note that, when the condition of the numerical stability are verified then, since the
considered explicit schemes is consistent, then it is also convergent when h→ 0 and k → 0.

4.4 Third implicit scheme.
In the case of implicit numerical scheme, we will consider now, in the two-dimensional and
in the three-dimensionnal cases, the situation where the first dérivative is discretized by a
centered scheme.

4.4.1 Two-dimensional damped wave equation.

In this case, for 1 ≤ i, j ≤ m and n > 1, the numerical scheme is defined by:
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pn+1
i,j −2pn

i,j+pn−1
i,j

k2 + d(
pn+1
i,j −pn−1

i,j

2k )− c2(
pn+1
i,j+1+pn+1

i+1,j−4pn+1
i,j +pn+1

i−1,j+pn+1
i,j−1

h2 ) + apn+1
i,j = g

n+1)
i,j ,

pn+1
0,j = pn+1

m+1,j = pn+1
i,0 = pn+1

i,m+1 = 0 and p0i,j = p0(ih, jh),
p1
i,j−p0

i,j

k = p1(ih, jh).

Let us multiply the previous relation by k2 and let us consider also the change of variable
(11), in such a way that the numerical scheme can be written as follows:

(4α2+β+γ+1)pn+1
i,j −α2(pn+1

i+1,j+p
n+1
i−1,j+p

n+1
i,j+1+p

n+1
i,j−1) = k2gn+1

i,j +2pni,j+(γ−1)pn−1
i,j .

This relation can be written vectorially as follows:

((γ + 1 + β)I + α2A2D)Pn+1 = k2Gn+1 + 2Pn + (γ − 1)Pn−1, (38)

where A2D is the discretization matrix of the Laplacian.
Concerning the truncation error, we obtain the same result than the one obtained in

subsection 2.2, i.e.
F ≤ Q(h2 + k2).

Thus, we have stated the following result:
Proposition 30 The explicit numerical scheme (38) is consistent and of order 2 in time and
space.

For the study of the stability, we limit again ourselves to the matricial method. In the basis
of the eigenvectors of matrix A2D the homogeneous relation (38) is written as follows:

P̄n+1 = ((γ + 1 + β)I + α2Λ2D)−1(2P̄n + (γ − 1)P̄n−1),

and then, we obtain the following amplification matrix:

B =

(
2

4α2(sin2( lπh
2 )+sin2( kπh

2 ))+γ+β+1

(γ−1)

4α2(sin2( lπh
2 )+sin2( kπh

2 ))+γ+β+1

1 0

)
.

Hence, the eigenvalues of B satisfy the second degree equation:

λ2 − 2λ− (γ − 1)

4α2(sin2( lπh2 ) + sin2(kπh2 )) + γ + β + 1
= 0. (39)

Let us again remark that the sum of eigenvalues are equal to 2
(4α2(sin2( lπh

2 )+sin2( kπh
2 ))+γ+β+1)

and is strictly positive. The product of the eigenvalues is equal to
(1−γ)

(4α2(sin2( lπh
2 )+sin2( kπh

2 ))+γ+β+1)
. Let us consider two distinct cases:

- if 1 − γ > 0 ⇔ 1 > γ then the roots are of the same sign and moreover positive; the
expression of the sum of the roots leads to the conclusion that, each eigenvalue has a modulus
strictly less than one.
- if 1 − γ < 0 ⇔ 1 < γ then the roots are of opposite sign, but since their sum is positive,
the larger of them in modulus is positive.

44



In both cases, the following inequalities:

−2 <
2

(4α2(sin2( lπh2 ) + sin2(kπh2 )) + γ + β + 1)
< 2,

are obviouly verified and we can therefore conclude by giving the following Proposition:
Proposition 31 The numerical implicit scheme (38) is unconditionally stable. Moreover,
since the scheme is unconditionally stable and consistent, then it is convergent when h → 0
and k → 0.

4.4.2 Three-dimensional damped wave equation.

In this case, for 1 ≤ i, j, k ≤ m and n > 1, the numerical scheme is defined by:


(γ + 1 + β + 6α2)pn+1

i,j,k − α2(pn+1
i+1,j,k + pn+1

i−1,j,k + pn+1
i,j+1,k + pn+1

i,j−1,k + pn+1
i,j,k+1 + pn+1

i,j,k−1)

= k2gn+1
i,j,k + 2pni,j,k + (γ − 1)pn−1

i,j,k),
pn+1
0,j,k = pn+1

m+1,j,k = pn+1
i,0,k = pn+1

i,m+1,k = pn+1
i,j,0 = pn+1

i,j,m+1 = 0,

p0i,j,k = p0(ih, jh, kh), p
1
i,j,k = p0i,j,k + kp1(ih, jh, kh),

(40)
and it can be written vectorially as follows:

((γ + 1 + β)I + α2A3D)Pn+1 = k2Gn+1 + 2Pn + (γ − 1)Pn−1, (41)

where A3D is the discretization matrix of the Laplacian.
The truncation error is equal to the one obtained in subsection 2.2, i.e.

F ≤ Q(h2 + k2).

For the stability analysis, we are in te same situation than the one considered in the two-
dimensinal case and by using the same computations, in order to determine the amplification
matrix, we find that the product of the eigenvalues of B is equal to:

(1− γ)

(4α2(sin2( lπh2 ) + sin2(kπh2 ) + sin2( sπh2 )) + γ + β + 1)
,

while the sum of the eigenvalues is given by:

2

(4α2(sin2( lπh2 ) + sin2(kπh2 ) + sin2( sπh2 )) + γ + β + 1)
,

and similarly, we conclude to the unconditional stability of the implicit numerical scheme
(41).
Proposition 32 The implicit numerical scheme (41) is consistent and unconditionally stable,
of order 2 in space and in time and consequently convergent when h→ 0 and k → 0.
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4.5 Sixh implicit scheme.
In this subsection, we consider the case where the first derivative in time is discretized by
a decentered scheme. In this case, we will briefly formulate the numerical schemes and we
indicate simply their properties, since the techniques for studying the stability of these implicit
schemes are identical to those seen in the previous subsections.

4.5.1 Two-dimensional damped wave equation.

In this case, for 1 ≤ i, j ≤ m and n > 1, the numerical scheme is defined as follows:


pn+1
i,j −2pn

i,j+pn−1
i,j

k2 + d(
pn+1
i,j −pn

i,j

k )− c2(
pn+1
i,j+1+pn+1

i+1,j−4pn+1
i,j +pn+1

i−1,j+pn+1
i,j−1

h2 ) + apn+1
i,j = gn+1

i,j ,

pn+1
0,j = pn+1

m+1,j = pn+1
i,0 = pn+1

i,m+1 = 0 and p0i,j = p0(ih, jh),
p1
i,j−p0

i,j

k = p1(ih, jh).

Let us multiply the previous relation by k2 and consider the change of variable (11) with
γ̄ = dk. Thus, the numerical scheme is defined as follows, for 1 ≤ i, j ≤ m and n > 1 :{

(γ̄ + β + 4α2 + 1)pn+1
i,j − α2(pn+1

i+1,j + pn+1
i−1,j + pn+1

i,j+1 + pn+1
i,j−1) = k2gn+1

i,j + (2 + γ̄)pni,j − pn−1
i,j ,

pn+1
0,j = pn+1

m+1,j = pn+1
i,0 = pn+1

i,m+1 = 0 and p0i,j = p0(ih, jh),
p1
i,j−p0

i,j

k = p1(ih, jh).
(42)

Once again, this previous relation can be written vectorially as follows:

((γ̄ + β + 1)I + α2A2D)Pn+1 = k2Gn + (2 + γ̄)Pn − Pn−1.

According to the result mentioned in subsection 2.3 and by using the same way, the truncation
error is given by:

F ≤ Q(k + h2),

and once again, the explicit numerical scheme (42) is consistent, of order 1 in time and of
order 2 in space.

In order to study the stability of this numerical scheme, we consider the homogeneous
equation written in the eigenvector basis of the matrix A2D. By using the matricial method,
we obtain:

P̄n+1 = ((γ̄ + β + 1)I + α2Λ2D)−1((2 + γ̄)P̄n − P̄n−1).

This leads to the following amplification matrix:

B =

(
2+γ̄

4α2(sin2( lπh
2 )+sin2( kπh

2 ))+γ̄+β+1
− 1

4α2(sin2( lπh
2 )+sin2( kπh

2 ))+γ̄+β+1

1 0

)
,

whose eigenvalues are solutions of the following second-degree equation:

λ2 − (2 + γ̄)λ− 1

4α2(sin2( lπh2 ) + sin2(kπh2 )) + γ̄ + β + 1
= 0.
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The product of the roots is equal to 1
4α2(sin2( lπh

2 )+sin2( kπh
2 ))+γ̄+β+1

and is positive so
that, the eigenvalues have the same sign. In addition, the sum of the roots is equal to

2+γ̄
4α2(sin2( lπh

2 )+sin2( kπh
2 ))+γ̄+β+1

and consequently, the eigenvalues are positive.

