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Abstract

This study focuses on exhaustive global optimization algorithms over a simplicial feasible
set with simplicial partition sets. Bounds on the objective function value and its partial
derivative are based on interval automatic differentiation over the interval hull of a simplex.
A monotonicity test may be used to decide to either reject a simplicial partition set or to reduce
its simplicial dimension to a relative border (at the boundary of the feasible set) facet (or face)
by removing one (or more) vertices. A monotonicity test is more complicated for a simplicial
sub-set than for a box, because its orientation does not coincide with the components of the
gradient. However, one can focus on directional derivatives (DD). In a previous study, we
focused on either basic directions, such as centroid to vertex or vertex to vertex directions,
or finding the best directional derivative by solving an LP or MIP. The research question of
this paper refers to using local search (LS) based sampling of directions from vertex to facet.
Results show that most of the monotonic DD found by LP are also found by LS, but with
much less computational cost. Notice that finding a monotone direction does not require to
find the direction in which a derivative bound is the steepest.
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1 Introduction

Global optimization branch and bound methods aim at finding the set of global minimum
points with a given guarantee. Specific methods are based on interval arithmetic [7]. Such
methods guarantee to reach a so-called rigorous solution for problems that are typically
limited to less than n = 10 decision variables. All kinds of tools like monotonicity tests,
constraint propagation, various lower bounds etc. may speed up the convergence. As the
methods are based on box shaped partition sets, they do not directly fit to a simplicial feasible
set.

Practical global optimization problems with a simplicial set as feasible region are among
others blending and portfolio optimization problems. Optimization over a simplex is useful
for many modern applications in machine learning, signal processing, control and game
theory, see references in [12]. We specifically investigated the design of simplicial branch
and bound for low dimensional mixture design problems to reach a guaranteed solution,
[3]. For an overview of simplicial branch and bound we refer to the book [14]. One of the
questions not touched in the described simplicial methods is the extension of the so-called
monotonicity test of interval branch and bound methods to simplicial solution sets.

The use of a monotonicity test in global optimization branch and bound over a simplex has
been addressed recently [2, 6, 8]. One of the main goals is to reject a simplicial partition set or
toreduce itto a so-called border facet by finding a monotonic directional derivative (DD) from
the vertex opposite to the facet towards the facet. In previous studies, naive directions, such
as from vertex to the centroid of the simplex or other vertices, were used with good results
[5]. Additionally, linear programming (LP) models and mixed-integer linear programming
(MILP) models were formulated, which find the optimal (the steepest) DD bound in most
of the cases [2]. However, it is time consuming to solve several LP-s or even just one MIP
every time a monotonic DD is sought.

Our research question is whether a local search (LS) algorithm to find a monotonic DD over
a simplex from the information provided by the gradient enclosure over the interval hull of the
simplex may do the job more efficiently. The LS algorithm has to be computationally cheap
with a stopping criterion that keeps track of convergence in order to stop if the monotonic
DD will not be reached in a few steps. Moreover, we provide a LS algorithm that looks for
a monotonic DD, regardless of its sign.

The rest of the paper is organized as follows. Notation is introduced in Sect.2. Section 3
shows mathematical properties on monotonicity over simplices. Section4 describes the eval-
uated DD with a direction based on the centroid, the vertices, LP and LS for a given facet.
Section 5 shows numerical results for a practical simplicial branch and bound algorithm over
a set of test instances, and Sect. 6 summarizes our findings.

2 Notation

We consider the minimization of a continuously differentiable function f : R* — R, over a
feasible set A, which is a p—simplex, i.e. A := conv(WV) is defined by a set of p + 1 affine
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independent vectors that serve as vertices
W= {vo,...,vp} CR", p <n. 1)
The idea is to find or enclose all global minimum points of
min f(x),x € A. 2)

The consideration of n—dimensional functions over p < n lower dimensional simplicial
feasible area appears for instance in blending problems [3]. Our context is that of a branch
and bound algorithm which encloses all minimum points of f on A. The used partition sets
are m—simplices S, where m < p, i.e. their dimension can be lower than that of the feasible
set, in contrast to the algorithms described in [14]. This means S := conv(}) with V a set of
m + 1 = |V| vertices. The branch and bound algorithm works with a set A of partition sets,
which as a whole include all global minimum points.

Although we usually limit our context to the use of longest edge bisection, where the
longest edge (v, w) of a partition set S is bisected using mid-point x := “ng, we pose
the monotonicity question in a larger context where any partition method may be used, as
described in [9].

Specifically, we focus on dimension reduction due to monotonicity considerations, where
aset V of vertices of m—simplex S is reduced to V' \ {v} and S is replaced by one (or more)
of its facets F := conv(V \ {v}) for some v € V. Notice that F is an (m — 1)-simplex. It
may be clear that for m = 0, the 0—simplex S = conv({v}) is an individual point and does
not have faces. Its dimension cannot be reduced.

