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We provide a detailed 3D characterization of the geometry evolution and

dissolution rate mapping at the surface of four carbonate samples, namely

a calcite spar crystal, two limestone rock fragments, and an aragonite ooid,

using time-lapse X-ray micro-tomography during dissolution experiments at pH

4.0. Evaluation of the retreat and mapping of the reaction rates at the whole

surface of the samples reveals a large spatial variability in the dissolution rates,

reflecting the composition and the specific contributions of the di�erent regions

of the samples. While crystal edges and convex topographies record the highest

dissolution rates, the retreat is slower for flat surfaces and in topographic lows

(i.e., concave areas), suggesting surface-energy related and/or di�usion-limited

reactions. Microcrystalline aragonite has the highest rate of dissolution compared

to calcite. Surprisingly, rough microcrystalline calcite surface dissolves globally

more slowly than the {101̄4} faces of the calcite spar crystal. The presence of

mineral impurities in rocks, through the development of a rough interface thatmay

a�ect the transport of species across the surface, may explain the slight decrease

in reactivity with time. Finally, a macroscopic stochastic model using the set of

detachment probabilities at corner, edge, and face (terrace) sites obtained from

kinetic Monte Carlo simulations is applied at the spar crystal scale to account for

the e�ect of site coordination onto reactivity. Application of themodel to the three

other carbonate samples is discussed regarding their geometry and composition.

The results suggest that the global dissolution process of carbonate rocks does not

reflect only the individual behavior of their formingminerals, but also the geometry

of the crystals and the shape of the fluid-mineral interface.

KEYWORDS

carbonate dissolution, X-ray micro-tomography, dissolution rate distribution, rate

mapping, stochastic modeling

1. Introduction

One of the most important geochemical reactions occurring at conditions of Earth’s

surface is the dissolution of sedimentary carbonates, where the most abundant minerals are

calcite, dolomite, aragonite, and high-Mg calcites (Morse and Arvidson, 2002). Although

the dissolution of carbonate minerals has received considerable attention, the upscaling of

reaction rates determined from laboratory experiments to natural settings remains to be fully

understood (Morse and Arvidson, 2002; Noiriel et al., 2020).
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Several techniques have been developed over the past century to

derive dissolution rates from batch or flow-through experiments in

the laboratory (Morse and Arvidson, 2002). Direct measurements

of the surface retreat perpendicularly, i.e., normal to the mineral

surface, provide dissolution rates at micrometer to nanometer

scales on face-oriented single crystals or polycrystalline aggregates.

Such measurements rely on imaging techniques such as atomic

force microscopy (Hillner et al., 1992; Stipp et al., 1994; Jordan and

Rammensee, 1998; Shiraki et al., 2000; Emmanuel, 2014), vertical

scanning interferometry (Fischer and Luttge, 2007; Smith et al.,

2013; Pedrosa et al., 2021), confocal profilometry (Godinho et al.,

2012), X-ray reflectivity (Fenter et al., 2000), digital holographic

microscopy (Brand et al., 2017), or X-ray microscopy (Laanait

et al., 2015). Determination of dissolution rates from surface retreat

has the advantage of providing accurate measurements of mineral

reactivity, as there is no need of normalization to the specific surface

area, a parameter difficult to assess practically (Noiriel and Daval,

2017). However, application of these methods is often restricted to

small surface areas, and require the surface to be well-cleaved or

polished, and as flat as possible (Noiriel et al., 2020). In contrast, the

fluid-mineral interfaces depicted in porous or fractured media are

often curved or exhibit roughness at several scales. Non-invasive

and non-destructive 4D X-ray micro-tomography (XMT) imaging

has recently emerged as a useful technique to track through time the

geometrical complexity of the interface during mineral dissolution

(Noiriel et al., 2019, 2020; Yuan et al., 2019, 2021; Noiriel and

Soulaine, 2021; Noiriel and Renard, 2022). A whole crystal can

be imaged, including corners and edges, whose reactivity might

differ from the well-cleaved faces. Contribution of etch pits, grain

boundaries and other defects which have a significant contribution

to the reaction rate variability can also be evaluated. Geological

material and rock fragments of any geometry can additionally

be studied. XMT imaging produces routinely data sets of several

gigabytes in size. Sample volume is commonly in the order of billion

voxel elements, for a fluid-solid interface in the order of million

pixel elements, thus providing a large amount of data points for

statistical analysis during geochemical processes.

Stochastic modeling of kinetic processes has emerged in the

mid-1970s (Gilmer, 1977, 1980; Lasaga and Blum, 1986). Modeling

can be useful to decipher the dissolution mechanisms at play

at the atomic scale (de Leeuw et al., 1999; Lasaga and Luttge,

2001; Spagnoli et al., 2006; Lardge et al., 2010; Wolthers et al.,

2012; Kurganskaya and Luttge, 2016; Kurganskaya and Churakov,

2018; Kurganskaya and Rohlfs, 2020), like etch pit formation

at dislocation outcrops, and to compare modeled and measured

dissolution rates (Kurganskaya and Luttge, 2016). Among the

methods, kinetic Monte Carlo (kMC) modeling has been widely

used for the study of crystal dissolution kinetics and surface

reactivity (Liang et al., 1996; Bandstra and Brantley, 2008; Fischer

et al., 2018; Andersen et al., 2019; Luttge et al., 2019), principally

using simple Kossel crystals (de Assis and Aarao Reis, 2018;

Carrasco and Aarão Reis, 2021) even if more complex geometries

have also been investigated (Zhang and Lüttge, 2007; Kurganskaya

and Luttge, 2016). kMC simulations allow for observation of the

dynamics of surface topography and calculation of the dissolution

rates (Wehrli, 1989; Kurganskaya and Luttge, 2016). The Transition

State Theory (Eyring, 1935) adapted to the terrace-ledge-kink

model (Kossel, 1927) intends to simulate the time evolution of

mineral dissolution by linking the reaction rate to a probability

of detachment at the surface. The kMC method replaces various

kinetic rates by probabilities, with bond-breaking probabilities

related to the activation energy for chemical bond hydrolysis.

The detachment rate of an element with coordination n, rn
(s−1), is derived from the standard model of thermally activated

dissolution (Lasaga and Blum, 1986; McCoy and LaFemina, 1997)

and written as:

rn = νexp

(
−Eb

RT

)
, (1)

where ν is the pre-exponential or frequency factor characterizing

the interaction with water molecules (whose usually adopted value

is 10−12 s−1), R is the gas constant (8.314 J·mol−1·K−1), T is

the temperature (K), and Eb is interpreted as a bond-breaking

activation energy. The standard model of thermally activated

dissolution assumes that the bond-breaking activation energies are

additive over the nearest neighbors, i.e., nEb, and Equation (1)

resumes to:

rn = νǫn, (2)

with ǫ = exp(−Eb/RT). High rates of dissolution can be related

to sites of higher surface energy, whereas low dissolution rates are

related to sites of lower energy. Consequently, a rate set r = {rn}

that depends only on the site coordination can be derived for a

crystal, as a value of ǫ. The very low bond-breaking probabilities

during geochemical processes would make the kMC simulation

too time-consuming, so that a scaling factor is applied to the

set of probabilities, P = {Pn}, associated to the rate set {rn}.

In the divide-and-conquer algorithm (Meakin and Rosso, 2008),

for instance, the surface elements are listed according to their

detachment probability Pi, e.g., in relationship with their bond type

or coordination number. The set of probabilities P = {P1, P2, ..., Pi}

is then normalized to a value close to unity, so that an element

is removed at each iteration or so. Then, the time and the list of

elements are updated before the next iteration. On the long term,

the surface geometry evolution is found to be highly dependent to

the set of probabilities derived from the rate set.

Nevertheless, kMC simulations remain time-consuming, and

a current restriction of the models is their limitation to handle

large-size systems. As a result, simulations are often restricted

to small crystal surface portions, or Kossel crystals of size below

1,000 × 1,000 × 1,000 elements. Using an edge length of 0.394

nm to reproduce the lattice parameters and molar volume of

calcite, such domain size represents a microscopic volume of

about 400 × 400 × 400 nm, a scale far below the size of

macroscopic crystals in nature. A mm-size crystal would require

a domain of about 2.5 106 × 2.5 106 × 2.5 106 elements. As

a consequence, kMC simulations of macroscopic crystals remain

elusive.

Upscaling of kMC simulations to large-size crystals is a real

challenge, as the proportion of face (terrace), edge and corner

(kink) elements in a Kossel crystal is also strictly proportional

to the size of the system. Indeed, a Kossel crystal of side a has

initially eight corners, 12·(a-2) edges, and 6·(a-2)2 face elements.

