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Abstract 
 

Alterations of individual genes variably affect development of hepatocellular 

carcinoma (HCC), prompting the need to characterize the function of tumor-

promoting genes in the context of gene regulatory networks (GRN). Here, we identify 

a GRN which functionally links LIN28B-dependent dedifferentiation with dysfunction 

of CTNNB1 (b-CATENIN). LIN28B and CTNNB1 form a functional GRN with 

SMARCA4 (BRG1), Let-7b, SOX9, TP53 and MYC. GRN activity is detected in HCC 

and gastrointestinal cancers; it negatively correlates with HCC prognosis and 

contributes to a transcriptomic profile typical of the proliferative class of HCC. Using 

data from The Cancer Genome Atlas and from transcriptomic, transfection and 

mouse transgenic experiments, we generated and validated a quantitative 

mathematical model of the GRN. The model predicts how the expression of GRN 

components changes when the expression of another GRN member varies or is 

inhibited by a pharmacological drug. The dynamics of GRN component expression 

reveal distinct cell states that can switch reversibly in normal condition, and 

irreversibly in HCC. We conclude that identification and modelling of the GRN 

provides insight into prognosis, mechanisms of tumor-promoting genes and response 

to pharmacological agents in HCC. 
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Hepatocellular carcinoma (HCC) is the most prevalent liver primary tumor and the 

third–most common cause of cancer death worldwide 1, 2. Liver resection, 

transplantation or radiofrequency ablation are curative therapeutic options, useful in 

only less than 30% of the cases. In advanced HCC, administration of Sorafenib or 

other drugs provides survival benefit to unresectable HCC, yet without curing the 

disease 3. Therefore, identification of new molecular strategies is urgently needed. 

 

Various etiologies are associated with HCC, leading to significant heterogeneity in 

clinical outcome, histology, transcriptomic profile and mutational spectrum 4, 5, 6, 7, 8. 

Such heterogeneity can cause a variable response to therapeutic agents, as in 

mouse models with Ctnnb1-induced HCCs which show heterogeneous sensitivity to 

CTNNB1 (b-CATENIN) inhibitors 9. Thus, designing novel therapeutic strategies 

against HCC requires not only the identification of inhibitors of individual tumor-

promoting genes but also the characterization of the molecular networks in which 

those genes exert their functions. 

 

Dedifferentiation of hepatic cells contributes to HCC progression 10, 11, 12. In this 

context, poorly differentiated HCC develop as a result of forced induction of LIN28B, 

a RNA-binding protein which is repressed during normal hepatic cell differentiation. 

LIN28B is re-expressed in a subset of human HCC's characterized by high serum 

levels of a-foetoprotein 13, 14, thereby associating dedifferentiation, HCC progression 

and LIN28B expression 15. In parallel, CTNNB1 is one of the most frequently mutated 

genes and drivers of HCC, with a mutation rate of 11%-37% 1. Therefore, we here 

explore the possibility that HCC progression depends on a gene regulatory network 

(GRN) linking LIN28B-dependent dedifferentiation with CTNNB1 dysfunction.  

 

Several approaches can be implemented to identify GRNs 16. We here select a 

method which captures the dynamics and biological logic of the system, and identify 

a HCC-promoting GRN comprising several members connecting LIN28B with 

CTNNB1 via Let-7b, MYC, SMARCA4 (BRG1), TP53 and SOX9. We further 

investigate the system-level dynamics of the GRN with help of a quantitative 

mathematical model, which is calibrated and validated using quantitative mRNA and 

protein expression data from HCC cell lines, patient databanks and mouse models. 

In silico simulation of the quantitative impact of a tumor-promoting gene on the 
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expression of the other GRN members revealed the existence of distinct HCC cell 

states which may be at the origin of inter-tumoral heterogeneity.  

 

Several components of the GRN identified here in HCC are instrumental in 

development of other cancers, and we provide evidence that the GRN is functional in 

several gastrointestinal cancers. Finally, we built a web-based platform which 

determines if the GRN is functional in individual HCC samples and allows in silico 

evaluation of potential anticancer strategies targeting the GRN.  

 

 

Results 
 
Identification of a gene regulatory network driving hepatocellular carcinoma.  
We selected an approach in which GRN members must meet two criteria. First, their 

role in tumor-promotion must be validated by animal experimentation and/or high-

throughput sequencing data from patients. Second, GRN members fitting the first 

criterion must be connected by direct or indirect functional links characterized by 

protein-protein and protein-DNA interactions, or epistatic relationship identified in 

loss- and gain- of function analyses. 
 
By combining data from the literature, we first reconstituted a GRN comprising 7 

cross-regulating components: the miRNA Let-7b, the RNA-binding protein LIN28B, 

the ATP-dependent helicase SMARCA4, and the transcription factors SOX9, MYC, 

CTNNB1 and TP53 (Fig. 1a, left): Let-7 is a tumor suppressor whose maturation is 

repressed by re-expression of LIN28B in cancer, including in HCC 17, 18, 19, 20. LIN28B 

can cooperate with CTNNB1 to promote tumor development in mouse models of 

colorectal cancer 21, it is stimulated by MYC and its overexpression is sufficient to 

induce HCC in mice 15. In addition, MYC expression is stimulated by a 

CTNNB1/SMARCA4 complex, in which SMARCA4 is a chromatin regulator mutated 

in HCC 6, 7, 22. Lastly, TP53 and MYC regulate each other 23, and SOX9 is both a 

stimulator of CTNNB1 expression and target of Let-7b 24, 25. Thus, this literature-

based GRN connects LIN28/Let-7, a key axis for cell differentiation, with CTNNB1 

whose deregulation is often involved in HCC development. Within the Let-7 family, 
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Let-7b is here selected since it is the most differentially expressed family member 

between normal and HCC samples 26. The functional links in the GRN reflect direct or 

indirect regulations which were determined by transfection, gene inactivation, protein-

protein and protein-DNA interaction studies 8, 10, 11, 12. When interactions have been 

identified in non-hepatic cells, we verified whether they also occurred in cultured 

HCC cell lines (see below).  
 

Data from the The Cancer Genome Atlas (TCGA; Fig. 1a, right) show that expression 

of Let-7b is reduced in HCC as compared to adjacent non tumor liver tissue. This is 

consistent with the concomitant overexpression of LIN28B, a repressor of Let-7b. All 

other GRN components, except MYC, were increased in HCC. Further, a principal 

component analysis (PCA), which considers only the expression of the 7 GRN 

components in 50 non tumor controls and 369 HCCs revealed that non tumor tissue 

and HCC tumors clustered separately (Fig. 1b and Supplementary Fig. 1a).  