Due to the sign of γ̄, β and α2, the conditions of stability can be easily verified and the
implicit numerical scheme is unconditionally stable and convergent when h → 0 and k → 0
since it is consistent.

4.5.2 Three-dimensional damped wave equation.

Consider now the three-dimensional damped wave equation. By using the same notations, for
1 ≤ i, j, k ≤ m and n > 1, the considered discretization of this problem leads to:


(γ̄ + β + 6α2 + 1)pn+1

i,j,k − α2(pn+1
i+1,j,k + pn+1

i−1,j,k + pn+1
i,j+1,k + pn+1

i,j−1,k + pn+1
i,j,k+1 + pn+1

i,j,k−1)

= k2gn+1
i,j + (2 + γ̄)pni,j − pn−1

i,j ,

pn+1
0,j,k = pn+1

m+1,j,k = pn+1
i,0,k = pn+1

i,m+1,k = pn+1
i,j,0 = pn+1

i,j,m+1 = 0,

p0i,j = p0(ih, jh), p
1
i,j = p0i,j + kp1(ih, jh).

(43)
This leads to the following vectorial formulation:

((γ̄ + β + 1)I + α2A3D)Pn+1 = k2Gn + (2 + γ̄)Pn − Pn−1.

According to the result mentioned in subsection 2.3, by using the same way, the truncation
error is given by:

F ≤ Q(k + h2),

and once again, the explicit numerical scheme (43) is consistent and of order 1 in time and of
order 2 in space.

To study the stability of this numerical scheme, we consider the homogeneous equation
written in the eigenvector basis of the matrix A3D. By using the matricial method, we obtain:

P̄n+1 = ((γ̄ + β + 1)I + α2Λ3D)−1((2 + γ̄)P̄n − P̄n−1),

which gives the following amplification matrix:

B =

(
2+γ̄

4α2(sin2( lπh
2 )+sin2( kπh

2 )+sin2( sπh
2 ))+γ̄+β+1

−1
4α2(sin2( lπh

2 )+sin2( kπh
2 )+sin2( sπh

2 ))+γ̄+β+1

1 0

)
,

whose eigenvalues are solutions of the following second degree equation:

λ2 − (2 + γ̄)λ− 1

4α2(sin2( lπh2 ) + sin2(kπh2 ) + sin2( sπh2 )) + γ̄ + β + 1
= 0. (44)

By proceeding analogously to the two-dimensional case, we conclude to the unconditional
stability of the scheme. Thus, the implicit numerical scheme is unconditionally stable and
convergent when h→ 0 and k → 0 since it is consistent.
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4.6 Numerical implicit scheme derived from the Gear scheme.
Lastly, let us consider now the case where the first derivative, with respect to the time, is
discretized by the Gear scheme presented in subsection 2.6. In the two-dimensional and three-
dimensional cases, we obtain the following truncation error:

F ≤ Q(k2 + h2),

and the implicit scheme will be of order two in space and in time. Consequently, it is
consistent.

4.6.1 Two-dimensional damped wave equation.

In the two-dimensional case, for 1 ≤ i, j ≤ m and n > 1, the scheme is defined as follows:


pn+1
i,j −2pn

i,j+pn−1
i,j

k2 + d(
3pn+1

i,j −4pn
i,j+pn−1

i,j

2k )− c2(
pn+1
i,j+1+pn+1

i+1,j−4pn+1
i,j +pn+1

i−1,j+pn+1
i,j−1

h2 )
+apn+1

i,j = gn+1
i,j ,

pn0,j = pnm+1,j = pni,0 = pni,m+1 = 0,

p0i,j = p0(ih, jh),
p1
i,j−p0

i,j

k = p1(ih, jh).

This relation can again be written vectorially as follows:

((3γ + β + 1)I + α2A2D)Pn+1 = k2Gn+1 + 2(1 + 2γ)Pn − (1 + γ)Pn−1. (45)

Let us consider the associated homogeneous semidiscretized scheme in time exprimed in the
basis of eigenvectors of A2D which finally leads to the the amplification matrix given by:

B =

(
2(1+2γ)

4α2(sin2( lπh
2 )+sin2( kπh

2 ))+3γ+β+1
− 1+γ

4α2(sin2( lπh
2 )+sin2( kπh

2 ))+3γ+β+1

1 0

)
.

Consequently, the eigenvalues of the amplification matrix satisfy the following second degree
equation:

λ2 − 2(1 + 2γ)λ+ (1 + γ)

4α2(sin2( lπh2 ) + sin2(kπh2 )) + 3γ + β + 1
= 0.

The product of the roots is positive, so that the eigenvalues have the same sign. In addition,
the sum of the roots is positive, and the eigenvalues are positive. Thus, the implicit numerical
scheme is stable when:

−2 ≤ 2(1 + 2γ)

4α2(sin2( lπh2 ) + sin2(kπh2 )) + 3γ + β + 1
≤ 2.

We can easily see that these inequalities are always verified and we can conclude that the
implicit scheme derived from the Gear scheme (45) is unconditionally stable. In addition,
since this scheme is consistent, then it is also convergent when h→ 0 and k → 0.
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4.6.2 Threedimensional damped wave equation.

In the three-dimensional case, for 1 ≤ i, j, k ≤ m and n > 1, the scheme is defined as
follows:


pn+1
i,j,k−2pn

i,j,k+pn−1
i,j,k

k2 + d(
3pn+1

i,j,k−4pn
i,j,k+pn−1

i,j,k

2k )− c2(
pn+1
i,j+1,k+pn+1

i+1,j,k−6pn+1
i,j,k+pn+1

i−1,j,k+pn+1
i,j−1,k

h2 )

−c2(p
n+1
i,j,k+1+pn+1

i,j,k−1

h2 ) + apn+1
i,j,k = gn+1

i,j,k,

pn0,j,k = pnm+1,j,k = pni,0,k = pni,m+1,k = 0,

p0i,j,k = p0(ih, jh, kh),
p1
i,j,k−p0

i,j,k

k = p1(ih, jh, kh).
(46)

This relation can be written vectorially as follows:

((3γ + β + 1)I + α2A3D)Pn+1 = k2Gn+1 + 2(1 + 2γ)Pn − (1 + γ)Pn−1.

and by repeating the same reasoning and computations as above, the stability condition is
obtained by verifying the following conditions:

−2 ≤ 2(1 + 2γ)

4α2(sin2( lπh2 ) + sin2(kπh2 ) + sin2( sπh2 )) + 3γ + β + 1
≤ 2.

These inequalities are always verified and the considered scheme is unconditionally stable
and convergent when h→ 0 and k → 0 since it is consistent.

4.7 Overview of some algorithms to solve numerically high-dimensional
sparse linear systems.

In order to solve the two-dimensional or the three-dimensional damped wave equation, we
can choose between :
- on the one hand, an explicit time marching scheme that can be implemented as a recurrence.
However, this type of method is limited by the constraints imposed by the stability conditions
which have the effect of imposing relatively small time step choices. Nevertheless, it should
be noted that, in order to reduce elapsed times, these methods are well suited to the use of
vector processors and GPUs (Graphics Processing Units).
- on the other hand, an implicit time marching scheme, where at each time step we have to
solve a very large and sparse linear algebraic system of the following type:

((θ + 1)I + α2A).P = G̃, (47)

where the positive real number θ results from the implicit numerical scheme presented in sub-
section 4.4 to 4.6 and where A is the discretization matrix of the Laplacian. In the present
subsection, we briefly review the main algorithms for solving this kind of algebraic system,
focusing mainly on those that are well suited to the case where the matrix is large, sparse,
symmetric, positive definite and strictly diagonal dominant (and even irreducible strictly diag-
onal dominant), which is typical when discretizing the Poisson equation by finite difference
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method (or by finite volume method) on grids with very small discretization steps in space for
good accuracy. We therefore limit ourselves to the target application concerning the numer-
ical solution of the damped wave equation, and refer to [11, 12, 13, 14, 15, 16, 17, 18] for
further informations.

In the case of two-dimensional or three-dimensional problems, among the methods for
solving linear algebraic systems, we can already exclude direct methods such as Gauss
method of elimination (and its variants), which requires 2

3M
3 arithmetic operations for a

full matrix of dimension M . Moreover, taking into account the symmetry of the matrix
((θ + 1)I + α2A) the number of arithmetic operations reduces to 1

3M
3. Finally, taking into

account the matrix band structure reduces the number of arithmetic operations to the order
of Ml2, where l represents the half bandwidth. Furthermore, the discretization matrix of the
Poisson equation is ill-conditioned and so, the propagation of rounding errors, due to the poor
representation of real numbers in machine, can denature the result obtained numerically as
M increases. This classical situation occurs when high approximation accuracy is required.
Hence, despite the notable reduction in the number of arithmetic operations in the latter two
situations, the effects of matrix ill-conditioning are only slightly attenuated, and this type of
method is not usually used to solve this type of linear system [11, 12, 13, 14, 15].

