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Abstract: Inflammation is a physiological process by which the body responds to external insults
and stress conditions, and it is characterized by the production of pro-inflammatory mediators
such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely,
a chronic inflammatory state is established due to a prolonged inflammatory response and may
lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation
process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac
diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII)
is activated in several diseases with an inflammatory component, such as myocardial infarction,
ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it
actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB),
thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to
modulate the severity of the inflammatory-driven degeneration.
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1. The Immune System and the Inflammatory Process in the Heart

Inflammation is a natural and necessary immune reaction that occurs when organisms experience
infections, stress, or tissue damage to fight the insulting agent. Although essential for body
protection against pathogens, excessive inflammation can provoke by-stander injury and cause
organ dysfunction [1]. Inflammation is a complex process ensuring leukocyte infiltration at the site of
tissue injury, and it is finely tuned by a large panel of molecules, tissue resident immune cells, and
stromal cells [2].

Typically, the inflammatory reaction is composed of four constituents: inducers of inflammation;
sensors on the cell surface that detect them; mediators, produced when prompted by the sensors; and
the target tissues that respond specifically to the inflammatory mediators. Different forms exist for each
constituent, and their combinations compose distinct inflammatory pathways. The type of pathway
induced depends on the nature of the trigger [1].

Pathogens are recognized by several major classes of pattern recognition receptors (PRRs),
expressed both in immune and non-immune sentinel cells, which are activated by pathogen-associated
molecular patterns (PAMPs) [1].
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Sterile inflammation takes place in the absence of pathogens. In this case the trigger is constituted
by intracellular particles released by necrotic or apoptotic cells. In this case PPRs are activated
by endogenous agents (danger-associated molecular patterns; DAMPs) to elicit an inflammatory
response [3].

PRRs include the Toll-like receptors (TLRs), C-type lectin receptors (CLRs), retinoic acid-inducible
gene (RIG)-I-like receptors (RLRs), and NOD-like receptors (NLRs) [4].

Receptor activation triggers relevant intracellular signaling pathways, among which are the
mitogen-activated protein kinase (MAPK), nuclear factor kappa-B (NF-κB), Janus kinase, activator
protein-1 (AP-1), interferon regulatory factor 3 (IRF3), and activation of transcription [5,6].

Gene transcription activation drives, in turn, the production and secretion of pro-inflammatory
cytokine, such as interleukin (IL)-1, tumor necrosis factor (TNF)-α, IL-6, colony stimulating factor
(CSF), interferons, transforming growth factor β (TGF-β), and chemokines, which contribute to the
inflammatory response [7].

The acute phase of the response is characterized by a massive influx of granulocytes, then
monocytes, which both play a predominant role in the clearance of the pathogen and removal of
tissue debris.

The resolution of inflammation is tightly regulated [8]. The severity of disease pathogenesis may
be related to effective resolution or chronicization of the inflammatory process [9,10].

In particular, a chronic inflammatory process plays a crucial role in the progression of heart
diseases and exerts a deleterious role on cardiac function. Heart specific cytokines, neurohormones and
pro-inflammatory molecules, which can be referred to as cardiokines, actively drive the progression of
cardiac dysfunction in heart failure [11,12]. The cells composing the heart, such as cardiomyocytes,
fibroblasts, vascular cells, and progenitor cells, are able to secrete several cardiokines following different
environmental stimuli, realizing a specialized network that is critical for heart homeostasis. These
proteins, including cytokines, such as TNF-α and TGF-β or different interleukins, are able to control
the balance between normal cardiac function and pathological myocardial remodeling based on their
ability to influence cardiomyocyte apoptosis, fibroblast activation, and vascular cell proliferation.

Notably, low concentrations of TNF-α produces a cardioprotective effect, while increased levels of
TNF-α have been associated to heart failure and diastolic dysfunction, and is positively correlated to the
severity of the diseases. Transgenic mice with a cardiac-specific TNF-α overexpression display heart
failure, cardiac dilatation, fibrosis, altered contractile function, Ca2+ handling defects, and premature
death [13]. Furthermore, the progression of TNF-α-induced cardiac remodeling is associated to the
activation of cardiomyocyte apoptosis and proteasome dysfunction [14,15]. The TNF-α increase
occurring during ischemia/reperfusion injury (I/R) is related to Ca2+ overload and the resultant cardiac
dysfunction [16,17]. The pharmacological modulation of TNF-α production is able to improve cardiac
function and reduce the intracellular Ca2+ overload and oxidative stress that arises following I/R
stress [17–19].