 

We then considered the 100 HCC cases of the TCGA cohort with highest expression 

of a GRN component, and the 100 cases with lowest expression of the same 

component. We then verified whether the other GRN components were correlatively 

up- or down-regulated. Except for Let-7b, high expression of a component correlated 

with high expression of the other GRN components (Supplementary Fig. 2a). Also, in 

a PCA analysis the tumor samples with high expression of a GRN component 

clustered together and separate from the tumors with low expression and from the 

non tumor samples (Supplementary Fig. 2b). Together, these analyses suggest that 

the expression of the GRN components is correlated. 

 

Importantly, PCA investigating multiple targets of CTNNB1, Let-7b-3p and Let-7b-5p 

(Supplementary Table 1) also identified separate clusters for non tumor tissue and 

HCC tumors, indicating that the components of the GRN were not only misexpressed 

in HCC but also that they were actively regulating their targets (Fig. 1c and 

Supplementary Fig. 1b). Therefore, we considered that concomitant overexpression 

of the GRN components LIN28B, SMARCA4, SOX9, CTNNB1 and TP53, and 

downregulation of Let-7b was indicative of GRN activity. 
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Out of the 369 HCCs from the TCGA cohort whose GRN component expression had 

been analyzed by PCA we selected the 150 samples with the highest Dimension 1 to 

which CTNNB1, SMARCA4, SOX9, MYC and TP53 expression contribute the most, 

and out of the latter we selected the 100 samples with highest Dimension 2 to which 

LIN28B and Let-7b contribute the most (Supplementary Fig. 1c). These 100 samples 

were defined as displaying high GRN activity and were compared with the other 269 

tumors, which were defined of low GRN activity, and with non tumor liver tissue (Fig. 

1d). The expression of the GRN components differed significantly between the 

tumors with low and high GRN activity. Moreover, the samples with high GRN activity 

displayed the highest expression of proliferation, embryonic and oncogenic markers, 

and the lowest levels of differentiation markers.  

 

We next investigated if GRN activity in the 369 HCC patients of the TCGA cohort 

correlated with prognosis. Fig. 1e shows that the survival probability as a function of 

time was lower in the 100 HCC patients with high GRN activity than in the 269 HCC 

patients with low GRN activity. When performing the same analysis with individual 

components of the GRN, we found that expression of Let-7b, MYC and TP53 did not 

correlate with survival, while expression of CTNNB1, SOX9, SMARCA4 and LIN28B 

were inversely correlated with survival (Supplementary Fig. 3). In this analysis of 

individual components, the cohort with high expression corresponded to the group of 

100 patients with highest expression of the component, and the low expression 

cohort corresponded to the 269 other samples of the cohort. Together, the results 

indicate that the activity of the GRN as whole is a good marker of prognosis in HCC 

patients. 

 

In conclusion, we have identified a GRN of functionally interacting partners which are 

misexpressed in HCC. The activity of the GRN, characterized by consistent and 

concomitant misexpression of its components and targets, correlates with 

proliferation, dedifferentiation and prognosis. 

 

The gene regulatory network promotes a proliferative HCC phenotype but is 
not correlated with telomerase maintenance. HCC's are broadly divided in 

proliferative and nonproliferative classes 1, 27. Dedifferention and high proliferation 

characterize the proliferative class and correlate with the GRN activity (Fig. 1d), 
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suggesting that the GRN is associated with or promotes a proliferative phenotype of 

HCC's. This is further supported by our observation that GRN activity, defined as 

above, correlates with increased MET signaling, a pathway whose activation 

characterizes a subset of the proliferative HCC class 28. Indeed, HCC's with low or 

high GRN activity and non tumor control samples from the TCGA cohort clustered 

separately in a PCA analysis when considering the expression of 110 HGF/MET 

target genes (Fig. 2a and Supplementary Fig. 1d). Moreover, to capture the tumors 

with highest HGF/MET target gene expression we selected 150 samples with the 

highest Dimension 1 and out of these we selected the 100 samples with highest 

Dimension 2 (Supplementary Fig. 1e). Those 100 tumor samples displayed 

increased expression of CTNNB1, SOX9, SMARCA4, MYC and TP53 as compared 

to the other 269 tumors (Fig. 2b and Supplementary Fig. 1e).  

 

Earlier analyses correlated the transcriptome, genotype and phenotype of HCC 

patients and identified 6 patient subgroups numbered G1 to G6 29. A predictor 

formula considered the expression of 16 genes to classify patients within one of the 6 

subgroups, and, numerous genes were differentially expressed in the 6 subgroups 29. 

PCA analysis of the expression of a random selection of 216 differentially expressed 

genes or of the 16 predictor genes in non tumor tissue and HCC tumor of patients 

from the TCGA cohort revealed that tumors with high GRN activity cluster the farthest 

from the non tumor tissue (Fig. 2c-d and Supplementary Fig. 1f-g). Among the 216 

genes differentially expressed between the G1 to G6 subgroups, the 50 genes that 

contribute the most to the Dimension 1 in the PCA plot are all upregulated in the G1, 

G2 and G3 subgroups and are mainly involved in cell proliferation (listed in 

Supplementary Table 2), fitting with our observations that GRN activity may 

contribute to confer a transcriptomic profile typical of the proliferation class of HCC. 

The G1, G2 and G3 subgroups are associated with poor differentiation, severe 

prognosis, and overexpression of genes regulating cell proliferation and DNA 

metabolism 29. Together, the data support that the GRN is associated with and may 

promote a proliferative phenotype. 

 

TERT promoter mutation are found in 60% of HCC's 30. However, out of the 369 HCC 

samples of the TCGA cohort, the 100 samples with highest TERT expression did not 

consistently misexpress GRN components as compared to the 269 HCC samples 
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with lower TERT expression levels (Fig. 2e). This suggests that GRN activity is 

disconnected from TERT overexpression-induced telomere maintenance. 

 

Design of a mathematical model of the gene regulatory network. We next 

developed a tool to determine how variation of an individual GRN component affects 

the expression of all the others. To this end, we built a quantitative mathematical 

model, using a set of kinetic equations describing the expression of each network 

component as a function of time. The model includes MYC, TP53, SMARCA4, SOX9, 

LIN28B mRNA and protein, as well as active and inactive forms of CTNNB1 protein, 

which correspond to stabilized unphosphorylated CTNNB1 and phosphorylated 

CTNNB1 incorporated in a degradation complex, respectively. It also considers free 

(unbound) Let-7b miRNA, as well as complexes between Let-7b and mRNAs coding 

for SOX9, LIN28B and MYC. The variables, parameters and kinetic equations of the 

model are listed in Supplementary Tables 3-5. 
 