Given the sparse structure of the matrix, we prefer to solve discretized systems using iter-
ative methods, which essentially involve matrix-vector products and require fewer arithmetic
operations. However, for our target application, we need to take into account the symmetry
property of the matrix involved in the algebraic systems to be solved. In the following, we
summarize the presentation of these methods in each case, and refer the reader to the literature
[11, 12, 13, 14, 15] for further details.

4.7.1 Resolution by the relaxation method.

First, we consider point relaxation methods where, in order to solve the algebraic system (47)
resulting from the discretization by finite difference schemes (or by finite volume schemes)
of the Poisson equation, a fixed point problem of the following type is associated with the
algebraic system to solve:

P = BP + Z.

This formulation results from the decomposition of ((θ + 1)I + α2.A) into the form ((θ +
1)I+α2.A) = D−R−Rt where D is the diagonal of ((θ+1)I+α2.A) and (−R) represents
the lower strictly triangular part. We therefore distinguish :
- the point Jacobi method where BJ ≡ J = D−1(R + Rt) corresponding in fact to the
method of successive approximations, the iteration being defined by :

P q+1 = BJ .P
q + Z, where P 0 is given.

- the point relaxation method where Bω = (D− ωR)−1((1− ω)D+ ωRt) corresponding to
the following iteration:

P q+1 = BωP
q + ω(D − ωR)−1Z, where P 0 is given and 0 < ω < 2,

with the particular case of the point Gauss-Seidel method when ω = 1.
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We consider also the block relaxation methods. Indeed, considering the block structure
of the discretization matrix ((θ + 1)I + α2A), we can also consider the block relaxation
methods which are formally defined in a similar way to the point relaxation methods. Thus,
the matrix D is replaced by a matrix D̃ constructed from the diagonal blocks of the matrix
((θ + 1)I + α2A) and where the matrix R is also replaced by the matrix R̃ constructed also
from the off-diagonal blocks of ((θ + 1)I + α2A). For the block Jacobi method, we have:

J̃ = D̃−1(R̃+ R̃t),

and for the block relaxation method, we have:

B̃ω = (D̃ − ωR̃)−1((1− ω)D̃ + ωR̃t),

where when ω = 1, this defines the block Gauss-Seidel method.
Remark 17 In the point Jacobi method, the components of the vector P q+1 are computed
from the components of the previous iterate P q, which must therefore be stored in memory
until all the components of P q+1 have been computed. On the other hand, in the point Gauss-
Seidel method and, more generally, in the point relaxation method, the ith component of P q+1

is calculated using the (i-1) components of this vector that have already been updated and
the (M-i) components of P q. In the latter case, there is a significant economy of memory
allocation, since the old relaxed components are replaced by the new ones as the relaxations
are updated. A priori, for the target problem under consideration, the Gauss-Seidel method
converges twice as fast as the Jacobi one. A similar remark can be made in the case of block
relaxation methods.

In order to analyze the behavior of these relaxation methods, we classically recall, on the
one hand, necessary and sufficient conditions for convergence linked to the spectral properties
of the iteration matrices and, on the other hand, sufficient conditions for the convergence
derived directly from the properties of the discretization matrix. We summarize the main
convergence criteria below and refer to the literature for further informations.

- Necessary and sufficient criteria for convergence of relaxation methods: if we con-
sider the problem (47) defined in a square (respectively cubic) domain Ω and discretized with
a uniform discretization step in space h, the spectral radius of the point Jacobi matrix is given
in the two-dimensional case by:

ρ(J) =
4α2

(4α2 + θ + 1)
cos(πh),

(and respectively in the three-dimensional case by:

ρ(J) =
6α2

(6α2 + θ + 1)
cos(πh)).

Thus, in both cases ρ(J) < 1.Hence, we can check that ρ(J) is less than 1, which ensures the
convergence of the point Jacobi method whatever be the initial approximation P 0. It should
be noted that in the case of a domain Ω of any shape, the computation of the spectral radii of
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the iteration matrices is not generally a straightforward problem, as it requires the implemen-
tation of the power method [11] and as it corresponds to a computational overhead. However,
for a block tridiagonal matrix ((θ+ 1)I + α2A), we have other criteria which constitute suf-
ficient conditions for the convergence. In this case, we have the following results (see [11]):

- let ((θ+1)I +α2A) be a tridiagonal block matrix whose diagonal blocks are invertible.
Then the block Jacobi and block Gauss-Seidel methods converge or diverge simultaneously.
In the case of convergence, the block Gauss-Seidel method converges asymptotically twice
as fast as the block Jacobi method.

- Let ((θ+1)I+α2A) be a block tridiagonal matrix whose diagonal blocks are invertible.
If µ is an eigenvalue of the block Jacobi matrix and if ξ verifies the following relation:

(ξ + ω − 1)2 = ξ.ω2.µ2,

then ξ is an eigenvalue of the block relaxation matrix and, in particular for ω = 1, ξ =
µ2; this confirms the previous result concerning the convergence speed of the block Gauss-
Seidel method compared with that of the block Jacobi method. Conversely, if ξ is a nonzero
eigenvalue of Bω and if µ verifies the previous relation, then µ is an eigenvalue of the block
Jacobi matrix.

- Let ((θ+1)I+α2A) be a block tridiagonal matrix whose diagonal blocks are invertible.
If all eigenvalues of the block Jacobi matrix are real, then the block Jacobi method and the
block relaxation method (for 0 < ω < 2) converge or diverge simultaneously. In the case of
convergence, there exists a value ωopt defined by :

ωopt =
2

1 + 2

√
1− ρ(J̃)

,

for which ρ(Bω) is minimal and equals to ωopt − 1.
- Sufficient criteria for convergence of relaxation methods: there are, however, suffi-

cient convergence conditions linked to the properties of the discretization matrices. The great
advantage of these criteria lies in the fact that it is not necessary to compute the eigenelements
of the iteration matrices, corresponding to a particularly difficult and delicate computation
except in academic cases (see section 7). Note that the conditions, set out below, are obviously
verified for the discretized problem arising from the damped wave equation.

- A first sufficient condition for convergence is satisfied when the matrix ((θ+1)I+α2A)
is symmetric positive definite; in this case, we have the following results (see [11]):
- if and only if ((θ + 1)I + α2A) is a symmetric positive definite matrix, the point and the
block Gauss-Seidel methods converge. More generally, if ((θ + 1)I + α2A), decomposed
by points or by blocks, is symmetric with a positive diagonal D or a positive definite block
diagonal D̃, then the relaxation methods by points or by blocks, with 0 < ω < 2, converge if
and only if ((θ + 1)I + α2A) is positive definite ;
- if ((θ + 1)I + α2A) is symmetric and if 2D − ((θ + 1)I + α2A) is symmetric positive
definite then the point and block Jacobi methods converge if and only if ((θ+ 1)I + α2A) is
positive definite.
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- A second sufficient condition for convergence is satisfied when the matrix A has strict
diagonal dominance properties, without necessarily being symmetric. We have the following
results (see [11]):
- let ((θ + 1)I + α2A) be a matrix strictly dominant diagonal, then the point Jacobi method
converges;
- let ((θ + 1)I + α2A) be a strongly diagonal dominant matrix, then the point relaxation
method, with 0 < ω < 2, converges.
Remark 18 Note that the two sufficient convergence conditions apply directly to the solution
of the discretized linear system derived from the damped wave equation. We also note that
the strict diagonal dominance condition is very strong and can be replaced by a weaker
condition consisting of an irreducible diagonal dominance property which is not necessary
in our application, even if the matrix is irreducible.

4.7.2 Resolution by the alternating directions method.

Another iterative relaxation method is the alternating directions method. We always con-
sider the discretization matrix ((θ + 1)I + α2A) in the case where the domain Ω is of
two-dimensional (or three-dimensional) shape. In the first case, i.e. for the two-dimensional
problem, we can decompose the discretization matrix into the form ((θ + 1)I + α2A) =
A1 + A2 where the matrices A1 and A2 refer to the discretization schemes of the second
derivatives with respect to x and y respectively, for the two-dimensional problem. Depending
on the numbering of the mesh points, for example when the mesh points are numbered in a
direction parallel to theOx axis, then A1 is block tridiagonal matrix whereas A2 is not. How-
ever, let Q̄ be the permutation matrix corresponding to the renumbering of the points in the
domain parallel to theOy axis, rather than parallel to theOx axis as previously; then, we have
A2 = Q̄tAQ̄ and, under these conditions, A2 is a block tridiagonal matrix. Solving systems
of the type A1P = Z1 and A2P = Z2 can therefore be decomposed into solving tridiagonal
algebraic systems of small dimension using the TDMA algorithm, with the advantage that
this algorithm leads to very fast solving and requires no additional memory storage. For the
model problem (47), let r be a real number; so, let us write:

(A1 + rI)P = G̃+ (rI −A2)P,

and
(A2 + rI)P = G̃+ (rI −A1)P.