Therefore, both the probability of detachment of the various

Frontiers inWater 02 frontiersin.org

https://doi.org/10.3389/frwa.2023.1185608
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Guren et al. 10.3389/frwa.2023.1185608

elements and the consequent geometry evolution depend on the

initial crystal size. Consequently, although the value of ǫ is not

size-dependent, the resulting converged set of probabilities is

clearly dependent on the size of the crystal. Nevertheless, a few

authors have proposed to upscale kMC simulations to larger

scales (Rohlfs et al., 2018; Carrasco and Aarão Reis, 2021). In

particular, for far-from-equilibrium calcite dissolution in neutral to

alkaline solution, Carrasco and Aarão Reis (2021) have extrapolated

macroscopic rates at room temperature from kMC simulations

run at high temperature. The authors observed in their kMC

simulations at high temperature, i.e., at high values of ǫ, the

existence of a steady-state kinetic regime on the long term.

From that steady-state regime, they derived macroscopic rates

at ambient temperature at which the bond-breaking activation

energy Eb and ǫ are far lower. However, calcite is unlikely to be

stable at such high temperatures, and it is not possible to verify

that the geometry evolution would be similar in such different

conditions.

On the other hand, other stochastic modeling methods, like

the cellular automata (Jansen, 2012), have been developed to

overcome the system-size restrictions. In that case, several listed

elements can be removed from themineral surface at every iteration

following a set of defined probabilities. Overall, the description is

less mechanistic but has the advantage of not being restricted in

term of system size or time for simulations.

In this article, we investigate the surface reactivity during

dissolution at pH 4.0 of four, mm-scale, natural calcium carbonate

samples, namely a calcite spar crystal, a fragment of micritic

limestone, a fragment of dolomitic limestone and an ooid of

aragonite. We provide direct measurement of the surface retreat

rate using time-lapse 3D XMT (i.e., 4D XMT), and quantify the

heterogeneous distribution of the dissolution fluxes of the samples

reacted through time from between 2.1 and 5.6 millions of data

points analyzed at each time step at their surface. These data

points and the XMT geometries retrieved from the experiments

are used to constrain a stochastic model for calcite dissolution at

the macroscale. Sets of converged probabilities are derived from

kMC simulations on a Kossel crystal and implemented at larger

scale to model dissolution of the samples. The dissolution process

of the calcite crystal in the experiments helps to constrain the

model, which is next applied to the other samples. The main

objective is to track the whole topography evolution of the fluid-

mineral interface at different time intervals in order to evaluate

the contribution of the surface topography (i.e., roughness, and

convex to concave surface areas) and geometrical features (i.e.,

crystal face, edges, and corners) to the reaction rate distribution.

We demonstrate quantitatively how the crystal edges, interface

shape, and surface roughness play a major role in the dissolution

process, and discuss also the limitation of the model on geometries

derived from XMT.

2. Materials and methods

2.1. Materials and sample preparation

Four types of carbonate samples (Figure 1) were prepared for

the dissolution experiments: a calcite spar crystal (CALSPAR),

a microcrystalline limestone (CALMICR), a microcrystalline

dolomitic limestone (CALDOL), and an aragonite ooid

(ARAGOID). The samples differ by their shape, size, surface

roughness, and mineralogical composition.

The calcite crystal CALSPAR (Figures 1A, E) has a length

of about 0.5 mm, and was obtained after crushing and

sieving of a cm-size single spar crystal. The crystal was

not polished before experiment, so that the faces exhibit

various macro-features such as macro-steps and rippled

surface patterns, which were inherited from the breaking and

size reduction of the original calcite sample. The dissolution

behavior of this crystal has been described in details in Noiriel

et al. (2019). The other three samples described below are

original data.

The microcrystalline calcite-rich rock sample CALMICR

(Figure 1B) has a pyramidal shape, and was produced after breaking

a micritic limestone of lower Cretaceous age. A few microfractures

intersect the surface. The rock is dominated by fine-grained calcite

(micrite) with an anhedral texture (Periere et al., 2011). No clay

was detected with X-ray diffraction (XRD), although sporadic

clay patches have been noticed with XMT and scanning electron

microscopy (SEM) imaging of the rock (Noiriel and Deng, 2018).

A few quartz particles of 5–20 µm in size (∼0.5 wt%) are also

noticed, as a few dissolved tests of foraminifera (Globigerina)

of ∼100 µm in size. The sample is a low permeability and

porosity limestone, although some µm-size pores are visible in

the matrix.

The microcrystalline calcite- and dolomite-rich rock sample

CALDOL (Figure 1C) has a cubic shape, and was obtained after

crushing a dolomitic limestone of Upper Jurassic age. The surface

of the fragment is initially rough and results from the mechanical

behavior of the mineral assemblage during fracturing. A few

microfractures also intersect the surface. The rock composition

given by XRD analysis is about 50 wt% calcite and 50 wt%

dolomite, with a minor amount of quartz, clays, and K-feldspar.

The carbonate matrix contains a microsparitic cement of calcite

and dolomite, dispatched as patches of about 10.5µm in size. Pores

in the range 0–20 µm (4 µm in average) are also identified with

XMT imaging. The macro-porosity is 2%.

The spheroidal aragonite ooid ARAGOID (Figure 1D) has

a diameter of about 700 µm, and comes from present oolitic

sand sampled on the seabed in Bahamas. SEM coupled to energy

dispersive X-ray spectroscopy (SEM-EDS) reveals that the ooids

consist of high-Mg carbonate nuclei (foraminifera fragments)

surrounded by sub-micrometric needle-shaped acicular crystals

of aragonite. The surface of the ooids exhibits several boring

channels and organic coating marks are visible. Bulk analysis using

inductively coupled plasma-mass spectroscopy (ICP-MS) after acid

attack gives the following major elementary chemical composition:

Ca 37.9 wt%, Si 1.4 wt%, Sr 1.2 wt%,Mg 0.3 wt%, Ba 0.2 wt%, others

<0.05 wt%.

2.2. Dissolution experiments

The samples were glued on glass capillary tubes (Hilgenberg,

400 µm O.D.) using epoxy resin, which covers their bottom part
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FIGURE 1

Description of the four samples. (A–D) XMT cross-sections of the samples before experiment, with (A) calcite spar (CALSPAR), (B) microcrystalline

limestone sample (CALMICR), (C) dolomitic limestone sample (CALDOL), and (D) aragonite ooid (ARAGOID). (E) XMT 3D view of the calcite spar

crystal before experiment. (F–H) SEM observations at the surface of similar specimens of (F) aragonite, (G) microcrystalline limestone, and (H)

dolomitic limestone after 18 or 29 h of dissolution under the same experimental conditions.

creating a mask that preserves it from dissolution. Whereas, only

a small corner region of the CALSPAR sample is glued, a larger

portion of the CALMICR, ARAGOID, and CALDOL surfaces are

covered by glue. Three of the samples, CALSPAR, CALMICR, and

ARAGOID, were reacted together in a mixed-flow reactor during

12 h, to exclude variations due to extrinsic experimental factors.

The sample CALDOL was dissolved in a separate reactor for 12.8

h to avoid potential contamination of the other samples by Mg2+

ions. The experiments were performed at ambient temperature

(25±2 ◦C) under atmospheric pressure. The inlet solution was

prepared with deionized water (18.2 M�·cm−1) and 0.01 M NaCl

and the pH was adjusted to 4.0 ± 0.1 using analytical grade HCl.

At low pH, the dissolution rate is almost directly proportional

to the H+ concentration (Sjöberg and Rickard, 1984), and is

high enough to quantify volumes changes by XMT imaging over

a few hours. The reactors have a volume of 160 mL and were

filled with the inlet solution. The flow rate was set equal to 8

cm3·h−1 and the stirring rate was set equal to 400 rpm during

the experiments to homogenize the solution around the samples

and impose far-from-equilibrium conditions. Because of the high

fluid volume to mineral surface ratio, the calcium concentration

in the aliquots collected during the experiments and analyzed

by ICP-MS remains below 2.9×10−5 M over the course of the

experiment. The corresponding saturation ratio (�) with respect

to calcite and aragonite, calculated with Phreeqc v3.0 (Parkhurst

and Appelo, 2013) using the Phreeqc database, remained below

10−9 throughout the experiments, thus excluding any measurable

effect of fluid chemistry or saturation index evolution on the

dissolution rates. However, due to the high ionic force of the

solution, the concentrations of Ca2+ and Mg2+ measured in

the aliquots are not accurate enough to properly evaluate the

mass balance.