We quantitatively calibrated the model using the mRNA levels of all GRN 

components available in TCGA (non tumor tissue and HCC tumors) and in a 

transcriptomic dataset from 34 human HCC cell lines 31 (Fig. 3a-c). Distinct sets of 

parameter values and initial conditions were determined for normal tissues on one 

hand, and for HCC tumors and cell lines on the other hand (Supplementary Tables 4 

and 7). 

 

Next, to quantitatively calibrate the model with protein expression values we 

transiently overexpressed GRN components in cultured HCC cell lines. These 

experiments validated in HCC the cross-regulating pairs of the GRN which had 

originally been identified in non-hepatic tumors. Overexpression of MYC in HepG2 or 

Huh7 cells stimulated TP53 and LIN28B expression, thereby validating in HCC the 

MYC®TP53 and MYC®LIN28B interactions (Figs. 4a, Supplementary Fig. 4a). 

Similarly, overexpression of constitutively active CTNNB1S33Y and of SMARCA4 in 

HepG2 or Huh7 cells validated the CTNNB1®LIN28B and CTNNB1®MYC and 

SMARCA4®MYC interactions in HCC (Fig. 4b, Supplementary Fig. 4b-c). Finally, 

transient transfection of Let-7b-5p mimic RNA significantly repressed LIN28B, MYC 

and SOX9, confirming the regulatory links in the GRN (Fig. 4c). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 15, 2018. ; https://doi.org/10.1101/347666doi: bioRxiv preprint 

https://doi.org/10.1101/347666


	 9	

 

The duration of the transient transfections in Fig. 4 (48h, 72h, 96h) reflected the 

minimal time-lapse required to monitor a significant change in TP53, LIN28B, MYC or 

SOX9 following overexpression of their respective stimulator or repressor. Therefore, 

both the level of protein induction and the timing required to observe a significant 

change in protein level were used to further calibrate the mathematical model of the 

GRN, while maintaining the quantitative calibration of all mRNA expression levels. 

We then simulated the transient transfection conditions by increasing the 

transcription rate constants of MYC, CTNNB1 or Let-7b, starting at t = 0h (Fig. 4a-c, 

right panels). The results showed that simulating a 10-fold increase in MYC -which 

mimics the observed 10-fold increase in transfected MYC protein- predicted a ~2-fold 

increase in LIN28B and TP53 after 72h; this predicted increase in LIN28B and TP53 

matched closely the measured values (compare black and orange bars in Fig. 4a). 

Similarly, simulating an 8-fold increase in CTNNB1S33Y predicted a ~3- and 11-fold 

induction of LIN28B and MYC after 48h; these inductions again matched closely the 

measured 4- and 9-fold induction of LIN28B and MYC, following an 8-fold increase in 

transfected CTNNB1S33Y (Fig. 4b). Moreover, following a simulated 8-fold induction of 

Let-7b the model reproduced quantitatively the experimentally measured impact of 

Let-7b induction on LIN28B, MYC, and SOX9 (Fig. 4c). Finally, Let-7b induction in 

HuH7 cells did not affect CTNNB1 expression, which fitted with the model simulation 

(Fig. 4c). We concluded that the calibrated mathematical model faithfully 

recapitulates the expression of GRN components. 

 

Validation of the mathematical model. To validate the model, we first challenged it 

by predicting the impact of a stabilizing CTNNB1 mutation on LIN28B and Let-7b 

expression and compared the prediction with values from the TCGA database. To 

this end we first partitioned the HCC samples of the TCGA database in two cohorts 

characterized by the presence or absence of stabilizing CTNNB1 mutation, the most 

frequent CTNNB1 mutations in the cohort being missense mutations in exon 3. This 

revealed that CTNNB1 mRNA levels were higher in the presence of a mutation (Fig. 

5a, left). Therefore, to simulate CTNNB1 stabilization in the model we increased the 

CTNNB1 mRNA synthesis rate (Supplementary information), increased the activation 

rate of the inactive (complexed) CTNNB1 form, and decreased the inactivation rate of 

the active (stabilized) form. Under these conditions, when CTNNB1 mRNA values 
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from the mutated and non-mutated samples were introduced in the model (Fig. 5a, 

orange bars), it faithfully predicted the reduction in Let-7b observed in non-mutated 

HCC samples as well as the slightly larger decrease of Let-7b seen in HCC samples 

with CTNNB1 mutation. Also, the model predicted the increased LIN28B expression 

in HCC which was similar whether CTNNB1 was mutated or not (compare orange 

and black bars in Fig. 5a).  
 

A second validation was obtained by considering previous results from a mouse 

model of MYC-induced liver cancer 15. We simulated a 4000-fold increase in MYC 

mRNA, which corresponds to the experimental induction of Myc in mice. Our 

simulation predicted a MYC-induced 7000-fold overexpression of Lin28b mRNA and 

a 0.4-fold reduction in Let-7b. This prediction fitted well with the experimentally-

measured induction of Lin28b and reduction of Let-7b (Fig. 5b). 

 

Third, as a proof of concept that the mathematical model can predict the impact of a 

pharmacological inhibitor of a GRN component, we simulated the inhibition of LIN28B 

in HCC: simulating 60 % inhibition of LIN28B protein predicted an increase in Let-7b 

and a decrease in SOX9 and MYC protein; CTNNB1 remained unaffected (Fig. 5c). 

We then evaluated the results of the simulation by growing Huh7 cells in culture in 

the presence of the LIN28 inhibitor (N-Methyl-N-[3-(3-methyl-1,2,4-triazolo[4,3-

b]pyridazin-6-yl)phenyl]acetamide) 32. The inhibitor reduced cell proliferation (not 

shown), and, as expected, induced the expression of Let-7b and Let-7a. Importantly, 

the changes of SOX9, MYC protein and CTNNB1 protein levels measured by 

western blot matched well with the simulations (Fig. 5c), thereby validating the 

mathematical model as a tool to predict the impact of a pharmacological inhibitor on 

the GRN. 

 
GRN dynamics are characterized by a bistable switch. To characterize the 

dynamical properties of the GRN and determine whether they would identify distinct 

HCC cell states, we modelled the steady-state levels of Let-7b, selected as a 

representative variable, as a function of CTNNB1 mRNA. In normal conditions, high 

Let-7b was associated with low CTNNB1 mRNA, and vice versa (Fig. 5d, left). The 

system exhibits a reversible bistable switch from high to low levels of Let-7b, at 

supraphysiological levels of CTNNB1 mRNA. Green dots in Fig. 5d (left) represent 
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measured Let-7b/CTNNB1 mRNA values in normal samples from the TGCA cohort. 

However, simulating Let-7b as a function of CTNNB1 mRNA in HCC conditions 

revealed an irreversible bistable switch occuring at low CTNNB1 mRNA levels (Fig. 

