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ABSTRACT

Severalmechanisms have previously beenproposed to explain differences between the shortwave reflectance of

realistic cloud scenes computed using the 1D independent column approximation (ICA) and 3D solutions of the

radiative transfer equation.When the sun is low in the sky, interception of sunlight by cloud sides tends to increase

reflectance relative to ICA estimates that neglect this effect. When the sun is high, 3D radiative transfer tends to

make clouds less reflective, which we argue is explained by the mechanism of ‘‘entrapment’’ whereby horizontal

transport of radiation beneath a cloud layer increases the chances, relative to the ICA, of light being absorbed by

cloud or the surface. It is especially important for multilayered cloud scenes. We describe modifications to the

previously described SpeedyAlgorithm forRadiative Transfer throughCloud Sides (SPARTACUS) to represent

different entrapment assumptions, and test their impact on 65 contrasting scenes from a cloud-resolving model.

When entrapment is represented explicitly via a calculation of the mean horizontal distance traveled by reflected

light, SPARTACUS predicts a mean ‘‘3D radiative effect’’ (the difference in top-of-atmosphere irradiances

between 3D and ICA calculations) of 8.1Wm22 for overhead sun. This is within 2% of broadbandMonte Carlo

calculations on the same scenes. The importance of entrapment is highlighted by the finding that the extreme

assumptions in SPARTACUS of ‘‘zero entrapment’’ and ‘‘maximum entrapment’’ lead to corresponding mean

3D radiative effects of 1.7 and 19.6Wm22, respectively.

1. Introduction

A key challenge in atmospheric modeling for both

weather and climate prediction is to improve the in-

teraction of clouds with solar and thermal infrared

radiation. While the representation of subgrid cloud

horizontal structure and vertical overlap is often now

quite sophisticated (e.g., Pincus et al. 2003; Hill et al.

2015; Di Giuseppe and Tompkins 2015), a process

missing from all operational models is the horizontal

transport of radiation within grid boxes. This was

characterized by Hogan and Shonk (2013) as entirely

associated with flow of radiation through cloud sides, and

led to the development of the Speedy Algorithm for

Radiative Transfer through Cloud Sides (SPARTACUS;

Hogan et al. 2016; Schäfer et al. 2016). This solver is now
available as an option in the radiation scheme of the

forecast model used by the European Centre for

Medium-Range Weather Forecasts (ECMWF; Hogan

and Bozzo 2018).

In the shortwave, the main effect of transport through

cloud sides is ‘‘side illumination’’: the enhanced in-

terception of direct sunlight when the sun is low in the

sky, which increases the reflectance of the scene and

equivalently the magnitude of the cloud radiative effect

(CRE). However, Barker et al. (2015) reported MonteCorresponding author: Robin J. Hogan, r.j.hogan@ecmwf.int
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Carlo calculations showing that in realistic cloud scenes,

the effect of introducing 3D transport was more typi-

cally to reduce the magnitude of the CRE, particularly

when the sun is high in the sky.

Várnai and Davies (1999) characterized 3D solar ra-

diative effects in single-layer cloud scenes in terms of four

mechanisms, two of which reduce the reflectance of a

cloudy scene and are therefore candidates to explain this

behavior. Their ‘‘downward escape’’ mechanism explains

how forward-scattered sunlight inside a cloud has a

chance to escape through the side of a cloud and reach

the surface, whereas in the corresponding independent

column approximation (ICA) case it would remain

within the cloud and have more chance of being scat-

tered back to space. Welch and Wielicki (1984), Hogan

and Shonk (2013), and Barker et al. (2016) argued that

this escape mechanism explains why 3D effects reduce

the reflectance of cumulus, stratocumulus, aircraft

contrails and stochastically generated cloud fields, for

high-sun conditions. This process is represented by

SPARTACUS, but in this paper we present evidence to

show that it is not significant enough to explain the

results of Barker et al. (2015), which were for a wide

range of realistic and often multilayered cloud scenes.

The second candidate mechanism from Várnai and

Davies (1999) is ‘‘upward trapping,’’ which incorporates

all light rays that (i) are reflected back to space in the ICA

case but not when 3D transport is included and (ii) have a

longer pathlength in 3D than ICA. Their diagram to ex-

plain how this mechanism typically acts in single-layer

cloud scenes depicted an upward-traveling light ray

passing horizontally through the side of a cloud above, a

process that is already represented by SPARTACUS.

However, it is also possible, particularly in multilayered

scenes, for trapping to occur without any transport

through cloud sides, but rather as a consequence of hor-

izontal transport entirely within a clear or cloudy region

and the upward-reflected ray then intercepting the base

of a cloud above. This process is not explicitly handled by

SPARTACUS. It was alluded to by Barker and Davies

(1992) who considered idealized single-layer clouds

over a reflective surface, but not studied in detail for re-

alistic multilayered cloud scenes.

In this paper, we seek to quantify the importance of this

mechanism, which we refer to as ‘‘entrapment.’’ In sec-

tion 2, we describe it in more detail and present a simple

mathematical example to illustrate how it reduces the

scene reflectance. In section 3, we describe how the limits

of zero and maximum entrapment may be represented in

SPARTACUS. This is followed by two sections on the

more complex ‘‘explicit’’ entrapment calculations: sec-

tion 4 describes how we estimate the horizontal distance

traveled by reflected radiation, with validation against

monochromaticMonte Carlo simulations, while section 5

describes how the distance traveled is used to compute

how much entrapment occurs, accounting for the fractal

nature of clouds. Readers uninterested in the internal

workings of SPARTACUSmay wish to skip sections 3–5.

Then in section 6, estimates of the broadband shortwave

3D radiative effect by the new SPARTACUS solver are

evaluated by comparing to Monte Carlo calculations

performed on 65 diverse high-resolution scenes from a

cloud-resolving model.

2. The concept of entrapment

The schematic in Fig. 1 illustrates how entrapment

can change the reflectance of a cloud scene. Figure 1a

FIG. 1. Schematic illustrating SPARTACUS’s three possible treatments of entrapment of solar radiation underneath clouds in the case

of two randomly overlapped cloud layers each of cloud fraction 1/2: (a) zero entrapment, (b) explicit entrapment, and (c) maximum

entrapment. In each panel the degree to which the downwelling irradiance has been attenuated by the clouds above is indicated by the

darkness of the shading. The black-headed arrows depict representative light paths discussed in the text. The double-headed arrow in

(b) indicates the horizontal distance traveled by a single light ray reflected below half-level 3.5; the corresponding mean horizontal

distances are computed in section 4.
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depicts the behavior assumed in the ICA, in which

horizontal transport is ignored: incoming solar radiation

scattered upward by the first cloud layer it encounters is

likely to escape to space since it passes back through the

same clear-sky atmosphere (similar to the ‘‘opposition

effect’’ in vegetation; e.g., Hapke et al. 1996). Figure 1b

illustrates the process of entrapment by clouds when 3D

transport is permitted: radiation passing down through a

clear-sky (or less optically thick) part of the atmosphere

may be reflected back upward at a slantwise angle and

encounter the base of a cloud due to horizontal transport

within either the clear-sky or cloudy region. The de-

piction of upward trapping by Várnai and Davies (1999)

was similar except that the two cloud layers were part of

the same cloud, and the reflected ray was intercepted

by the edge rather than the base of the upper layer. Since

the area presented by the base of a cloud is usually much

larger than its edge, we would expect the impact of

trapping by the base to be greater, on average. Note

that entrapment can also occur over reflective surfaces

where the upward reflection is by the surface rather

than a cloud.

The interception of radiation by the upper cloud layer

reduces the reflectance of the scene, but the magnitude of

this effect depends on how far the radiation migrates

horizontally in the gap between the two cloud layers

relative to the size of the clouds in the upper layer.

Figure 1c depicts the extreme case in which radiation is

completely horizontally homogenized in clear-sky layers.

This ‘‘maximum entrapment’’ is actually the behavior of

the original shortwave implementation of SPARTACUS

described by Hogan et al. (2016), as well as other solvers

such as the three-region solver in the original Edwards

and Slingo (1996) radiation scheme that was adapted by

Shonk and Hogan (2008) to become the ‘‘Tripleclouds’’

solver. Shonk and Hogan (2008) described this radiative

homogenization as ‘‘anomalous horizontal transport,’’

which is not really accurate, as at least some of this

transport occurs in reality. Nonetheless, their method to

remove it and thus to move from maximum entrapment

(Fig. 1c) to zero entrapment (Fig. 1a) provides the start-

ing point for representing more realistic explicit entrap-

ment (Fig. 1b) in SPARTACUS.