2.3. 4D imaging with X-ray
micro-tomography

The four samples were imaged before the reaction (t0) and

at five time steps (t1-t5) during the dissolution experiment using

3D XMT at the TOMCAT beamline (Stampanoni et al., 2006),

Swiss Light Source (Paul Scherrer Institute, Switzerland). A total

of 24 data sets were collected. Each data set is composed of 1701

radiographs collected over a 180◦ rotation range. Each radiograph

was recorded with a monochromatic and parallel beam at the

energy of 20 keV and an exposure time of 200 or 250 ms.

After penetration of the samples, the X-rays were converted into

visible light with a LuAG:Ce scintillator. The visible light was

magnified using either a ×10 or a ×20 magnification diffraction-

limited microscopy optics and recorded with a sCMOS camera of

2,560 × 2,160 pixels. The resulting pixel size is 0.65 µm for the

CALSPAR, CALMICR, and CALDOL samples, and 0.325 µm for

the ARAGOID sample. Volume reconstructions were performed

from the radiographs corrected from flat field and background

noise using an algorithm based on the Fourier transform method

(Marone and Stampanoni, 2012).

After reconstruction of the 3D images, image processing was

carried out with Avizo R© software on data sets of 1,700 × 500 ×

1,300 (CALSPAR), 1,700× 500× 1,300 (CALMICR), 1,450× 1,400

× 1,100 (CALDOL) or 1,910 × 1,600 × 1,400 (ARAGOID) voxels.

First, the 3D grayscale volumes were normalized, converted to 8-

bit integers, and denoised with a 3D median filter using a kernel

size of 3 × 3 × 3 voxels. Then, the samples were registered in

the same coordinate system, using either the capillary glass and

chemically inert masked area (CALSPAR) or the internal structures

(CALMICR, CALDOL, and ARAGOID) as landmarks. Data were

segmented using either a threshold value halfway between the
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two maximum peaks for air and calcite (CALSPAR) or a region

growing algorithm (CALMICR, CALDOL, and ARAGOID) to

provide a discretized geometry of the solid materials (i.e., crystal,

rock sample, and ooid). After segmentation, the solid objects, i.e.,

samples and capillary glass, were labeled to separate and remove

the capillary glass from the images. For ARAGOID, CALDOL, and

CALMICR samples, the internal non-connected porosity was also

filled. The sample volumes,Vsample, are calculated from the number

of solid voxels, nsol: Vsample = nsol × Vvoxels, where Vvoxel is the

volume of a voxel. The samples surface areas, Ssample, are calculated

from the number of solid-air pixel interfaces, nsol−fluid: Vsample =

nsol−fluid×Spixel, where Spixel is the surface area of a pixel. The non-

reactive volumes and surface areas in the glue are evaluated for each

sample and subtracted from the calculations. Complementary to

XMT, the surface of the samples or of similar specimens (starting

or dissolved material) was also observed using SEM to characterize

the surfaces at higher resolution.

2.3.1. Global dissolution rate
The global dissolution rate (mol·s−1) of the samples is

calculated after segmentation of the XMT data sets based on the

changes in sample volume (Noiriel et al., 2020):

r̄diss =
dVsample

νcal·1t
, (3)

where dVsample is the change in sample volume (m3), 1t is the

time interval between successive XMT scans, and νcal is the molar

volume of calcite or aragonite (m3·mol−1). The rate (mol·m−2·s−1)

can be normalized to the surface area in contact with

the fluid:

r̄diss−norm =
dVsample

νcal·S·1t
, (4)

where S is the average surface area between two time intervals

as determined by XMT. However, since the samples are partially

covered by glue, normalization of the dissolution rate by the

total surface area induces a bias, because a non-negligible

fraction of the surface is non-reactive for samples CALMICR,

CALDOL, and ARAGOID. This point is discussed later in

the manuscript.

2.3.2. Mapping of the local dissolution rate at the
sample surface

We calculate the local dissolution rate r′diss (µm·h−1) at any

reactive element (i.e., fluid-solid pixel interface) of the sample

surface by calculating the surface retreat after each dissolution

stage (Noiriel et al., 2019). The surface retreat is the distance at

two time steps calculated normal to the closest surface. Practically,

the 3D Euclidean distance maps (Akmal Butt and Maragos, 1998;

Russ, 2011) inside the samples are computed at t0. Consequently,

each voxel inside an unreacted sample is labeled with the distance

to its nearest boundary voxel, starting from the position of the

unreacted fluid-solid interface. The distance transform corresponds

to a quasi-uniform scaling of the samples. Combining the distance

map with the position of the fluid-solid interfaces at each time

step of the experiment, ti, gives the surface retreat of the samples

normal to the surface of the unreacted samples, as illustrated in

Figure 2. In this case, the rate is determined in the interval ti-t0,

the initial state being used as a reference for all the calculations. It is

worth mentioning that the deep pores connected to the surface as

well as the presence of micro-fractures or internal, non-connected

pores, may lead to an overestimation of the surface retreat.

Nevertheless, these very local phenomena are negligible when

considering the large number of data points used to calculate the

dissolution rates.

In addition, we explored the temporal evolution of the

dissolution rates. The distance map procedure is repeated for

the volumes at t2 and t4, so that temporal evolution of the

reaction rate can be followed in the intervals t0-t3, t2-t4, and t3-

t5, three time intervals quite comparable with a median value

of 6 h.

Then, the local dissolution rates normal to the sample surface

are calculated according to:

r′diss =
d Ifs· n

dt
, (5)

with Ifs the fluid-mineral position vector, and n the normal to the

sample surface; the product Ifs·n is the surface retreat, i.e., the

distance normal to the reference surface. The voxels belonging to

the unreactive interface, i.e., the epoxy-glued surface or the non-

reactive minerals, are superimposable with time, and their retreat is

zero. The areas containing glue are excluded from the calculation

of the average reaction rate determined from surface retreat, r̄′
diss

(nm·s−1 or µm·h−1):

r̄′diss =
∑

nsol−fluid

r′diss/nsol−fluid ∀ r′diss > 0, (6)

with nsol−fluid is the number of reactive voxels at the fluid-

solid interface, i.e., for which the retreat rate is non-zero. The

average dissolution rate normalized to the surface area, r̄′diss−norm

(mol·m−2·s−1) can also be calculated (Arvidson et al., 2004):

r̄′diss−norm =
r̄′
diss

νcal
. (7)

It is also possible to determine the dissolution rate of specific

faces or areas by averaging the local dissolution rates from volumes

of interest (VOIs) defined in these areas.

2.4. Stochastic model for dissolution

Dissolution of a crystal in a far-from-equilibrium solution can

be modeled by an irreversible detachment of sites from the mineral

surface. We have designed a simplified stochastic model at the

macroscopic scale where the basis element is the voxel (of 0.325

or 0.65 µm of side). The model is built such that the sample

geometry is defined by the XMT volumes at t0 after segmentation,

where the fluid phase is set to 0 and the solid phase to 1. The

non-reactive voxels (i.e., the glued part), when identified, are set
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FIGURE 2

Schematic view (2D cross-section) of the distance transform procedure to calculate the surface retreat between two stages of dissolution. (A) 3D

Euclidean distance map inside the unreacted sample CALDOL, which represents the shortest distance of each voxel inside the rock fragment to the

fluid-surface interface at t0. Distance contours of 0, 15, and 30 pixels (red lines) are shown to highlight a quasi-uniform scaling of the grain. The black

arrows point to micro-fractures that a�ect the distance map calculation locally. (B) Combining the distance map with the XMT image at t4 (yellow)

gives the retreat at the sample surface (see details in the insert).

to 2 using a mask. It is worth mentioning that the glued part of

sample ARAGOID is irregular and cannot be masked in a simple

way on the 3D volumes, but the spherical symmetry of the sample

should not alter much the shape of the modeled rate distribution.

Each voxel site at the fluid-solid interface is classified as either a

corner, edge, or face element based on the number of nearest solid

neighbors (n): one-bonded sites (n=1), two-bonded sites (n=2),

corners (n=3), edges (n=4), faces (n=5), or solid bulk (n=6). For

simplicity, all voxels with a coordination n=1 or n=2 are considered

as corner elements. Corner, edge, and face elements form three

groups of Nc, Ne, and Nf elements, respectively.

The aim of the stochastic modeling is to test the ability of

the model to reproduce the observation that the crystal edges and

corners dissolve faster than faces, or that convex surface dissolves

faster that concave surface, in relationship with the coordination

of corner, edge and face (i.e., terrace) elements at the microscopic

scale. The stochastic model is designed to handle large-size systems,

and the modeling procedure is divided in two stages. First, a fixed

normalized set of probabilities is derived from kMC simulations at

the nm-scale (see Section 2.4.2) and we show that the stochastic

model can be effectively parameterized by kMC simulation results.

