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Abstract: Recent efforts in the control community have focused on developing methods to
guarantee closed-loop stability of systems controlled by multilayer perceptron (MLP)-based
policies. However, little attention has been paid to the computational capacity demand of
such controllers due to frequent network evaluations. These requirements can be prohibitive in
practical control applications, particularly when implemented on microcontrollers with limited
computational resources. In this paper, we address this challenge by proposing a dynamic Event-
Triggering Mechanism (ETM) to reduce the computational burden. Specifically, we focus on
the stabilization of discrete-time Lur’e systems with input saturation. The proposed strategy
reduces the evaluation frequency of the layers of the neural controller while preserving stability
guarantees. The ETM is constructed using Linear Matrix Inequality (LMI)-based conditions,
which leverage the known properties of activation functions and employ Finsler’s lemma
to reduce conservativeness. Numerical results demonstrate the effectiveness of the proposed
method, achieving significant computational savings compared to state-of-the-art solutions.

Keywords: dynamic event-triggered control, neural network control, linear matrix inequalities,
quadratic constraints, Lur’e systems.

1. INTRODUCTION

Recent advancements in deep learning and deep reinforce-
ment learning highlighted the growing potential of Neural
Networks (NNs) as effective solutions in automatic control,
emerging as viable alternatives to traditional controllers.
As a consequence, substantial efforts have been directed
towards the derivation of training methods ensuring sta-
bility of the closed loop under the NN controller, e.g.
(Chow et al., 2018; Sun et al., 2021; Yang et al., 2024;
Zoboli et al., 2021). Particularly interesting are meth-
ods inspired by robust control theory, that use Integral
Quadratic Constraints to model uncertainties and acti-
vation functions and employ semidefinite programming
and LMI-based conditions to enforce and certify stability
(Junnarkar et al., 2024a; Wang and Manchester, 2022; Yin
et al., 2021). Most of these studies focus on guarantee-
ing closed-loop stability throughout the training process,
which is typically performed offline and is less constrained
by computational resource limitations. However, in ad-
dition to stability guarantees, computational efficiency is
crucial in real-world applications. In practical applications,
control laws are executed on microcontrollers with limited
computational capacity, and the highly nested nonlinear
structure of NNs can become increasingly prohibitive as
the network depth grows. Yet, much less attention has
been paid to such a problem.

† Research partly supported by ANR via grant OLYMPIA, number
ANR-23-CE48-0006.

Event-triggered control (ETC) has proven to be an ef-
fective paradigm to address this issue by updating con-
trol actions only when necessary (Girard, 2015; Tabuada,
2007). This reduces computational overhead, making ETC
highly suitable for resource-constrained environments. For
example, ETC can be used to define lower-priority control
tasks in multitask scenarios, where event-based signals
serve as interrupts, saving computational resources by
avoiding unnecessary nonlinear function evaluations and
freeing up processing time for other tasks (Dimarogonas
and Johansson, 2009). Within the context of NNs, ETC
has traditionally focused on state transmission during
learning or controller sampling, e.g., (Hu et al., 2016; Mu
et al., 2022). Approaches combining ETC and NN-based
control to reduce layers evaluations appeared in (de Souza
et al., 2023a,b), where ETMs are integrated into trained
neural networks to selectively determine which portions
of it must be evaluated to ensure stability. However, the
proposed methods become increasingly conservative as the
complexity of the closed-loop system grows, particularly
with the addition of more layers in the controllers.

In this paper, we build on these works and propose a
layer-wise dynamic ETM strategy that improves existing
approaches in three main directions. First, we show how
input saturated systems can be tackled by these family
of methods via a simple controller reformulation. Second,
we significantly reduce the conservatism of the proposed
solution by leveraging Finsler’s lemma to derive unstruc-
tured proxies for local sector conditions (Boyd et al., 1994;



Fig. 1. Feedback system

Meijer et al., 2024; Tarbouriech et al., 2011). Third, we
introduce a dynamic triggering threshold to further reduce
the total number of layers evaluations (Girard, 2015). We
also discuss possible optimization procedure to improve
performance of the overall scheme and numerically vali-
date the proposed methodology by comparing it with the
results in (de Souza et al., 2023a) and (Tarbouriech et al.,
2024). Our approach significantly reduces update rates and
expands the region-of-attraction (ROA) approximation.

Notation: N,Rn,Rn×m denote the set of natural non-
negative integers, the set of real vectors of dimension n
and the set of real matrices of dimension n × m, re-
spectively. In denotes the identity matrix of dimension
n × n. For any matrix A, A⊤ is its transpose. For any
square matrix A, we define the operator He {A} = A +
A⊤. diag(A1, A2) is a block-diagonal matrix with blocks
A1 and A2. col

(
a1, . . . , an

)
is the column vector of the

elements ai for all i = 1, . . . , n. For a partitioned ma-
trix, the symbol ⋆ stands for symmetric blocks. 1n =
col (1, . . . , 1) ∈ Nn×1. We identify with subscript i the ith

element of a vector or the ith row of a matrix. We identify
with superscript i the objects related to the ith layer of
the neural network.