To demonstrate the importance of the difference be-

tween zero and maximum entrapment, we can make

some idealizations and derive an analytic expression for

scene reflectance in both cases. As in Fig. 1, we consider

the two cloud layers each to have a cloud fraction of

1/2, a total cloud cover of 3/4, and to be in a vacuum

over a surface with an albedo of zero. Both cloud layers

have the same reflectance R, and scatter conservatively

so that their transmittance is T5 12R. In the zero-

entrapment case we apply the ICA, splitting the scene

into four columns of equal width. One is clear sky with

a reflectance of zero, two contain a single cloud layer

with reflectance R, and the final column consists of two

cloud layers, which the Adding Method (Lacis and

Hansen 1974) predicts to have a reflectance of

R*5R1T2R/(12R2)5 2R/(11R) . (1)

Thus, the scene reflectance in the zero-entrapment limit

is the weighted sum of the reflectance of the four

columns:

R
zero

5R/21R*/45R(11R/2)/(11R) . (2)

This is depicted by the solid line in Fig. 2. In the limit of

a perfectly reflective cloud (R5 1), the scene reflectance

becomes Rzero 5 3/4.

Now consider the other extreme: maximum entrap-

ment as depicted in Fig. 1c. Since radiation passing

through a clear-sky layer retains no memory of its hor-

izontal location with respect to the clouds it has passed

through in other layers, we consider the entire domain

as a single column. Thus the reflectance of a layer with a

cloud fraction of 1/2 is R/2, while its transmittance is

12R/2. Applying the Adding Method to obtain the

reflectance of the scene simply involves replacing R by

R/2 in (1), yielding

R
max

5 2R/(21R) . (3)

This is depicted by the dashed line in Fig. 2, and in the

limit of a perfectly reflecting cloud the scene reflec-

tance becomes Rmax 5 2/3. This is significantly less than

FIG. 2. Reflectance of the idealized scene discussed in section 2,

composed of two randomly overlapped nonabsorbing cloud layers,

each with a cloud fraction of 1/2, over a black surface in vacuum.

The solid line depicts (2) and the dashed line depicts (3).
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the ICA value of 3/4, suggesting that entrapment is

an important process to treat when modeling the 3D

shortwave radiative effects of clouds.

3. Representing entrapment scenarios in
SPARTACUS

Here we explain how SPARTACUS may be modi-

fied to represent zero and maximum entrapment, illus-

trated in Fig. 1, as well as the first step in representing

explicit entrapment. The symbols used in more than one

equation in sections 3–5 are defined in appendix B.

SPARTACUS uses the Tripleclouds approach of split-

ting each cloudy layer into three regions, one clear

(denoted a) and two cloudy (denoted b and c) with dif-

ferent optical depths. The radiation problem can then be

written in terms of vectors and matrices; for example,

u5 (ua ub uc)T is a column vector containing the up-

welling diffuse irradiances at a particular height in each

of the three regions. Note that the irradiance component

uj is defined to be power in region j per unit area of the

entire grid box, not per unit area of region j.

To represent the full range of entrapment scenarios,

two aspects of the SPARTACUS implementation of

Hogan et al. (2016) require modification, both in the

upward pass of the addingmethod [their Eqs. (24)–(30)].

The first change is to describe the direct solar beam in

terms of Di21/2, the albedo to direct radiation of the en-

tire atmosphere and surface below half level i2 1/2. This

accompanies Ai21/2, which is the corresponding albedo

to downwelling diffuse radiation. (As shown in Fig. 1a,

we index full atmospheric layers by i, counting down

from the highest layer i5 1, and half level i2 1/2 refers

to the interface between layers i2 1 and i.) This change

mirrors the application by Hogan et al. (2018) of

SPARTACUS to vegetation. Both of these albedos are

matrices of the form

A5

0
B@

Aaa Aba Aca

Aab Abb Acb

Aac Abc Acc

1
CA , (4)

where Ajk is the fraction of diffuse downwelling radia-

tion in region j that is reflected up in region k. These

definitions ensure that u at any given height is equal to

the sum of reflection of the downward diffuse irradiance

v and the downward direct irradiance s [see (40) of

Hogan et al. 2018]: u5Av1Ds.

The second change needed to represent entrapment

concerns how these albedo matrices are translated from

the top of one layer to the base of the layer above, ac-

counting for the overlap of the clouds and associated

regions in the two layers. We follow Hogan et al. (2016)

and define Abelow i21/2 as the albedo of the atmosphere

just below half-level i2 1/2, so using the region defini-

tions of layer i. Likewise, Aabove i21/2 is the albedo just

above this half level, using the region definitions of layer

i 2 1. Equation (30) of Hogan et al. (2016) relates the

two according to the maximum-entrapment assumption:

A
above i21/2

5U
i21/2

A
below i21/2

V
i21/2

, (5)

where U and V are the upward and downward overlap

matrices. They are defined such that uabove 5Uubelow and

vbelow 5Vvabove; that is, they map irradiances passing

through a half-level on to the regions of the layer the ra-

diation is entering. To see how (5) leads to maximum

entrapment, consider what happens at half-level 3.5 in the

two-region example of Fig. 1, where thematrices would be

U
3:5

5

�
1/2 0

1/2 0

�
,

A
below 3:5

5

�
A 0

0 0

�
,

V
3:5

5

�
1 1

0 0

�
, (6)

whereA is the albedo of the atmosphere below half level

3.5. Applying (5) yields

A
above 3:5

5

�
A/2 A/2

A/2 A/2

�
. (7)

This confirms that radiation exiting the base of either the

clear or cloudy regions in layer 3 has an equal proba-

bility of being reflected back up into either of these two

regions.

Shonk and Hogan (2008) described how to eliminate

this horizontal transport in their Tripleclouds solver and

thereby achieve zero entrapment; their solution may be

written as

a
above i21/2

5VT
i21/2abelow i21/2

, (8)

where a is a column vector containing the reflectances

of each region with the assumption that light is al-

ways reflected up from the same region it enters. Since

Tripleclouds neglects lateral radiation flows between

regions, A is diagonal and a simply contains its diagonal

elements. To apply the zero-entrapment assumption to a

SPARTACUS simulation that includes lateral flows

between regions, abelow i21/2 is defined such that its jth

element contains the sum of the jth column ofAbelow i21/2.

Physically this means that flows represented by the

white-headed arrows in Fig. 3, which involve reflection

up into a different region of the upper layer, are forced
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to be reflected up into the same region. After applying

(8), Aabove i21/2 is defined to be a diagonal matrix with its

diagonal elements given by aabove i21/2 and the rest of

SPARTACUS is unchanged. Applying zero entrapment

to the matrices in (6) yields

A
above 3:5

5

�
A 0

0 A

�
, (9)

which indicates that, as required, radiation exiting the

base of either region of layer 3 is reflected back up into

the same region.

To represent explicit entrapment we first assume that

radiation that travels far enough horizontally to pass

through a cloud edge (represented by the off-diagonal

elements of Abelow i21/2 and shown in Fig. 3a) has lost

memory of the region it originated from in layer i2 1, so

can be treated by maximum entrapment. By contrast, the

destination of reflected radiation that does not pass

through a cloud edge (the diagonal elements ofAbelow i21/2

illustrated in Fig. 3b) is computed taking account of the

mean horizontal distance traveled. Mathematically this is

achieved (in the two-region case) by

A
above i21/2

5U
i21/2

0
@ 0 Aba

below i21/2

Aab
below i21/2 0

1
AV

i21/2

1 �
j5a,b

A
jj
below i21/2L

j
i21/2

0
@V

aj
i21/2 0

0 V
bj
i21/2

1
A,

(10)

and similarly for Dabove i21/2. The first term on the right-

hand side is the maximum-entrapment formula, (5),

applied just to the off-diagonal elements. The second

term on the right-hand side contains Ajj
below i21/2, the jth

diagonal of Abelow i21/2, as well as elements from the jth

row of Vi21/2.

Matrix Lj
i21/2 is central to SPARTACUS’s represen-

tation of explicit entrapment: it expresses how much

lateral transport occurs for reflected radiation within

region j of layer i, but also accounting for radiation

passing down through the layers below. Its elements

quantify the weight of each of the arrows in Fig. 3b.