The centroid of m—simplex S = conv({vg, vi, ..., Uy}) is given by ¢ = m%r] >
and the relative interior is defined by

m
j=0"Yj

m
rint(S) = {x =Y v h;>0,j=0,....m Y rj=1} 3)
J Jj=0
The relative boundary of a simplex S is defined by removing the relative interior from it.
Given a simplicial partition set S, we are interested in whether its (simplicial) facets F are

border with respect to the feasible set A. In general, we can define a simplex to be border
with respect to a simplicial feasible set.

Definition 1 Given p-simplex feasible area A. An m—simplex S withm < p is called border
with respect to A if there exists an m-simplex face ¢ of A, such that § C ¢.

Binary labelling of vertices can be used to to keep track of border facets, as discussed in [2].

Relevant information of sub-set S is an enclosure g of the gradient Vf(x) € g =
[g,g],Vx € S. Interval vector g can be calculated by Interval Automatic Differentiation
[13, 15] over the interval hull of a simplex S ((JS) which implies under and over estimations.
Enclosure g indicates the traditional interval enclosure, but our reasoning is still valid for any
other rigorous and sharper enclosure method for V f(S). Now consider directional vector
d = x — y as the difference between two points x, y € S. Then, the corresponding DD, i.e.
d"V f(x), is also included in the interval

h=d"g=nh]= [Z min{d;g,. d;g;). ) max{dig,. d,-g[}} : @)
i=1 i=1

We consider example 6 (EX6) from [10] in Fig. 1, f(x1,x2) = O.ZSxf + x1 4+ x2 +
0.25x1x2 + 0.5)622 over the simplex S = {vg = (-0.75,—1.5),v; = (—1,1), vy =
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Fig. 1 Piecewise linear character of directional derivative bounds in x ford = x — ¢

(0.25, —0.5)}. A gradient inclusion over box ([—1, 0.5], [—1.5, 1]) is g = ([0.125, 1.375],
[—0.75,2.0625]). As the figure shows, it means that following a first order Taylor idea, we
have bounds starting from the center of the box, ¢ = (—0.375, 0.25). From the center, we also
have bounds on the directional derivative in direction d = x — c. The illustration shows that
the directional derivative is typically piecewise linear in the argument x, where the breaking
points or planes are defined by the sign changing planes of d where x; = c;.

Our study focuses on the question of monotonicity, where we can show that there exist
points x, y, such that the inclusion of the directional derivative does not contain zero. Consider

h(x,y)=(x—-yTg, ®)

as afunctionofd =x —y,x,y € S.

Figure2 shows an illustration of h(x,y) using example 6 (EX6): f(x1,x2) =
O.25x12 + x1 + x2 + 0.25x1xp + 0.5)(% in [10], over the simplex S = {vg =
(—0.75, —1.5),v1 = (—1,1), v = (0.25, —0.5)}. An inclusion of the gradient is given
by g = ([0.125, 1.375], [—0.75, 2.0625]. This simplex has number 9 in Fig.9. Thus, f is
monotonically increasing to the right direction in any point of [1S and therefore also in S.
As directional vector we fix y in the centroid of [1S and vary x over the unit circle around y.
When varying x over the circle, the lower bound & is piece-wise convex and A is piece-wise
concave.

In Fig.3 we vary x over a polytope, specifically an octagon. It illustrates the piecewise
linear character of the directional derivative bounds when we search over a hyperplane. This
means it has breakpoints caused by x; = y;. Moreover, breakpoints are caused in this case
by other vertices of the octagon. A minimum or maximum value will also occur in one of
the breakpoints. This illustration shows that we might be looking for a monotonic direction
d to approach a maximum value for & (positive &) or minimum for k& (negative h).

Following the same example, Fig.4 shows k with direction d = x — v, x € facet F =
conv(V \ {v}). The interesting values for directions d are those that correspond to & > 0 or
h < 0. A monotonic direction may lead to reject S or to reduce it to a border facet(s). In
this case, the only facet with a monotonic directional derivative bound £ is that leaves out
vp with a minimum to the left direction from vs. In such a graphical example one can find a
monotonic direction over a facet by running x over the facet, as illustrated in the figure for
n = 2. In higher dimensions, finding a direction in which f is monotonic is not obvious.
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Fig. 2 Example of k(x, y) with y the centre of the (1S and x in d = x — y varies over the unit circle with
centre on y
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Fig. 3 Example of k(x, y) with y the centre of the (1S and x in d = x — y varies over an octagon inscribed
in the unit circle with centre on y

3 Mathematical properties on monotonicity

The monotonicity is based on the directional derivative bounds % (see (4)). Notice that
condition 0 ¢ g is necessary to have monotonicity, but not sufficient. The question is which
direction d to consider. The most general result for an m—simplex is the following.

Proposition 1 [2] Let S € A be an m—simplex with gradient enclosure g. If 3x,y € S,
such that direction d = x — y has corresponding directional derivative bounds (4) withQ ¢ h
then rint(S) does not contain a global minimum point of (2).