5e, left). Indeed, rising CTNNB1 mRNA from low to supraphysiological levels in HCC 

would induce a switch from high to low Let-7 expression, but reverting from 

supraphysiological CTNNB1 to low CTNNB1 levels would not allow to restore high 

Let-7 levels. Interestingly, individual Let-7b/CTNNB1 values in HCC tumors clustered 

around the upper stable steady-state of the bistable switch (Fig. 5e, left, red dots). In 

contrast, blue dots in Fig. 5e represent Let-7b/CTNNB1 values measured in 34 

human HCC cell lines, and most are in the bottom stable steady state of the bistable 

switch, suggesting that culture conditions of cell lines promote switching of the GRN 

to a state distinct from that of the mean cell state in tumoral tissue of patients.  

 

The distribution of measured Let-7b/CTNNB1 values in Fig. 5d-e reflects inter-

sample heterogeneity. When modelling a normal heterogeneous cell population (200 

cells) with 30% of random variations around the basal value of each parameter, the 

Let-7b/CTNNB1 values remained clustered in the upper stable steady state (Fig. 5d, 

right, black dots). Modelling a HCC cell population with the same % of parameter 

variation generated a distribution of Let-7b/CTNNB1 values similar to that seen in 

HCC patients and cell lines (Fig. 5e, right), indicating that the model accounts for the 

sample's heterogeneity. 

 

We next analyzed the robustness of the bistable switch dynamics in normal and HCC 

conditions towards variation of parameter values. We plotted the steady-state levels 

of Let-7b as a function of CTNNB1 mRNA levels in the presence of a two-fold 

increase or decrease of each parameter value (Supplementary Figs. 5 and 6). In 

normal condition, i.e. high Let-7b and low CTNNB1 mRNA, the model is very robust 

towards 2-fold parameter variation since high Let-7b levels are maintained regardless 

of parameter variations (Supplementary Fig. 5). In contrast, in HCC conditions the 

irreversible bistable switch dynamics can be lost following parameter variations, and 

only the bottom stable steady state of the bistable switch is maintained 

(Supplementary Fig. 6). Thus, the tumor state is more sensitive towards parameter 

variations than the normal state. This is expected to be reflected in patient samples 
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by increased heterogeneity in expression of the GRN components, as observed in 

Fig. 1b.  

 

We concluded that the GRN dynamics rest on a robust reversible bistable switch that 

should not occur in normal condition, while it exhibits a sensitive irreversible bistable 

switch in HCC condition that could cause heterogeneity among tumor samples.  

 
Gene regulatory network activity in gastrointestinal cancers. Since the 

components of the GRN are expressed in several tissues we verified if it might be 

activated in cancers distinct from HCC. We first looked at RNA expression in TCGA 

cohorts of cholangiocarcinoma (CHOL), stomach and esophageal carcinoma (STES), 

colorectal adenocarcinoma (COADREAD), thyroid carcinoma (THCA), kidney renal 

clear cell carcinoma (KIRC), breast carcinoma (BRCA), bladder urothelial carcinoma 

(BLCA), and lung adenocarcinoma (LUAD) (Fig. 6a, Supplementary Fig. 7). 

Statistically significant and consistent induction of all tumor-promoting GRN 

components was detected in cholangiocarcinoma, stomach and esophageal 

carcinoma, and colorectal adenocarcinoma, i.e. in gastrointestinal cancers. Let-7b 

did not show the expected reduction in those tumors, yet depending on the tumor 

type, other Let-7 family members are downregulated, like in cholangiocarcinoma 

where Let-7c is strongly repressed. The other cancer types did not show a consistent 

increase in GRN components, suggesting that the GRN does not display tumor-

promoting activity in these tumors. 
 

Tu and coworkers developed a mouse model of colorectal cancer with similar gene 

expression pattern as in human cancer 21, which offered the opportunity to validate 

the mathematical model in this cancer type. The published mouse data showed that 

induction of Lin28b for 6 months triggered cell proliferation, downregulation of Let-7 

and upregulation of Sox9, the latter being illustrated by immunostaining 21. The 

subsequent removal of Lin28b for 2 months partially restored the expression of Let-7 

and proliferation markers. As in the experiments 21, the mathematical model predicts 

that a 6-month induction of LIN28B leads to downregulation of Let-7b and 

upregulation of SOX9, and that those expression levels partially revert to near normal 

values 2 months after LIN28 removal (Fig. 6b), thereby validating the GRN model in 

colorectal cancer. The mathematical model also shows that the expression of MYC 
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(Fig. 6b) and CTNNB1 mRNAs (not shown) is not affected by LIN28B induction, 

which fits well with the observations 21. 

 

 

Discussion 
 
The pattern of genetic and epigenetic alterations is heterogeneous in HCC. 

Therefore, to understand the mechanisms of disease progression and design 

therapeutic strategies, there is a need to identify the functionality and the dynamics of 

GRNs driving HCC in individual samples 4, 29, 33. Here we identified a GRN consisting 

of functionally-interacting components and which is activated in HCCs and 

gastrointestinal tumors. The GRN combines CTNNB1, SMARCA4, SOX9, LIN28B, 

Let-7b, TP53 and MYC, which are misexpressed and/or mutated in HCC. MYC 

expression is not strongly affected in the HCC cohort but it is higher in tumors with 

high GRN activity than in tumors with low GRN activity, and plays a role in mouse 

models of HCC 15.  

 

Since the mathematical model resorts to two sets of parameters, one for normal 

condition and one for tumors and cell lines, it does not account for the dynamics of 

transition between normal and HCC states. Indeed, to properly calibrate the model 

on the mRNA expression levels, the transcription rates of LIN28B, SOX9, mutant 

TP53, CTNNB1 and SMARCA4 had to be increased in the HCC conditions (see 

‘tumor’ parameter in Supplementary Tables 4 and 5). The need to increase these 

parameters indicates that the interactions between GRN components are not 

sufficient to account for the normal-to-HCC transition. The model parameters 

implicitly integrate the impact of external regulators of the GRN. Yet, the modelling 

strategy cannot integrate the full spectrum of regulations, and a number of regulators 

might not be known. Since modelling the transition from normal to HCC requires 

adaptation of the transcription rates of LIN28B, SOX9, mutant TP53, CTNNB1 and 

SMARCA4, we suggest that the mechanisms controlling the expression of those 

genes warrant further investigation.  
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PCA analysis based on the expression of GRN components allowed us to define 

subclasses of patients. Molecular classifications of HCC's identified proliferative 

versus non proliferative classes, and another approach correlated the transcriptome, 

genotype and phenotype of HCC patients to subdivide patients in 6 subgroups called 

G1 to G6 29. Our observations suggest that GRN activity may contribute to confer a 

transcriptomic profile typical of the proliferative class of HCC. Consistently, the GRN 

is most activated in the G1, G2 and G3 subgroups which are associated with poor 

differentiation, severe prognosis, and overexpression of genes regulating cell 

proliferation 29. The targets of CTNNB1 are heterogeneous as it induces progenitor-

type genes in tumor cells such as cyclin-D1 or VEGF-A, but also regulates 

expression of antioxidant, pro-survival and pro-hepatocyte differentiation genes in 

normal hepatocytes 34. The G5 and G6 HCC subgroups are associated with 

activation of CTNNB1 targets typical for mature hepatocytes, whereas the G1, G2, 

and G3 subgroups show predominant activation of progenitor-type targets. 