2. PROBLEM FORMULATION

We consider a discrete-time nonlinear system of the form

x+ = Ax+Bsat(ū) + CΦ(Ex) +Dd (1)

where x ∈ Rnx is the state vector, ū ∈ Rnu is the input
vector, d ∈ Rnd is a constant reference (or disturbance)
signal, Φ : Rnq → Rnq is a decentralized, memory-less
nonlinearity and sat : Rnu → Rnu is the symmetric
component-wise saturation function

sati(ū) = sign(ūi)min(|ūi|, ui), i = 1, . . . , nu,

with ui the saturation limits for the ith element of the
input vector. The input ū is generated by a stabilizing
MLP-controller π, see Figure 1, which makes the point
x∗ Locally Exponentially Stable (LES). We assume the
nonlinearity Φ satisfies a local quadratic abstraction with
respect to x∗. Specifically, we assume the following.

Assumption 1. There exist element-wise positive vec-
tors µ, µ̄ > 0 ∈ Rnq and matrices S,Q,W ∈ Rnq×nq such
that [

y − y∗
Φ(y)− Φ(y∗)

]⊤ [
S Q
⋆ W

] [
y − y∗

Φ(y)− Φ(y∗))

]
≥ 0 (2)

for all y = Ex such that y ∈ S̄ with

S̄ =
{
y ∈ Rnq : −µ

i
≤ yi − yi∗ ≤ µ̄i, i = 1, . . . , nq

}
. (3)

The controller π is implemented as an MLP with l layers,
each containing nϕi neurons for i = 1, . . . , l. More specifi-
cally, the input ū is computed as

Fig. 2. Feedback system subject to ETM in the controller

ω0(k) = x(k),

νi(k) =W iωi−1(k) + bi, i = 1, . . . , l,

ωi(k) = ϕi(νi(k)),

ū(k) =W l+1ωl(k) + bl+1,

(4)

where νi(k) ∈ Rnϕi represents the input to the ith

activation function ϕi : Rnϕi → Rnϕi , and ωi(k) ∈
Rnϕi denote the forwarded quantities. The weights W i ∈
Rnϕi×nϕi−1 and biases bi ∈ Rnϕi define the affine trans-
formation of each layer. The application of the activation
function is element-wise and is denoted as ϕi(νi(k)) =
col(φ(νi1(k)), . . . , φ(ν

i
nϕi

(k))), where φ : R → R is a scalar

activation function that is assumed to be symmetric and
identical for every neuron. Similarly to (de Souza et al.,
2023a; Yin et al., 2021), the controller policy can be ex-
pressed in a condensed form by introducing the augmented
vectors

ν̄ =

ν
1

...
νl

 , ω̄ =

ω
1

...
ωl

 , ϕ̄ =

ϕ
1(ν1)
...

ϕl(νl)

 . (5)

By defining nϕ̄ =
∑l

i=1 nϕ̄i and ϕ̄ : Rnϕ̄ → Rnϕ̄ represent-

ing the combined nonlinearity, we have ω̄ = ϕ̄(ν̄). Finally,
the equations in (4) can be reformulated as[

ū(k)
ν̄(k)

]
= N

[
x(k)
ω̄(k)
1

]
,

where

N =


0 0 . . . 0 W l+1 bl+1

W 1 0 . . . 0 0 b1

0 W 2 . . . 0 0 b2

...
...

. . .
...

...
...

0 0 . . . W l 0 bl

 . (6)

The above formulation can be extended to include the
input saturation function as a virtual additional layer of
the controller π via the change of input u = sat(ū) =
ϕl+1(νl+1) = ωl+1. Therefore, the system dynamics are
rewritten as

x+ = Ax+Bu+ CΦ(Ex) +Dd, (7)

where[
u(k)
ν(k)

]
= N

[
x(k)
ω(k)
1

]
, ν =

[
ν̄
ū

]
, ω =

[
ω̄

ωl+1

]
, ϕ =

[
ϕ̄

sat(ū)

]
.

with nϕ = nϕ̄ + nu = nϕ̄ + nϕl+1 and



N =


0 0 . . . 0 Inu 0
W 1 0 . . . 0 0 b1

0 W 2 . . . 0 0 b2

...
...

. . .
...

...
...

0 0 . . . W l+1 0 bl+1

 =

[
Nux Nuω Nub

Nνx Nνω Nνb

]
.