For the proof, see [2].

Corollary 1 [2] Let S C A be an m—simplex as partition set in a branch and bound algorithm
with corresponding gradient enclosure g. If the conditions of Prop. 1 apply and S has no
border facets, then S can be rejected.

The argument is that the relative boundary of S may contain a global minimum point, but the
same point is enclosed in the relative boundary of another partition set.
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Fig.4 Exampleof h(x, v;) foreachsimplex vertex v;, j = 0, 1, 2. Endpoint.x is varied over the opposite facet
F = conv(V\{v;}) using example 6 in [10] over the simplex § = {vg = (—0.75, —1.5), v} = (=1, 1), v =
(0.25, —0.5)}. The gradient bounds are g = ([(0.125, —.75)T, (1.375, 2.0625)T])

Given that the minimum is not in rint(S), we have to decide which of the facets to focus
on. In this paper, we focus on fixing one of the endpoints v and look ford = (x —v), x € S,
such that 0 ¢ h.

Proposition 2 [2] Given m—simplex S = conv(V) and a facet F generated by removing
vertex v from V. Consider directiond = x — v and h = dT g. If h < 0, then the facet F
contains all minimum points in S, i.e. argmin, g f(x) C F.

Practically, Prop. 2 means that S can be replaced by F. However, a similar reasoning
applies as in Corollary 1; if F is a non-border facet, then simplex S can be removed from
further consideration in a branch and bound context. The idea is again that faces of F' may
contain the global minimum. However, because we are dealing with a partition, the same
points are also included in other simplicial partition sets.

Proposition 3 Given m—simplex S = conv(V) and a facet F generated by removing vertex
v from V. Consider directiond = x — v and h = dTg. If h > 0, then the facet F (even
border) does not contain minimum points in S and S can be replaced by the union of its other

border facets (see Prop. 1).

The argument uses the opposite direction in Prop. 2.
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It is more appealing to find a negative bound h with d to a facet because we can reduce
S to that facet if it is border or reject S otherwise. However, to find a positive direction for
h to a facet is also interesting because we can reduce the simplex to all other border facets,
excluding the current one.

4 Directional derivatives to evaluate

We focus on finding a monotonic DD for a direction d = x — v from vertex v € S towards
a simplex facet F = conv(V\{v}). The first heuristic directions to consider is taking x = ¢
(centroid of the facet) and the other vertices in V\{v}. These are described in Sect.4.1.

Based on these considerations, we define steps for the branch and bound algorithm with
a certain order to check various directions on monotonicity. The algorithm will check the
centroid (C) direction for each facet of S and checks vertex (V) directions in case a negative
h was not found. A further refinement considering LP or LS methods will be done after C+V
only if a negative h was not found for any facet. Notice that these tests are only relevant if
0 ¢ g, which is a necessary condition for monotonicity. The order of the tests is described
as follows.

1. S is full dimensional without border facets and 0 ¢ g. Reject S.

2. For non-border facet F, 3d = x — v for which 2 < 0. Reject S. See Prop. 2 and Corollary
1.

3. There are border facets F having B < 0. Reduce S to the intersection of those facets.
See Prop. 2.

4. There are facets F' with h > 0. Replace S by the union of its border facets. See Prop. 3.
If there are no (other) border facets, reject S; Corollary 1.

5. We have for S that 0 ¢ g but for all facets, and all tested direction, 0 € h:

(a) S is full dimensional. Replace S by the union of its border facets. Minimum can
neither be in rint(S) and in non-border facets of S.
(b) S is not full dimensional. Monotonicity cannot be proved; divide S.

We summarize an LP problem which finds a positive bound on all directional deriva-
tives in Sect.4.2 and describe an LS method in Sect.4.3. LP or LS will continue checking
monotonicity for all facets when no k2 < 0 was found towards a facet using naive C and V
directions. Using C+V (CV) we can find more than one facet with a negative h. LP or LS
will stop after finding the first negative & in order to reduce their impact in the computational
burden.

We define a monotonicity measure for non-monotone DD-s, that is, when O € k as

((h) = min{h, —h}, (6)
which can be seen as the minimum distance in the interval % to escape from zero.

In order to reduce the number of facets to be checked by LP and LS, facets with the lowest
value of p(h(c, v)), where c the centroid of facet F = conv(V \ {v}), are considered first.

4.1 Naive directional derivatives using centroid and vertices

Having at least one coordinate i with O ¢ g;, the algorithm first checks monotonicity con-
sidering as directions
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1. C:d = (c — v), with ¢ the centroid and v the opposite vertex of F, for each facet F € S.
If no negative value for A is found, we check

2. V:directions towards vertices, d = (w — v), v, w € V.

The algorithm evaluates all ("21) combinations of vertices in } without repetition for d in k

in lexicographical order. If (v, w) > O for any v, w € V, obviously h(w, v) < 0. So every
time a monotone direction is found, we can reduce the dimension (Prop. 1) or even reject the
simplex (paragraph after Prop. 2).