In addition, TGF-β, another cardiokine that also has a physiological cardioprotective effect,
if deregulated, actively participates in the pathological cardiac remodeling mediating the tissue fibrosis
that follows the tissue-injury-derived inflammation acting on fibroblast activation, differentiation,
and extracellular matrix protein secretion [20,21]. TGF-β1 over-expression has been associated with
myocardial hypertrophy, hypertensive cardiac remodeling, several cardiomyopathies, and genetic
aortic syndromes [22,23]. Transgenic mice with the TGF-β type 2 receptor conditional knockdown
in cardiomyocytes display, following a sustained pressure condition, reduced interstitial fibrosis and
improved heart function, and they do not exhibit cardiac dysfunction and chamber dilation [24]. The
TGF-β1-dependent cardiac fibrosis also correlates to the regulation of intracellular Ca2+ concentrations
by the type 2 ryanodine receptor (RyR2). TGF-β1 and collagen levels are up-regulated in cardiomyocytes
subjected to mechanical stress, but this event is reverted in RyR2 knockdown cardiomyocytes [25].
Pharmacological inactivation of non-canonical TGF-β signaling by arjunolic acid treatment leads to the
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up-regulation of peroxisome proliferator activated receptor alpha and results in the down-regulation
of collagen gene expression in the hypertrophy-model of cardiac fibroblasts [26].

Recently, an emerging role for the IL-33/ST2 pathway in the inflammation that occurs during
the cardiac stress condition has been described [26,27]. ST2, which belongs to the Toll-like receptor
family, exerts an immunomodulatory effect based on its ability to regulate cytokine production [28,29].
Furthermore, the soluble ST2 form represents a predictive biomarker in patients with chronic heart
failure and a severe prognosis [29]. The IL-33/ST2 interaction results in an anti-hypertrophic effect by
blocking NF-κB activation. Mice lacking ST2 have worsened hypertrophy, cardiac dilation, ventricular
fractional shortening, increase fibrosis, and reduced survival in a pressure overload condition [30].

2. Calcium/Calmodulin-Dependent (CaMK) II in the Heart

Calcium/calmodulin-dependent kinases are a family of serine/threonine kinases that respond to
the intracellular calcium Ca2+ changes [Ca2+]i and consist of three members: CaMKI, CaMKII, and
CaMKIV [31]. Ca2+ transduces its functions by forming a complex with calmodulin (CaM), which acts
as a ubiquitous Ca2+ receptor [31].

CaMKII is a multimeric enzyme consisting of 12 monomers [32]. Each monomer shares the same
structure that consists of an N-terminal catalytic domain, a C-terminal association domain, and the
central auto-regulatory domain where the Ca2+/CaM binding site is located [33]. CaMKII is the most
suitable decoder of total [Ca2+]i although it is also engaged by intracellular Ca2+ oscillations and
transients [34,35].

Under resting conditions, the CaMKII regulatory domain interacts and sterically blocks the
catalytic domain, leading to its auto-inhibitory state. The activation process requires the binding of the
Ca2+/CaM complex, which displaces the intrasterical auto-inhibition and exposes the kinase substrate
and ATP binding sites of the catalytic domain [36]. At this point, the activated monomer is able to
sequentially phosphorylate at Thr286/287 (depending on CaMKII isoforms), the regulatory domains of
adjacent CaMKII monomers. The auto-phosphorylation confers to CaMKII an autonomous kinase
activity even after the dissociation of the Ca2+/CaM complex, thus preventing the re-association of the
catalytic domain with the auto-inhibitory domain [33,37]. Furthermore, the activation also induces the
“CaM trapping” that leads to an increased affinity to CaM binding and to a time-sustained CaMKII
activity upon low [Ca2+]i conditions [38].

An alternative route of CaMKII activation has been described involving the reactive oxygen
species (ROS) produced by various sources including nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase and mitochondria. Specifically, ROS oxidizes CaMKII, at methionine 281/282, which
remains active even in the absence of the Ca2+/CaM complex [39]. Essentially, the oxidation of the
methionine residues of CaMKII works as a sensor of ROS increments and correlates with a sustained
kinase activity [39,40].