Interestingly, high GRN activation is associated with high expression of progenitor-

type CTNNB1 targets (Supplementary Fig. 8). 

 

The structure of the GRN comprises several positive feedback loops which are at the 

origin of reversible and irreversible bistable switches. Bistable switches have been 

identified in multiple molecular regulatory networks involved in differentiation, 

signaling or proliferation pathways 35, 36, 37, 38. However, our quantitative modelling 

approach identified the first irreversible bistable switch involved in a specific subset of 

HCC tumors. It sheds light on the nature of a dynamical mechanism which can be a 

source of heterogeneity among HCC samples. In addition, the identification of 

irreversible states in HCC provides evidence that targeting specific GRN components 

using drugs might be therapeutically ineffective, given that the cancer cell is in a 

locked state with regard to the function of the target. Also, our comparison of patient 

tumors and cultured HCC lines (Fig. 5e) indicates that cell lines may be in a state 

distinct from that of tumors with regard to the function of the GRN. This raises the 

need for caution when testing the efficacy of drugs in cultured cells. To facilitate the 

analysis of the GRN, we set up a user-friendly web-platform allowing to check GRN 

activity in HCC and in gastrointestinal tumors. This platforms also presents a 

graphical user interface that integrates the expression levels of the GRN components 

of new tumor samples, and which implements the mathematical model to test which 
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component of the network is the best target to modulate the network dynamics 

(http://biomodelling.eu/apps.html). We anticipate that identification and modelling of a 

set of GRNs consisting each of functionally-interacting components will significantly 

contribute to provide a global picture of tumor-promoting gene function in HCC. Our 

study presents the concept of tools that help in the design of bespoke therapies for 

treating each patient's specific cancer.  

 
 
Methods 
 
Description and calibration of the mathematical model. The mathematical model 

of the GRN is based on 20 kinetic equations describing the temporal evolution of the 

expression level of each network component (Supplementary Information). The 

variables, parameters, initial conditions and numerical values used to calibrate the 

model are mentioned in Supplementary Tables 3-7. 

 

Data normalization and statistical analysis. Data normalization methods are 

described in Supplementary Information. All measured data are means ± SEM. 

Significance was assessed by Student t-test.
 

 

Mathematical modelling and PCA analysis. Mathematical model simulations were 

performed using XPPAUTO (http://www.math.pitt.edu/~bard/xpp/xpp.html) and 

Matlab. PCA analysis was performed with FactoMineR (R package) 39. 

 

RNASeq and miRNASeq data. RNASeq and miRNA Seq data of patient cohorts 

were from TCGA database (http://firebrowse.org/). For each cohort, we converted the 

“scaled_estimate” in the “illuminahiseq_rnaseqv2_unc_edu_Level_3_RSEM_genes” 

file into TPM by multiplying by 106.  

 

Plasmids and microRNAs. Plasmids pCDNA3.1, pcDNA3-MYC, pCl-neo β-Catenin 

(CTNNB1S33Y), pBABE-BRG1 were from Thermo Fisher Scientific (Waltham, MA, 

USA), Wafik El-Deiry (Addgene plasmid # 16011) 40, Bert Vogelstein (Addgene 

plasmid # 16519) 41 and Robert Kingston (Addgene plasmid # 1959) 42 respectively. 
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The miR mimic control (MIMAT0000039: UCACAACCUCCUAGAAAGAGUAGA) and 

miR mimic hsa-let-7b: hsa-let-7b-5p (MIMAT0000063: 

UGAGGUAGUAGGUUGUGUGGUU), hsa-let-7b-3p (MIMAT0004482: 

CUAUACAACCUACUGCCUUCCC) were from Dharmacon (Lafayette, CO, USA).  

 
Cell culture and transfections. Human Huh7, HepG2 and Hep3B hepatocarcinoma 

cells were grown in DMEM (Lonza, Westburg, Leusden, Netherlands), 10% Foetal 

bovine serum (Merck, Darmstadt Germany), L-Glutamine (2 mM) (Thermo Fisher 

Scientific, Waltham, MA, USA), Penicillin-Streptomycin (50 U/mL and 50 µg/mL 

respectively) (Gibco™, Waltham, MA, USA) and Amphotericin B (Gibco™, Waltham, 

MA, USA) (2.5 µg/mL). Cells were grown in 60 mm dishes and transfected with 3 µg 

plasmid and 120 nM miR mimic, using jetPRIME® (Polyplus-Transfection, Illkirch-

Graffenstaden, France) for 48, 72 or 96h as recommended by the manufacturer, in at 

least three independent experiments. DNA was transfected 24h after plating the cells 

on 60 mm dishes. For LIN28 inhibition, Huh7 cells were grown in the presence of 120 

µM of (N-Methyl-N-[3-(3-methyl-1,2,4-triazolo[4,3-b]pyridazin-6-yl)phenyl]acetamide) 

for 6 days; the medium with inhibitor was changed every day 

 

Protein extractions and western blotting. Cells were rinsed twice with PBS and 

total proteins were extracted using a cell lysis buffer (50 mM Tris-Cl pH 7.4, 150 mM 

NaCl, 1mM EDTA, 0.5% IGEPAL, 1mM DTT and protease inhibitors (Roche, Bâle, 

Switzerland). Cells were sonicated for 15s and centrifuged. Protein concentration 

was measured with a Bradford assay. Proteins (40 µg) were fractionated using 8-

10% polyacrylamide gels, transferred to PVDF membranes (Merck, Darmstadt, 

Germany), and detected by enhanced chemiluminescence (ECL, Thermo Fisher 

Scientific, Waltham, MA, USA) using X-ray films (Thermo Fisher Scientific, Waltham, 

MA, USA) and Fusion Solo S equipment (Vilber Lourmat, Collegien, France). 