Each iteration of the alternating directions method consists of the following two predictor-
corrector steps:

(A1 + rI)P q+ 1
2 = G̃+ (rI −A2)P

q,

and
(A2 + rI)P q+1 = G̃+ (rI −A1)P

q+ 1
2 ,

where the number r is to be determined as well as possible. Note that the error between the
exact solution of the problem P and P q, i.e. eq, on the one hand, and between P and P q+1,
i.e. eq+1, on the other hand, can be written as follows:

eq+1 = S(r).eq,
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where
S(r) = (A2 + rI)−1.(rI −A1).(A1 + rI)−1.(rI −A2).

Since the matrices A1 and A2 commute their eigenvalues λmin and λmax are identical and
it has been shown (see [11]) that the optimal value of r, denoted ropt, which minimizes the
spectral radius of S(r) is given by ropt = 2

√
λmin.λmax.

Remark 19 Note that the alternating directions method is not very interesting to implement,
since it requires two to three times as many operations per iteration than the optimal param-
eter point-relaxation method. However, we shall see in subsection 4.7.5 that this method can
be easily parallelized.

4.7.3 Resolution by the multigrid method.

Before presenting the multigrid method, let us present the 2-grid method. This method com-
bines two poorly performing methods to create a highly efficient one. In the 2-grid method,
we consider a fine grid of the domain Ω with step size h and a coarse grid with step size
H = 2h. A cycle of the 2-grid method consists of the following two phases:
- a smoothing phase, corresponding to two or three iterations of a relaxation or other iterative
method, to reduce the high frequencies of the error when decomposing it into the eigenvec-
tors basis of the matrix;
- a coarse-grid correction phase that effectively handles low frequency errors, since a low
frequency mode on the fine grid will eventually be transformed into an oscillating mode (cor-
responding to high frequencies) on the coarse grid, and will therefore be smoothed by an
iterative smoothing method, as indicated in the previous point.

We can verify that the correction to be added to the result on the h-step grid is the solution
of a problem of the same type as the initial problem, in which the second member is replaced
by the residue at the points on the fine grid. The computation of this correction is, a priori, as
costly as computing the solution to the initial problem. However, since the error is smoothed,
we can try to obtain an approximation of this correction on theH- step grid which will require
much less computations, since the H-step grid has about four times fewer points in the case
of the two-dimensional problem (eight times fewer points in the case of the three-dimensional
problem) than the h-step grid. We will indeed be able to obtain a good approximation of the
correction on the coarse grid if it varies slowly which is effectively the case thanks to the
smoothing iterations. The second phase of each cycle of the 2-grid method then consists of :
1) Define the restriction of the residue on the coarse grid by using a restriction operator which
can simply be the injection defined at all points on the coarse grid, or a weighted-average
restriction,
2) Solve the linear system to obtain the correction on the coarse grid,
3) Extend the correction obtained on the coarse grid to the fine grid, for example by bilinear
interpolation. We then repeat a new cycle of the 2-grid method.
The main question is whether the extension of the correction obtained on the coarse grid
is a good approximation of the correction on the fine grid, and if so, what benefits can be
expected from using the 2-grid method. Note that the 2-grid method can be written as a
linear fixed-point iteration of the type P q+1 = BP q + Z, for q = 0, 1, 2, .... For smoothing
corresponding to the Gauss-Seidel method, we can show by a Fourier analysis that the 2-
grid method yields an error reduction factor equal to 2

√
5 = 0.447 which corresponds to an

excellent error reduction rate.
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The multigrid method corresponds to the recursive application of a 2-grid method. Indeed,
when solving the system of equations on the coarse grid to obtain the correction (point number
2 just above), we can once again use a 2-grid method, defining a problem on an still coarser
grid of steps 2H = 4h, and so on, to finally solve a system of equations on the coarsest grid
containing just few points, or even a single point since the discretization steps are chosen as
inverse powers of 2. This requires the definition of inter-grid passage strategies, which we
will not develop here as the reader will find many details in the literature (see [17, 18]). It
should also be noted that this multigrid method is well suited to use on rectangular domains in
the two-dimensional case or cubic domains in the three-dimensional case. However, there are
variants of the multigrid method well suited to the numerical solution of partial differential
equations on domains of any shape.

4.7.4 Resolution by the conjugate gradient method.

In such method, we have to minimize a positive definite quadratic form. By derivation, we
verify that, under the assumptions of symmetry of matrix A, the minimum of this quadratic
form is the solution of the linear system (47) resulting from the discretization of the damped
wave equation to be numerically solved. The basic algorithms consist of the deepest descent
method, the constant optimal parameter gradient method (or Richardson method). Let κ =
λmax

λmin
be the condition number of the matrix ((θ+1)I+α2A),where λmin and λmax represent

respectively the largest and smallest eigenvalues of this matrix.
Note that for problem (47), we can give an estimate of the condition number κ when the

discretisation step h tends towards zero. Indeed in the two-dimensional case, κ is given by:

κ =
θ + 1 + 8α2 sin2(mπh

2 )

θ + 1 + 8α2 sin2(πh2 )
,

while in the three-dimensional case κ is given by

κ =
θ + 1 + 12α2 sin2(mπh

2 )

θ + 1 + 12α2 sin2(πh2 )
.

However, the number α depends on the parameter h. Hence, in the two-dimensional case and
when h tends to zero, we can replace in the denominator sin2(πh2 ) by (πh2 )2 and since α = ck

h
the denominator is reduced to θ + 1 + 2(cπk)2. Thus, we obtain:

lim
h→0

(κ) ≈ (
θ + 1 + 8α2 sin2(mπh

2 )

θ + 1 + 2(cπk)2
) = (

θ + 1 + 8( ckh )2 sin2(mπh
2 )

θ + 1 + 2(cπk)2
),

and since m becomes large when h tends towards zero, we obtain the following overestima-
tion of κ :

κ < (
θ + 1 + 8( ckh )2

θ + 1 + 2(cπk)2
) → ∞ when m→ ∞.

We then verify that κ is greater than one and that the constraint κ ≥ 1 is verified when
m verifies m > 1.570795L − 1 since in our case m must be very large and obviously the
constraint κ > 1 is well verified.
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In a similar way, in the three-dimensional case, with similar estimates, we obtain:

lim
h→0

(κ) ≈ (
θ + 1 + 12( ckh )2 sin2(mπh

2 )

θ + 1 + 3(cπk)2
) < (

θ + 1 + 12( ckh )2

θ + 1 + 3(cπk)2
),

and, as the previous condition κ ≥ 1 involves, once again, that m must verify m >
1.570795L− 1.

For these two previous methods, i.e. the deepest descent method and the Richardson
method, the error reduction factor at each iteration is then equal to κ−1

κ+1 . However, for large
dimension M , this number κ increases considerably, and since ln(1± τ) ≈ ±τ , the number
of iterations q for convergence is given by (see [11]):

q ≈ κ

4
. ln(

1

ϵ
),

where ϵ represents the threshold of the iteration stop test. Hence, the number q of iterations
to reach convergence is proportional to κ and it becomes as large as the condition number.

In order to reduce the computation time, it is preferable to use the conjugate gradient
method, in which the direction of descent is corrected at each iteration. In exact arithmetic
this method converges in at most M iterations; the error reduction factor of the conjugate
gradient method is equal to

2
√
κ−1

2
√
κ+1

. Thus, after q iterations of this method, if the threshold of
the iteration stop test is still set to ϵ, the number q is given by (see [11]):

q ≈
2
√
κ

4
. ln(

4

ϵ
).

Thus, in this case, the number q of iterations is proportional to 2
√
κ and the use of the conjugate

gradient method is preferable to employ than the descent method or Richardson one.
The convergence of the conjugate gradient algorithm can be further accelerated by con-

sidering the preconditioned conjugate gradient method. This is achieved by preconditioning
the matrix ((θ + 1)I + α2A) which consists in replacing the resolution of the initial linear
algebraic system (47) by:

C−1((θ + 1)I + α2A)P = C−1G̃.

This system can still be written as:

C
1
2 (C−1((θ + 1)I + α2A))C− 1

2C
1
2P = C− 1

2 G̃,

where the preconditioning matrix C−1 is chosen symmetric positive-definite, so that, the
equivalent system to be solved is given by:

ÃP̃ = ˜̃G,
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where the matrix Ã = C− 1
2 ((θ+1)I +α2A)C− 1

2 is symmetric positive definite and similar
to the matrix C−1((θ + 1)I + α2A). The matrix C is chosen so that:

κ(Ã) << κ((θ + 1)I + α2A).