Second, the simulation is run on the mm-size sample geometries.

The stochastic model developed in this study has the advantage

to be constrained by the experimental results, i.e., the geometries

obtained from XMT at the different time steps and the retreat

distribution at the fluid-mineral or fluid-rock interface. Especially,

the frequency factor or the activation energy for bound hydrolysis

Eb (Equation 1), two parameters whose value is still discussed

in kMC simulations (Ackerer et al., 2021), do not need to be

known a priori. The setting of a physical time increment at

each iteration is also unnecessary. The approach is however

less mechanistic compared to kinetic Monte Carlo modeling.

Dissolution remains treated as a stochastic process, but it does

not require bond-breaking activation energies to be specified. In

addition, the approach assumes a scale-dependent behavior for

dissolution at faces, edges, and corners in between the microscopic

and crystal scales, which remains to be fully demonstrated.

However, the 3D XMT geometries serve to constrain and validate

modeling at the macroscopic scale, and such a modeling approach

offers the capacity to deal with large volume systems.

2.4.1. Sample-scale stochastic simulation
procedure

The corner, edge and face elements are divided into three lists:

{c, e, f}. We use the normalized set of probabilities provided by

kMC simulations on the long term (see Section 2.4.2) as input in

the macroscopic stochastic model:

P̂(j>>0) = {̂Pc, P̂e, P̂f }, (8)

where j is the iteration number and the .̂ symbol stands for the

normalized probability:

P̂i = Pi/
∑

i=c,e,f

Pi, (9)

so that the sum of P̂i is equal to 1; i represents the class of corner,

edge or face elements and Pi is their probability of detachment.

At each iteration, a list is randomly chosen based on P̂(j>>0), and

all the voxels belonging to the class are removed at the sample

surface, except the non-reactive voxels which do not participate to

the reaction, although they are accounted for in the determination

of the coordination of the dissolving voxels. The number of
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removed corner, edge and face elements is determined, and the next

iteration starts.

2.4.2. Obtaining dissolution probabilities from
kinetic Monte Carlo simulations

The set of probabilities used in the sample-scale stochastic

model, P̂(j>>0), is obtained from kMC simulations. First, we ran

kMC simulations on a 100 × 100 × 100 Kossel crystal. The

algorithm used is the divide-and-conquer algorithm, whose details

can be found in Meakin and Rosso (2008). The corner, edge, and

elements are first identified and listed. Each list contains a total of

surface sites:

Nt =
∑

i=c,e,f

Ni. (10)

An initial set of probabilities derived for a given value of ǫ is

provided: P(j=0)={Pc, Pe, Pf }. Assuming that all elements in each

list have the same dissolution rate, the probability of choosing a

list depends on the number of elements in each list. The set of

probabilities is also normalized to 1, and becomes:

P̂(j) = {Pc × Nc, Pe × Ne, Pf × Nf }/
∑

i=c,e,f

(Pi × Ni). (11)

One of the list is randomly chosen based on this probability set,

and one element in the list is randomly removed. Both the lists and

the set of probabilities are updated before the next iteration j.

Kinetic Monte Carlo simulations were run on the Kossel

crystal until 50% of the volume is removed, i.e., 500,000 iterations.

Three different values of ǫ (ǫ = 0.001, 0.01 and 0.1) in

Equation (2) were first used to test the kMC model against our

macroscopic stochastic model on the crystal geometry evolution

(Supplementary Figures 1–3). In the kMC simulations, the size of

the Kossel crystal is about 400 × 400 × 400 nm, while in the

macroscopic stochastic model, the size of the Kossel crystal is 65

× 65 × 65 µm. The corresponding sets of probabilities are in

the range of those chosen by Carrasco and Aarão Reis (2021) to

model calcite dissolution in neutral to basic conditions. Although

the pH conditions explored in their article differ from the present

study, the range of macroscopic dissolution rates obtained by

Colombani (2016) in the corresponding experiments, i.e., 0.5–6

10−6 mol·m−2·s−1, is close to the range of rates determined in

the present study. It corresponds to a value of ǫ to describe the

dissolution mechanism of 1.4 10−3 (Carrasco and Aarão Reis,

2021). Compared to Equation (2), Carrasco and Aarão Reis (2021)

used a slightly different formalism to parameterize the dissolution

rates at corner, edge, and face sites:

rn = ν × ǫm, (12)

where m=n for a coordination n=3 and n=4, and 5<m<6 for n=5.

Taking m > n for cleaved calcite surface results in decreasing the

reactivity of the faces.

The initial sets of probabilities P(j=0) provided to kMC

simulations for each list of elements converge to given sets of

probabilities P̂(j>>0) on the long term, i.e., for iteration j >>

0) (Supplementary Figures 1a–3a). Thus, the long-term sets of

probabilities are expected to apply at the macroscopic scale.

2.4.3. Model calibration at the sample scale
Application of the converged sets of probabilities obtained from

kMC simulations in the stochastic model at the macroscopic scale

leads to the geometries observed in Supplementary Figures 1c–3c.

The stochastic model is first calibrated based on the experimental

results obtained for sample CALSPAR. The value of ǫ was refined

to best match the geometry evolution of sample CALSPAR. The

model was calibrated with ǫ = 0.03, which leads to the set of

normalized probabilities: P̂(j>>0) = {̂Pc = 0.923, P̂e = 0.07, P̂f =

0.007} obtained for the Kossel crystal after kMC simulation

(Supplementary Figure 4). The number of voxels removed after

each time step ti of the experiment (Table 1) serves as reference

to constrain the dissolution process. The number of removed

voxels is tracked at every iteration, and output geometry files

are generated at five iterations jV1 to jV5 corresponding to

the number of removed solid voxels measured experimentally

in between t1 and t5. The simulation is stopped once the

iteration jV5 is reached. As a result, we obtain five output

geometries. Simulations have the advantage that discretization of

time is unnecessary.

For CALDOL, CALMICR, and CALCRAY, the same set of

probabilities P̂(j>>0) is applied. Similarly, we ran the simulations

until the iteration jV5 is reached, with outputs generated at

the same iterations jV1 to jV5, except for ARAGOID, whose

number of iterations was multiplied by two due to the

voxel size being half the regular voxel size. This choice of

keeping fixed numbers of iterations is questionable since the

experimental averaged dissolution rates and rate distributions

are different in between the four samples, but the goal of

the stochastic modeling is to explore the role of the sample

geometries and distributions of surface elements on the rate

distribution, independently of the intrinsic reactivity of the

different carbonate types.

In addition, the model was also tested for CALSPAR using

ǫ = 0.03 and m = 5.5 for sites of coordination n = 5, following

Equation (12).

2.4.4. Calculation of the dissolution rates
Throughout the simulations, the number of removed voxels

in each class is tracked, and the local dissolution rate at the

surface, r′
diss−num

(mol·s−1), is calculated using the distance maps

procedure (Section 2.3.2) and averaged according to Equation (6).

For the CALSPAR crystal, three additional volumes of interest

(VOIs), namely VOIc, VOIe, and VOIf , were defined at the

crystal corner, edge, and {101̄4} face, in the same areas as

described in Noiriel et al. (2019). For CALDOL, CALMICR,

and ARAGOID, two to three VOIs were also defined around

convex and concave surface areas (VOIconvex and VOIconcave),

around a connected-pore located below the sample surface

(VOIpore) or around a surface area which becomes faceted through

time (VOIfaceted).
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TABLE 1 Summary of the physical characteristics and reaction rates for sample CALSPAR.

Stage Time Volume Area r̄diss r̄diss−norm r̄’diss r̄’diss−norm

(h) ×10−10 m3 ×10−6 m2 ×10−11 mol.s−1 ∗ µm.h−1 ∗

t0 0 1.55 1.97 – – – –

t1 1 1.53 1.92 1.91 0.99 1.46 1.10

t2 3 1.47 1.81 2.12 1.14 1.24 0.93

t3 6 1.37 1.70 2.60 1.48 1.40 1.05

t4 9.03 1.27 1.61 2.33 1.41 1.45 1.09

t5 12.03 1.19 1.53 2.00 1.28 1.43 1.08

∗The unit is×10−5 mol.m−2 .s−1 . Note that the non-reactive volume and surface area stuck in the glue are removed from the calculations.

FIGURE 3

Cross-section of the superimposed volumes from t0 to t5, showing heterogeneous surface retreat with space and time. (A) CALSPAR, (B) CALMICR,

(C) CALDOL, and (D) ARAGOID. The arrows point to large (red) or small (black) surface retreat in convex and concave areas, respectively.