Another possible trigger of CaMKII autonomous activation is hyperglycemia. The extracellular
glucose elevation leads to O-linked N-acetyl-glucosamine (O-GlcNAc) modification at CaMKII S279 [41].
Furthermore, CaMKII autonomous activity can be induced through a nitric oxide (NO)-dependent
pathway by S-nitrosylation of Cys290 [42]. Notably, both O-GlcNAc and S-nitrosylation modifications
require the initial Ca2+/CaM-dependent activation and result in persistent autonomous CaMKII
activation [41,42].

The CaMKII inactivation involves either phosphatase-dependent or -independent mechanisms.
The dephosphorylation of Thr286 occurs through 70% of the protein phosphatase 2A (PP2A) activity;
PP1 and PP2C act for the remaining activity [43]. An alternative CaMKII inactivation mechanism,
which is typical of post-synaptic plasticity regulation [13], consists of the auto-phosphorylation of
Thr305/306 that prevents the CaM rebinding to the regulatory domain (CaM-capping) [33] by modifying
the Ca2+/CaM binding site [44,45].
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The CaMKII tissue distribution is variable, and the four CaMKII isoforms (α, β, γ, δ) encoded by
separate genes show tissue-preferential expression [46]. CaMKIIα and β are the neuronal isoforms [47]
while the CaMKIIδ and γ isoforms are predominantly expressed in cardiac tissue [48,49].

CaMKIIδ is critical during the pathogenesis of cardiac hypertrophy after catecholaminergic
stimulation [50]. It modulates transcription by mediating histone deacetylase (HDAC)4
phosphorylation during pressure overload [51]. CaMKIIδ affects Ca2+ handling by phosphorylation of
RyR2 and phospholamban (PLN), thus inducing changes in sarcoplasmic reticulum (SR) Ca2+ content
and resulting in diastolic Ca2+ leak [51], leading to diastolic dysfunction and arrhythmogenesis [52].

Several pieces of evidence correlate CaMKII activity to physiological functions such as cell
proliferation and cell cycle progression. In particular, the inhibition of CaMKII reduces vascular smooth
muscle [53] and endothelial cell proliferation [54] as well as S-phase progression of the cell cycle [55].
On the other hand, the over-expression of CaMKIIγ negatively regulates vascular smooth muscle
proliferation [56]. Interestingly, CaMKII specific inhibitors increase proliferation of cardiomyocytes
derived from induced pluripotent stem cells [57].

3. CaMKII and Inflammation in Cardiac Diseases

Ca2+ has been associated with different events of the inflammatory response [58–61] as well as
with the regulation of proliferation, anergy and cell death of T cells [62]. Based on its ability to act as
an intracellular Ca2+ sensor, CaMKII is recognized as a key regulator of the immune and inflammatory
responses [63–65] at different levels.

CaMKII regulates the physiology of T cells. The Ca2+-independent form of CaMKIIγ enhances T
cell memory formation and modulates cell death [66]. In T cells, treatment with CaMKII inhibitor KN93
modulates the NF-κB activation pathway by abolishing the phorbol-ester-induced phosphorylation
of inhibitory κB (IκB) proteins [67]. Moreover, CaMKII modulates IL-10, IL-2, and IL-4 production
by T lymphocytes. Specifically, the overexpression of the constitutively active CaMKII form leads
to increased IL-10 protein and mRNA accumulation based on its ability to directly modulate IL-10
promoter activity [68]. In addition, it is involved in the Ca2+-dependent IL-2 transcriptional arrest,
causing anergy [63,64], and regulates IL-4 by direct action on its promoter [63].

Studies performed on macrophages highlighted that CaMKII boosts pro-inflammatory cytokines
and type I interferon production upon TLR stimulation [69] and participates in the Wnt5A
signaling-mediated inflammatory response [70].

Furthermore, CaMKII regulates dendritic cell physiology, acting at different levels on the expression
and localization of MHC Class II proteins [71], cell maturation, and the antigen presentation ability
following phagocytosis-induced stimulation [72].