Proteins were quantified using Bio1D advanced software (Vilber Lourmat, Collegien, 

France). Antibodies and their dilutions were rabbit polyclonal anti-LIN28B antiserum 

(#4196S, 1:1000, Cell Signalling Technology), rabbit polyclonal anti-MYC antiserum 

(sc-764, 1:500, Santa Cruz Biotechnology), mouse monoclonal anti-CTNNB1 

antibody (BD610154, 1:2000; BD Transduction Laboratories™), rabbit polyclonal 

anti-SOX9 antiserum (AB5535, 1:1000, Merck), mouse monoclonal anti-TP53 

antibody (sc-126, 1:1000, Santa Cruz Biotechnology), rabbit polyclonal anti-BRG1 
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antiserum (sc-10768, 1:500, Santa Cruz Biotechnology) and goat polyclonal anti-

ACTIN antiserum (sc-1615, 1:500, Santa Cruz Biotechnology).  

 
RNA extraction and analysis 
Total RNA was isolated from Huh7 cultured cells, in the presence or absence of 

LIN28 inhibitor for 6 days, using Trizol (#1029602, Invitrogen, Life technologies). 

cDNA synthesis was performed with MMLV reverse transcriptase (#28025-13, 

Invitrogen, Life technologies) according to manufacturer’s protocol. MicroRNA 

expression (Let-7a and Let-7b) was quantified by RT-qPCR using Kapa SYBR Fast 

2X Universal Master Mix (#KK4601, Sopachem, Ochten, Netherlands). Specific 

stem-loop primers were used for reverse transcription, and RT-qPCR was performed 

using a specific forward primer and a common universal reverse primer. Let-7a 

Fwd/Rev: 

ACACTCCAGCTGGGTGAGGTAGTAGGTTG/CTCAACTGGTGTCGTGGAGTCGGC

AATTCAGTTGAGACTATACA; Let-7b Fwd/Rev: 

ACACTCCAGCTGGGTGAGGTAGTAGGTTGT/ 

CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAACCACAC; ACTB 

Fwd/Rev: TCCTGAGCGCAAGTACTCTGT/CTGATCCACATCTGCTGGAAG. In all 

conditions, each ΔCt between the measured transcripts and the housekeeping genes 

was further normalized to their control conditions by using 2-ΔΔCt method. 

 
 
Acknowledgements 
The authors thank P. Jacquemin, C. Pierreux and the Lemaigre laboratory members 

for help and input. We also thank L. Nguyen and H. Zhu for sharing information, and 

Lieven Desmet for his help with statistical analyses. The work of FPL was supported 

by the Interuniversity Attraction Pole Programme (Belgian Science Policy, PVII-47), 

the D.G. Higher Education and Scientific Research of the French Community of 

Belgium (ARC 15/20-065), the F.R.S.-FNRS (Belgium: Grants T.007214 and 

J.0058.15), and the Belgian Foundation Against Cancer (grant 2014-125). J.Z-R's 

group is supported by INSERM, the Ligue Nationale contre le Cancer (Equipe 

Labellisée), Labex OncoImmunology (investissement d’avenir), Coup d’Elan de 

la Fondation Bettencourt-Shueller, the SIRIC CARPEM and Fondation Mérieux. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 15, 2018. ; https://doi.org/10.1101/347666doi: bioRxiv preprint 

https://doi.org/10.1101/347666


	 18	

Author contributions 
C.G. and F.P.L. conceived and designed the study. C.G. performed transcriptomic 

data analysis and mathematical modelling. M. D-L., K.K. and S. Cordi performed 

transfection experiments and quantified RNA and proteins. L.G. created the web-

based platform under supervision of E.H. A.L. did the survival analysis and helped 

with transcriptomic data analysis. S. Caruso, G.C. and J.Z-R. provided transcriptomic 

data and human cell lines and contributed to the interpretation of the modelling 

results. J.T. and S.P.M. shared and analyzed data from transgenic mice. C.G., M. D-

L. and F.P.L. wrote the manuscript with input from all authors. 

 
 
 
References 
 
1. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic Landscape and 

Biomarkers of Hepatocellular Carcinoma. Gastroenterology 149, 1226-1239 
(2015). 

 
2. Hashim D, et al. The global decrease in cancer mortality: trends and 

disparities. Ann Oncol 27, 926-933 (2016). 
 
3. Villanueva A, Hernandez-Gea V, Llovet JM. Medical therapies for 

hepatocellular carcinoma: a critical view of the evidence. Nat Rev 
Gastroenterol Hepatol 10, 34-42 (2013). 

 
4. Calderaro J, et al. Histological subtypes of hepatocellular carcinoma are 

related to gene mutations and molecular tumour classification. J Hepatol 67,  
727-738 (2017). 

 
5. Uhlen M, et al. A pathology atlas of the human cancer transcriptome. Science 

357, (6352) (2017). 
 
6. Schulze K, et al. Exome sequencing of hepatocellular carcinomas identifies 

new mutational signatures and potential therapeutic targets. Nat Genet 47, 
505-511 (2015). 

 
7. Cancer Genome Atlas Research Network. Comprehensive and Integrative 

Genomic Characterization of Hepatocellular Carcinoma. Cell 169, 1327-1341 
(2017). 

 
8. Breuhahn K, Gores G, Schirmacher P. Strategies for hepatocellular carcinoma 

therapy and diagnostics: lessons learned from high throughput and profiling 
approaches. Hepatology 53, 2112-2121 (2011). 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 15, 2018. ; https://doi.org/10.1101/347666doi: bioRxiv preprint 

https://doi.org/10.1101/347666


	 19	

9. Tao J, et al. Targeting beta-catenin in hepatocellular cancers induced by 
coexpression of mutant beta-catenin and K-Ras in mice. Hepatology 65, 1581-
1599 (2017). 

 
10. Zeng X, et al. Recombinant adenovirus carrying the hepatocyte nuclear factor-

1alpha gene inhibits hepatocellular carcinoma xenograft growth in mice. 
Hepatology 54, 2036-2047 (2011). 

 
11. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human 

hepatocellular carcinoma. Nat Genet 31, 339-346 (2002). 
 
12. Jung KH, et al. Differentiation therapy for hepatocellular carcinoma: 

Multifaceted effects of miR-148a on tumor growth and phenotype and liver 
fibrosis. Hepatology 63, 864-879 (2016). 

 
13. Takashima Y, Terada M, Udono M, Miura S, Yamamoto J, Suzuki A. 

Suppression of lethal-7b and miR-125a/b Maturation by Lin28b Enables 
Maintenance of Stem Cell Properties in Hepatoblasts. Hepatology 64, 245-260 
(2016). 

 
14. Viswanathan SR, et al. Lin28 promotes transformation and is associated with 

advanced human malignancies. Nat Genet 41, 843-848 (2009). 
 
15. Nguyen LH, et al. Lin28b is sufficient to drive liver cancer and necessary for its 

maintenance in murine models. Cancer Cell 26, 248-261 (2014). 
 