3. Results

3.1. Geometry evolution of the samples

Dissolution proceeds with heterogeneous surface retreat for

all the samples (Figures 3, 4). For the calcite spar (CALSPAR),

as already described in Noiriel et al. (2019), three main surface

retreat contributors are identified at the crystal surface, i.e.,

the {101̄4} faces, the edges, and the corners of the crystal.

Surface retreat at the edges and corners are 1.6–3.2 times

larger than the average face retreat. In addition, the faces

also exhibit retreat heterogeneity through different contributions

to dissolution of the macrosteps, etch pits, cleavage, parting

planes, and topographical lows (Figure 5, see also Noiriel et al.,

2019).

The rock fragments CALMICR and CALDOL show

heterogeneous dissolution at their surface as well, and similarities

regarding the topographical patterns of CALSPAR are noticed. The

surface retreat is generally larger in areas of topographical highs

(i.e., convex surface areas), like at the corners of CALSPAR, which

are considered as the main contributors of reactivity. In contrast,

surface retreat is smaller in the topographical lows (i.e., concave

surface areas). For CALDOL, surprisingly, the dissolution rates

of dolomite and calcite are within the same order of magnitude,

although dolomite dissolution rate is generally considered to be

one order of magnitude lower than calcite under acidic conditions
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FIGURE 4

(A, B) XMT volume rendering and (C) cross-section of sample CALMICR at times t2 and t5. (D–F) Volume rendering of sample CALDOL at times t0, t3,

and t5. The images show the evolution of the surface topography. Non-reactive silicate grains (i.e., quartz, feldspars, and clays) progressively appear

(arrows) and detach (dotted circle) from the surface as dissolution progresses. The evolution of the surface roughness is also visible, with large-scale

smoothing of the surface topography of CALMICR with time (dotted line), whereas the surface of CALDOL remains rough at all scales.

(Morse and Arvidson, 2002). As a result, there is no increase in

roughness at the scale of the calcite and dolomite patches in the

rock fragment. Nevertheless, roughness develops at the sample

surface (Figure 4) at two different scales: (i) at the micro-scale

(µm), ghosts of carbonate crystals coated by clay particles are

locally observed with SEM (Figure 1G), and (ii) at a larger scale,

the presence of quartz and feldspar, whose dissolution rate is null

at the timescale of the experiments, leads to the development of

large-scale roughness (Figures 4D–F). The observation is similar

for CALMICR at large scale, while the surface tends to become

smoother at the micro-scale. However, in both samples, the

progressive detachment of the non-reactive minerals from the

surface contributes to the stabilization of the surface roughness

through time.

Finally, for ARAGOID, the area of highest curvature shows the

largest surface retreat. The surface of ARAGOID, which is initially

very smooth (i.e., any crystal of aragonite can be distinguished with

SEM) apart from areas close to the boring channels, becomes also

rough, pointing to heterogeneous dissolution at the micro-scale

(1–10 µm). The rate heterogeneity probably reflects the internal

heterogeneity of the ooid, i.e., the size of the aragonite needle-like

crystals (Figure 1H), their orientation, and the presence of micro-

porosity, boring channels mostly localized below the grain surface,

exogen materials forming the nucleus or organic coatings.

3.2. Dissolution rate and rate distribution

In the experiments, carbonate dissolution occurs under far-

from-equilibrium conditions, with the saturation state � (� =

IAP/Ksp, with IAP the ion activity product and Ksp the solubility

product) with respect to calcite or aragonite remaining below 10−9.

Tables 1–4 show the global rates derived from the volume difference

calculation (r̄diss, r̄diss−norm) and from the surface retreat (r̄′diss, and

r̄′diss−norm). Figure 5 shows the distribution of the dissolution rates

mapped at the surface of the samples. The differences between the

global and local dissolution rates depend on the method used to

calculate them. The values of r̄diss−norm and r̄′diss−norm differ by 40%

in average. These differences are explained by the normalization of

r̄diss−norm to the surface area of samples with different shapes and

morphological evolution, like the surface roughness. As r̄′diss−norm
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TABLE 2 Summary of the physical characteristics and reaction rates for sample CALMICR.

Stage Time Volume Area r̄diss r̄diss−norm r̄’diss r̄’diss−norm

(h) ×10−10m3 ×10−6 m2 ×10−11 mol.s−1 ×10−5 mol.m−2.s−1 µm.h−1 ×10−5mol.m−2.s−1

t0 0 2.84 4.48 – – – –

t1 1 2.80 4.14 2.70 0.63 1.23 0.93

t2 3 2.75 3.90 2.03 0.51 0.77 0.58

t3 6 2.63 3.69 2.88 0.76 0.99 0.74

t4 9.03 2.55 3.62 1.97 0.54 0.99 0.74

t5 12.03 2.48 3.60 1.86 0.52 0.73 0.69

TABLE 3 Summary of the physical characteristics and reaction rates for sample CALDOL.

Stage Time Volume Area r̄diss r̄diss−norm r̄’diss r̄’diss−norm

(h) ×10−10m3 ×10−6 m2 ×10−11 mol.s−1 ×10−5 mol.m−2.s−1 µm.h−1 ×10−5 mol.m−2.s−1

t0 0 1.76 2.34 – – – –

t1 1 1.73 2.20 2.21 2.14 1.38 1.04

t2 3 1.65 2.31 1.65 1.69 1.02 0.76

t3 6 1.59 2.39 1.38 1.40 0.96 0.72

t4 9.03 1.54 2.41 1.31 1.31 0.95 0.71

t5 12.03 1.51 2.47 1.19 1.20 0.94 0.71

Only the first 800 slices (without the glue) are considered in the calculations.

TABLE 4 Summary of the physical characteristics and reaction rates for sample ARAGOID.

Stage Time Volume Area r̄diss r̄diss−norm r̄’diss r̄’diss−norm

(h) ×10−10m3 ×10−6 m2 ×10−11 mol.s−1 ×10−5 mol.m−2.s−1 µm.h−1 ×10−5mol.m−2.s−1

t0 0 0.62 0.53 – – – –

t1 1 0.61 0.51 1.06 2.04 2.00 1.63

t2 3 0.57 0.49 1.42 2.83 2.46 2.00

t3 6 0.52 0.46 1.20 2.52 2.41 1.96

t4 9.03 0.48 0.44 1.08 2.42 2.39 1.96

t5 12.03 0.44 0.42 0.95 2.22 2.32 1.89

derived from surface retreat provides a better estimate of the

rate (see further discussion in Section 4.1), we will refer to this

parameter for the description of the rates.

Overall, the normalized rates are in the range 6–20 10−6

mol·m−2·s−1. Results show that the dissolution rate of aragonite

(ARAGOID) is 1.4–2.0 times faster than calcite. Surprisingly, the

dissolution rate of the calcite spar (CALSPAR) is 1.4 times faster in

average than the micrite (CALMICR) or micro-sparite (CALDOL)

grains. The temporal evolution of the reaction rates shows

fluctuations with time (Tables 1–4). Overall, the dissolution rates of

CALMICR, CALDOL, and ARAGOID decrease slightly with time,

whereas the dissolution rate of CALSPAR is more constant.

The dissolution rate distributions are presented in Figures 6,

7. It is worth noting that the different points along the x-

axis in the distributions are one pixel distant. Results first

show that the histograms calculated for the intervals t0-t1 and

t0-t2 are not sufficiently resolved, especially near zero. Each

sample is characterized by a unique shape that accounts for the

contribution of all the different geometry features to dissolution

(Figure 6). The rate distribution is either asymmetric bell-type,

right-skewed with a long tail (CALSPAR, CALMICR) or a short

tail extending to the larger rates (CALDOL), or multi-modal

(ARAGOID). The histograms are also truncated near zero for

CALMICR and CALDOL, indicating a non-negligible fraction of

null dissolution rates, in relation to the presence of the non-

soluble silicate minerals. Temporal evolution of the histograms

(Figure 7) shows different behaviors between the samples. For

CALSPAR, the amount of low reactivity sites decreases, whereas

the proportion of sites with dissolution rates in the range 1.4–

2.8 µm·h−1 increases. For CALMICR, the amount of both low

and high reactivity sites fluctuates. For CALDOL, the amount

of high reactivity sites increases, as well as the proportion

of sites whose reactivity is close to zero. For ARAGOID, the

distributions vary significantly, with a change in intensity of the
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FIGURE 5

Local dissolution rate mapping at t4, showing the heterogeneous reaction rate distribution at the surface: (A) CALSPAR, (B) CALMICR, (C) CALDOL,

and (D) ARAGOID. Only the area inside the dotted contours contains the rate data. The external part represents the distance map.

different modes as well as a shift of the histograms toward the

lower rates.