4.2 The linear programming model

To prove that there exists a monotone direction in an m—simplex, at least we should have
0 ¢ g. This is a necessary, but not sufficient condition for an m—simplex, m < n.

We can search for any monotone directiond = (x — y), x,y € Stofind 0 ¢ h(x, y). By
fixing y = ¢ we reduce the degree of freedom. If any d is found with 2 > 0, we know that
the interior of the simplex can be removed. The corresponding LP is formulated in [2], as
LP(6).

Regarding Prop. 2, we can focus on finding k(x, v) < 0 indirectiond = (x —v),x € F
and F = conv(V \ {v}):

n
0>h=) maxidg, dg;) )
i=1
Finding a direction d which solves (7) can be done by searching for the steepest monotone
direction ming d7 g. The corresponding LP is formulated in [2], as LP(7).l Notice that we do
not necessarily need to know the minimum in (7), but whether there exists x € F for which
h < 0.

As mentioned in Sect. 4, finding & > 0 instead of 2 < 0 in (7) is also useful. However,
looking for k > 0 requires to solve another LP and we do not consider it in the experiments
due to the large computational cost of solving a large number of LP models. Nevertheless,
it may happen that looking for # < 0, we end up in & > 0, i.e. min A results in & > 0. In
order to save LP computations, we neither do LP(6) in the experiments, because a successful
result of LP(7) makes LP(6) unnecessary.

LP can be used as the best solution to find a monotone direction, but it might not be
computationally the best. This is investigated in the experiments of Sect.5.

4.3 Local search algorithm

The LS focuses on a simplex S = conv()) and one of its facets ' = conv(V\ {v}). Consider
a set P of already evaluated points x € F with respect to k(x, v). This means, after checking
the centroid and other vertices, we have P = {V \ {v}, co}. Each iteration generates a new
endpoint x based on a centroid ci of several points in P, which replaces one of the points
in P trying to reduce the non-monotonicity measure in (6). In this way, we look for a bound
h = h(x, v) with a low value of w(h) regardless of the sign of h, see Props. 2 and 3.

Algorithm 1 shows the local search for a monotone direction towards a facet determined
by removing v from V.

For the stopping criterion, Algorithm 2 estimates the remaining number of iterations based
on the progress of the bound & (x, v) for the last three centroids x = ¢;_3, ¢c;—1, ¢; in Alg.

I But using d = (v — x) and h > 0 instead.
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Algorithm 1 LS ( S, g, v, n, m)

Require:

n :Dimension of f.

m Simplicial dimension of S.

S :Simplex S = conv(V).

g :Enclosure of the gradient, V f(0S) C g.

v : Vertex determining the facet.

P Set of endpoints x € P with calculated h = h(x, v).

1: k=0 > Number of iterations
2: Initialize P =V \ v U {cq} (co = ¢ centroid), ko = h(cq, v)

3: repeat

4 k=k+1

5 for j € {0,...,m}do

6 Let p; be point j in set P \ {cx—1}

7 determine new point x; 1= ;- erP\{p,-} x,

8 if 0 ¢ h(x;, v) then '

9: return true > Monotone direction is found.
10:  determine £ = argmin j¢(o, . ) H(R(x}, V)

11:  remove py from P and add c; := x¢, by := h(cg, v)

12: untilk > n x (m + 1) or (k > 2 and EstRemlters(hy_», hy_1, hy) > m + 1)

13: return false > Monotone direction is not found.

Fig. 5 Graphical example of one iteration of Algorithm 1. Facet F = conv({vy, vz, v3}) in a 3-simplex S is
shown in black. Already evaluated directions d = (vg — x), x € P = {v1, v, v3, co} are drawn as dashed red
arrows. The candidates x j for new centroid c] and their direction (vp — x ;) are drawn as dashed blue arrows.
For instance, x is the centroid of {v{, v2, cg} = P \ {v3}. The green point shows the endpoint with the best
among the candidates x ; which becomes cj. In the next iteration, P = {vy, vz, ¢, c1} to get ¢3. The bounds
h(c, vg) with ¢ = c¢q, c1, ¢p are used in EstRemlters() to estimate the number of remaining iterations and to
check whether we have slow convergence
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Fig.6 Example of estimating number of remaining iterations by Algorithm 2 on facet 0 in Fig.4. At iteration
2 (co, c1, ¢2), UpRemlt;=11, UpRemlty=21, LoRemlt;=3 and LoRemlt;=5 for EstRemlters(kq, k1, h7)
resulting in 3 < |P|. Atiteration 3 (cy, ¢2, ¢3), UpRemlty=21, UpRemltz=41, LoRemIty=5 and LoRemlIt3=9
for EstRemlters(hy, hy, h3). The minimum is 5 > |P| = 3 and LS stops

1, in a similar way as the box-rejection idea in [1]. If the estimate is bigger than the number
of endpoints in P (|P| = m + 1) in Algorithm 1, the search is stopped. Figure 6 shows an
example using facet O of the simplex in Fig. 4. The algorithm stops at iteration 3 because the
estimated number of remaining iterations from the current iteration is 9. At iteration 2 that
number was 3. The total number of iterations of the local search is also limited in line 12.