(8)

Given system (7), our objective is to design an ETM
strategy exploiting properties of the activation functions
to decide if a layer’s output has to be computed. How-
ever, this requires knowledge of the equilibrium point
(x∗, u∗, ν∗, ω∗). By following steps similar to (Tarbouriech
et al., 2024, Lemma 2), the values of u∗, ν∗, ω∗ can be
analytically derived for any given x∗. More specifically,
let us introduce the following matrices

R = (Inϕ
−Nνω)

−1,

Rω = Nux +NuωRNνx,

Rb = NuωRNνb +Nub.

(9)

Given the lower triangular structure of Nνω, the matrix
Inϕ

−Nνω is always invertible and R is well-defined. Then,
u∗, ν∗, ω∗ are defined as functions of x∗ by the following
relations

ω∗ = ν∗,

ν∗ = RNνxx∗ +RNνb,

u∗ = Rωx∗ +Rb.

(10)

However, differently from (Tarbouriech et al., 2024), given
a constant disturbance d∗ the equilibrium system’s state
is the solution of an implicit equation due to the presence
of Φ. Therefore, we now propose a numerical procedure to
compute x∗. Specifically, an approximation can be found
by solving the following minimization problem

x∗ = min
x

[(A+BRω − Inx)x+ CΦ(Ex) +Dd∗ +BRb] .

(11)

To design the triggering function, we aim to exploit known
properties of the activation functions. In what follows,
we assume all activation functions have been selected as
saturations (with possibly different limits). This choice
allows treating the controller and input saturation nonlin-
earities at once in the stability analysis, while exploiting
known and general local sector conditions. We remark
that symmetric saturations can be interpreted as piecewise
linear approximations of the common tanh activation func-
tions. However, they satisfy well-established local sector
conditions(Tarbouriech et al., 2011). We now recall (Tar-
bouriech et al., 2024, Lemma 3) which provides local sector
conditions for NN layers with saturations as activation
functions.

Lemma 1. For i ∈ {1, . . . , l + 1}, let v̄i be the vector
of saturation levels of the ith layer and consider a matrix
Gi ∈ Rnϕi×nx . If x belongs to the set

Si =
{
x ∈ Rnx : −v̄i − νi∗ ≤ Gi(x− x∗) ≤ v̄i − νi∗

}
,
(12)

then the following quadratic constraint holds for any diag-
onal positive definite matrix T i ∈ Rnϕi×nϕi[

νi − ωi
]⊤
T i

[
Gi(x− x∗)− (ωi − ωi

∗)
]
≤ 0. (13)

In the scenario of (7), we have v̄l+1 = u. Moreover, the set
where all local sector conditions are satisfied is denoted as
S = ∩l+1

i=1Si.

3. MAIN RESULTS

To reduce the computational burden imposed by the evalu-
ation of nonlinear activation functions at each timestep, we
propose an ETM strategy (Postoyan et al., 2015; Tabuada,
2007). As shown by (7), the input-saturated closed-loop
dynamics can be interpreted as non-saturated ones under
an (l + 1)-layers MLP controller. Therefore, inspired by
(Tarbouriech et al., 2024), we assign a triggering mecha-
nism to each MLP layer and the input saturation func-
tion, see Figure 2. Similarly to (Tarbouriech et al., 2024),
we design the triggering law by exploiting local sector
conditions satisfied by such nonlinearities. However, we
introduce three main improvements. First, we circumvent
constraints imposed by the highly structured form of (13)
through Finsler’s lemma, e.g., (Boyd et al., 1994; Meijer
et al., 2024; Tarbouriech et al., 2011). This greatly im-
proves the flexibility of the ETM design conditions and
enhances the mechanism’s performance. Second, we intro-
duce a dynamic triggering threshold (Girard, 2015). This
further increases inter-event time and reduces the total
amount of events. Third, we treat input-saturated systems
by including such input constraints as an additional layer
of the MLP.

Before presenting the ETM scheme, we introduce some
useful notation. We denote by ω̂i the last forwarded
output of the ith layer and ωi the current output after
applying the activation function. Note that due to the
triggering mechanism, ω̂i = ωi only at events. Given (4),
the triggered controller now reads

ω̂0(k) = x(k),

νi(k) =W iω̂i−1(k) + bi, i = 1, . . . , l,

ω̂i(k) = ϕi(νi(k)),

u(k) = sat(ū(k)) = sat(W l+1ω̂l(k) + bl+1).

(14)

When studying saturation functions, it is useful to refer to
their dead-zone reformulation (Tarbouriech et al., 2011).
The dead-zone vectors are defined as ψi = νi − ωi and

ψ̂i = νi− ω̂i. We also denote incremental variables relative
to their equilibrium with a tilde notation, e.g., x̃ = x −
x∗, Φ̃ = Φ(Ex)−Φ(Ex∗). Given (10) and since ψ∗ = ν∗ −
ω∗ = 0, we have ψ̃ = ψ. Therefore, we have

ũ = Rωx̃−NuωRψ̃

ν̃ = RNνxx̃+ (Inϕ
−R)ψ̃.