In addition to the response to pathogens, the inflammation process in cardiac disease is mostly
an adaptive response to myocardial injury [73,74]. In particular, sustained CaMKII activation is
demonstrated to be involved in several cardiovascular diseases. Notably, the inhibition of CaMKII
has been suggested as a novel therapeutic target to treat cardiac arrhythmias, heart failure, and
hypertrophy [75–77]. The following subsections will summarize the main findings and mechanisms
regarding cardiac diseases in which CaMKII and inflammation mediate pathological remodeling
(Figure 1).
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Figure 1. Schematic description of Calcium/calmodulin-dependent (CaMK) II involvment in the
inflammatory response in cardiac diseases.

3.1. Ischemic Diseases

The cytosolic Ca2+ overload is one of the common events that leads to heart failure and ischemic
heart disease. The resulting sustained CaMKII activation promotes L-type Ca2+ channel opening
probability by phosphorylation of the α-subunit of L-type voltage-gated Ca2+ channel (CaV1.2). L-type
Ca2+ channel opening regulates cellular Ca2+ homeostasis, which in turn controls cardiac myocyte
apoptosis [78]. In vivo, CaMKII inhibition is able to protect against myocardial apoptosis induced by
myocardial infarction [79] and restores SR Ca2+ content. The RyR2 mutated mouse model, which lacks
the CaMKII phosphorylation site, is resistant to apoptosis and displays improved cardiac function
after myocardial infarction [80]. In addition, the overexpression of mutant CaV1.2, which is resistant
to CaMKII binding and thus precludes CaV1.2 phosphorylation, retards cardiomyocyte death [81].
Moreover, the overexpression of CaMKIIδ leads to increased cardiomyocyte apoptosis, together with
elevated cytosolic Ca2+ and enhanced mitochondrial cytochrome C release [82].

Moreover, ischemic-induced necrotic cell death with consequent release of intracellular
molecules [83] results in the activation of TLRs in cardiomyocytes, inducing pro-inflammatory
transcriptional pathways [84–87]. Several pieces of evidence have established that CaMKII has a central
role in regulating inflammation in myocardial infarction (MI), since it is oxidized as a consequence of
increased β-adrenergic activation upon MI, which is followed by increased intracellular ROS [88,89].
The oxidized CaMKII is able to enhance pro-inflammatory transcriptional signaling by promoting
NF-κB activity [67]. Gene expression profiling performed in mouse hearts of transgenic AC3-I mice,
in which there is a cardiomyocyte-limited expression of a CaMKII inhibitory peptide, showed that
CaMKII inhibition reduces the post-MI upregulation of pro-inflammatory genes and complement
factor B [90].

The inflammatory response also occurs during cardiac reperfusion following an acute ischemic
event. In addition to the pro-inflammatory signaling-activated cardiomyocyte death described for
MI, I/R injury also leads to the opening of the mitochondrial permeability transition pores, resulting
in the increase of cellular Ca2+ and ROS [91,92]. It has been demonstrated that cardiac-specific
CaMKIIδ deletion protects against I/R since it decreases infarct size, attenuates apoptosis, and improves
functional recovery. CaMKIIδ deletion is also able to reduce I/R-induced inflammation by preventing
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the reduction of IκB and upregulation of NF-κB target genes [93]. In contrast, in a similar I/R study, an
effect on infarct size following I/R CaMKIIδ KO, CaMKIIγ KO, and CaMKIIγ/δ double knockout (DKO)
mice has not been observed. A reduced infarct size and improved cardiac function are observed only
at five weeks after I/R in CaMKIIγ/δ DKO mice. Notably, loss of CaMKII reduces the cardiomyocyte
expression and secretion of the chemokines C-C motif ligand 2 and 3, leading to decreased infiltration
of CD45+ leukocytes, thus attenuating inflammatory mediated post-infarct remodeling [94].

3.2. Pressure Overload/Hypertrophy

The recruitment of immune cells due to inflammatory responses and contribution to cardiac
remodeling also occurs with pressure overload [95–97]. Angiotensin II (Ang II) infusion represents
the common treatment to study the inflammatory-induced remodeling by hypertensive non-ischemic
stress [98]. It has been reported that Ang II treatment induces NF-κB-dependent inflammatory gene
expression and inflammasome activation, which were reduced in a cardiomyocyte-specific CaMKIIδ
KO mouse model. Therefore, CaMKIIδ activation mediates inflammation-driven remodeling [99]. As
an alternative mechanism, Ang II promotes ROS release, the oxidation of CaMKII, thus resulting in the
activation of p38 MAPK, another major mediators of the inflammatory response [100].