Algorithm 2 EstRemlters(hy_2, hyx—1, hy)

1: LoRemlt;_1 = oo, UpRemlt;_1 = oo > Remaining iterations by hy_1 and hy_»
2: LoRemlt; = oo, UpRemlt; = 0o > Remaining iterations by hy and hy_|
3:for j=k—1and j =kdo

4. ifh; <h;_; then

LoRemlt; = [ 1
oRemlt; =
Tl ey

h.
UpRemlt; = [—L—
P Jj rhj—l*hj‘l

8:  return min{LoRemlt;_j,LoRemlt;, UpRemlt;_{,UpRemlIt; }

5
6: ifﬁj fﬁj_l then
7

In Fig. 6, one first checks centroid cg, and then the two vertices. Then LS checks another
7 directions. So, in total 9 DD were checked. LS on facet 0 is an example were the LS stops
without finding a monotonotonic direction. Figure 7 shows an example were the algorithm
finds a monotonic direction for facet 2. In fact, facet 0 needs not be checked, as facet 2 will
be visited first, because the smallest non-monotonicity measure among the vertex to center
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-4.0 Y , -
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Fig.7 Example of LS on facet 2 of simplex in Fig.4

directions was attained for facet 2, i.e. vo = argmin,, i (h(w, c)) with c the centroid of facet
F = conv(V \ {v}). The LS found a negative directional derivative and therefore finishes
after checking facet 2 on this simplex.

5 Numerical results

Algorithms were run on an Intel(R) Core(TM) i7-4770K CPU and 16GB of RAM running
Fedora 36 Linux distribution. The algorithm was coded with g++ (gcc version 12.1.1) and
uses Kv—0.4.50 for Interval Arithmetic. Kv uses boost libraries. Algorithms were compiled
with -O3 -DNDEBUG -DKV_FASTROUND options. For the Linear Programming, we use
PNL 1.10.4 compiled with -DCMAKE_BUILD_TYPE = Releaseand -DWITH_MPI =
OFF, as a C++ wrapper to 5.5.2.0-28. LPsolve is free but it is slower than other commer-
cial solvers2. PNL uses by default set_break numeric_accuracy(lp, 5e-7) in
1p_lib.c and sets default parameter values and tolerances to ProductionPARAM in
1p_lib.h. In order to reduce the computational time of LPSolve, we set its verbosity to
"SEVERE", and time out after 1 s. We use the algorithm with lower bounding +CFvs from [5],
which refers to a lower bound calculated by the central form using the vertex with maximal
objective function value. The termination accuracy is & = 107°.

The used test instances are similar as in [5] and are given in Table 1. Box constrained prob-
lems are transformed to simplicial constrained problems where the minimum is at the centroid
of one of the facets of a simplex of size half of the bounding box. For instance, problem GP2 is
box constrained on ([—2, 2], [—2, 2]) and the minimum is at (0, —1). The corresponding sim-
plicial feasible set for GP2 has vertex set {(—0.5, —2), (1.5, —2), (0.5, 0.0)}, as illustrated
in Fig. 8.

2 https://www.heurekaslu.se/wiki/Optimization
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Table 1 Test problems. An
asterisk at n indicates that this is
the selected dimension for a
varying dimension test instance.
Their formulation and minima
can be found at
https://www.sfu.ca/~ssurjano/
optimization.html

Instance Description n
DP7 Dixon-price 7*
EX6-1 Karhbet example 6 over simplex 1 2
EX6-2 Karhbet example 6 over simplex 2 2
GP2 Goldstein-price 2
G7 Griewank 7*
H3 Hartmann 3 3
H4 Hartmann 4 4
H6 Hartmann 6 6
L8 Levy 8%
MC2 McCormick 2
MCH5 Michalewicz 5%
RB7 Rosenbrock 7*
SHCB2 Six Hump Camel Back

S4 Shekel 10

SCH2 Schubert

STS Styblinski-Tang 5%
THCB2 Three hump Camel Back 2
UPQP Unconstrained Portfolio QP 4

Fig.8 Simplicial constrained version of test instance GP2

-2 L
-2 -1.5

-1 -0.5

0.5 1 1.5 2

Instances EX6-1 and EX6-2 and UPQP have a simplicial feasible set. Specifically, EX6-1
and EX6-2 have vertex sets V = {(—3, —1), (1, 1), (1.5, —2)} and V = {(-2, 0), (0, —3),
(2, 3)}, respectively (see [10]). The portfolio problem is a standard application over the
standard simplex and in fact not hard to solve. However, it illustrates well the effect of the
various monotonicity tests on the instance. A description of the portfolio quadratic program

(UPQP) can be found in “Appendix A”.