(15)

We define ξi = col(x̃, ψ̃i, ν̃i) and ξ̂i = col(x̃,
˜̂
ψi, ν̃i) ∈ Rnξi

with nξi = nx + 2nϕi . We also write the extended vectors

ξ = col(x̃, ψ̃, ν̃), ξ̂ = col(x̃,
˜̂
ψ, ν̃) ∈ Rnξ , where nξ = nx +

2nϕ. Finally, we define Zi = T iGi ∈ Rnϕi×nx for each
i = 1, . . . , l + 1. Then, the local sector condition in (13)
can be rewritten without loss of generality as

(ψ̃i)⊤T i
[
Gix̃+ ψ̃i − ν̃i

]
= ξi

⊤

 0 0 0
Zi T i −T i

0 0 0

 ξi =
= ξi

⊤
Ωiξi ≤ 0,

(16)

for all ξ ∈ Sξ with

Sξ = {ξ ∈ Rnξ : ξ = col(x̃, ψ̃, ν̃), x ∈ S}.
We now introduce the proposed ETM strategy.



3.1 Dynamic event-triggering mechanism

The proposed ETM operates by triggering an event to up-
date the current layer and propagate its value throughout
the network. By introducing the triggered variables ω̂i as
in (14) for i = 1, . . . , l + 1, the dynamic ETM strategy is
defined as

ω̂i(k) =

{
ϕi(νi(k)) if Ψi(ξ̂(k)) > ρi(η(k)),

ω̂i(k − 1) otherwise,
(17)

where Ψi : Rnξ → R is the triggering function for layer i
and ρi : Rl+1 → R≥0 is the dynamic threshold function

driven by the dynamic ETM state η ∈ Rl+1
≥0 . Note that

with the triggering strategy (17) events are independent
and can be asynchronous. As such, some portions of
the network can be updated without propagating their
renewed output to the end of the network, whose output
value will be recomputed only once a corresponding event
is generated. In other words, each layer’s ETM may store
values corresponding to different timesteps with respect to
other layers’ ETM.

In what follows, we consider a linear, decentralized dy-
namic threshold function ρi(η) = ρiηi with ρi > 0 for
all i = 1, . . . , l + 1. By defining the aggregate vectors

η = col(η1, . . . , ηl+1), Ψ = col(Ψ1(ξ̂), . . . ,Ψl+1(ξ̂)) and
the matrix R = diag(ρ1, . . . , ρl+1), the component-wise
aggregate triggering condition reads

Ψ > Rη.

We select the ETM state dynamics

η+ = Rη −Ψ. (18)

The design of the triggering function is inspired by (Tar-
bouriech et al., 2024). There, the authors exploit local
sector conditions to discriminate whether an event should
be triggered. In other words, adapting their static ETM

scenario, Ψi(ξ̂i) = (ξ̂i)⊤Ωiξ̂i with Ωi as in (16) and ρi = 0
for all i = 1, . . . , l + 1. By letting Πi ∈ Rnξi×nξ be a pro-
jection matrix such that ξi = Πiξ for i = 1, . . . , l + 1, the
resulting component-wise aggregate triggering condition is
ΨΩ > 0, where

ΨΩ =
(
Il+1 ⊗ξ̂

)⊤
Ω
(
1l+1 ⊗ξ̂

)
,

Ω = diag(Π1⊤Ω1Π1, . . . ,Πl+1⊤Ωl+1Πl+1).
(19)

While interesting, such a choice is limited by the highly
structured form of Ωi, resulting in more conservative de-
signs the more layers are added to the network. Therefore,
we propose a triggering function similarly related to the
activation functions nonlinearity properties, yet free from
any structural constraint. We now present a technical
lemma allowing the definition of an unstructured trigger-
ing function by means of Finsler’s lemma.

Lemma 2. If there exist matrices Xi ∈Rnξi×nξi , N i
1 ∈

Rnx×nϕ , N i
2, N

i
3 ∈ Rnϕ×nϕ , Zi ∈ Rnϕi×nx and diagonal

matrices T i ≻ 0 ∈ Rnϕi×nϕi such that

Πi⊤He
{
Xi − Ωi

}
Πi

+He


N i

1

N i
2

N i
3

[RNνx Inϕ
−R − Inϕ

] ⪯ 0,

(20)

for each i = 1, . . . , l + 1 with Ωi as in (16), then

ξi
⊤
Xiξi ≤ ξi

⊤
Ωiξi ∀ξi ∈ Rnξi , ∀i = 1, . . . , l + 1. (21)

Proof: Note that, by the second equality in (15),[
RNνx Inϕ

−R − Inϕ

]
ξ = 0

Therefore, if (20) holds for all i = 1, . . . , l + 1, pre- and
post-multiplying it by ξ and its transpose, we obtain

ξ⊤Πi⊤He
{
Xi − Ωi

}
Πiξ ≤ 0, i = 1, . . . , l + 1.