16. Wilkinson AC, Nakauchi H, Gottgens B. Mammalian Transcription Factor 

Networks: Recent Advances in Interrogating Biological Complexity. Cell Syst 
5, 319-331 (2017). 

 
17. Boyerinas B, et al. Identification of let-7-regulated oncofetal genes. Cancer 

Res 68, 2587-2591 (2008). 
 
18. Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol 18, 505-

516 (2008). 
 
19. Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME. The role of let-7 in cell 

differentiation and cancer. Endocr Relat Cancer 17, F19-36 (2010). 
 
20. Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 Pathway in 

Cancer. Front Genet 8, 31 (2017). 
 
21. Tu HC, et al. LIN28 cooperates with WNT signaling to drive invasive intestinal 

and colorectal adenocarcinoma in mice and humans. Genes Dev 29, 1074-
1086 (2015). 

 
22. Endo M, et al. Alterations of the SWI/SNF chromatin remodelling subunit-

BRG1 and BRM in hepatocellular carcinoma. Liver Int 33, 105-117 (2013). 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 15, 2018. ; https://doi.org/10.1101/347666doi: bioRxiv preprint 

https://doi.org/10.1101/347666


	 20	

23. Hemann MT, et al. Evasion of the p53 tumour surveillance network by tumour-
derived MYC mutants. Nature 436, 807-811 (2005). 

 
24. Kawai T, et al. SOX9 is a novel cancer stem cell marker surrogated by 

osteopontin in human hepatocellular carcinoma. Sci Rep 6, 30489 (2016). 
 
25. Johnson CD, et al. The let-7 microRNA represses cell proliferation pathways 

in human cells. Cancer Res 67, 7713-7722 (2007). 
 
26. Hou J, et al. Identification of miRNomes in human liver and hepatocellular 

carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular 
carcinoma. Cancer Cell 19, 232-243 (2011). 

 
27. Hoshida Y, et al. Integrative transcriptome analysis reveals common molecular 

subclasses of human hepatocellular carcinoma. Cancer Res 69, 7385-7392 
(2009). 

 
28. Kaposi-Novak P, Lee JS, Gomez-Quiroz L, Coulouarn C, Factor VM, 

Thorgeirsson SS. Met-regulated expression signature defines a subset of 
human hepatocellular carcinomas with poor prognosis and aggressive 
phenotype. J Clin Invest 116, 1582-1595 (2006). 

 
29. Boyault S, et al. Transcriptome classification of HCC is related to gene 

alterations and to new therapeutic targets. Hepatology 45, 42-52 (2007). 
 
30. Nault JC, et al. High frequency of telomerase reverse-transcriptase promoter 

somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat 
Commun 4, 2218 (2013). 

 
31. Rebouissou S, et al. Proliferation Markers Are Associated with MET 

Expression in Hepatocellular Carcinoma and Predict Tivantinib Sensitivity In 
Vitro. Clin Cancer Res 23, 4364-4375 (2017). 

 
32. Roos M, et al. A Small-Molecule Inhibitor of Lin28. ACS Chem Biol 11, 2773-

2781 (2016). 
 
33. Lin DC, et al. Genomic and Epigenomic Heterogeneity of Hepatocellular 

Carcinoma. Cancer Res 77, 2255-2265 (2017). 
 
34. Nejak-Bowen KN, Monga SP. Beta-catenin signaling, liver regeneration and 

hepatocellular cancer: sorting the good from the bad. Semin Cancer Biol 21, 
44-58 (2011). 

 
35. Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: 

dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 
15, 221-231 (2003). 

 
36. Kholodenko BN. Cell-signalling dynamics in time and space. Nat Rev Mol Cell 

Biol 7, 165-176 (2006). 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 15, 2018. ; https://doi.org/10.1101/347666doi: bioRxiv preprint 

https://doi.org/10.1101/347666


	 21	

37. Xiong W, Ferrell JE, Jr. A positive-feedback-based bistable 'memory module' 
that governs a cell fate decision. Nature 426, 460-465 (2003). 

 
38. Ahrends R, Ota A, Kovary KM, Kudo T, Park BO, Teruel MN. Controlling low 

rates of cell differentiation through noise and ultrahigh feedback. Science 344, 
1384-1389 (2014). 

 
39. Le SJ, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. 

Journal of Statistical Software 25, 1-18 (2008). 
 
40. Ricci MS, et al. Direct repression of FLIP expression by c-myc is a major 

determinant of TRAIL sensitivity. Mol Cell Biol 24, 8541-8555 (2004). 
 
41. Morin PJ, et al. Activation of beta-catenin-Tcf signaling in colon cancer by 

mutations in beta-catenin or APC. Science 275, 1787-1790 (1997). 
 
42. Sif S, Saurin AJ, Imbalzano AN, Kingston RE. Purification and characterization 

of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. 
Genes Dev 15, 603-618 (2001). 

 
 

 

Figure Legends 
 
Figure 1. Identification of a GRN involved in HCC. (a) Structure of the GRN (left), 

and RNA levels of GRN components in normal (non tumor) tissue (n=50) and HCC 

tumors (n=369) from the HCC cohort in TCGA (right). (b) PCA plots based on the 

expression of the GRN components, and (c) on selected CTNNB1 and Let-7b targets 

(listed in Supplementary Table 1) in normal and HCC samples show that the activity 

of the GRN is increased in HCC. Each dot represents the mean of 10 samples 

grouped in alphabetic order of the sample ID. (d) Tumor samples were ranked 

according to low or high GRN activity (see text), and expression of the GRN 

components differed significantly between low and high GRN activity samples. 

Highest GRN activity (top) correlated with highest expression of proliferation (middle), 

embryonic and oncogenic markers (bottom), and lowest levels of the differentiation 

marker miR-122 (bottom). (e) GRN activity negatively correlated with vital prognosis 

of patients. Kaplan-Meier curves showed that patients with high GRN activity (median 

time = 1372 days, 41 dead patients amongst 100) exhibited a lower survival 

probability than patients with low GRN activity (median time = 2116 days, 89 dead 

patients amongst 269) (Wilcoxson test, p = 0.008).  
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Figure 2. GRN activity correlates with HGF/MET pathway activation but not with 
telomerase expression. (a) Non-tumor samples (blue; n= 50) and HCC's (n=369) 

cluster separately in a PCA analysis based on the expression of 110 HGF/MET 

target genes (see Table 1 in Ref. 28). Within the HCC samples, those with high GRN 

activity (red; GRN activity defined as in Fig. 1d) were separate from those with low 

GRN activity (black). (b) Expression of GRN components in non tumor samples 

(blue, n=50) and in HCC with low (grey; n=269) or high HGF/MET target expression 

(red; n=100). 100 tumor samples with high HGF/MET signaling were selected by 

PCA analysis based on the expression levels 110 of HGF/MET target genes (see 

panel a and Supplementary Fig. 1e). (c, d) Clustering of normal (blue) versus HCC 

with low (black) and high GRN activity (red) in a PCA analysis based on (c) the 

expression of 16 predictor genes and (d) of 216 differentially expressed genes of the 

6-group HCC classification 29. Each dot in panels a, c and d represents the mean of 5 

samples grouped in alphabetic order of the sample ID. (e) Expression levels of GRN 

components in non tumor (blue, n=50) and tumor conditions with low (grey, n=269) or 

high TERT expression (red, n=100). (b, e) Data are means +/- SEM. *, p<0.05; **, 

p<0.01 and ***p<0.001. 