The studied variants of the monotonicity test are the following:
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Table 2 Colors used in Figs.9 to 11

Color Meaning
Simplex Dark green Rejected by monotonicity test
Light green Reduced to border facet(s)
Brown Rejected by RangeUp test: f(S) > f=incumbent min f (v)
Directions Light red h < 0 for a direction C or V
Dark red h < 0 for a direction provided by LP or LS
Blue h > 0 for a direction C or V
Dark blue h > 0 for a direction provided by LP or LS
Black Och
Vertex Evaluated vertex
Red Incumbent vertex

Fig.9 Results for EX2-1 instance using the CV directions for monotonicity for facet oriented directions

CcvV Using (¢ — v) and (w — v) directions for & (see Sect. 4.1).
CV+LP  Using CV plus linear programming (see Sect. 4.2).
CV+LS  Using CV plus local search (see Sect. 4.3).

Figures 9 to 11 show the graphical output of the CV, CV+LP and CV+LS methods. The
colors are explained in Table 2.

Some simplices are numbered only in Fig.9. The centroid of the simplex is used for the
CV method to save computations. The centroid of the facet was used for CV+LP or CV+LS
methods (see the last paragraph of Sect. 4). It depicts the state of the algorithm on the example
EX2-1. Notice that this instance is full dimensional. As we check directions for the facets
only when 0 ¢ g, monotonicity on the complete simplex has already been demonstrated
before.

Figure9 illustrates two monotonic directions from a vertex to centroid for simplex 6. The
direction to a non-border facet with a positive bound (blue) implies that S can be replaced by
the only border facet. The direction with a negative directional derivative bound (light red) to
anon-border facet is more interesting; we can reject the simplex, see comments after Prop. 2.
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Fig. 10 Results for EX2-1 instance using LP method

Fig. 11 Results for EX2-1 instance using LS tp find monotonicity from a vertex

Simplices 8, 9 and 42 did not reveal a monotonic direction from a vertex to the centroid. As
0 ¢ g, they can be reduced to their border facets. Simplex 27 is rejected by the RangeUp test,
as well as the simplices being border facets of simplex 42 and 9. Simplex 32 has a positive
directional derivative bound £ from a vertex to a border facet. This means the simplex can
be rejected.

Figure 10 illustrates the direction with negative directional derivative bounds k& found by
LP for simplices 9 and 42. Based on these directions, they can be rejected.

Figure 11 illustrates the directions found by the LS method with a negative directional
derivative bound A for simplices 9 and 42. The figure shows the directions from vertex to
trial points x; for which h(x;, v) has been evaluated. The LS method additionally found a
positive directional derivative bound A for a direction to a border facet of simplex 8 (right-
top facet). This finding let us discard that border facet from the search (see Prop. 3). The LP
method aims to find a negative value for i (x, v). We did not run an opposite formulation due
to computational cost of solving LPs (see Table 5).

Edge facets have two directions, the vertex to vertex directions, so only one has to be
evaluated, the other one is opposite. For instance, the lower facet of simplex 8 has a positive
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Table 3 Meaning of headers in the following tables

Header Meaning

Ins Problem instance

NS Number of evaluated simplices

Time Execution time. Differences smaller than 0.1s are not significant

N/N2 Number of simplices/segments checked for & (x, v;)

NSCV Number of simplices with monotonic directions C and/or V

NSLP Number of simplices with monotonic LP direction with negative h(x, v;)
NLPF How many times solving an LP fails

NSLS Number of simplices with monotonic directions by LS

Div Reduced simplices with 0 ¢ g but no monotone direction found, thus divided

Table 4 Results using Centroid-vertex and vertex-vertex directions (CV)

Ins NS Time N/N2 NSCV Div
EX6-2 67 0.01s 42/32 10 16
EX6-1 217 0.01s 10/3 4 2

MC2 399 0.01s 37/10 16 1
THCB2 528 0.01s 32/11 5 11
SHCB2 619 0.01s 39/7 30 4
SCH2 816 0.03s 4/0 3 0
UPQP 859 0.01s 793/0 364 429

G7 1,699 0.03s 44/0 0 0

H3 2,168 0.03s 306/0 179 77
GP-2 7,375 0.05s 15/3 6 3

S4 9,861 0.12s 1,112/0 287 751

H4 44,200 0.40s 8,559/0 4,400 2,754
MCHS5 61,401 0.91s 10,971/0 4,100 6,025
RB7 88,276 0.54s 4,279/0 134 0

DP7 863,291 4.48s 9,055/0 381 0

STS 1,035,921 5.47s 353,550/0 138,243 186,948
H6 2,288,026 30.77s 1,381,682/0 544,376 803,582
L8 9,203,596 3m35.23s 135,590/0 343 0

directional derivative bound k to the right vertex (border), which also gives a negative DD
in the opposite way (to the left vertex, which is non-border). This means, we can reject the
facet as a simplex (see comments after Prop. 2).