Since it repartitions radiation between regions without

changing the total energy, its columns sum to 1 (i.e., it

is a left stochastic matrix). If we wished for the diagonal

elements of Abelow i21/2 to be treated with zero entrap-

ment (thereby eliminating the white-headed arrows in

Fig. 3b), then we could simply set Lj
i21/2 to the identity

matrix leading to the second term on the right-hand side

behaving exactly as (8). Otherwise, Lj
i21/2 is computed

in a two-step process. Section 4 describes and validates

the first step: computing the mean horizontal distance

traveled by reflected radiation. Section 5 describes

and validates the second step: using the mean horizontal

distance traveled to compute the elements of matrix

Lj
i21/2 and hence how much radiation is ‘‘trapped’’ by

passing across the dashed line in Fig. 3b.

4. Explicit entrapment: Horizontal distance
traveled by reflected radiation

The white-headed arrow in Fig. 1b illustrates the

horizontal distance traveled by a single light ray re-

flected below half-level 3.5, and includes the horizontal

distance associated with both the downward and upward

parts of the journey. This section deals with the task of

estimating the mean horizontal distance traveled by re-

flected radiation below a particular half-level i2 1/2,

considering all possible light paths, including those that

penetrate down and up through multiple layers. However,

we exclude light paths that pass laterally through cloud

FIG. 3. Schematic illustrating the radiation paths considered when computing entrapment at half-level i2 1/2.

(a) The four paths that contribute to Aab
below i21/2, which is the off-diagonal element of Abelow i21/2 that represents the

fraction of radiation downwelling into region a (clear sky) of layer i that is scattered back up into region b (cloud) of

the same layer. (b) The four paths that contribute to Aaa
below i21/2, which is the diagonal element of Abelow i21/2 that

represents the fraction of radiation downwelling into region a of layer i that is scattered back up in the same region.

Note that in practice we include radiation paths that pass through the base of layer i and are reflected back by the

lower layers. The white-headed arrows represent radiation flows involving reflection back up into a different region

of layer i 2 1.
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boundaries, as these are treated by maximum entrap-

ment embodied in the first term on the right-hand side of

(10). Since the downward part of the journey depends on

whether the incoming radiation at half-level i2 1/2 is

diffuse or direct, we compute separate diffuse and direct

mean horizontal distances, denoted xi21/2 and yi21/2, re-

spectively. But note that light rays contributing to yi21/2

can only strictly be considered to be ‘‘direct’’ sunlight

until their first scattering event.

a. Method

We consider a plane-parallel atmosphere (i.e., con-

taining one region in each layer), and later adapt it to

multiple regions. The horizontal distance traveled by

direct radiation passing through a single layer i is

Dy
i
5Dz

i
tanu

0
, (11)

where Dzi is the physical thickness of the layer and u0 is

the solar zenith angle. It was shown by Schäfer et al.

(2016) that the equivalent expression for isotropic dif-

fuse radiation is

Dx
i
5Dz

i
p/2 . (12)

We use these as building blocks in our estimate of dis-

tance traveled during reflection from multiple layers.

Consider how the two-streamAddingMethod is applied

for diffuse radiation in a single layer i: given the layer

reflectance Ri and transmittance Ti, the scene albedo at

the top of the layer is given by

A
i21/2

5R
i
1T2

i Ai11/2
[11R

i
A

i11/2
1 (R

i
A

i11/2
)2 1 � � � ] ,

(13)

where Ai11/2 is the scene albedo at the bottom of the

layer and the terms in the square brackets represent

multiple reflections between layer i and the atmosphere

below. This is a geometric series that reduces to

A
i21/2

5R
i
1T2

i Ai11/2
/(12R

i
A

i11/2
) . (14)

It can be adapted to compute xi21/2, the mean horizontal

distance traveled by reflected radiation below the top of

the layer, as the weighted average of the distances as-

sociated with each order of scattering in (13):

A
i21/2

x
i21/2

5R
i
x̂
i
1T2

i Ai11/2

3 f2x̂
i
1 x

i11/2

1 R
i
A

i11/2
[x̂

i
1

ffiffiffi
2

p
(x̂

i
1 x

i11/2
)]

1 (R
i
A

i11/2
)2[x̂

i
1

ffiffiffi
3

p
(x̂

i
1 x

i11/2
)]

1 � � � g, (15)

where xi11/2 is the mean distance traveled by reflected

radiation below the base of layer i. The first term on the

right-hand side contains x̂i, the mean horizontal distance

traveled by radiation that is reflected by layer i, rather than

penetrating the layer and being reflected by the layers

below. We assume that, on average, such radiation pene-

trates to the center of the layer before being reflected back

out (hence traveling a distance Dxi/2 on each of the

downward and upward paths), and that the azimuthal

scattering angle at the point of reflection is random (so

these distances should be added in quadrature) leading to

x̂
i
5 [2(Dx

i
/2)2]1/2 5Dx

i
/

ffiffiffi
2

p
. (16)

This neglects the additional distance associated with

multiple scattering entirely within a layer, but the good

performance reported in section 4b suggests that this is

a small effect in practice.

The first line in the curly brackets in (15) represents

radiation that passes down through the entire layer i

and back up again, so the horizontal distance associ-

ated with transiting the layer is twice that of radiation

reflected by the layer (the 2x̂i term), and is added to the

distance associated with reflection by the layers below

half level i1 1/2 (the xi11/2 term). The subsequent lines

in the curly brackets in (15) include multiple reflections

between layer i and the layers below half level i1 1/2.

Each reflection adds x̂i 1 xi11/2 to the distance traveled,

but due to the random azimuthal scattering angle, they

again should be added in quadrature leading to the

square-root weighting term.

Equation (15) may be rearranged to obtain

x
i21/2

5 x̂
i
1

T2
i Ai11/2

A
i21/2

(x̂
i
1 x

i11/2
)

3�
‘

j50

ffiffiffiffiffiffiffiffiffiffi
j1 1

p
(R

i
A

i11/2
)j . (17)

Can we reduce this infinite series to a closed-form ex-

pression as before? Equation (14) exploited the fact that

�‘
j50a

j 5 (12 a)21, and by differentiating this expression

we find that�‘
j50( j1 1)aj 5 (12 a)22. The infinite series

in (17) lies, in some sense, between these two series, and

we find empirically that to a good approximation

�‘
j50

ffiffiffiffiffiffiffiffiffiffi
j1 1

p
aj ’ (12 a)21:5, which has errors of less than

10% for a, 0:9. Thus we approximate (17) by

x
i21/2

’ x̂
i
1

T2
i Ai11/2

(x̂
i
1 x

i11/2
)

A
i21/2

(12R
i
A

i11/2
)1:5

. (18)

This equation may be applied sequentially from the

surface up through the atmosphere to obtain a profile
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of xi21/2. The surface value is xn11/2 5 0, since reflection

right at the surface is not associated with any horizontal

transport.

Next we seek an equivalent expression for yi21/2, the

horizontal distance traveled by reflected direct radia-

tion. The equivalent expression to (14) for the albedo

to direct radiation is

D
i21/2

5 S1
i 1T

i

S2
i Ai11/2

1E
i
D

i11/2

12R
i
A

i11/2

, (19)

where three new layer properties have been introduced:

Ei is the fraction of direct radiation that penetrates the

layer without being scattered, S2
i is the fraction that

penetrates the layer but is scattered on the way (so

emerging into the diffuse stream at the base of the

layer), while S1
i is the reflectance of the layer to direct

radiation.

The mean horizontal transport associated with re-

flection by the S1
i termwe denote as ŷi, and is assumed to

be associated with direct radiation that penetrates to the

center of the layer followed by a scattering event and a

diffuse path back to the top of the layer. Therefore, we

add Dyi/2 and Dxi/2 in quadrature:

ŷ
i
5

1

2
(Dy2i 1Dx2i )

1/2
. (20)

The two terms on the numerator of the right-hand side

of (19) represent the two ways that direct radiation can

penetrate the layer: with and without being scattered on

the way. When scattering occurs, the diffuse albedo

Ai11/2 is involved, which is associated with diffuse hori-

zontal distance xi11/2, whereas when scattering does not

occur, the direct albedo Di11/2 is involved, which is as-

sociated with direct horizontal distance yi11/2. Sub-

sequent reflections, governed by the denominator of

(19), all involve the addition of the diffuse horizontal

distance xi11/2. Applying the logic of (15) leads to terms

involving the addition, in quadrature, of yi11/2 (associ-

ated with a direct reflection) and one or more of xi11/2

(associated with one or more internal diffuse re-

flections). Unfortunately, these terms do not reduce

conveniently to a closed-form expression like (18).