3.3. Stochastic modeling

The geometry evolution of the Kossel crystal at the microscopic

scale is directly related to the value of ǫ set in the kMC simulations

(Supplementary Figures 1–3). A low value of ǫ leads to a high

probability of detachment of face elements, P̂f , compared to edges

and corner elements. In contrast, a high value of ǫ leads to a high

probability of detachment of corner elements, P̂c, thus enhancing

dissolution at corners and edges of the crystal compared to their

faces. High values of P̂c (̂Pc ∼1) clearly result in faceting along the

{111} planes (Supplementary Figure 1), whereas P̂f > 0.01 favors

delamination of the {100}, {010}, and {001} faces with a moderate

effect at the crystal edges and corners (Supplementary Figure 3).

Kinetic Monte Carlo modeling shows that the corner elements

become progressively the main contributors to dissolution, and the

normalized sets of probabilities P̂(j>>0) converge on the long term,

i.e., after about 10% of the Kossel crystal is dissolved. There is a

link between the bound-breaking activation energy Eb (through

the value of ǫ) and the converged set of probabilities obtained.

The results obtained from kMC simulations are applicable in the

stochastic model at larger scale, where large similarities are noticed

between the geometry of the nanosized crystal and the geometry of

the macroscopic crystal (Supplementary Figures 1–3). Overall, the

main features developing at the crystal corners, edges, and faces

from the macroscopic stochastic model are conserved.

Similarly to kMC, the set of probabilities chosen in the

macroscopic stochastic model also influences the retreat at

the macroscopic scale (i.e., crystal geometry). In particular,

the surface retreat at the crystal corners, edges and faces, as

well as the retreat magnitude at topographical lows and highs,

depend on the set {Pc, Pe, Pf }. The converged set P̂(j>>0) =

{̂Pc = 0.927, P̂e = 0.07, P̂f = 0.007} derived from

ǫ = 0.03 in kMC simulations is appropriate to describe

the dissolution of the CALSPAR crystal, when balancing the

contribution of the faces and of the corners to the global retreat

(Figure 8). Output volumes are generated after the iterations

(it.) 20, 60, 137, 209, and 237, which correspond to jV1
to jV5, respectively.

The geometry evolution of the CALSPAR calcite crystal

is presented in Figure 8, together with the dissolution rate

distribution at iteration 237 for the crystal and its three volumes of

interest, VOIc, VOIe, and VOIf . The dissolution rates are presented

in Table 5. The rate distribution of all the outputs are presented

in Supplementary Figures 5–8. At the end of the simulation, the

dissolution rate varies between 1 and 4 µm·h−1 with three peak

maxima at about 1.4, 1.6, and 2.4 µm·h−1. The mean rate r̄′
diss−num

is equal to 1.59 µm·h−1. The VOIf , VOIe, and VOIc dissolve at

1.26, 1.68, and 2.26 µm·h−1, respectively. However, contrary to

the experiment, the distributions of VOIc and VOIe are bimodal.

This results are explained by the fact that these VOIs exhibit both

a flat surface portion and a very stepped surface portion, resulting
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FIGURE 6

Distributions of dissolution rate r′diss in the time intervals ti-t0 (with 1≤i≤5) for the di�erent samples: (A) CALSPAR [Adapted with permission from

Noiriel et al. (2019). Copyright 2023 American Chemical Society], (B) CALMICR, (C) CALDOL∗ , and (D) ARAGOID∗. All the histograms are normalized

to a time of 6 h (corresponding to t3) and a pixel size of 0.65 µm, so that the surface areas below the curves are identical. The vertical line represents

the average dissolution rate r̄’diss in the time interval t3-t0.
∗For the CALDOL and ARAGOID samples, a VOI containing only the first 800 top slices is

considered in the calculation, so that the glued area does not alter the shape of the distribution near zero.

in two very different rates of dissolution. The dissolution rates of

the VOIf and VOIc are also slightly higher and lower than in the

experiment, respectively.

It is possible to reduce the contribution of the crystal faces

to dissolution and increase that of the corners by increasing

m for the face elements in Equation (12), thus decreasing Pf .

Taking m = 5.5 to describe the reactivity of the face elements

leads to the probability set: P̂(j>>0) = {̂Pc = 0.934, P̂e =

0.066, P̂f = 0.0013}. For the same amount of voxels removed, the

number of iterations jV1 to jV5 increases compared to the case

where m = n. In addition, the average dissolution rate is a bit

lower, translating into a slight decrease in the global reactivity of

the crystal (Table 5). This is the consequence of decreasing the

reactivity of the {101̄4} faces, although the reactivity at corners and

edges is increased (Figure 9). The three peak maxima are at 0.9, 1.7,

and 3.1 µm·h−1. The VOIf , VOIe and VOIc dissolve at 0.91, 1.98,

and 3.18 µm·h−1, respectively, close to the values of 0.87, 1.52, and

3.14 µm·h−1 determined experimentally for these VOIs in Noiriel

et al. (2019).

Application of the set of probabilities P̂(j>>0) = {̂Pc =

0.927, P̂e = 0.07, P̂f = 0.007} to the three other samples gives

the following results. Globally, all the samples dissolve faster than

CALSPAR (Table 5), in relationship with a higher amount of corner

elements initially present at the fluid-mineral interface for these

geometries. Similarly to CALSPAR, dissolution is higher in convex

areas compared to flat or concave areas (Figure 10, left). Figure 10A

shows the dissolution rate of sample CALMICR. The highest peak

of dissolution rate is found at about 1.6µm·h−1. The distribution is

skewed right with a long tail, and translates directly the behavior of

the convex and concave areas, as underlined by the VOIconvex and

VOIconcave in Figure 10A (left).

In contrast, the dissolution rate distribution of CALDOL

is nearly Gaussian (Figure 10B), similarly to the experimental

results, and most of the dissolution occurs at rates in the

range 1–5 µm·h−1, with the highest peak at 2.3 µm·h−1.

However, contrary to the experiment, near-zero rates do not

exist as the non-soluble minerals are not accounted for in

the simulations. In addition, a few data points reach a high
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FIGURE 7

Temporal evolution of the distributions of dissolution rates r′diss in the time intervals t3-t0, t4-t2, and t5-t3: (A) CALSPAR, (B) CALMICR, (C) CALDOL,

and (D) ARAGOID. The vertical lines represent the average dissolution rates r̄’diss in the di�erent time intervals, and the red arrows show the major

changes in the rate distributions through time.

dissolution rate (in between 5 and 8 µm·h−1), in relationship

with the presence of micro-fractures and deep connected

pores below the surface that alter the distance map. All the

VOIs dissolve in average at the same rate (2.3 µm·h−1),

something explained by the rapid evolution of the surface

roughness for this sample, meaning that it was difficult to

define proper convex and concave surface areas over time.

The VOIpore, which represents a connected pore below the

surface (see Figure 10B), does not pose any problem here in the

retreat determination.

Finally, the dissolution rate for the aragonite sample ARAGOID

(Figure 10C) is higher than the other three samples, with several

peaks in the rate distribution. The distribution of rates is also

more spread out. It is worth noting that the initial rounded

geometry of the ooid also evolves toward a more faceted

geometry (Figure 11).

4. Discussion

4.1. Application of X-ray micro-tomography
for tracking mineral and rock reactivity

Like techniques measuring the surface retreat, XMT offers the

possibility to determine the retreat at the fluid-mineral interface,

with an estimated error of ±1 pixel (see Noiriel et al., 2020 for a

comparison with vertical scanning interferometry measurements).

Between 2.1 and 5.6 million data points for retreat were considered

initially at the surface of the different samples. The technique

has the advantage over bulk experiments on mineral powders

of bypassing the process of normalization to the surface area

(Noiriel and Daval, 2017), which depends on either the geometric

surface area calculated from the crystal size or the Brunauer-

Emmett-Teller (BET) surface area determined from gas adsorption
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FIGURE 8

(A) Evolution of the CALSPAR geometry (displayed as a cross-section) from stochastic modeling using the set of probabilities

P̂(j>>0) = {̂Pc = 0.927, P̂e = 0.07, P̂f = 0.007} obtained with ǫ = 0.03. (B) Corresponding dissolution rate distribution at jV5, corresponding to iteration

273, including the three VOIs at crystal edge, face, and corner. The arrows point to high (red) or low (black) surface retreat in convex and concave

areas, respectively, similarly to the experimental observations. The red dotted arrow point to the VOIc which does not dissolve as fast as it should due

to the presence of a flat surface area in the XMT volume of interest.

TABLE 5 Average dissolution rates r̄′
diss−num

(mol·s−1) derived from the macroscopic stochastic model.