However, the determination of the matrix C is a non-trivial problem.
The ideal value of Ã would result in κ(Ã) ≡ 1 and, in practice, Ã is an approximation of

the identity matrix, the matrix C−1 being an approximation of ((θ+ 1)I + α2A)−1. In prac-
tice, we have to find C−1 as close as possible to ((θ+1)I +α2A)−1 without making a large
lot of calculations to calculate C−1, in practice too costly. If we rewrite the preconditioned
conjugate gradient algorithm for solving the linear system (47), we can express the compu-
tational steps directly from the initial given matrix ((θ + 1)I + α2A) and vectors P and G̃.
We refer to [11, 12, 13, 14, 15] for the expression of this algorithm expressed directly from
the data ((θ + 1)I + α2A), P and G̃. Simply note that the expression of the preconditioned
conjugate gradient algorithm is almost identical to that of the expression of the classical con-
jugate gradient method. The only difference is the appearance of linear systems of the type
CX = Y where X and Y are vectors of the same dimension than P and G̃. It is therefore
absolutely essential that this resolution is easy and inexpensive which will be the case if the
matrix C is a diagonal matrix or the product of triangular matrices. Classic choices of pre-
conditioning matrices include :
- The diagonal preconditioning where C = diag(((θ + 1)I + α2A)) = D which in prac-
tice is not very efficient.
- The Evans S.S.O.R. preconditioning where ((θ + 1)I + α2A) = D −R−Rt with

C =
1

ω(2− ω)
(D − ωR)D−1(D − ωRt),

where R is always the strictly triangular lower part of ((θ + 1)I + α2A) and ω is a strictly
positive real parameter located in ]0, 2[. It can be seen that, in this case, C is obtained directly
from ((θ+1)I+α2A). No additional stokage or calculation are required. Solving the system
CX = Y requires solving a lower triangular system, then a diagonal system and an upper
triangular system which leads to a sequence of very straightforward calculations. We can also
determine the optimal value of ω given by (see [19] - [20]):

ωopt =
2

1 + 2
√

1− ρ(J)
,

where J is the point Jacobi matrix, ωopt being the value of ω that minimizes the value of the
condition number.
- The preconditioning based on incomplete Cholesky factorization : note that the matrix
A is symmetric and positive-definite, ((θ + 1)I + α2A) admits a Cholesky decomposition
of type S̄S̄t where S̄ is a lower triangular matrix. To perform this type of preconditioning,
we use a variant of the Cholesky method. In the case of a banded sparse matrix, the matrix S̄
does not conserve the sparse character of the initial matrix, because during the factorization
there is a ”fill-in” phenomenon inside the band.
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However, after the Cholesky transformation, as we move away from the main and most
exterior diagonals, the moduli of the coefficients in this area become smaller and smaller, with
smallest terms in the middle of the band. Such smallest terms are negligible compared to the
diagonal and exterior diagonal terms. This suggests that some of these small terms should be
neglected, and that the structure of the matrix S should be is practically similar as the initial
matrix ((θ + 1)I + α2A). We therefore define, a priori, set of fixed indices σ and look for
two matrices C (preconditioning matrix) and R such that:

((θ + 1)I + α2A) = C −R = SSt,

where S is a lower triangular matrix, such that Si,j = 0 if (i, j) ∈ σ with Ri,j ̸= 0 and
Si,j ̸= 0 if i ̸= j or Ri,j = 0. Therefore, σ defines the set of a priori zero elements of S
and non-zero elements of R. We can determine the matrix S, writing that the product SSt

corresponds to the exact decomposition of the matrix ((θ + 1)I + α2A) +R.
We know how to characterize the classes of matrices for which the previous Cholesky

decomposition, known as the Cholesky incomplete decomposition, is stable whatever σ. This
is the case, for example, if ((θ+1)I+α2A) is strictly dominant diagonal which is the case for
solving the damped wave equation (or also is an irreducible dominant diagonal matrix), and
for verifying the following two properties: the off-diagonal entries of ((θ + 1)I + α2A) are
negative or zero and its inverse is nonnegative. All these properties are verified for matrices
resulting from the discretization of the Poisson problem with Dirichlet or mixed boundary
conditions and also, obviously, for the matrix resulting from the discretization of the damped
wave equation. Then, such matrices are called classically M-matrices (see for example [16]).
By varying σ, we obtain an infinite number of incomplete decompositions. The disadvantage
of Cholesky incomplete factorization is that, in general, it cannot be shown to improve the
condition number of the matrix ((θ + 1)I + α2A). Nevertheless, numerical tests show that
this is indeed the case, without, in general, any clear mathematical reasons.

4.7.5 Parallel and subdomain methods.

As already mentioned, to obtain good accuracy, very small spatial discretization steps must be
chosen, leading to very large discretization matrices. Given the current evolution of computer
architectures and, in particular the emergence of multiprocessor machines, the computations
can be parallelized. Then, we have:
- when using conjugate gradient methods, matrix-vector products can be parallelized, as well
as the scalar product of two vectors and the linear combination of two vectors;
- when using Jacobi point or block method, computations can also be parallelized;
- note also that, when using the alternating directions method, both the prediction and correc-
tion phases involve solving independent tridiagonal linear algebraic systems, making it easy
to parallelize each of these phases;
- it should also be noted that some phases of the multigrid method can also be parallelized;
- finally, when using the Gauss-Seidel point or block method, calculations can also be par-
allelized with synchronous or asynchronous communications data exchanges between the
parallel calculation processes, leading to the definition of the iterative subdomain method
with or without overlaps between them, in the first case defining subdomain methods with
overlaps, such as Schwarz alternating method. In this case, we can obtain an estimate of the
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contraction constant ν(J ) of the iterations derived from a contraction matrix J (correspond-
ing in fact in an appropriate mathematical context to a matricial Lipchitz constant (for more
details see [21, 22, 23, 24]). In this framework, we have classically:

ν(J ) ≤]J [∞,

where ν(J ) is the spectral radius of J and ]J [∞ is the matrix norm induced by the uniform
norm which verifies:

]J [∞≤ max
1≤i≤M

(

M∑
i=1

|Ji,j |).

In our case, in the two-dimensional case, the diagonal entries of J are zero and its nonzero
entries are given by α2

(4.α2+θ+1) . Then, we have:

ν(J ) = ν2D <
4α2

(4α2 + θ + 1)
.

In the similar way, in the three-dimensional case, we obtain:

ν(J ) = ν3D <
6α2

(6α2 + θ + 1)
.

In both cases, these estimates prove the convergence of these subdomains methods and ν(J )
gives an estimate of the speed of convergence. For more details on this point, the reader is
referred to [21, 22, 23, 24].

The previous methods being iterative in nature must be stopped when the iterated values
are stabilized. Thus, they are completed by a test to stop the iterations. In the case of syn-
chronous parallel algorithms, this iteration stopping test is identical to the one implemented in
the sequential case. For asynchronous parallel algorithms, the iteration stopping test is much
more delicate to implement. Thus, in this latter case, we will distinguish the computer science
approach and the numerical analysis approach.

By concerning the computer science approach several methods are available by using a
snapshot technic or also a token circulation (for more details see [21, 22, 23, 24]). Concern-
ing the numerical analysis approach it can be proved that the successive iterates are located
in nested sets centered in the solution of the problem (see [25] and [23]) which allows to
implement efficient numerical stopping tests as soon as one can give an estimate of the diam-
eters of each nested set and stop the iterative process when a diameter is smaller than a given
tolerance. Such stopping tests have been implemented successfully on grids constituted by
heterogeneous and distant machines. Note that asynchronous algorithms were very efficient
when there was a lot of synchronizations between the processors (see [24]).
Remark 20 Let us mention also a study on solving the telegrapher equation concerning the
implementation of the optimized waveform relaxation method corresponding to a domain
decomposition method for solving time dependent problems (see [26] for more details).
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4.8 Some non-linear situations of the damped wave equation.
In the present subsection, we consider two cases where the damped wave equation is pseudo-
linear. The first case coresponds to the case where the damped wave equation is perturbed by
a diagonal monotone operator while the second case concerns the situation where the solution
of the damped wave equation is subject to inequality constraints. In this last situation, we
have to solve a multivalued system.
Remark 21 We refer to [27] for a distinct study of a three level finite difference scheme of
O(k4 + k2.h2 + h4) using 9 grid points for the numerical solution of the one-dimensional
non-linear wave equation defined with variable coefficients. Nevertheless, note that in [27]
the non-linearity appears in the right hand side, while in the presented study, the non-linearity
is not the same. Indeed in the present subsection we consider also, for example a multivalued
perturbation of the linear operator or also situations where the perturbed operator is not
differentiable.

4.8.1 Perturbation of the damped wave equation by a diagonal monotone
operator.

We consider the first type of pseudo-linear singlevalued algebraic systems defined as follows:

((θ + 1)I + α2A)P +Φ(P ) = G̃. (48)

It corresponds to a linear system perturbed by a diagonal increasing operator (or more
generally monotone operator). By considering this property of monotony of the operators
P → Φ(P ), the convergence criteria of the synchronous and asynchronous parallel algo-
rithms, previously stated in the linear case, are still valid for the solution of the non-linear
problem (48) (see [21]).