Therefore, we make the approximation that in any

term involving the combination of yi11/2 and xi11/2, yi11/2

can be replaced by xi11/2, leading to

y
i21/2

’ ŷ
i
1

T
i

D
i21/2

3 f[S2
i Ai11/2

j1E
i
D

i11/2
(j2 1)](x̂

i
1 x

i11/2
)

1E
i
D

i11/2
(ŷ

i
1 y

i11/2
)g , (21)

where

j5 (12R
i
A

i11/2
)21:5. (22)

In a plane-parallel atmosphere, (14), (18), (19), and

(21) may be applied sequentially from the surface to top

of atmosphere (TOA), to obtain profiles of xi21/2 and

yi21/2. We stress that even though the calculation pro-

ceeds in a single upward pass through the atmosphere,

the computed mean horizontal distances include both

the downward and upward parts of the journey of re-

flected light rays. We need the horizontal distance

traveled in partially cloudy profiles, so seek vectors

x and y whose jth elements contain the horizontal dis-

tances associated with region j. As illustrated in Fig. 3b,

each region is considered independently, so we may still

use these four equations to step the elements of x and y

from the base of the layer to the top. The other inputs to

these equations, Ri, Ti, Ei, S
6
i , Ai11/2, and Di11/2 are

taken as the diagonal elements to the corresponding

matrices available in the SPARTACUS computation.

Physically, the diagonal elements are used because we

are interested in horizontal transport that remains

within a region in layer i; radiation that passes laterally

between regions in layer i was dealt with by (10). The

final aspect to deal with partially cloudy profiles is to

translate x and y from the regions below half-level

i2 1/2 to the regions above. We use the relevant over-

lap matrix similarly to the operation in (8):

x
above i21/2

5VT
i21/2xbelow i21/2

, (23)

and likewise for y.

b. Evaluation

Here we evaluate the estimates of mean horizontal

distance traveled by reflected radiation as a function of

height (the values of x and y above), using Monte Carlo

calculations by the model of Villefranque et al. (2019,

manuscript submitted to J. Adv. Model. Earth Syst.),

which implements ray-tracing techniques from com-

puter graphics and permits the paths of individual pho-

tons to be tracked. The results are shown in Fig. 4 for

four cloud scenes and three solar zenith angles in sim-

ulations using periodic boundary conditions in the hor-

izontal. All are at a single wavelength in vacuum with

idealized cloud optical properties over a Lambertian

surface with an albedo of 0.2. The first profile (Figs. 4a–d)

consists of a plane-parallel cloud layer containing iso-

tropic scatterers with an optical depth of 1 and a single-

scattering albedo of 0.999 999. Beneath the cloud, all

reflection is from the surface so the mean horizontal

distance traveled increases linearly with height above
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the surface z. The direct mean horizontal distance y

increases with u0 due to (11), but is not zero for

overhead sun since it includes the return journey from

the surface to height z as diffuse radiation. Within the

cloud a fraction of downwelling radiation is reflected

by the cloud, rather than the surface, and so the mean

horizontal distance is reduced. We see that the

SPARTACUS estimates using the method described

above are accurate to around 10% for x and 3% for y.

The second profile (Figs. 4e–h) is the same but with an

optical depth of 5. The SPARTACUS errors are some-

what larger at around 18%.

FIG. 4. The mean horizontal distances traveled by reflected light for diffuse and direct downwelling radiation (x and y in the text,

respectively), as computed from Monte Carlo simulations (solid lines) and estimated by SPARTACUS (dashed lines) using the method

described in section 4. Each row of panels corresponds to a different atmospheric profile described in the text, with (a),(e),(i),(m) the cloud

fraction and subsequent columns showing results for solar zenith angles (SZAs) of (b),(f),(j),(n) 08, (c),(g),(k),(o) 448, and

(d),(h),(l),(p) 708. Panels (m)–(p) correspond to the cloud shown in Fig. 5c. The error bars show the error on the mean from the Monte

Carlo calculations; note that theMonte Carlo model can only computemean distances given a sufficient number of photons, so it does not

show x above cloud top or y deep in an optically thick cloud.
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The last two profiles contain more realistic clouds.

Both assume an asymmetry factor of 0.86, appropriate

for liquid clouds in the midvisible. SPARTACUS then

performs the usual delta-Eddington scaling, treating

some of the forward scattered light as if it had not been

scattered at all. To achieve a fair comparison in terms of

the definition of direct and ‘‘diffuse’’ radiation, theMonte

Carlo model takes the delta-Eddington-scaled extinction

coefficient, and assumes a Henyey–Greenstein scattering

phase function using the delta-Eddington-scaled asym-

metry factor value of 0.462. Figures 4i–l show the results

for a 6.4km 3 6.4km large-eddy simulation of cumulus

clouds from Brown et al. (2002), which was also used by

Hogan et al. (2016) and is based on an observed case from

the Atmospheric Radiation Measurement (ARM) pro-

gram. Figures 4m–p show the results for a 100km 3
100km scene from a 250-m simulation by the Canadian

Global Environmental Multiscale (GEM) model of a

multilayer liquid cloud (Pacific scene 16). The GEM

scenes are described in detail in section 6. In both the

ARM and the GEM cases, the typical SPARTACUS

errors are 25% for x and 6% for y. Given the simpli-

fications involved, SPARTACUS performs very well

in estimating horizontal distance traveled, and should

be adequate to feed into the final step for computing

entrapment.

5. Explicit entrapment: How much radiation is
trapped?

a. Method

Here we use the estimated mean horizontal distances

from the previous section to compute the matrix Lj
i21/2 in

(10). The meaning of Lj
i21/2 in the two-region case can

be explained by considering how it acts on w j
i21/2(x)5

(wja wjb)T, where wjk is the fraction of radiative energy in

region j of layer i that lies beneath region k in layer i2 1.

It is denoted as a function of themean horizontal distance

traveled, x, since the radiation entered the layer. Matrix

Lj
i21/2 is then defined such that

w j
i21/2(x

j
i21/2)5Lj

i21/2w
j
i21/2(0), (24)

where wj(0) represents the radiation partitioning at

the instant the radiation enters the layer from above

(when the horizontal distance traveled is zero) and

w j
i21/2(x

j
i21/2) is the radiation partitioning at the instant

it leaves the layer after being reflected (when the

mean distance traveled is xji21/2). Hence, the diagonal

elements of Lj
i21/2 are represented by the black-headed

arrows in Fig. 3b and the off-diagonals by the white-

headed arrows. Note that (10) includes the albedo

A
jj
below i21/2 so Lj

i21/2 describes only the redistribution of

energy, and therefore the sum of the elements in

w j
i21/2(x) is constant at 1 for any x.

How can we compute Lj
i21/2, accounting for the pos-

sibility of radiation passing across the dashed line in

Fig. 3b more than once? This can occur via multiple

scattering events in the layers below i2 1/2, as well as via

radiation passing beneath small clouds and emerging on

the other side. The problem is analogous to the original

SPARTACUSproblem of working out the net exchange

of radiation through cloud sides, and so we can use the

same method. Essentially, we wish to solve a system of

coupled differential equations of the form

dw j
i21/2

dx
5Gw j

i21/2 , (25)

where the matrix G contains the rates of radiation ex-

change between the ‘‘subregions’’ of region j (with

subregions defined by the regions of layer i2 1 that they

are beneath, illustrated by the dashed line in Fig. 3b),

and

G5

�
2f ab 1f ba

1f ab 2f ba

�
, (26)

where f kl is the rate at which radiation (direct or diffuse)

is transported from subregion k to l, per unit increase in

horizontal distance traveled x. The solution to (25) is

(24) but with Lj
i21/2 written as a matrix exponential:

Lj
i21/2 5 exp(Gxj

i21/2) . (27)

The repeated elements in (26) mean that the matrix

exponential may be computed efficiently for both the

two- and three-region cases as described in the appendix

of Hogan et al. (2018). The same method is used to

compute the contribution to the direct albedo matrix,

but using the direct horizontal distance traveled y
j
i21/2.

b. Representing fractal behavior

To test the validity of this approach, we use the con-

trasting binary cloud scenes shown in Figs. 5a–d, which

have been generated by applying an optical-depth

threshold to four of the GEM simulations described in

section 6. A scalar field is defined containing a value of 1

in the clear (black) areas and 0 in the cloudy (white)

areas, which can be thought of as solar radiation that has

passed through the gaps between the clouds. Gaussian

smoothing is then applied to the field with varying

smoothing scales x, representing horizontal radiation

transport beneath the cloud. Previous studies of the in-

teraction of radiation and clouds have found a Gaussian

to be reasonably good at describing the horizontal dis-

tribution of diffuse radiation originating from a point

JULY 2019 HOGAN ET AL . 2131

Unauthenticated | Downloaded 11/21/24 08:38 AM UTC



source (e.g., Hogan and Battaglia 2008; Wissmeier et al.