Since ξi = Πiξ, we have

ξi
⊤
(Xi +Xi⊤)ξi ≤ ξi

⊤
(Ωi +Ωi⊤)ξi

2ξi
⊤
Xiξi ≤ 2ξi

⊤
Ωiξi

ξi
⊤
Xiξi ≤ ξi

⊤
Ωiξi, i = 1, . . . , l + 1.

thus concluding the proof. □
Lemma 2 has two interesting consequences. First, we can
select the unstructured matrices Xi as a proxy for the

sector conditions defined by Ωi. Indeed, if ξi
⊤
Ωiξi ≤ 0

for all ξ ∈ Sξ, then (21) ensures ξi
⊤
Xiξi ≤ 0 inside the

same set. Second, in view of (17), inequality (21) highlights

the triggering function Ψi
X(ξ̂) = (ξ̂i)

⊤
Xiξ̂i is less prone

to event generation with respect to Ψi
Ω(ξ̂) = (ξ̂i)

⊤
Ωiξ̂i.

Motivated by these advantages, we propose the ETM
component-wise aggregate triggering condition

ΨX > Rη,

ΨX =
(
Il+1 ⊗ξ̂

)⊤
X

(
1l+1 ⊗ξ̂

)
,

X = diag(Π1⊤X1Π1, . . . ,Πl+1⊤X l+1Πl+1),

(22)

with Xi derived from Lemma 2, thus obtaining the ETM
state dynamics

η+ = Rη −ΨX. (23)

Remark 1. For all non-negative initial conditions η(0),
the ETM variable η can be proven to remain non-negative.
Indeed, if an event is not generated, for a non-negative
initial condition η inequality (22) implies

η+ = Rη −ΨX ≥ 0.

Similarly, at events we have ξ̂ = ξ and therefore (21) yields

η+ = Rη −ΨX ≥ Rη − ΨΩ︸︷︷︸
≤0

≥ 0.

By induction, if η(0) ≥ 0, then η(k) ≥ 0 for all k ≥ 0.

3.2 Stability analysis

In this section, we analyze closed-loop stability of the pro-
posed ETM scheme and provide LMI-based conditions for
the ETM matrices co-design. The solution to the proposed
LMIs provides the matrices X and R guaranteeing local
stability of the desired equilibrium, along with an estimate
of its Region of Attraction (ROA).

To this aim, note that by the definition of the incremental
variables x̃, ϕ̃, Φ̃ the error dynamics read

x̃+ = Āx̃+ B̄ψ̃ + CΦ̃ =
[
Ā B̄ C

]
ζ,

Ā = A+BRω,

B̄ = −BNuωR.

(24)



We introduce the following projection matrices

Πν =

 Inx 0 0
0 Inϕ

0
RNνx Inϕ

−R 0,

 ∈ Rnξ×(nx+nϕ+nq),

Πs =

[
E 0 0
0 0 Inq

]
∈ R(nx+nq)×(nx+nϕ+nq),

(25)

satisfying ξ = Πνζ and col(Ex̃, Φ̃) = Πsζ.

We are now ready to state the main result of the paper.

Theorem 1. Consider system (7) under the controller
πETM in (14). If there exist matrices P = P⊤ ≻ 0 ∈
Rnx×nx , R ≻ 0, Q ∈ Rnx×nq ,W ∈ Rnq×nq , Zi ∈ Rnϕ×nx

Xi, N i
1, N

i
2, N

i
3, diagonal matrices T i ≻ 0 and vectors αi >

0 ∈ Rnϕi for i = 1, . . . , l+1, such that the matrix inequali-
ties (26), (20) and (2) hold for each i = 1, . . . , l+1 with Ωi

as in (16), X as in (22), vij = min(|− v̄ij−νi∗,j |, |v̄ij−νi∗,j |),
µi = min(|−µ

i
−y∗i |, |µ̄i−y∗i |), then (x∗,0) is a LES equi-

librium point with ROA including the ellipsoid E(P, x∗) ={
x ∈ Rnx ,η ∈ Rl+1 : x̃⊤Px̃+He

{
1⊤
l+1 η

}
≤ 1

}
.

Proof: We start by showing the implications of (26b),
(26c) and (20). Inequality[

αi
j(v

i
j)

−2 − T i
j,j

]
(vij)

2
[
αi
j(v

i
j)

−2 − T i
j,j

]
≥ 0

implies (T i
j,j)

2(vij)
2 ≥ 2αi

jT
i
j,j − αi

j
2
(vij)

−2 for all αi
j .

Therefore, the satisfaction of (26b) yields[
P Zi

j

⊤

⋆ (T i
j,j)

2(vij)
2

]
⪰

[
P Zi

j

⊤

⋆ 2αi
jT

i
j,j − αi

j

2
(vij)

−2

]
⪰ 0.