Concerning the non-linear part, we consider different types of non-linear problems where
the non-linearities arise on the domain Ω. For example we can consider the following non-
linear functions: φ(p) = eαp, with α > 0 or φ(p) = log(β + δp), with δ > 0, and a suitable
sign for β, where in both cases p→ φ(p) is a continuous non-decreasing function. Then, we
have to solve an algebraic system like (48) where Φ is a diagonal operator derived from the
discretization of φ; according to the properties of φ then Φ is a monotone diagonal increasing
(or monotone) mapping. Consequently, we are in the framework presented in [21] and the
convergence of parallel synchronous or asynchronous relaxation methods is verified with the
same speed of convergence than in the linear case since the properties of the mapping φ(p),
i.e. the property of monotony, do not change the convergence rate. Note that in this case, when
the operator p→ φ(p) is differentiable, Newton method can be used.

We can also consider another type of non-linear problem where the non-linearity is shown
in Figure 1. This figure displays some examples of graphs for function φ. In particular, the
two first graphs model saturation phenomena and the third graph models a multivalued func-
tion corresponding to the condition occuring when p is subject to constraints inequality. We
consider first the resolution of the non-linear damped wave problem by limiting to a non-
linearity corresponding to the two first graphs of Figure 1. Indeed the non-linearity presented
in the last graph of this figure, corresponding to the resolution of a problem with inequality
constraints will be studied in the next subsection 4.8.2. It should be noted that the applications
presented in the first two graphs of Figure 1, are not differentiable everywhere, especially at
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Fig. 1: Different graphs for φ.

the junction of the parts where φ is constant with its increasing parts. Therefore, the use of
Newton method is not possible in this case. On the other hand, we can consider the use of a
successive approximation method particularly well adapted to the solution of the considered
type of problem in this case when the fixed point associated to the problem (48) is contracting
in such a way that the parallel algorithm converges.

Concerning the convergence of the considered method, since on one hand, the diagonal
entries ai,i of ((θ+1)I +α2A) are strictly positive and the off-diagonal entries ai,j are non-
positive and furthermore, since ((θ + 1)I + α2A) is strictly (or also irreducibly diagonally
dominant) thus, ((θ+1)I +α2A) is an M -matrix. On the other hand, since Φ(u) is a mono-
tone increasing mapping then for the resolution of problem (48) the parallel synchronous or
asynchronous relaxation algorithms converge to the unique solution of the problem and the
estimate of the previous contraction constant ν(J ) is at least still valid for the problem (48).
Note also that, in the considered framework, the value of the contraction constant ν(J ) are
still valid when subdomain methods without overlapping are implemented (see [21]). Simi-
larly, if we solve the non-linear simultaneous equations via the Schwarz alternating method,
then the augmentation process of the Schwarz alternating method transforms the M -matrix
A into anM -matrix Ã and the monotone increasing mapping Φ into the monotone increasing
mapping Φ̃ (see [28] and [21]). Consequently, we are in the same previous framework con-
sidered in the case of subdomain methods without overlapping and the computational process
converges too.

4.8.2 Situation where the solution of the damped wave equation is subject to
inequality constraints.

Another situation of pseudolinear problem corresponds to the case where the solution P is
subject to the following constraints of inequalities type:

Pmin ≤ P or Pmin ≤ P ≤ Pmax or P ≤ Pmax, (49)
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in this last case, the solution P satisfies the following large pseudo-linear multivalued
algebraic systems:

((θ + 1)I + α2.A)P + ∂Ψ(P )−G ∋ 0, (50)
where Ψ is the characteristic function defining the convex set of constraints and ∂Ψ(P ) is
the subdifferential of Ψ corresponding, in fact, to a weak derivative of Ψ. Classically the
mapping P → ∂Ψ(P ) is still a diagonal monotone operator. Then, we are in an analogous
framework considered just above in the singlevalued situation where a linear algebraic system
is perturbed by a diagonal monotone operator. Thus, the parallel synchronous or asynchronous
relaxation methods applied to the resolution of problem (49) converge to the unique solution
of the problem (see [21]).

5 Numerical simulation for 1D damped wave equation.
In order to validate our study, in particular the development of various explicit and implicit
schemes presented above, we consider in this section numerical tests in the one-dimensional
case only. To test these schemes, we place ourselves in situations where we know a priori the
solution to the problem. We consider two distinct situations studied respectively in sections
2 and 3. In the case of implicit schemes, we have to solve a linear system composed with a
tridiagonal matrix, and given the sparse nature of this matrix, we will use the TDMA method.

5.1 Damped wave equation equipped with Dirichlet conditions.
In the present subsection, we consider the damped wave equation equipped with Dirichlet
boundary conditions. In the considered test c = 1 and a = d = 2. The exact solu-
tion is given by pexact(x, t) = sin(π.x). cos(π.t) and the second member is defined by
g(x, t) = sin(π.x).(cos(π.t).(a + π2.(c2 − 1)). Note that pexact(0, t) = pexact(L, t) =
0 with L = 1, and consequently pexact(x, t) satisfies homogeneous Dirichlet boundary condi-
tions. In addition, the initial condition is given by p0(x) = sin(π.x) while the initial velocity
is zero.

For the numerical simulations, the number of points of discretization in space on the
interval [0, L = 1] is given by m = 20 while the number of points of discretization in time
on the interval [0, T = 0.25] is equal to N = 20. Note that the discretization step in space is
equal to h = 1

21 = 0.0476 while the discretization step in time is equal to k = 0.25
20 = 0.0125.

Thus, for the explicit numerical scheme c kh = 0.2626 < 1 and the C.F.L. condition is well
verified. Moreover, ak

3 = 2.k3 = 0.0083 < 2; thus, the explicit schemes will be stable.
Figure 2 represents, on the one hand, the curves of the exact solution and, on the other,

the curves obtained by implementing the explicit and implicit numerical schemes.
All the numerical solutions are therefore in good agreement with the exact solution.

5.2 Damped wave equation equipped with mixed conditions.
We consider now the comparison of curves obtained by explicit and implicit numerical
schemes with the exact solution when the boundary conditions are mixed. In this case, the
exact solution of the problem is given by pexact(x, t) = x.(x− 2). exp(−b.t) with b = 1; the
associated second member is given by g(x, t) = (x.(x−2).(b.(b−d)+a)−2.c2). exp(−b.t)
(with c = 1 and a = d = 2.). Note that pexact(0, t) = 0 and ∂p(L=1,t

∂x = 0 and that the
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(a) Exact solution. (b) First explicit scheme. (c) Second explicit scheme.

(d) First implicit scheme. (e) Second implicit scheme. (f) Gear implicit scheme.

Fig. 2: Damped wave equation with homogeneous Dirichlet boundary conditions.

initial condition in time is given by p0(x) = x.(x − 2) while the initial velocity is equal to
∂p(x,0
∂x = −b.x.(x− 2).

As above, we choose m = 20 and N = 20 and therefore, h = 0.0476 and k = 0.0125.
For the explicit numerical scheme, the numerical stability conditions are verified.

Figure 3 represents, on the one hand, the curves representing the exact solution and, on the
other hand, the curves obtained by implementing the explicit and implicit numerical schemes.
Remark 22 For example the choice of m = 100 produces an effect of instability in the
numerical simulation. In this case, c kh = 0.0125

0.00990 = 1.2625 > 1 so that the C.F.L. condition is
not satisfied. However, when m = 50 the explici numerical schemes are numerically stable.
Indeed, in this case, c kh = 0.0125

0.01960 = 0.6375 < 1 and the numerical explicit schemes run
efficiently.

6 Conclusion.
In this study, the numerical analysis of various schemes for numerically solving the damped
wave equation defined in one-, two- and three-dimensional domains was carried out. In partic-
ular, estimates of the truncation error of the schemes have been given and numerical stability
has been studied. In the case of implicit schemes, an overview of algorithms for solving
high-dimensional, sparse linear systems was given. In order to complete this study, numerical
simulations have been carried out in simple situations of one-dimensional domains Ω.

In a further study, we plan to test our schemes by performing numerical simulations for
problems defined in two–dimensional and three-dimensional domains Ω . In addition, we can
also apply the proposed schemes to the numerical study of a piezoelectric delay problem
modeled by a wave equation coupled to a damped wave equation.
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(a) Exact solution. (b) First explicit scheme. (c) Second explicit scheme.

(d) First implicit scheme. (e) Second implicit scheme. (f) Gear implicit scheme.

Fig. 3: Damped wave equation with mixed boundary conditions.

7 Annexes: determination of the eigenelements of the
discretization matrices in academic situations.

The notations in this annex are generally distinct from those used in sections 2 to 5.

7.1 Case of one-dimensional Laplacian equipped with Dirichlet
boundary conditions.

Consider the Poisson equation with Dirichlet boundary conditions or, more generally, the
convection-diffusion problem with the same boundary conditions. The discretization matrix
for these problems, of dimension M, are represented as follows:

A1D =



a b

c
. . . . . . 0
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

0
. . . . . . b

c a


, (51)

where a, b and c are real numbers. In this subsection, we shall compute the eigenelements of
the A1D matrix. Let λ be an eigenvalue of A1D and V with components vk, k = 1, . . . ,M
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the associated eigenvector. Let us write the k-th eigenvalue equation, so we obtain:

cvk−1 + (a− λ)vk + bvk+1 = 0, k = 1, . . . ,M,

with
v0 = vM+1 = 0.