2013). The fraction of the total scalar field that is then in

the cloudy parts of the domain is the ‘‘trapped frac-

tion,’’ and is shown by the black lines in Figs. 5e–h. The

dotted lines show the cloud cover, which corresponds

to the trapped fraction one would expect if the radia-

tive energy were completely homogenized horizontally

(maximum entrapment).

To apply the matrix–exponential method described

above to estimate the trapped fraction we need to define

the lateral exchange rates in (26). From the geometric

arguments of Hogan and Shonk (2013), we would expect

f kl 5Lkl/pck , (28)

where Lkl is the length of the interface between regions

k and l (i.e., the perimeter length of the clouds) per unit

area of the domain, and ck is the fractional area of region

k, both of which can be obtained by analyzing the binary

cloud fields. We then apply (26) and (27) to obtain L, the

bottom-left element of which is the fraction of radiative

energy beneath the cloud shown by the solid gray lines in

Figs. 5e–h. It can be seen that this is a good prediction of

the trapped fraction for low values of x, but for larger x it

overestimates entrapment significantly.

This canbe explainedby the fractal nature of clouds. The

Hogan and Shonk (2013) definition of lateral exchange

rates imposes a length scale on the cloud field based on

the perimeter length. For example, we could define the

effective cloud scale S [see (20) of Hogan et al. 2018]

such that normalized perimeter length is

Lab 5 4ca(12 ca)/S , (29)

where S can be thought of as the size that equally sized

squares would need to have if they were placed ran-

domly on a grid and their fractional cover and total

perimeter length were equal to the values for the actual

cloud field. The S values for the scenes in Fig. 5 are

shown above panels e–h. Substitution of (29) into (28)

gives f ab 5 4(12 ca)/pS, indicating that the rate of ex-

change between regions is inversely proportional to

S. Thus, if all clouds indeed had a diameter of around

S then we would expect the trapped fraction to quickly

approach the asymptotic value of the cloud cover for

x � S.

In reality the clouds span a wide range of scales, and

the presence of very large clouds reduces the trapped

fraction for larger x. Another way of looking at this is to

recognize that since clouds are fractal, the effective pe-

rimeter length L̂ab ought to be a power-law function of

the length scale at which the cloud field is being probed.

This is usually written as L̂ab } x12D, where D is the

fractal dimension. Many studies have estimated the

FIG. 5. Evaluation of the part of the algorithm that computes the fraction of radiation trapped due to horizontal transport.

(a)–(d) Binary cloud masks obtained by applying a visible-optical-depth threshold to four GEM scenes. (e)–(h) The corresponding

fraction of downwelling clear-sky radiation that is trapped beneath a cloud as a function of the mean horizontal distance traveled x; the

black line shows the result of a Gaussian smoothing of the cloudmasks (treated as truth), while the gray lines show two candidatemethods

for SPARTACUS that take as input the cloud scale S [values indicated above (e)–(h)] and cloud cover.
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fractal dimension of clouds, with D 5 1.5 being a rea-

sonable representative value (e.g., Cahalan and Joseph

1989; Gotoh and Fujii 1998; Wood and Field 2011),

implying L̂ab } x21/2.

The dashed gray lines in Figs. 5e–h show the result of

making effective perimeter length depend on x in this

way, with the formula leading to the best fit given by

L̂ab 5Labmin(1,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4S/x

p
). (30)

This formula caps the effective perimeter length L̂ab to

be no larger than the measured value Lab for x, 0:4S.

The much better agreement with the curves computed

from actual cloud fields gives us confidence that this

formula is appropriate to use in computing entrapment

within SPARTACUS. Note that we have not found it

necessary to use (30) also for computing lateral ex-

change across cloud boundaries, because the relevant

length scale would be the horizontal distance traveled by

radiation as it passes through an individual model layer,

which is much less than x.

c. Treatment of overhanging clouds

Applying these findings in SPARTACUS presents

one further issue to resolve, since as shown in Fig. 3b we

are not dealing with radiative exchange between re-

gions, but exchange between the subregions of region

j in layer i, defined according to the regions above them

in layer i2 1. Unfortunately the perimeter length of the

interface between these subregions is not completely

defined by the variables available to SPARTACUS.

Consider the case of two layers, each with a cloud frac-

tion of 0.5, an overlap parameter of ai21/2 5 0:5 (i.e.,

halfway between maximum and random overlap) such

that the combined cloud cover of the two layers is 0.625,

and a particular value for the effective normalized cloud

perimeter length in the top layer L̂ab
i21. Figure 6a depicts

the way in which the clouds could be configured that

maximizes the perimeter length between the subregions

of region a in layer i, which in this 2D diagram is illus-

trated by the number of overhanging clouds shown by

the dashed lines.

Figure 6b depicts an alternative configuration at the

other extreme: in the left half of the grid box the

clouds are overlapped maximally and in the right half

they are overlapped randomly. Since the overhangs

are only associated with the randomly overlapped half

of the grid box, there are fewer overhangs. This

treatment of cloud overlap was explored by Shonk

et al. (2010), who showed that the area of the grid box

associated with maximum overlap of region j could

be written as ai21/2min(cji21, c
j
i ). We are concern-

ed with removing the fraction of region j in layer i

that is maximally overlapped, so divide through by

c
j
i to obtain the fraction of region j that is randomly

overlapped:

C
j
i21/2 5 12a

i21/2
min(cji21, c

j
i )/c

j
i . (31)

Thus, the most overhangs (Fig. 6a) is obtained by using

L̂kl
i21 for the effective perimeter length between regions

k and l, while the fewest overhangs (Fig. 6b) is obtained

by using L̂kl
i21C

j
i21/2. There is no theoretical or observa-

tional evidence to support which is themost likely, so we

introduce a user-defined ‘‘overhang factor’’ z that varies

the effective perimeter length linearly between most

overhangs (z5 1) and fewest overhangs (z5 0). This

factor is left as a parameter to be determined in section 6

according to which leads to SPARTACUS predicting

3D radiative effects most accurately. It turns out that

this property is of second-order importance compared to

whether entrapment is treated at all.

6. Results

In this section we evaluate the shortwave 3D radiative

effect predicted by the new SPARTACUS imple-

mentation in the ecRad radiation scheme (Hogan and

Bozzo 2018), and investigate the impact of various dif-

ferent treatments of entrapment. We have used 65

scenes generated from simulations by Environment and

Climate Change Canada’s GEM model (Girard et al.

2014), using the configuration described by Leroyer

et al. (2014) with the Milbrandt and Yau (2005) double-

moment bulk microphysics cloud scheme.

Each scene measures 100 km 3 100 km, has a hori-

zontal resolution of 250m and employs 56 vertical

FIG. 6. Illustration of two model cloud configurations with the

same cloud fraction and overlap parameter: (a) the configuration

that maximizes the number of ‘‘overhangs’’ where explicit en-

trapment must be calculated (shown by the dashed vertical lines

with curved arrows across them) and (b) the configuration that

minimizes the number of overhangs. In SPARTACUS this is

controlled by the z factor shown above each panel.
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layers. The simulations were originally performed to

generate synthetic satellite data from two swaths: an

Atlantic swath on 7 December 2014 from Greenland

to the Dominican Republic, from which 39 scenes

were extracted, and a Pacific swath on 24 June 2015

from Hawaii to Tonga, from which a further 26 scenes

have been extracted. Thus, the scenes span a wide

range of cloud conditions.

Both ICA and 3D Monte Carlo shortwave radiative

transfer calculations have been performed on these

scenes using the model of Barker et al. (2003), which

tracks photons through sequences of scattering events

until they are either absorbed by a particle, molecule, or

the surface, or exit the domain’s top. Calculations were

performed for solar zenith angles at 58 intervals between
08 and 858, but with random solar azimuth angle, and

assuming a periodic domain. The Rapid Radiative

Transfer Model for GCMs (RRTM-G) of Iacono et al.

(2008) was used to represent gas absorption, the Yi et al.