Consequently, by the definition of Zi qwe haveP 0 (T i
j,jG

i
j)

⊤

0 2 Il+1 0
⋆ 0 (T i

j,j)
2(vij)

2

 ⪰ 0.

If η is non-negative,
√
η is real and by pre- and post-

multiplying the above inequality by col(x̃,
√
η, 1) and its

transpose, a Schur’s complement yields[
x̃√
η

]⊤ [
P 0
0 2 Il+1

] [
x̃√
η

]
⪰ x̃⊤

(Gi
j)

⊤(Gi
j)

(vij)
2

x̃.

This ensures E(P, x∗) ⊆ S × Rl+1 with S defined as in
Lemma 1. Similarly, (26c) impliesP 0 E⊤

i
0 2 Il+1 0

Ei 0 µ̂i
2

 ⪰ 0.

Hence, by expressing ỹi = Eix̃ and pre- and post-
multiplying the above inequality by col(x̃,

√
η, 1) we have[

x̃√
η

]⊤ [
P 0
0 2 Il+1

] [
x̃√
η

]
⪰ x̃⊤

E⊤
i Ei

µ̂i
2 x̃ =

y⊤i yi

µ̂i
2 ⪰ 0.

Once again, this ensures E(P, x∗) ⊆ S̄ × Rl+1 with S̄ de-
fined in Assumption 1. Thus (26b), (26c) imply E(P, x∗) ⊆{
S ∩ S̄

}
×Rl+1. Finally, if (20) holds for each i = 1, . . . , l+

1, Lemma 2 guarantees that η > 0 for all (x,η) ∈ S, as
discussed in Remark 1. Therefore, η ≥ 0 for all (x,η) ∈
E(P, x∗).
We now move to the stability analysis. As shown above,
E(P, x∗) ⊆

{
S ∩ S̄

}
× Rl+1

≥0 . Therefore, for (x,η) ∈

E(P, x∗), consider the following candidate Lyapunov func-
tion V = x̃⊤Px̃+He

{
1⊤
l+1η

}
. Note that, by the definition

of Πs in (25), we have x̃

ψ̃

Φ̃(Ex)

⊤

Π⊤
s

[
S Q
⋆ W

]
Πs

 x̃

ψ̃

Φ̃(Ex)

 ≥ 0, (27)

for all y = Ex ∈ S̄. Moreover, by the definition of Πν in
(25) and the Kronecker’s product properties, the following
equalities hold

ζ⊤ (1l+1 ⊗Πν)
⊤
He {X} (1l+1 ⊗Πν) ζ

=(1l+1 ⊗Πνζ)
⊤
He {X} (1l+1 ⊗Πνζ)

= (1l+1 ⊗ξ)⊤ He {X} (1l+1 ⊗ξ)
=1⊤

l+1 (Il+1 ⊗ξ)⊤ He {X} (1l+1 ⊗ξ) = 1⊤
l+1 ΨX.

(28)

Therefore, if (26a) holds, its pre- and post- multiplication
by ζ and its transpose with ζ as in (24), combined with
(27) and (28) yieldsx̃ψ̃

Φ̃

⊤ Ā⊤

B̄⊤

C⊤

P [
Ā B̄ C

]
−

[
P 0 0
0 0 0
0 0 0

]x̃ψ̃
Φ̃

+

+He
{
1⊤
l+1 [(R− Il+1)η −ΨX]

}
< 0.

By expanding the products, we obtain

(x̃+)⊤Px̃+ − x̃⊤Px̃+He
{
1⊤
l+1(η

+ − η)
}
= V + − V < 0.

Therefore, E(P, x∗) is forward invariant, and all trajec-
tories starting inside such a set converge to (x∗,0), thus
concluding the proof. □

3.3 Optimizing the ETM parameters

The LMI conditions in Theorem 1 leave room for per-
formance optimization of the proposed ETM scheme. For
instance, different choices of X and R satisfying (20) and
(26) provide different triggering frequencies due to (22).
Moreover, the choice of R affects also the convergence rate
of the extended closed-loop system, see (Girard, 2015).
Hence, we now propose a corollary result aimed at im-
proving performance of the triggered closed loop.