Iteration It. CALSPAR CALMICR CALDOL It. ARAGOID It. CALSPAR

name number m = n number number m = 5.5

jV1 20 1.08 1.42 2.99 40 2.22 25 1.22

jV2 60 1.28 1.66 2.39 120 2.55 76 1.25

jV5 137 1.56 1.98 2.58 274 3.19 173 1.51

jV4 209 1.62 2.03 2.60 418 3.43 263 1.56

jV5 273 1.59 1.99 2.55 546 3.50 340 1.52

The iterations numbers correspond to the amount of voxels removed for CALSPAR at the different stages of the experiment and apply to the other samples. Changing the set of probabilities

changes the number of interations to reach the same amount of voxels removed (last column werem = 5.5 instead ofm = 5 for the face elements).

FIGURE 9

(A) Evolution of the CALSPAR geometry (displayed as a cross-section) from stochastic modeling using the set of probabilities

P̂(j>>0) = {̂Pc = 0.934, P̂e = 0.066, P̂f = 0.0013} obtained with ǫ = 0.03 and m = 5.5 in Equation (12) at the five iterations jV1=it. 25 to jV5=it. 340. (B)

Corresponding dissolution rate distribution at iteration 340, including the three VOIs at crystal edge, face, and corner. The arrows point to high (red)

or low (black) surface retreat in convex and concave areas, respectively, similarly to the experimental observations.
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FIGURE 10

Evolution (left) of the geometry of (A) CALMICR, (B) CALDOL, and (C) ARAGOID samples (displayed as superimposed cross-sections) from stochastic

modeling at the five iterations jV1= it. 20 (40 for ARAGOID) jV5= it. 273 (546 for ARAGOID) and (right) corresponding dissolution rate distributions at

iteration jV5. The arrows point to high (red) or low (black) surface retreat in convex and concave areas similarly to the experimental observations.

(Brunauer et al., 1938). The rates derived from surface retreat

(r̄’diss−norm) and the rates derived from the volume difference

calculation and normalized to the geometric surface area

(r̄diss−norm) do not match in the experiments (Tables 1–3). The

specific surface area of the unreacted samples determined at the

scale of the XMT imaging technique are equal to 46.8, 58.3,

67.0, and 31.4 cm2·g−1 for CALSPAR, CALMICR, CALDOL, and

ARAGOID, respectively, compared to the BET surface area of 120

cm2·g−1 of similar calcite crystals (Noiriel et al., 2012, 2019), and

reported values of 85.6 and 56.4 cm2·g−1 for aragonite oolites

(Busenberg and Plummer, 1986). Normalization to the geometric

surface area obtained from XMT compared to normalization to

the BET surface area provides rates closer to the rate derived from

surface retreat. The maximum difference is 55% when comparing

r̄diss−norm to r̄’diss−norm, and discrepancies can be reduced after

correction from the covering effect of the glue. Normalization to

the BET surface area would have increased the discrepancy between

r̄diss−norm and r̄’diss−norm. The two-to-three times difference in

surface area may be explained by a surface roughness of the grains

that is not visible at the resolution of XMT imaging and by the

internal micro-porosity.

Application of the distance map is an indirect method to

determine the surface retreat. The procedure has the advantage to

provide a rapid determination of the retreat at the whole sample

surface, even if limitations exist, like the estimation of the distance

between highly curved interfaces (Sethian, 1999) in relation to

the choice of a reference volume from which the distance map is

calculated (Noiriel and Soulaine, 2021). The choice for a reference
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volume, e.g., the initial or the final geometry, does indeed influence

the highest values of retreat (e.g., see Noiriel and Soulaine, 2021

for a comparison), especially for samples depicting sharp surface

curvatures. Micro-fractures or internal non-connected porosity

could also introduce some bias in the estimation of the surface

retreat, even if the phenomenon is limited to a very low portion of

the fluid-mineral surface area, and that the internal, non-connected

porosity was filled following the segmentation of the images to

minimize such a bias.

4.2. Stochastic dissolution of carbonate
minerals and limestone

Kinetic Monte Carlo modeling is not possible on mm-scale

samples due to the large size domain and iterations required

from atomistic considerations. Although techniques are currently

developed to deal with large-size geometries, like the use of Voronoï

diagrams coupled to distance mapping (Rohlfs et al., 2018), the loss

of atomic-scale mechanistic description is currently a limitation

to obtain models that are generalizable and applicable to a wide

range of systems and physico-chemical conditions. The stochastic

macroscopic model developed in this study has the credit to relate

the mechanistic description used in the kMC framework to a larger

scale. Indeed, the kMC simulations on small Kossel crystals provide

a set of converged probabilities that is applicable to describe the

geometry evolution of the samples at the macroscopic scale. For a

given value of ǫ, observations that: i) the kMC set of probabilities

converges and ii) the geometry evolution of the nanosized crystal

in kMC resembles that of the large scale crystal obtained from the

macroscopic stochastic model have permitted to derive a set of

probabilities which can be applied to mimic dissolution of large-

scale samples. In addition, kMC simulations show that there is a

link between the bound-breaking activation energy Eb (through

the value of ǫ) and the converged set of probabilities obtained.

Looking at the contribution of the different types of sites to the

crystal dissolution rate obtained by Ackerer et al. (2021) for a Kossel

crystal, it would translate in our experiments to a value of Eb in the

range 6–9 kJ·mol−1 for calcite dissolution at pH 4.0, a value quite

consistent with the values of the macroscopic activation energy

Ea of 8.4–19 kJ·mol−1 reported in the literature for calcite under

acidic conditions (Alkattan et al., 1998; Morse and Arvidson, 2002;

Palandri and Kharaka, 2004), considering that Ea≃3Eb when the

corner elements dominate the dissolution process (Ackerer et al.,

2021), i.e., P̂c close to 1.

The value of ǫ = 0.03 used in the macroscopic stochastic

model is only constrained by the geometry evolution of the calcite

spar crystal obtained with XMT regarding the dissolution rate at

crystal faces, edges, and corners. This value is far from the value

of ǫ ∼1.4 10−3 used by Carrasco and Aarão Reis (2021) in kMC

simulations to describe dissolution of nanosized crystals whose

dissolution rate is similar to that of our experiments. The reason

is that nanosized crystals dissolve much faster than macroscopic

crystals (Briese et al., 2017), so that the activation energy should

be smaller than for macroscopic crystals (Carrasco and Aarão Reis,

2021). As a consequence, a nanosized crystal and a mm-size crystal

both dissolving at the same rate will result in a value of ǫ higher

for the larger crystal. We argue that a kMC simulation that could

be run on a mm-size crystal (i.e., a domain of about 2.5 106×2.5

106×2.5 106 elements) with ǫ ≃1.4 10−3 would give a set of

probabilities close to the one obtained with ǫ = 0.03 with the

Kossel crystal of 100 × 100 × 100 elements in size, i.e., P̂ = {̂Pc =

0.927, P̂e = 0.07, P̂f = 0.007}. In addition, it should be possible to

find the best set of probabilities {Pc, Pe, Pf } by running a series of

simulations with different combinations and finding the best match

with the experimental results by optimizing a metrics (for instance

the histogram distribution of the geometrical shape). Although

our approach of upscaling is very different from Carrasco and

Aarão Reis (2021) and requires experimental data to be constrained,

it seems promising to evaluate the role of the crystal (or grain)

geometry, which is now viewed as in intrinsic cause of variability

in the dissolution rate distribution of samples (Pollet-Villard et al.,

2016; Noiriel and Daval, 2017), in relation to the density of the

different types of sites (kinks, steps, terraces) at their surface.

Stochastic modeling at the crystal or rock fragment scale

reproduces the larger surface retreat at the crystal corners, edges,

and topographical highs (i.e., convex interfaces), compared to flat

interfaces or topographical lows (i.e., concave surfaces), as observed

in the experiments. The assumption behind stochastic modeling is

that the dissolution rate is related to bond-breaking probabilities,

following Equation (1) In other words, surface reaction-controlled

conditions are assumed, whereas transport of reactants and

products at the fluid-mineral interface are not considered in

the global reaction. Interestingly, the results show that a surface

reaction-controlled model can lead to smoothing of the rough

surfaces, including crystal edges, and corners, similarly to what

is routinely observed in reactive-transport modeling in transport-

controlled conditions. Indeed, smoothing of the rough surfaces

during reactive-transport modeling is unlikely to happen in surface

reaction-controlled conditions where a simple translation of the

fluid-mineral interface is expected, as observed for instance by

Yuan et al. (2019) or Noiriel and Soulaine (2021). Although

dissolution of carbonates at pH = 4 is admitted to be at least

partly diffusion-limited (Morse and Arvidson, 2002), with an

effect on crystal smoothing, diffusion-limited conditions are not a

prerequisite to decrease surface roughness during dissolution.