An alteration of intracellular Ca2+ cycling has also been observed in another experimental model of
pressure overload, the transverse aortic constriction (TAC), which reflects increased afterload [101,102].
In turn, afterload is responsible for CaMKII activation based on the induced L-type calcium current
increase [103,104]. The TAC model results in hypertrophy with increased fibrosis, inflammation,
cardiomyocyte apoptosis, and persistent CaMKII activation [102]. As described for other models,
CaMKIIδ activation triggers the inflammasome through NF-κB and ROS signaling in cardiomyocytes,
inducing chemokine production, which contributes to macrophage infiltration and the development
of fibrosis [105]. Likewise, fibrosis and ventricular dilation and dysfunction can be reduced by both
selective CaMKIIδ deletion and by blocking CaMKII activation within the first two weeks of TAC and
after the onset of inflammatory cell accumulation [105], thus confirming the CaMKII involvement in
the maladaptive response during pressure overload [106].

It has been reported that CaMKII is involved in the transcriptional regulation of hypertrophic
genes by regulating the phosphorylation of histone deacetylases (HDACs), which in turn affect TNF-α
and IL-1β expression and cardiac fibrosis [107,108]. CaMKII is able to phosphorylate and prevent
the nuclear import of HDAC4, based on the presence of two conserved CaMK phosphorylation
sites in the N-terminal regions of class II HDACs, thereby inducing the repression of MEF2 and the
activation of the hypertrophic program [108,109]. Mice lacking the δ isoform of CaMKII display a
reduced phosphorylation of HDAC4 and are protected against hypertrophy and fibrosis following
TAC [48]. Analogously, hypertrophic genes such as ANF, brain natriuretic peptide, myosin heavy
chain, and skeletal actin are overexpressed in the heart of transgenic mice with cardiomyocyte-specific
expression of CaMKIIδB and CaMKIIδC due to the induced transactivation of MEF2 [51]. A common
event occurring during hypertrophy is the increase of the systemic levels of Ang II, which in turn
acts as an activator of cardiac fibroblast proliferation. The excessive cardiac fibroblast proliferation is
associated with inflammatory cytokine secretion and promotes the progression of cardiac fibrosis, thus
contributing to the heart failure. The inhibition of CaMKII is able to reduce the Ang-II-induced cardiac
fibroblast proliferation as well as the secretion of TGF-β1 and TNF-α. Moreover, CaMKII inhibition
also reverts the upregulation of MMP-1, 2, and 9 and collagen I and III following Ang II treatment,
confirming its involvement in extracellular matrix regulation [110].

CaMKII also acts as downstream target of β-adrenergic receptor (βAR) signalling. The cytosolic
Ca2+ increase, following βAR stimulation, is related to the physiologic augment of cardiac contraction.
Excessive βAR activation results in pathological heart remodeling and myocardial hypertrophy. A
genetic mouse model of cardiac CaMKII inhibition is protected from maladaptive remodeling caused
by excessive βAR stimulation [76].
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3.3. Arrhythmic Syndromes

The activation of CaMKII by acting on ion channels is described as a possible trigger for some
inherited cardiac arrhythmia syndromes [75]. The overactivation of CaV1.2 by CaMKII results in an
enhanced peak and a slowed Ca2+ inward current inactivation, causing membrane depolarization
and the prolongation of the action potential duration, leading to arrhythmias [81]. CaMKII is also
able to regulate both SR Ca2+ uptake and release. First, CaMKII catalyzes PLN phosphorylation [111],
thereby reducing its inhibitory effect on Sarco-Endoplasmic Reticulum Ca2+ ATPase 2a (SERCA2a)
thus causing the increase of Ca2+ reuptake by the SR and myocardial relaxation. Second, CaMKII
phosphorylates RyR2, leading to pro-arrhythmic abnormal diastolic Ca2+ release from the SR, which
results in Na+/Ca2+ exchanger forward-mode activity and afterdepolarization. Moreover, CaMKII
inhibition drastically reduces diastolic SR Ca2+ leak in human and rodent cardiomyocytes [112], leading
to decreased spontaneous Ca2+-release (arrhythmogenic event) and enhanced ability of the SR to
accumulate Ca2+.

Notably, cardiokines, and in particular TNF-α and IL-1, can favor arrhythmias by increasing
calcium currents, thus interfering with Ca2+ homeostasis and triggering arrhythmic events [113,114].