Corollary 1. Consider system (7) under the controller
πETM in (14). If there exist matrices P = P⊤ ≻ 0 ∈
Rnx×nx , R ≻ 0, Q ∈ Rnx×nq ,W ∈ Rnq×nq , Zi ∈ Rnϕ×nx

Xi, N i
1, N

i
2, N

i
3, diagonal matrices T i ≻ 0, vectors αi >

0 ∈ Rnϕi for i = 1, . . . , l + 1, a diagonal matrix Σ ≻ 0,
positive scalars βi for each i = 1, . . . , l + 1 and γ ∈ [0, 1)
such that (2) holds and solution to

min trP + trΣ +

l+1∑
i=1

βi

s.t. (26),

R ⪯ γ Il+1

Ξ + Σ ⪰ 0,

(21), i = 1, . . . , l + 1,[
−βi Inξi

Xi

Xi⊤ − Inξi

]
⪯ 0, i = 1, . . . , l + 1,

(29)

S with Ωi as in (16), X as in (22), vij = min(| − v̄ij −
νi∗,j |, |v̄ij − νi∗,j |), µi = min(| − µ

i
− y∗i |, |µ̄i − y∗i |), then



Ξ =


Ā⊤

B̄⊤

C⊤

P [
Ā B̄ C

]
−

[
P 0 0
0 0 0
0 0 0

]
− (1l+1 ⊗Πν)

⊤He {X} (1l+1 ⊗Πν) + Π⊤
s

[
S Q
⋆ W

]
Πs 0

0 2(R− Il+1)

 ≺ 0, (26a)

[
P Zi

j

⊤

⋆ 2αi
jT

i
j,j − αi

j

2
(vij)

−2

]
⪰ 0, ∀i ∈ {1, . . . , l + 1} , j ∈

{
1, . . . , nϕi

}
, (26b)[

P Ei
⊤

⋆ µi
2

]
⪰ 0, ∀i ∈ {1, . . . , nq} . (26c)

Setup λl1 λl2 λl3 λu Ltot V(E(P, x∗))

Cs
Ω 94.57 54.29 45.43 29.14 64.39 80.28

Cd
Ω 86.57 32.86 32.57 27.71 50.43 65.78

Cs
X 45.43 33.43 33.43 34.57 37.40 81.33

Cd
X 43.43 32.86 32.29 25.43 36.08 81.33

Cs
|X| 35.71 35.71 35.71 36.57 35.72 80.89

Cd
|X| 34.29 33.71 32.86 26.29 33.54 80.89

Table 1. Comparison of update rates and volume of ROA approximation. Results are drawn out
by the mean of 100 simulations with the same initial conditions among configurations

.

(x∗,0) is a LES equilibrium point and E(P, x∗) is an inner
approximation of its ROA.

The additional constraints in Corollary 1 serve the follow-
ing purposes:

• Minimization of the trace of P maximizes the volume
of the ellipsoid E(P, x∗), thereby increasing the ROA
(Durieu et al., 1996).

• Minimization of the trace of Σ pushes (26a) towards
infeasibility, thus reducing the decay rate of the Lya-
punov function. This choice encourages event sparsi-
fication, as frequent updates are not needed to steer
trajectories to the equilibrium sufficiently fast.

• The introduction of γ is used as an upper bound to
avoid the undesired side-effect of the ETM dynam-
ics setting the overall system decay rate. In other
words, the combination of γ and Σ ensures the ETM
dynamics are sufficiently fast not to dominate the
system decay rate, yet sufficiently slow to reduce the
generation of events in view of (22).

• Applying the Schur complement to the top-left block
of the last condition in (29), we obtain

Xi⊤Xi ⪯ βi Inξi
, i = 1, . . . , l + 1

Therefore, minimization of βi minimizes the norm of
Xi, thus reducing the number of events given (22).

It is important to discuss the vectors αi in (26b). The
elements of each αi appear as bilinear terms in (26), and
therefore, they must be fixed to ensure convex conditions.
However, selecting these vectors presents a challenge, as
they significantly influence the conservatism of the solution
and are computationally expensive to determine through
parametric search, given the high number of parameters
involved. In our implementation, we fix αi = α1nϕi for all

i = {1, . . . , l + 1}, with α a positive scalar. This simplifies
the problem at the cost of increased conservatism. This
approach reduces the problem to a generalized eigenvalue
problem, which can be efficiently solved using search
algorithms such as bisection or the golden ratio search.

The latter offers minor improvements over bisection while
enhancing computational efficiency.

4. SIMULATIONS

We consider the problem of stabilization of a sampled,
input-saturated inverted pendulum system with mass
m = 0.15kg, length l = 0.5m, damping coefficient µ =
0.05Nms/rad, gravitational acceleration g = 9.81m/s2.
To robustly compensate for the constant disturbance d,
an integrator is added to the system’s dynamics (Zoboli
et al., 2023). A locally stabilizing NN controller can be
obtained using techniques such as (Yin et al., 2021). The
discrete-time (DT) model of the system is given in the
form of (7) as

x =

θθ̇
z

 A =

 1 dt 0
g

l
dt 1− µ

ml2
dt 0

1 0 1

 B =

 0
τ̄

ml2
dt

0


C =

 0
g

l
dt

0

 D =

[
0
0
−1

]
E = [1 0 0]