(2013) scheme for ice optical properties and Mie theory

for liquid droplets. Scattering by air molecules and cloud

particles were handled by the Rayleigh and Henyey–

Greenstein phase functions, respectively. To simplify

the comparison with 1D radiation schemes, all calcula-

tions assumed a Lambertian surface with an albedo

of 0.05.

We first compare the TOA cloud radiative effect be-

tween Monte Carlo calculations run in an ICA mode

(Monte Carlo ICA) and Tripleclouds (the SPARTACUS

control) for the same scenes, that is, in the absence of 3D

radiative transfer. In addition to cloud fraction and gridbox-

mean liquid and ice mixing ratio, Tripleclouds takes as

input the overlap parameter at each half-level and the

fractional standard deviation of in-cloud water content,

FSD, in each layer. It was found that the original

implementation of Tripleclouds was not capable of ac-

curately representing the effect of horizontal hetero-

geneities for FSD . 1.5, which occurs in many of

these scenes. Appendix A describes an improvement to

Tripleclouds and SPARTACUS that has overcome

this problem. Figures 7a–c reveal that the resulting

root-mean-square error (RMSE) in CRE predicted by

Tripleclouds is around 10% and its bias is only 1%–2%.

The differences between 3D and ICA Monte Carlo

calculations of CRE for the 65 scenes are summarized by

the black box-and-whisker plots in Figs. 8a and 8b, and

themean by the thick black line.We see that for u0 in the

range 08–758, 3D effects increase both TOA and surface

CRE (i.e., make them less negative), and therefore act in

the sense of warming the Earth system bymaking clouds

less reflective. In individual cases, 3D effects can act to

cool the Earth system by up to 7Wm22 at u0 5 758, via
interception of direct solar radiation by cloud sides, but

plenty of other scenes have a warming effect even for

large u0.

The various SPARTACUS simulations, which all use

Tripleclouds as their 1D control, enable us to elucidate

the role of entrapment in explaining this behavior.

SPARTACUS has been run taking as input the ob-

served cloud perimeter length in each layer Lab and the

length of the contour separating the optically thinner

and thicker parts of the in-cloud extinction distribution

Lbc. In practice the former is characterized by the cloud

effective scale defined by (29), and the latter by a cloud

heterogeneity scale Shet given analogously by

Lbc 5 4cc(12 cc)/Shet . (32)

The blue lines in Figs. 8a and 8b show the zero-

entrapment scenario, which was illustrated in Fig. 1a.

The 3D effect is much weaker overall; at TOA, the

greatest mean cooling is 1.9Wm22 at u0 5 758, and the

greatest mean warming is 1.7Wm22 at u0 5 08. This
general pattern can be explained by the mechanisms of

shortwave side illumination and downward escape dis-

cussed by Hogan and Shonk (2013), but downward es-

cape is clearly too weak a mechanism to explain the

strong 3D effect found in the Monte Carlo simulations

for overhead sun. At the other extreme, the green lines

show the maximum entrapment scenario, which was il-

lustrated in Fig. 1c and involves complete horizontal

homogenization of radiation in each clear or cloudy

region. This has a strong warming effect, reaching

19.6Wm22 at TOA for overhead sun, but is over twice

as strong as the reference Monte Carlo calculations.

The other two SPARTACUS simulations in Figs. 8a

and 8b are much closer to the reference calculations: the

red and pink lines show results using explicit entrapment

described in sections 4 and 5, with the two treatments of

cloud overhangs illustrated in Fig. 6. It is clear that the

least-overhang scenario (z5 0) agrees with the Monte

Carlo calculations best at TOA; there is still a slight

overestimate of the warming effect of 3D radiative

transfer, but it is less than 8% for u0 # 558. Therefore,
z5 0 is our preferred SPARTACUS configuration for

the remainder of the paper. Figures 7d–f compare indi-

vidual 3D radiative effects between Monte Carlo and

this SPARTACUS configuration, and while there is

some scatter, the correlation coefficients of 0.79–0.86

confirm that there is skill in predicting 3D effects for

individual cases.

Figure 8c shows the change to total atmospheric ab-

sorption when 3D effects are included. TheMonte Carlo

calculations show an increase in absorption by around

1Wm22 at most solar zenith angles, which is compara-

ble to the findings of Barker et al. (2016). Both the main
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3D mechanisms contribute to this effect: side illumina-

tion at large solar zenith angle enhances the interception

and hence absorption by clouds, while Fig. 3b shows

that entrapment increases the pathlength of radiation

in clear skies beneath cloud, enhancing water vapor

absorption. SPARTACUS with explicit entrapment

leads to around 2Wm22 greater atmospheric absorp-

tion than Tripleclouds, on average, which is twice the

3D effect in the Monte Carlo simulations. This is re-

lated to the presence of a handful of outliers among the

SPARTACUS simulations (shown by red dots in

Fig. 8c); indeed, if we were to look at the median rather

than the mean of the 65 cases then it would suggest

instead that SPARTACUS tends to underestimate the

3D effect on atmospheric absorption.

To investigate the factors that influence the nature of

3D radiative transfer in individual cases, and the fi-

delity with which they are captured by SPARTACUS,

we analyze the radiation fields for the four contrasting

GEM scenes depicted in Fig. 9. Vertical profiles of

the four main inputs to SPARTACUS are shown in

Figs. 10a–d. Atlantic case 6 consists of cumulus clouds

with some vertical development; the small effective

cloud scale of S ’ 1 km, and hence large cloud-side

area, leads to significant shortwave side illumination,

with Fig. 10e showing a 7Wm22 increase in the re-

flectance of the scene at u0 5 758 (a cooling effect). The
dependence on u0 is well captured by SPARTACUS,

including the change in sign to a 7Wm22 warming at

u0 5 08, or a 29% change to CRE (see the caption of

Fig. 10 for the total CRE values for overhead sun), but

the similarity between the various entrapment config-

urations highlights that in this case the 3D effect for

high sun is mainly due to downward escape.

The three remaining scenes, by contrast, appear to be

dominated by entrapment. Atlantic case 14 contains

deep frontal cloud with considerable small-scale struc-

ture. The zero-entrapment simulation in Fig. 10f shows

the significant cooling effect of side illumination, but the

explicit-entrapment simulation shows that this is over-

whelmed by entrapment and indeed the net warming by

3D effects is up to 39Wm22 (a 28% change to CRE).

FIG. 7. (a)–(c) Comparison of TOA shortwave CRE between reference ICA calculations using the Monte Carlo (MC) model on the

horizontal axis and Tripleclouds (the SPARTACUS control) on the vertical axis for each of the 65 GEM scenes at three different solar

zenith angles of 208, 508, and 808, respectively. (d)–(f) Corresponding comparison of the 3D radiative effect, that is, the difference in CRE

between 3D and 1D calculations. The SPARTACUS calculations use explicit entrapment with an overhang factor of z5 0, also shown by

the red lines in Fig. 8. Each panel also states the mean of the MC calculations, and the bias and RMSE of the SPARTACUS/Tripleclouds

calculations with respect to MC.
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A key factor is the large vertical extent of the cloud,

which means that radiation passing down through the

gaps in the clouds can travel a large distance horizontally

before being reflected back up to its original level, in-

creasing the trapping. Atlantic case 32 contains much

more homogeneous and overcast boundary layer

cloud. The zero-entrapment simulation has a 3D radi-

ative effect of less than 1Wm22, confirming that cloud-

side effects are weak. With entrapment included, the

3D effect is a warming of up to 6–7Wm22, with good

agreement between SPARTACUS and Monte Carlo.

In absolute terms this effect is significant, but this scene

is the most reflective of the four and in relative terms it

is only a21% change to CRE. Additional Tripleclouds

and SPARTACUS calculations in which the in-cloud

heterogeneity is removed (i.e., setting FSD5 0) lead to

the 3D effect almost entirely disappearing, which sug-

gest that it is due to trapping associated with cloud

heterogeneity, similar to one of the mechanisms pro-

posed by Várnai and Davies (1999). Finally, Pacific

case 25 consists of remnants of deep convection in-

cluding anvils with S ’ 10 km. Again the entrapment

mechanism appears to dominate.

7. Conclusions

Cloud scenes have varied and complex structures,

and consequently it can be very challenging to understand

FIG. 8. Difference between simulations with and without 3D effects in (a) TOACRE, (b) surface CRE, and (c) atmospheric absorption.