Tables 4, 5 and 6 show the numerical results using the different monotonicity test methods.
The header meaning is explained in Table 3. Best results are shown in bold values.

Regarding monotonicity, those instances with a small value for N/N2, high NSCV, NSLP
or NSLS and small value for Div are those where LP and Local Search are effective.

Using LP or LS reduces the number of evaluated simplices for most of the instances
apart from EX6-2, G7, SCH2 and MC2. None of the methods found a monotonic directional
derivative from a vertex in G7. However, 44 full dimensional simplices were reduced to
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Table5 Results using CV+LP

Ins NS Time N/N2 NSCV NSLP NLPF Div
EX6-2 67 0.01s 42/32 10 0 0 16
EX6-1 213 0.01s 972 4 2 0 1
MC2 399 0.01s 37/10 16 1 0 1
THCB2 500 0.02s 21/0 5 16 0 0
SHCB2 618 0.01s 39/7 30 0 4
SCH2 816 0.02s 4/0 3 0 0
UPQP 668 0.20s 641/0 259 51 0 331
G7 1,699 0.11s 44/0 0 0 0

H3 2,080 0.06s 238/0 143 32 0 44
GP-2 7,374 0.04s 15/3 6 1 0 3

S4 9,170 0.41s 691/0 171 58 0 413
H4 41,109 2,245 6,353/0 3,016 1,137 1 1,357
MCH5 53,254 3.34s 4,793/0 1,351 926 0 1,948
RB7 88,003 7,78s 4,279/0 134 486 2 0

DP7 862,496 19,67 s 9,055/0 381 1,049 1 0

ST5 825,006 1m56.46s 197,130/0 56,843 38,626 156 81,046
H6 1,304,871 Tm4,32s 592,584/0 154,270 109,659 446 300,360
L8 9,202,755 9m0.73s 135,590/0 343 891 36 0
Table 6 Results using CV+LS

Ins NS Time N/N2 NSCV NSLS Div
EX6-2 67 0.01s 42/32 10 0 16
EX6-1 210 0.01s 8/1 4 3 0
MC2 399 0.01s 37/10 16 11 1
THCB2 500 0.01s 21/0 5 16 0
SHCB2 618 0.01s 39/7 30 1 4
SCH2 816 0.03s 4/0 3 1 0
UPQP 626 0.01s 604/0 229 67 308
G7 1,699 0.03s 44/0 0 0 0

H3 2,080 0.03s 238/0 143 31 44
GP-2 7,374 0.03s 15/3 6 6 3

S4 9,399 0.11s 812/0 172 63 522
H4 40,679 0.38s 6,022/0 2,633 1,749 1,117
MCHS5 54,502 0.83s 5,676/0 1,379 1,067 2,552
RB7 88,193 0,65s 4,279/0 134 155 0

DP7 863,130 4,79s 9,055/0 381 594 0

ST5 832,203 5,28s 203,371/0 48,231 51,297 83,105
H6 1,325,308 22.02s 607,026/0 127,106 143,296 309,042
L8 9,203,538 3m45,24s 135,590/0 343 213 0
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Table 7 Results for shifted minimum instances using CV

Ins NS Time N/N2 NSCV Div
MC2 410 0.01s 43/13 23 6
SHCB2 527 0.01s 37/9 24 5
THCB2 538 0.01s 30/8 16 5
SCH2 767 0.02s 5/0 3 0

H3 1,689 0.02s 287/0 182 69

S4 4,568 0.06s 755/0 291 297
GP-2 7,204 0.05s 1972 7 2

H4 28,732 0.27s 8,020/0 3,465 3,584
MCHS5 63,869 0.93s 12,588/0 4,850 6,673
G7 278,326 3.25s 816/0 1 0

RB7 666,437 4.09s 21,978/0 1,522 0

STS 1,081,443 5.69s 373,285/0 144,405 197,453
L8 1,168,435 27.79s 9,904/0 45 0

H6 2,918,326 39.61s 1,681,477/0 664,752 969,207
DP7 6,250,171 34.58s 58,569/0 3,303 0

border facets due to O ¢ g. LP or LS found additional monotonic directions for instances
SCH2 and MC2, but this does not lead to a reduction in the number of evaluated simplices
because we could not remove the simplex.

The largest reduction in number of evaluated simplices compared with the CV method
are realized for instances H6 and ST5. The CV+LP method evaluates 983,155 and 210,915
simplices less respectively and the CV+LS requires 962,718 and 203,718 simplices less. As
expected, the running time using CV+LP is the much larger. For H6 and ST5 it needs minutes
whereas the CV and CV+LS finishes in seconds. The CV and CV+LS method spend a similar
time on the STS5 instance, but the CV+LS method requires 22s and CV 30s on H6 instance.

The instance with the largest number of evaluated simplices is L8 where the number of
found/existing monotonic direction is small. Therefore, in such case trying to find a monotonic
direction mainly implies an increase of the execution time.