(30)
Note that such a choice for A,D imposes d to be a reference
for θ, namely, θ∗ = d. The maximum input torque is
τ̄ = 5Nm, the sampling time is dt = 0.02s and the
nonlinearity is Φ(Ex) = sin(Ex) − Ex. This nonlinearity
satisfies the quadratic abstractions[

y
sin(y)− y

]⊤ [
0 −1
−1 −2

] [
y

sin(y)− y

]
> 0, ∀y ∈ [−π, π] ,

see, e.g. (Junnarkar et al., 2024b). This matches (3) with
y = Ex and y∗ = 0. Therefore, by selecting the origin
as the reference for θ as defined by (30), the previous
conditions hold globally due to the periodicity of the sin
function. By selecting nq = 1, S = 0, Q = −1,W = −2,
we avoid adding condition (26c) in the LMI problem
formulation. Given the inclusion of the maximum torque
τ̄ in B, the saturation level u is set to 1. Similarly, all



activation functions’ saturation level are also set to 1. This
is consistent with common deep reinforcement learning
frameworks. The controller π is structured as an MLP with
l = 3 layers of sizes nϕ1 = nϕ2 = nϕ3 = 32. By imposing
all αi = 0.053 · 1 and γ = 0.86 we compare 6 significant
ETM configurations:

• Cs
Ω: Triggering conditions of (19) adapted to include

saturation with static ETM minimizing trP ;
• Cd

Ω: Triggering conditions of (19) adapted to include
saturation with dynamic ETM minimizing trP+trΣ;

• Cs
X : Our proposed triggering conditions with static

ETM minimizing trP + trΣ;
• Cd

X : Our proposed triggering conditions with dynamic
ETM minimizing trP + trΣ;

• Cs
|X|: Our proposed triggering conditions with static

ETM minimizing trP + trΣ +
∑l+1

i=1 β
i;

• Cd
|X|: Our proposed triggering conditions with dy-

namic ETM minimizing trP + trΣ +
∑l+1

i=1 β
i.

The results of such comparison are highlighted in Table
1. The data is obtained by averaging 100 simulations
starting from different initial conditions (identical among
configurations) such that (x0,η0) ∈ E(PCd

Ω
, x∗), i.e., valid

also for the more conservative result. The simulations are
run for nsteps = 350 to ensure that all configurations
reach the arbitrarily small Lyapunov function threshold
of 10−15, which occurs within approximately 300 steps for
each case. This uniform stopping criterion accommodates
all configurations, which exhibit comparable decay rates
The update rates of the layers are denoted by λli , where
λu = λl4 , representing the percentage of total steps the
ith layer has been updated. Ltot indicates the overall
percentage of triggered activation functions across the
entire controller throughout the simulation. This metric
directly reflects the computational savings achieved by the
ETM. These values are calculated as follows:

λli =
neventsi

nsteps
· 100, Ltot =

∑l+1
i=1 λli · nϕi

nϕ
,

where neventsi represents the number of events generated
for layer i . The volume of the ellipsoid E(P, x∗) is a
direct indication of the conservatism of the solution and is
computed as

V(E(P, x∗)) =
4

3

π√
detP

.

Compared to Cs
Ω (approximately corresponding to the so-

lution in (Tarbouriech et al., 2024)), Table 1 highlights
that the controller’s update rate decreases significantly
with each proposed improvements. Similarly, the proposed
methods show a more uniform event pattern across layers.
Refining triggering conditions using Lemma 2, especially
in the dynamic case, further reduces the update rate while
addressing the conservatism of Cd

Ω. Comparing Cs
X , Cd

X with
Cs
|X|, C

d
|X| highlights a trade-off between computational ef-

ficiency and the ROA approximation size. The final update
rates are reduced by up to 70% compared to a standard pe-
riodic controller, significantly lowering the computational
load and enabling implementation on resource-constrained
systems.

Figures 3,-6 depict in more detail a trajectory under Cd
|X|

with
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[ −10.67◦

−2.04 rad/s
0.0

]
; η0 = 0.001 · 1; d = −1.13◦.

Even if a non-zero reference d does not ensure the local
quadratic abstraction (3) holds globally, the guaranteed
exponential stability under the triggering scheme ensures
robustness (and therefore convergence) of the closed loop
thanks to the integrator dynamics (Zoboli et al., 2023).

5. CONCLUSIONS AND FUTURE WORKS

In this work, we presented a dynamic ETM scheme to
reduce the computational burden of neural network layers
evaluations. We focused on input-saturated partially linear
systems controlled by stabilizing Multi-Layer Perceptron
networks with saturation activation functions. By using
Finsler’s lemma and dynamic triggering thresholds, we
proposed multiple improvements of existing methods ex-
ploiting linear matrix inequalities. We experimentally val-
idated our approaches, that showed reduced conservatism
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with respect to existing solutions. Future work will focus
on refining the proposed conditions, in the attempt of ob-
taining a completely convex methodology. Additionally, we
aim to explore the inclusion of nonlinear ETM dynamics,
inspired by (Alessandri and Zaccarian, 2018).
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