Let us determine the components vk in the form vk = rk where in general r is a complex
number, so we obtain:

rk−1(br2 + (a− λ)r + c) = 0 ⇒ br2 + (a− λ)r + c = 0,

since the components of V are different from zero (and consequently in general r ̸= 0 also).
Therefore, the component vk is given by:

vk = αrk1 + βrk2 .

Note that v0 = 0; this leads v0 = α+ β = 0, i.e. α = −β and consequently:

vk = α(rk1 − rk2 ).

In addition, we can also find the sum and the product of the second degree equation. Hence,
we obtain:

r1 + r2 =
λ− a

b
⇒ λ = a+ b(r1 + r2),

and
r1r2 =

c

b
⇒ r2 =

1

r1

c

b
,

and consequently

vk = α(rk1 − 1

rk1
(
c

b
)k).

In particular for k =M + 1

vM+1 = 0 = α(rM+1
1 − 1

rM+1
1

(
c

b
)M+1) ⇒ r

2(M+1)
1 = (

c

b
)(M+1),

and finally

r1 = ± 2

√
c

b
exp(j

kπ

M + 1
) and r2 = ± 2

√
c

b
exp(−j kπ

M + 1
), k = 1, . . . , 2(M + 1),

where j2 = −1. Thus,

r1 + r2 = ±2 2

√
c

b
cos(

kπ

M + 1
), k = 1, . . . , 2(M + 1),
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and
λk = a± 2

2
√
bc cos(

kπ

M + 1
), k = 1, . . . , 2(M + 1).

Note that, we obtain the same values of λk, on one hand, for k = 1, . . . ,M and on the other
hand, for k =M + 2, . . . , 2.M + 1.

Furthermore, for k = M + 1, let us find the components of V. Since, in this case, r1 =
± 2
√

c
b exp(jπ) = ∓ 2

√
c
b and r2 = ± 2

√
c
b exp(jπ) = ∓ 2

√
c
b = r1, then vM+1 = α(rM+1

1 −
rM+1
2 ) = 0 and the index k =M + 1 is not suitable.

In the same way, the value of k = 2(M + 1) leads to a value of r1 = r2 = ± 2
√

c
b and

v2(M+1) equals zero and consequently k = 2(M + 1) is not suitable.
Finally, the eigenvalues of the matrix A1D are given by:

λk = a± 2
2
√
bccos(

kπ

M + 1
), k = 1, . . . ,M.

The components of the eigenvector associated to the eigenvalue number k are given by:

v
(k)
l = α(rl1 − rl2) = ±α 2

√
c

b
(exp(j

lkπ

M + 1
− exp(−j lkπ

M + 1
)),

and finally

v
(k)
l = ∓2α 2

√
c

b
sin(

lkπ

M + 1
), k, l = 1, . . .M.

Since, the eigenvector is defined to one multiplicative constant, we can normalize and write:

v
(k)
l = sin(

lkπ

M + 1
), k, l = 1, . . .M.

Remark 23 When a = 2 and b = c = −1, we find the eigenvalues of the Laplacian
equipped with Dirichlet boundary conditions. Indeed, if we take the negative determination
of the square root, we find:

λk = 2− 2 cos(
kπ

M + 1
) = 4 sin2(

kπ

2(M + 1)
), k = 1, . . . ,M.

7.2 Case of one-dimensional Laplacian equipped with mixed boundary
conditions.

Consider now the one-dimensional Laplacian equipped with mixed boundary conditions stud-
ied in section 3. As in previously done, we use a phantom point numbered (M + 2). This
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leads to the following matrix of dimension (M + 1):

Ã1D =



2. −1.

−1.
. . . . . . 0
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

0 −1. 2. −1.
−2. 2.


. (52)

The eigenelements of Ã1D are calculated in the same way as in the previous subsection, but
the eigenvalue equation is slightly different, and precised as follows:{

−vk−1 + (2− λ)vk − vk+1 = 0, k = 1, . . . ,M + 1,
v0 = 0 and vM+2 = vM .

We always look for vk of the form vk = rk and we verify that r is a solution of the second
degree equation:

r2 + (λ− 2)r + 1 = 0,

such that, its roots r1 and r2 leads to:

vk = αrk1 + βrk2 .

Thus v0 = 0 leads to v0 = α+ β = 0, i.e. α = −β and consequently we have:

vk = α(rk1 − rk2 ).

In addition

r1r2 = 1 and r1 + r2 = 2− λ⇒ r2 =
1

r1
and λ = 2− (r1 + r2).

Let us now express the condition vM+2 = vM ; thus, we obtain:

α(rM+2
1 − 1

rM+2
1

) = α(rM1 − 1

rM1
) ⇒ r

2(M+1)
1 r21 − 1 = r

2(M+1)
1 − r21,

thus,
(r21 − 1)(r

2(M+1)
1 + 1) = 0 ⇒ r21 = 1 and r2(M+1)

1 = −1.

Note that r
2(M+1)
1 = −1 = exp(j(2k − 1)π), k = 1, 2, . . . . Then, r1 =

exp(j (2k−1)π)
2(M+1) ) and r2 = exp(−j (2k−1)π)

2(M+1) ) and consequently:

λk = 2− (r1 + r2) = 2(1− cos(
(2k − 1)π)

2(M + 1)
) = 4 sin2(

(2k − 1)π)

4(M + 1)
), k = 1, . . . ,M + 1.
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The components of the eigenvectors associated to λk are given by:

vkl = α(rl1 − rl2) = α(exp(j
((2k − 1)lπ)

2(M + 1)
)− exp(−j ((2k − 1)lπ)

2(M + 1)
)),

i.e.

vkl = 2jα sin(
((2k − 1)lπ)

2(M + 1)
), l, k = 1, . . . ,M + 1,

and, as before, we normalize by choosing 2.j.α = 1.

7.3 Case of the two-dimensional Laplacian equipped with Dirichlet
boundary conditions.

Consider now the Poisson equation or more generally the convection-diffusion problem
defined in a square domain and equipped with the Dirichlet boundary conditions. The
discretization matrix is block-tridiagonal and is represented as follows:

A2D =



a c e

b
. . . . . . . . .
. . . . . . c

. . .
b a e

d
. . . . . . e

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

d
. . . . . . e

d a c
. . . b

. . . . . .
. . . . . . . . . c

d b a



, (53)

with real coefficients. In the following, let us calculate the eigenelements of this matrix. The
eigenvalue equation is written as:

dvk,l−1 + bvk−1,l + avk,l + cvk+1,l + evk,l+1 = λvk,l, k = 1, . . . , N , l = 1, . . . ,M,

where, for example, l is the block number, and k the component number in block number l;
M denotes the number of blocks and N the size of each block. By considering the Dirich-
let boundary conditions, which can always be reduced to the homogeneous case since the
problem is linear, we therefore write, for k = 1, . . . , N , l = 1, . . . ,M :{

(dvk,l−1 +
1
2 (a− λ)vk,l + evk,l+1) + (bvk−1,l +

1
2 (a− λ)vk,l + cvk+1,l) = 0,

v0,l = vN+1,l = vk,0 = vk,M+1 = 0.
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In order to return to the one-dimensional case, we consider a variable separation by search-
ing vk,l in the form vk,l = f(k)g(l) which amounts to separating k and l. Thus, for
k = 1, . . . , N , l = 1, . . . ,M, we have:{
f(k)(dg(l − 1)) + 1

2 (a− λ)g(l) + eg(l + 1)) + g(l)(bf(k − 1) + 1
2 (a− λ)f(k) + cf(k + 1)) = 0,

f(0) = f(N + 1) = g(0) = g(M + 1) = 0.

Since vk,l is generally not equal to zero, we divide the two members by f(k).g(l). Thus, we
obtain for all k and all l :

dg(l − 1)) + eg(l + 1)

g(l)
+

1

2
(a− λ) = −bf(k − 1) + cf(k + 1)

f(k)
− 1

2
(a− λ) = C,

where C is a constant. Finally, we obtain:{
bf(k − 1) + 1

2 (a− λ+ 2C)f(k) + cf(k + 1) = 0, k = 1, . . . , N,
f(0) = f(N + 1) = 0,

and {
dg(l − 1)) + 1

2 (a− λ− 2C)g(l) + eg(l + 1) = 0, l = 1, . . . ,M,
g(0) = g(M + 1) = 0,

and we are therefore reduced to two decoupled problems identical to those previously con-
sidered in the one-dimensional case. We therefore look for f(k) in the form f(k) = sk and
for g(l) in the form g(l) = rl. As previously, since the components of the eigenvectors are
generally nonzero, we have to solve the following two second degree equations:{

cs2 + 1
2 (a− λ+ 2C)s+ b = 0,

er2 + 1
2 (a− λ− 2C)r + d = 0,

each of which admits two roots; so we have:

f(k) = αsk1 + βsk2 and g(l) = α′rl1 + β′rl2.