5.1 Result for shifted minimum instances

In previous experiments the minimum point is reached quickly. This is an advantage for
the RangeUp test. However, the symmetry of the minimum point can lead to the so-called
clustering problem where several simplices share the minimum point [4, 11].

In order to study how results are affected when the minimum point is not at the centroid
of an initial facet, the initial simplex was shifted towards one of the vertices by 0.1. For the
GP2 instance, the resulting vertex set is V = {(—0.55, —2.1), (1.45, —2.1), (0.45, —0.1)}.
Tables 7 to 9 show the numerical results with headers as described in Table 3.

The number of evaluated simplices is for some instances larger and for others lower, but the
overall view does not change. CV+LP usually results in a low number of evaluated simplices
against a large running time. CV+LS generates a similar number of evaluated simplices as
CV+LP, but requires less execution time. For instance H6, CV+LS requires 29 s, CV 40s and
CV+LP 8m33s.
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Table 8 Results for shifted minimum instances using CV+LP

Ins NS Time N/N2 NSCV NSLP NLPF Div
MC2 406 0.01s 43/13 23 3 0 6
SHCB2 517 0.01s 34/6 24 4 0 2
THCB2 525 0.01s 22/0 16 6 0 0
SCH2 767 0.02s 5/0 3 2 0 0

H3 1,582 0.05s 205/0 144 37 0 21

S4 4,284 0.28s 550/0 175 98 0 149
GP-2 7,202 0.04s 1972 7 2 0 2

H4 24,954 2.00 5,149/0 1,782 1,045 2 1,707
MCHS5 54,448 3.81s 5,113/0 1,404 1,021 0 1,957
G7 278,325 4.77s 816/0 1 2 0 0

RB7 665,421 40.05s 21,978/0 1,522 1,460 3 0

ST5 856,452 3m23,58s 206,070/0 55,852 43,215 307 83,784
L8 1,168,075 49.66s 9,904/0 45 375 3 0

H6 1,671,447 8m32,81s 668,447/0 167,072 138,256 1,070 325,114
DP7 6,246,242 2m9.34s 58,569/0 3,303 5,317 28 0

Table 9 Results for shifted minimum instances using CV+LS

Ins NS Time N/N2 NSCV NSLS Div
MC2 406 0.01s 43/13 23 7 6
SHCB2 517 0.01s 34/6 24 4 2
THCB2 525 0.01 22/0 16 6 0
SCH2 767 0.02s 5/0 3 2 0

H3 1,579 0.02s 201/0 140 39 19

S4 4,279 0.06s 559/0 167 134 141
GP-2 7,202 0,03 1972 7 10 2

H4 24,713 0.24s 4,950/0 1,517 1,301 1,564
MCHS5 56,341 0.86s 6,701/0 1,671 1,308 2,843
G7 278,325 3.32s 816/0 1 5 0

RB7 666,170 4.65s 21,978/0 1,522 570 0

ST5 862,478 5.45s 211,311/0 46,768 56,732 85,186
L8 1,168,406 28.56s 9,904/0 45 106 0

Ho6 1,743,215 28.77s 726,296/0 150,325 178,685 359,355
DP7 6,249,189 36.87s 58,569/0 3,303 3,159 0

For those instances where CV shows the smallest running time, CV+LP and CV+LS have
a small value of NSLP, NSLS respectively in comparison with N/N2, which means that small
number of monotonic direction exists or few monotonic direction was found. This implies a
large running time.

More rejection/reduction tests, as those used in box partitioning, may be developed in
simplicial partitioning. Additionally, over-estimations in g can be reduced by covering the
simplex by more boxes instead of just one.
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6 Conclusions

From the experimental results we can conclude that the use of the studied local search for
monotonic directional derivatives requires a similar number of simplex evaluations as finding
monotonic directions by Linear Programming (LPsolve). However, it requires less execution
time. An advantage of the local search (LS) is that it can stop when a monotonic direction
is found, i.e. we do not need the steepest one, and also it may use the stopping criterion. In
some cases, the number of evaluated simplices is smaller using LS than LP, because the later
only looks for negative directional derivatives. Looking for positive ones requires running
another LP model.

There exist instances for which the CV method results in the smallest execution time. The
differences with CV+LS are small in these cases.

Additional search for monotonic directional derivatives by LP or LS, results in an addi-
tional small number of them found (they may not exist), incurring in an increase of the
computational burden. However, for H6, the LS method saves 27% of the running time in
comparison with using only the CV method.
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A unconstrained portfolio as QP problem

Convex, n = 4.

min f(x) = 10x7 Ax — uTx, (8)
s.t.infl,xZO ©)]

w=(115,95,5 4T,
166 34 58 —1
Ao 1| 3464 4 -1
T 100 | 58 4 100 1
-1-11 10

Minimum f* = —5.3732 at x = (0.1678, 0.405, 0.0, 0.4272)"
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