The role of surface roughness is evident at the small scale,

like shown in the kMC simulations of de Assis and Aarao Reis

(2018). At larger scale, evolution of surface roughness is less evident

as the surface will be composed of both convex and concave

surfaces areas and averaging over these two types of features will

occur. Apart from the calcite spar, the shape of the dissolution

rate distributions are in reasonably good agreement with the

distributions derived from the experiments. This observation tends

to demonstrate that the geometry of a grain has a huge influence

on its reactivity, an effect important to account for in laboratory

studies on mineral powders, where grinding and sieving of large

crystals or rock samples is common. This effect is also important

regarding studies that focus only on retreat determination of well-

cleaved flat surfaces. It is also important to account for this effect

in relationship that relate, for instance, porosity to permeability in

reactive transport models, as evolution of these parameters could

be linked to the rock fabric (Noiriel et al., 2019).

The dissolution rate distribution of the calcite spar, however,

is not quite similar to the distribution obtained experimentally,
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with the three modes for crystal corners, edges and faces more

pronounced in the simulations than in the experiments. It is worth

noting that decreasing the contribution of the faces to dissolution

by taking m = 5.5 for the face elements like Carrasco and

Aarão Reis (2021) reproduces better both the average rate r̄′
diss

(Tables 1, 5) and the range of dissolution rates (Figures 6A, 9B).

The deviation from the terrace-ledge-kink model (where n = 3, 4, 5

instead of m = 3, 4, 5.5 here) better fits with the experimental

measurements at the {101̄4} faces of calcite in far-from-equilibrium

conditions (Ruiz-Agudo et al., 2009) where the density of shallow

pits (i.e., etch pits which are not associated to surface defects

but form at the flat surface) suggest a lower detachment rate

than expected by the theory (Carrasco and Aarão Reis, 2021).

This interpretation is also supported by ab initio predictions that

show that the activation energy at terrace site (Raiteri et al., 2010)

is far higher than the one estimated in the terrace-ledge-kink

model. In addition, the fact that the three peaks for VOIs corners,

edges and face are well-separated in the simulation compared to

the experiment tends to demonstrate that either the macroscopic

stochastic model lacks of randomness (a randomness that could be

introduced by not removing the totality of the elements in a class

at each iteration—although it would result in a loss of mechanistic

description regarding theoretical considerations), or that the choice

to take elements of size of the XMT voxel size regarding the

geometry of the crystal (i.e., a rhombohedron with well-cleaved

faces) creates upscaling issues.

The rates obtained for the other three samples (CALMICR,

CALDOL, and ARAGOID), while keeping the same iteration

numbers for the outputs, are over-evaluated, translating a higher

fraction of corner elements initially at the surface of these

geometries compared to CALSPAR, which exhibits quite well-

cleaved {101̄4} faces. As a consequence, the three samples dissolve

faster in the simulations than in the experiments. It is worth

noting that the stochastic model did not account for the intrinsic

reactivity of the samples. The fact that the micritic or the dolomitic

limestone rock fragments dissolve slower in the experiments than

the calcite spar is unusual given the size of the individual grains

forming the rock fragments and the presence of dolomite, in

comparison with the calcite spar crystal. This intrinsic difference in

reactivity is probably explained by the presence of a small fraction

of clays (< 1%) that could limit the diffusion of reactants toward

the fluid-mineral interface. To account for this effect, a different

parameterization of the stochastic model could be performed in a

future study.

Finally, it is worth pointing at the discretization of sample

geometries from XMT imaging and for stochastic modeling of

dissolution to explain some discrepancies between the experimental

and the numerical results. As shown by Carrasco and Aarão Reis

(2021), dissolution of a Kossel crystal and of the equivalent

rotated cube exhibiting many surface edges elements results

both in different rate distributions and dissolution patterns. The

discretization of the sample does influence the surface retreat

in the simulations. For instance, the sample CALSPAR, as a

rhombohedron-shape crystal, has the largest faces approximately

parallel to one of the three Cartesian planes, while the other

faces intersect the other Cartesian planes. As a consequence, the

faces parallel to a Cartesian plane have a larger number of face

elements compared to the faces intersecting the Cartesian planes,

which result in the latter case in a higher surface retreat (visible in

Figures 8, 9 on the left and right sides of the crystal). Performing

simulations in the lattice system of the crystal could help to

eliminate this effect, although this supposes also a transformation

of the unit cell of XMT (i.e., the cubic voxel) into the new

lattice system, with a possible decrease of spatial resolution due

to the subsequent interpolation. At smaller scale, the presence of

flat areas could also determine the long term evolution of the

geometries. For instance, a flat area in the VOIc of CALSPAR

explains why the retreat at corner of the calcite spar crystal

is bimodal (Figure 8B). More importantly, the small flat areas

in ARAGOID, which would result in any discretization of a

sphere in Cartesian coordinates, is responsible for the faceting

development of the presumably rounded aragonite ooid in the

simulations (Figures 10C, 11). Indeed, approximation of a sphere in

a Cartesian coordinate systems leads to six small flat surfaces with

orientation {100}, {010} {001}. The highest number of face elements

in these areas leads to a lower surface retreat and consequent

development of {111} facets, as already observed by Carrasco and

Aarão Reis (2021). Faceting at low ǫ values appears as one of

the major upscaling issue of the macroscopic stochastic model.

Indeed, faceting translates into a decrease of the surface retreat

heterogeneity over the {111} planes in between microscopic and

macroscopic scale (Supplementary Figure 1).

The last limitation of stochastic modeling is the presence of

impurities or secondary minerals in the rock fragments, i.e., quartz,

clays, or dolomite, which are not accounted for in the model,

in which the surface roughness tends to smooth out with time,

whereas the micritic and dolomitic limestone rocks show clearly

an increase in surface roughness at the mineral scale during the

experiments. Dissolution of rocks will be anyway more complex to

assess compared to single crystals, as rocks also contain accessory

minerals that can influence the global dissolution process. Reactive

minerals are also either randomly oriented or exhibit a fabric, which

will also play a role on the dissolution rate variability at the surface

(Pedrosa et al., 2021).

5. Conclusions

We have presented an experimental and stochastic modeling

study exploring the dissolution rates of four carbonate samples

under acidic (pH 4), far-from-equilibrium conditions, deriving

rates from XMT imaging with a sub-micron resolution. The

experimental results reveal that the dissolution rate variability at

the fluid-mineral surface depends on the carbonate type (calcite

vs. aragonite, sparite vs. micrite, single crystal vs. rock fragment or

grain), and on the sample geometry. A main common geometrical

feature is higher dissolution rates at crystal corners and edges and at

rock or grain convex areas (topographical highs), compared to flat

surface or topographical lows. High dissolution rates correspond

to high energy sites, at which reactivity is enhanced. This process

can be accounted for in stochastic modeling constrained by

the geometries obtained from X-ray micro-tomography after

segmentation of the 3D images. Stochastic modeling at the sample

scale was parameterized from kinetic Monte Carlo simulations
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FIGURE 11

Evolution of the geometry of sample ARAGOID (displayed as superimposed cross-sections) depicting faceting during stochastic modeling. (A)

Geometry of the sample at time t0; the vertical slice indicates the position of the cross-sections shown in (B).

on a Kossel crystal at the microscopic scale, from which a

normalized and converged set of probabilities P̂(j>>0) = {̂Pc, P̂e, P̂f }

was derived in steady-state regime of dissolution. Although fine

details at the surface, anisotropy at reactive sites, and intrinsic

variability between carbonate samples cannot be reproduced by

the model, overall it is possible to reproduce at the mm-scale the

dissolution mechanisms at play at the microscopic scale. Thanks to

the experimental approach combining dissolution experiments on

single crystals or grains and 4D XMT, our modeling approach can

easily bypass the limitations of kinetic Monte Carlo modeling in

handling large-size systems.

The variability in reactivity is expected, however, to be different

in more neutral and close-to- equilibrium conditions. Some

extensions of this work concern (i) geochemical conditions and

saturation states closer to those encountered in most natural

systems, (ii) consideration of the individual behavior of minerals

in polymineralic rocks, like in the dolomitic limestone, or in the

micritic limestone where the presence of clay or quartz minerals

may affect the rate distribution, and (iii) the effect of anisotropy

in dissolution of calcite along the [481̄] and [4̄41] directions,

which should be at play to explain the acute vs obtuse step

retreat difference commonly observed in etch pits (Jordan and

Rammensee, 1998; De Giudici, 2002), cleavages (Noiriel et al.,

2020), and at the crystal edges.
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