The thick black and red lines show the average of the 65 GEM scenes for the Monte Carlo model and SPARTACUS in its preferred

configuration of explicit entrapmentwith z5 0. The box plots represent the correspondingmedian and interquartile range of the 65 scenes,

with thewhiskers representing the 5th and 95th percentiles. The other thick lines show averages of different SPARTACUS configurations.

FIG. 9. Three-dimensional visualizations of four contrasting GEM scenes, where the grid axes are marked in kilometers. The results of

3D radiation calculations on these scenes are shown in Fig. 10.
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the magnitude and even sign of the differences between

radiation calculations with and without horizontal trans-

port. The simplest mechanism to understand shortwave

3D radiative transfer is side illumination, which enhances

cloud reflectance. This has led many previous studies to

focus on cloud types with a relatively large cloud-side

area such as cumulus (Benner and Evans 2001; Pincus

et al. 2005) and aircraft contrails (Gounou and Hogan

2007). However, Barker et al. (2015) analyzed a much

more varied and representative set of cloud fields and

found that shortwave 3D transport tends to reduce the

reflectance of clouds overall and hence has a warming

effect on the Earth system. In this paper we propose the

mechanism of entrapment to explain this behavior. En-

trapment is similar to one of the mechanisms suggested

byVárnai andDavies (1999) for single-layer cloud scenes,

but an important insight is that it need not involve trans-

port through cloud sides. It tends to be strongest in deep,

multilayer scenes, which are common in reality but have

tended to be ignored in previous case studies, presumably

due to them being regarded as too complex to interpret.

We have described modifications to the shortwave

SPARTACUS solver ofHogan et al. (2016) to incorporate

an explicit calculation of entrapment, making use of the

effective cloud scale variable already provided as input to

SPARTACUS. This involves a novel method to estimate

the mean horizontal distance traveled by reflected radia-

tion, something that could be useful in other contexts, for

example in determining when the radiation scheme of a

cloud-resolving model ought to represent lateral exchange

of radiation between grid boxes. We have also found it

necessary to explicitly represent the fractal dimension of

cloud perimeters.

Evaluation against Monte Carlo calculations on 65

contrasting scenes from a cloud-resolving model reveals

the new SPARTACUS scheme to be capable of pre-

dicting the ‘‘3D effect,’’ that is, the difference between

cloud radiative effect computed with and without hori-

zontal radiative transport, with a TOA bias of no more

than 0.3Wm22 for all solar zenith angles, and skill in

predicting the dependence of the 3D effect on solar

zenith angle in individual scenes. On average, 3D radi-

ative effects tend to make these scenes less reflective

(similar to the findings of Barker et al. 2015), implying

that entrapment is a more important mechanism than

side illumination. However, this result is highly dependent

FIG. 10. (a)–(d) The four main cloud geometry parameters used by SPARTACUS for the four GEM scenes shown in Fig. 9, where

cloud fraction in gray varies between 0 and 1 across the horizontal axis, and the cloud and heterogeneity scales are defined by (29) and

(32). (e)–(h) The corresponding calculations of the difference in TOA shortwave CRE between 3D and 1D calculations, where the black

lines showMonteCarlo results and the colored lines show various configurations of SPARTACUS. For reference, the overhead-sunCREs

for the four scenes according to the 3D Monte Carlo model were 279, 2476, 2832, and 2184Wm22, respectively.
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on the realism of the clouds simulated by the cloud-

resolving model; if real clouds were smaller, on average,

than those used here then the side-illumination mecha-

nism would be relatively more important.

The modified SPARTACUS is now an option in the

ecRad radiation scheme (Hogan and Bozzo 2018) used

in the ECMWF model. Hogan and Bozzo (2018) re-

ported the original SPARTACUS with maximum en-

trapment to be 3.5 times slower than Tripleclouds, and

we find that explicit entrapment increases this to around

4.5. While too costly to use operationally, it is fast

enough to use for research purposes. The next step will

be to use this validated tool to estimate the global impact

of 3D radiative transfer, not just in the shortwave but

also in the longwave (Schäfer et al. 2016).
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APPENDIX A

Improving Tripleclouds for Very Heterogeneous
Scenes

SPARTACUS can be thought of as a 3D extension of

the 1D Tripleclouds solver of Shonk and Hogan (2008),

so before evaluating SPARTACUS against 3D Monte

Carlo calculations we need to be sure that Tripleclouds

agrees well with the corresponding ICA calculations.

Tripleclouds takes as input a profile of fractional stan-

dard deviation (FSD), which is the standard deviation of

in-cloud water content or extinction coefficient divided

by the in-cloud mean value. Tripleclouds divides the

cloud in each layer into two regions (denoted b and c) of

different extinction coefficient. Shonk andHogan (2008)

reported that for FSD up to 2, predicted irradiances

agreed best with ICA if the two cloudy regions had equal

area, region b used the 16th percentile of the full ex-

tinction distribution, and the extinction of region c was

chosen so as to conserve the layer-mean extinction. The

implementation of Tripleclouds in ecRad (Hogan and

Bozzo 2018) includes the option to represent either a

lognormal distribution of optical depth, in which case

the ratio of the 16th percentile to the in-cloud mean is

given approximately by (44) of Hogan et al. (2016), or a

gamma distribution (e.g., Barker et al. 1996) for which

this ratio is approximated by

rb 5 exp(2FSD2FSD2/22FSD3/4). (A1)

Conservation of mean extinction coefficient requires the

ratio of the extinction of region c to the in-cloudmean to

be rc 5 22 rb.

Comparison of Tripleclouds to ICA calculations on

the scenes described in section 6 revealed the gamma

distribution to perform best, but even then Tripleclouds

tended to overestimate scene reflectance for the more

heterogeneous scenes, some of which have FSD values

up to 4. In Fig. A1a we have repeated the analysis of

Shonk and Hogan (2008) but for a gamma rather than a

lognormal distribution, and considered larger values of

FSD. A substantial albedo overestimate is apparent for

FSD . 2. The problem arises because for large FSD,

rb tends to 0 and rc to 2. Since the two cloudy regions

have equal area, the actual fractional standard deviation of

the Tripleclouds representation of the in-cloud extinction

distribution tends to 1, which may be much less than the

FSD of the gamma distribution being approximated.

The solution we propose to overcome this problem is

twofold. First, a new rb is defined with a lower limit of

0.025:

rbnew 5 0:975rb 1 0:025: (A2)

Second, for large values of FSD we increase the frac-

tional area of region b and correspondingly reduce that

of region c: for FSD in the range 1.5–3.75, the fraction of

the cloudy area occupied by region b increases linearly

from 0.5 to 0.9, while outside this range it is capped at 0.5

or 0.9. The extinction of region c is still chosen to con-

serve the layer-mean value. Figure A1b shows that these

changes virtually eliminate the albedo bias up to an FSD

of 4. This solution has been implemented in both the

Tripleclouds and SPARTACUS solvers of ecRad, and is

used in section 6.

APPENDIX B

List of Symbols

The following list includes symbols used in more than

one equation in sections 3–5, and ‘‘PP’’ indicates a var-

iable from section 4a where a plane-parallel atmosphere

has been assumed.

Aabove i21/2 Diffuse albedo of entire atmosphere and

surface below interface i2 1/2, with ma-

trix elements configured for regions in

the layer above the interface (region

i 2 1)

Ai21/2 Diffuse albedo of entire atmosphere and

surface below interface i2 1/2 (PP)

ck Fraction of layer occupied by region k
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Dabove i21/2 Same as Aabove i21/2, but for direct radiation

Di21/2 Direct albedo of entire atmosphere and

surface below interface i2 1/2 (PP)

Ei Fraction of direct radiation penetrating

layer i without being scattered (PP)

f kl Rate at which radiation passes from sub

region k to l, per unit increase in hori-

zontal distance traveled

Lkl Length of interface between regions k and l

normalized by the area of the domain

L̂kl Effective normalized interface length, ac

counting for the fractal nature of clouds

Lj
i21/2 Matrix expressing how much radiation

entering region j of layer i from the top

and subsequently reflected back up, is

exchanged between the various regions

in layer i 2 1

Ri Diffuse reflectance of layer i (PP)

s Vector of downwelling direct irradiances in

each region at a particular height

S2
i Reflectance of layer i to direct radiation (PP)

S1
i Fraction of direct radiation that penetrates

layer i and is scattered on the way (PP)