 

Figure 3. Calibration of the mathematical model on RNA expression levels in 
patient samples and human HCC cell lines. RNA levels of the GRN components 

are shown (a) in non tumor samples (n=50), (b) in HCC samples (n=369), and (c) in 

HCC cell lines (n=34). Data are means +/- SEM; patient data are from TCGA. The 

lower panels in a-c illustrate the expression of the GRN components in the three 

conditions as calculated using the mathematical model with the parameter and initial 

condition sets defined in Supplementary Tables 4 and 7. 
 

Figure 4. Calibration of the mathematical model on protein expression in 
human HCC cell lines. (a) Expression of MYC, LIN28B, TP53 and SOX9 protein 

following MYC overexpression in HepG2 cells. (b) Expression of CTNNB1, LIN28B 

and MYC protein following CTNNB1S33Y overexpression in HepG2 cells. mCTNNB1 

corresponds to endogenous mutant CTNNB1 resulting from inframe deletion of exon 

3. (c) Expression of LIN28B, MYC, CTNNB1 and SOX9 in the presence of Let-7b-5p 

mimic RNA in Huh7 cells. Data in bar graphs are means +/- SEM, n ≥ 3. Orange bars 
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correspond to protein levels calculated in the mathematical model with (a) 

overexpression of MYC (VSMYC increases from 0.002 to 0.05 for 0 < t < 72h), (b) 

overexpression of CTNNB1S33Y (for 0 < t < 48h VS1CTNNB1 increases from 0.0015 to 

0.04 while kACTNNB varies from 0.05 to 10 and kICTNNB from 10 to 0.1) and (c) 

overexpression of Let-7b (for 0 < t < 96h, VS1LET7 increases from 0.01 to 0.1). The 

right panels in a-c show the simulated temporal evolution, with the appropriate time 

scale, of the GRN proteins following MYC, CTNNB1S33Y, or Let-7b mimic transfection. 

See Supplementary Information for details and Supplementary Tables 4 and 7 for 

parameter values and initial conditions for the variables used in the model.  

 

Figure 5. Validation of the model and GRN dynamics in HCC. (a) Expression of 

stabilized CTNNB1 mutant (n=98) is more increased than wild-type CTNNB1 (n=270) 

in HCC as compared to normal tissue (n=50). The predicted levels of Let-7b and 

LIN28 following a simulation of increased expression and stabilization of CTNNB1 fit 

with the experimental observations. To simulate the stabilization of CTNNB1, the 

activation rate constant of CTNNB1 kACTNNB was raised from 1 (wild-type) to 10 

(mutant), and the inactivation rate constant kICTNNB was decreased from 1 (wild-type) 

to 0.1 (mutant); other parameter values and initial conditions are in Supplementary 

Tables 4 and 7. (b) Measured and simulated impact of MYC induction on LIN28B 

mRNA and Let-7b expression levels validates the model. MYC induction was 

modeled by increasing VSMYC from 0.002 to 6. Simulations were performed on a 

heterogeneous cell population of 200 cells with 30% of uniform random variations 

around the basal value of each parameter. (c) Simulating the absence (KILET7 = 21) or 

presence (KILET7 = 82) of LIN28 inhibition for 6 days (144h) predicts expression levels 

of Let-7b, and MYC, CTNNB1 and SOX9 which are close to the levels measured 

following treatment of Huh7 cells with 120 µM of LIN28 inhibitor N-Methyl-N-[3-(3-

methyl-1,2,4-triazolo[4,3-b]pyridazin-6-yl)phenyl]acetamide. (b, c) Results are means 

+/- SEM; n ≥ 3 *, p<0.05. (d) Modelling Let-7b levels as a function of CTNNB1 mRNA 

in normal conditions (left). Values in non tumor tissue (n=50; green dots) are 

superimposed on the model curve. Solid curves, stable steady states; dashed 

curves, unstable steady states. Modelling 30% random variations around the basal 

value of each parameter in 200 cells resulted in a distribution of Let-7b/CTNNB1 

values in the upper stable state (right) which recapitulated the heterogeneity 

measured in normal samples. (e) Modelling Let-7b/CTNNB1 mRNA values in HCC 
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conditions (left). Let-7b/CTNNB1 mRNA values in 369 HCC tumors (red dots) or 34 

cell lines (blue dots) are superimposed on the model curve: HCC patient tumors and 

cell lines are in distinct states. Random variation of parameters like in (d) 

recapitulated the heterogeneity measured in HCC patients and cell lines (right). 

 

Figure 6. Cancer-type specificity of GRN activity and validation of the model in 
colorectal cancer. (a) Tumor-promoting components of the GRN are induced in 

cholangiocarcinoma (CHOL), stomach and esophageal carcinoma (STES), and 

colorectal adenocarcinoma (COADREAD). Thyroid carcinoma (THCA) had a distinct 

gene expression profile. Data (mean +/- SEM) are from TCGA; the number of normal 

and tumor samples is 9 and 36 (CHOL), 50 and 600 (STES), 51 and 624 

(COADREAD), and 59 and 501 (THCA). *, p<0.05, **, p<0.01 and ***p<0.001. (b) 

RNA levels of Let-7b, Myc and Sox9 in experiment (black) and in the mathematical 

model (orange) in non tumor condition, after 6 months (4320 h) of Lin28b induction 

(iLIN28B; tumor = 1 and xLIN28 = 0.005; Supplementary Table 4), and after 6 

months of Lin28b induction followed by 2 months of partial Lin28b removal 

(remLIN28B; tumor = 1 and xLIN28 = 0.0015). The predicted expression levels are 

means +/- SEM of a heterogeneous cell population with 30% of uniform random 

variation around the basal value of each parameter. The modelled cell population 

consists of 200 cells with stabilizing CTNNB1 mutation (kACTNNB=10 and kICTNNB=0.1) 

and 200 cells without CTNNB1 mutation (kACTNNB=0.05 and kICTNNB=10). All 

parameter values used in each condition are in Supplementary Information. 
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