By taking into account the boundary conditions, we obtain:

f(0) = 0 = α+ β ⇒ β = −α and g(0) = 0 = α′ + β′ ⇒ β′ = −α′.

Remark 24 In the following, we exclude the case of a component of V equal to zero, which
in fact implies excluding the cases where s1 = s2 and r1 = r2.
Furthermore, by taking into account the other boundary condition, we obtain:

f(N + 1) = 0 = α(sN+1
1 − sN+1

2 ) and g(M + 1) = 0 = α′(rM+1
1 − rM+1

2 ),

which implies
sN+1
1 = sN+1

2 and rM+1
1 = rM+1

2 .
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In addition,

s1.s2 =
b

c
and s1 + s2 =

λ− a− 2C

c
while r1.r2 =

d

e
and r1 + r2 =

λ− a+ 2C

e
.

As above, by handling index bounds, as in the one-dimensional case, we deduce for t =
1, . . . , N, that:

s
2(N+1)
1 = (

b

c
)N+1 ⇒ s1 = ± 2

√
b

c
exp(j

tπ

N + 1
) and s2 = ± 2

√
b

c
exp(−j tπ

N + 1
),

and for w = 1, . . . ,M,

r
2(M+1)
1 = (

d

e
)M+1 ⇒ r1 = ± 2

√
d

e
exp(j

wπ

M + 1
) and r2 = ± 2

√
d

e
exp(−j wπ

M + 1
).

Moreover, we have:

λ− a− 2C = ±4
2
√
bc cos(

tπ

N + 1
) and λ− a+ 2C = ±4

2
√
de cos(

wπ

M + 1
),

and by adding these two relations, we deduce the expression of the eigenvalues of A2D :

λtw = a± 2
2
√
bc cos(

tπ

N + 1
)± 2

2
√
de cos(

wπ

M + 1
), t = 1, . . . , N , w = 1, . . . ,M.

We also deduce the components of the eigenvectors V which, after normalization, are given
by:

vt,wk,l = sin(
tkπ

N + 1
) sin(

wlπ

M + 1
), t, k = 1, . . . , N , w, l = 1, . . . ,M.

Remark 25 In the case of the 2D-Poisson equation defined in a square with Dirichlet bound-
ary conditions, we have a = 4 and b = c = d = e = −1; then, by taking the negative
determination of the square root, the eigenvalues of the matrix A2D are given by:

λtw = 4(sin2(
tπ

2(N + 1)
) + sin2(

wπ

2(M + 1)
)), t = 1, . . . , N , w = 1, . . . ,M.

7.4 Case of the three-dimensional Laplacian equipped with Dirichlet
boundary conditions.

Finally, let us consider the Poissson equation or also the convection-diffusion problem defined
in a cubic domain and equiped with Dirichlet boundary condition. The discretization matrix
is a heptadiagonal sparse matrix with a block-tridiagonal structure, shown below:

A3D =


A2D pI
qI A2D pI

qI A2D pI
qI A2D

 , (54)
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where A2D represents the discretization matrix on in each plane and I is the identity matrix;
the entries of A2D are denoted in the same way as in the previous subsection. For k =
1, . . . , N , l = 1, . . . ,M , i = 1, . . . , Q the eigenvalue equation of A3D is written as follows:

qvk,l,i−1 + dvk,l−1,i + bvk−1,l,i + avk,l,i + cvk+1,l,i + evk,l+1,i + pvk,l,i+1 = λ.vk,l,i,

where N represent the tridiagonal block size, M the number of tridiagonal blocks, and Q the
number of planes. In the same way as in the two-dimensional case, we search vk,l,i in the
following form:

vk,l,i = f(k)g(l)h(i).

By injecting this new expression of vk,l,i into the eigenvalue equation, and after regrouping
the terms to take into account of the variable separation, we obtain for k = 1, . . . , N , l =
1, . . . ,M , i = 1, . . . , Q :

f(k)g(l)(qh(i− 1)) +
1

3
(a− λ)h(i) + ph(i+ 1)),

+g(l)h(i)(bf(k − 1) +
1

3
(a− λ)f(k) + cf(k + 1)),

+f(k)h(i)(dg(l − 1) +
1

3
(a− λ)g(l) + eg(l + 1)) = 0.

Since vk,l,i ̸= 0 for all k, l, i let us divide by f(k)g(l)h(i) which gives rise to:

qh(i− 1)) + ph(i+ 1))

h(i)
+

1

3
(a− λ)

= −bf(k − 1) + cf(k + 1)

f(k)
− dg(l − 1) + eg(l + 1)

g(l)
− 2

1

3
(a− λ) = R

Thus, the left-hand side depending only on h(i) is equal to a constant R and we have:

qh(i− 1)) +
1

3
(a− λ− 3R)h(i) + ph(i+ 1)) = 0, i = 1, . . . , Q.

For the right-hand side, we have:

−bf(k − 1) + cf(k + 1)

f(k)
− 1

3
(a− λ) = R+

dg(l − 1) + eg(l + 1)

g(l)
+

1

3
(a− λ) = S.

From this previous relation, we can further decouple the relations between f(k) and g(l) to
obtain the following relations:

bf(k − 1) +
1

3
(a− λ+ 3S)f(k) + cf(k + 1) = 0, k = 1, . . . , N,

and
dg(l − 1) +

1

3
(a− λ+ 3R− 3S)g(l) + eg(l + 1) = 0, l = 1, . . . ,M.
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As in the two-dimensional case, we obtain three decoupled relations satisfied by
h(i), f(k) and g(l). We then operate as in the one-dimensional case, looking for h(i) in the
form h(i) = ti (respectively f(k) = sk and g(l) = rl). This leads to the three following
equations of second degree: pt2 + 1

3 (a− λ− 3R)t+ q = 0,
cs2 + 1

3 (a− λ+ 3S)t+ b = 0,
er2 + 1

3 (a− λ+ 3R− 3S)r + d = 0,

where R and S are two constants. Due to the linear nature of the equation, we can always
consider the boundary conditions to be zero, i.e. f(0) = g(0) = h(0) = 0, which gives:

f(k) = α(sk1 − sk2) ; g(l) = α′(rl1 − rl2) and h(i) = α′′(ti1 − ti2).

The cases s1 = s2, r1 = r2 and t1 = t2 are excluded since the components of the
eigenvectors are different to zero. The other boundary condition leads to:

sN+1
1 = sN+1

2 , rM+1
1 = rM+1

2 and tQ+1
1 = tQ+1

2 .

From the expressions of the equations of the second degree, we obtain the sum and the product
of the roots, i.e. 

r1.r2 = d
e and r1 + r2 = − 1

3
a−λ+3R−3S

e ,
s1.s2 = b

c and s1 + s2 = − 1
3
a−λ+3S

c ,
t1.t2 = q

p and t1 + t2 = − 1
3
a−λ−3R

p .

In the same way, than for the one-dimensional and two-dimensional cases, we get:
r1 = ± 2

√
d
e exp(j

wπ
M+1 ) and r2 = ± 2

√
d
e exp(−j

wπ
M+1 ), w = 1, . . . ,M,

s1 = ± 2

√
b
c exp(j

vπ
N+1 ) and s2 = ± 2

√
b
c exp(−j

vπ
N+1 ), v = 1, . . . , N,

t1 = ± 2

√
q
p exp(j

uπ
Q+1 ), t2 = ± 2

√
q
p exp(−j

uπ
Q+1 ), == 1, . . . , Q.

From these relations, we deduce that:
λ
3 = a

3 ± 2 2
√
bc cos( lwπ

M+1 ) +R− S,
λ
3 = a

3 ± 2 2
√
de cos( tkπ

N+1 ) + S,
λ
3 = a

3 ± 2 2
√
pq cos( uiπ

Q+1 )−R.

After simplification, by summing these three previous relations, this gives the eigenvalues of
matrix A3D, i.e. for l = 1, . . . ,M , k = 1, . . . , N and i = 1, . . . , Q :

λkli = a± 2
2
√
bc cos(

lπ

M + 1
)± 2

2
√
de cos(

kπ

N + 1
)± 2 2

√
pq cos(

iπ

Q+ 1
).
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For the components of the associated eigenvectors, after normalization, we obtain, for l, w =
1, . . . ,M , t, k = 1, . . . , N and u, i = 1, . . . , Q :

vt,w,u
kli = sin(

lwπ

M + 1
) sin(

ktπ

N + 1
) sin(

iπ

Q+ 1
).

Remark 26 If we consider the discretization matrix of the Laplacian equipped with Dirichlet
boundary conditions, since a = 6 and b = c = d = e = p = q = −1, we get for
t = 1, . . . , Q, u = 1, . . . , N and w = 1, . . .M, the values of the eigenvalues of A3D :

λt,w,u = 4(sin2(
tπ

2(N + 1)
) + sin2(

wπ

2(M + 1)
) + sin2(

uπ

2(M + 1)
)).
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