CaMKII activity has also been linked to atrial fibrillation (AF) in connection with the AMP-activated
protein kinase pathway, leading to apoptosis and atrial remodeling [115,116]. Indeed, several
inflammatory markers such as IL-6, C-reactive protein, and complementary factors are elevated in
AF [117]. The acute administration of TNF-α in HL1 atrial cardiomyocytes leads to a significant increase
in cytosol free Ca2+ levels [118]. Moreover, AF is associated with an increase of total, phosphorylated,
and oxidized CaMKII [119,120], secondary to Ca2+ release from the SR [121].

TNF-α also promotes mitochondrial ROS production, which in turn leads to an enhanced oxidation
of CaMKII [122]. Once active, CaMKII acts on downstream targets, such as ion channels (promoting
arrhythmias) and pro-fibrotic pathways (promoting atrial remodeling), and mitochondria (promoting
ROS-induced cell death). Moreover, animal studies showed that CaMKII inhibition is protective
against AF [123]. The central role of CaMKII in the pathophysiology of AF makes it an attractive
therapeutic target.

3.4. Influence of Cardiac Therapies on CaMKII Activation

CaMKII is a downstream target of multiple agonists for which effective antagonists are available
and already used as routine clinical practice for cardiac diseases. These include ranolazine, ivabradine,
beta-blockers, angiotensin-converting enzyme inhibitors (ACEI), and aldosterone antagonists.

Late Na+ current dysregulation in hypertrophic cardiomyopathy is responsible for the intracellular
Ca2+ accumulation and activation of CaMKII [124]. Acute ranolazine administration reduces both
the intracellular Na+ and Ca2+ levels and CaMKII activity, thus contributing to the reduction of
hypertrophic cardiomyopathy-related cardiac remodeling myocardial dysfunction [125].

The pharmacological treatment of cardiac hypertrophy also includes the β-blockers, the renin
inhibitors, and ACEI such as carvedilol, aliskiren and enalapril. Carvedilol exerts a beneficial effect based
on its antioxidant, anti-inflammatory, and anti-fibrotic properties and significantly reduces CaMKII
levels in isoproterenol-hypertrophied rats (also in combination with aliskiren treatment) [126,127].
Treatment with enalapril, in spontaneously hypertensive rats, is able to prevent hypertrophy, apoptosis,
and CaMKII activity [128].

Furthermore, treatment with the mineralocorticoid receptor antagonist spironolactone reduces both
ROS and ox-CaMKII levels in cultured neonatal myocytes stimulated with aldosterone, thus confirming
CaMKII activity contribution to aldosterone-induced mortality during myocardial infarction [129].

It has been demonstrated that resveratrol has a cardioprotective effect based on its
anti-inflammatory and antioxidant properties [130]. Resveratrol significantly prevents the diastolic
intracellular Ca2+ increase, ROS production, and activation of CaMKII induced by H2O2 treatment in
ventricular myocytes, which are overall responsible for stress-induced arrhythmogenic events [131].
The beneficial effect of resveratrol has also been demonstrated in a pressure overload model in
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which it exerts an anti-hypertrophic effect, increases cardiac systolic function, reduces interstitial and
perivascular fibrosis, and prevents CaMKII activation [131].

4. Conclusions

Inflammation comprises a wide range of processes that affect many aspects of normal physiology
and pathology. Inflammation switches from physiological to pathological mechanisms when it is not a
time-limited event but a chronic process causing tissue damage or even death. The identification of
possible modulators of the inflammatory response could be beneficial not only for chronic inflammatory
diseases but also for the diseases in which the inflammatory component represents a limit to the
resolution of the pathology, such as, in the cardiac scenario, myocardial infarction, pressure overload,
I/R injury, and arrhythmic diseases. Increasing evidence suggests a pivotal role of CaMKII as a
versatile kinase in many cardiac pathophysiological conditions involving inflammation. This is
both a consequence of its activation properties in the presence of inflammatory states dysregulating
Ca2+ balance, and to its ability to enhance the pro-inflammatory transcriptional signaling leading to
inflammatory state amplification and persistence. Consequently, achieving a deeper knowledge of the
mechanism by which CaMKII, the immune system, and inflammation are reciprocally modulated will
be of potential therapeutic importance to mitigate the severity of many cardiac diseases.
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