S, Shet Effective cloud scale, cloud heterogeneity

scale

Ti Transmittance of layer i to diffuse

radiation (PP)

u Vector of upwelling irradiances in each

region at a particular height

Ui21/2 Upward overlap matrix expressing how

upwelling irradiances in each region just

below interface i2 1/2 are transported

into the regions just above

v Vector of downwelling diffuse irradiances

in each region at a particular height

Vi21/2 Downward overlap matrix expressing how

downwelling irradiances in each region

just above interface i2 1/2 are transported

into the regions just below

w j
i21/2 Vector expressing the fraction of radiation

in region j of layer i that is beneath each

region of layer i 2 1

xi21/2 Mean horizontal distance traveled by re

flected diffuse radiation below interface

i2 1/2 (PP)

x̂i Mean horizontal distance traveled by diffuse

radiation reflected by layer i (PP)

yi21/2 Mean horizontal distance traveled by re

flected direct radiation below interface

i2 1/2 (PP)

FIG.A1. Albedo bias of the Triplecloudsmethod for a gamma distribution of cloud optical depths with increasing

fractional standard deviation indicated on the vertical axis: (a) equal-area cloudy regions with the optical depth of

the first cloudy region given by the 16th percentile of the gamma distribution and (b) the new method in which the

area of the two cloudy regions can be different. Following Shonk and Hogan (2008), this analysis approximates the

relationship between albedo a and optical depth d as a5 0:21 0:525d/(d1 3:5).
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ŷi Mean horizontal distance traveled by direct

radiation reflected by layer i (PP)

G Matrix expressing the rates of radiation

exchange between the subregions of a

region

Dxi Horizontal distance traveled by diffuse

radiation passing through layer i

Dyi Horizontal distance traveled by direct

radiation passing through layer i

Dzi Thickness of layer i

z Overhang factor

u0 Solar zenith angle

REFERENCES

Barker, H. W., and J. A. Davies, 1992: Solar radiative fluxes for

broken cloud fields above reflecting surfaces. J. Atmos.

Sci., 49, 749–761, https://doi.org/10.1175/1520-0469(1992)

049,0749:SRFFBC.2.0.CO;2.

——, B. A. Wielicki, and L. Parker, 1996: A parameterization for

computing grid-averaged solar fluxes for inhomogeneous

marine boundary layer clouds. Part II: Validation using sat-

ellite data. J. Atmos. Sci., 53, 2304–2316, https://doi.org/

10.1175/1520-0469(1996)053,2304:APFCGA.2.0.CO;2.

——, R. K. Goldstein, and D. E. Stevens, 2003: Monte Carlo sim-

ulation of solar reflectances for cloudy atmospheres. J. Atmos.

Sci., 60, 1881–1894, https://doi.org/10.1175/1520-0469(2003)

060,1881:MCSOSR.2.0.CO;2.

——, J. N. S. Cole, J. Li, B. Yi, and P. Yang, 2015: Estimation of

errors in two-stream approximations of the solar radiative

transfer equation for cloudy-sky conditions. J. Atmos. Sci., 72,

4053–4074, https://doi.org/10.1175/JAS-D-15-0033.1.

——, ——, ——, and K. von Salzen, 2016: A parametrization of

3-D subgrid-scale clouds for conventional GCMs: Assessment

using A-Train satellite data and solar radiative transfer char-

acteristics. J. Adv. Model. Earth Syst., 8, 566–597, https://

doi.org/10.1002/2015MS000601.

Benner, T. C., and K. F. Evans, 2001: Three-dimensional solar

radiative transfer in small tropical cumulus fields derived from

high-resolution imagery. J. Geophys. Res., 106, 14 975–14 984,

https://doi.org/10.1029/2001JD900158.

Brown, A. R., and Coauthors, 2002: Large-eddy simulation of the

diurnal cycle of shallow cumulus convection over land.Quart.

J. Roy. Meteor. Soc., 128, 1075–1093, https://doi.org/10.1256/

003590002320373210.

Cahalan, R. F., and J. H. Joseph, 1989: Fractal statistics of cloud

fields. Mon. Wea. Rev., 117, 261–272, https://doi.org/10.1175/

1520-0493(1989)117,0261:FSOCF.2.0.CO;2.

Di Giuseppe, F., and A. M. Tompkins, 2015: Generalizing cloud

overlap treatment to include the effect of wind shear. J. Atmos.

Sci., 72, 2865–2876, https://doi.org/10.1175/JAS-D-14-0277.1.

Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new

radiation code: 1. Choosing a configuration for a large scale

model. Quart. J. Roy. Meteor. Soc., 122, 689–719, https://

doi.org/10.1002/qj.49712253107.

Girard, C., and Coauthors, 2014: Staggered vertical discretization

of the Canadian Environmental Multiscale (GEM) model

using a coordinate of the log-hydrostatic-pressure type. Mon.

Wea. Rev., 142, 1183–1196, https://doi.org/10.1175/MWR-D-

13-00255.1.

Gotoh, K., and Y. Fujii, 1998: A fractal dimensional analysis on the

cloud shape parameters of cumulus over land. J. Appl. Me-

teor., 37, 1283–1292, https://doi.org/10.1175/1520-0450(1998)

037,1283:AFDAOT.2.0.CO;2.

Gounou, A., and R. J. Hogan, 2007: A sensitivity study of the effect

of horizontal photon transport on the radiative forcing of

contrails. J. Atmos. Sci., 64, 1706–1716, https://doi.org/10.1175/

JAS3915.1.

Hapke, B., D.DiMucci, R. Nelson, andW. Smythe, 1996: The cause

of the hot spot in vegetation canopies in soils: Shadow-hiding

versus coherent backscatter.Remote Sens. Environ., 58, 63–68,

https://doi.org/10.1016/0034-4257(95)00257-X.

Hill, P. G., C. J. Morcrette, and I. A. Boutle, 2015: A regime-

dependent parametrization of subgrid-scale cloud water con-

tent variability. Quart. J. Roy. Meteor. Soc., 141, 1975–1986,

https://doi.org/10.1002/qj.2506.

Hogan, R. J., and A. Battaglia, 2008: Fast lidar and radar multiple-

scattering models. Part II: Wide-angle scattering using the

time-dependent two-stream approximation. J. Atmos. Sci., 65,

3636–3651, https://doi.org/10.1175/2008JAS2643.1.

——, and J. K. P. Shonk, 2013: Incorporating the effects of 3D

radiative transfer in the presence of clouds into two-stream

multilayer radiation schemes. J. Atmos. Sci., 70, 708–724,

https://doi.org/10.1175/JAS-D-12-041.1.

——, and A. Bozzo, 2018: A flexible and efficient radiation scheme

for the ECMWF model. J. Adv. Model. Earth Syst., 10, 1990–

2008, https://doi.org/10.1029/2018MS001364.

——, S. A. K. Schäfer, C. Klinger, J.-C. Chiu, and B. Mayer, 2016:

Representing 3D cloud-radiation effects in two-stream

schemes: 2. Matrix formulation and broadband evaluation.

J. Geophys. Res. Atmos., 121, 8583–8599, https://doi.org/

10.1002/2016JD024875.

——, T. Quaife, and R. Braghiere, 2018: Fast matrix treatment of

3-D radiative transfer in vegetation canopies: SPARTACUS-

Vegetation 1.1. Geosci. Model Dev., 11, 339–350, https://

doi.org/10.5194/gmd-11-339-2018.

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A.

Clough, and W. D. Collins, 2008: Radiative forcing by long-

lived greenhouse gases: Calculations with the AER radiative

transfer models. J. Geophys. Res., 113, D13103, https://doi.org/

10.1029/2008JD009944.

Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the

absorption of solar radiation in the Earth’s atmosphere.

J. Atmos. Sci., 31, 118–133, https://doi.org/10.1175/1520-

0469(1974)031,0118:APFTAO.2.0.CO;2.

Leroyer, S., S. Bélair, S. Husain, and J. Mailhot, 2014: Sub-

kilometer numerical weather prediction in an urban coastal

area: A case study over the Vancouver metropolitan area.

J. Appl. Meteor. Climatol., 53, 1433–1453, https://doi.org/

10.1175/JAMC-D-13-0202.1.

Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk mi-

crophysics parameterization. Part II: A proposed three-

moment closure and scheme description. J. Atmos. Sci., 62,

3065–3081, https://doi.org/10.1175/JAS3535.1.

Pincus, R., H.W. Barker, and J.-J. Morcrette, 2003: A fast, flexible,

approximate technique for computing radiative transfer in

inhomogeneous cloud fields. J. Geophys. Res., 108, 4376,

https://doi.org/10.1029/2002JD003322.

——, C. Hannay, and K. F. Evans, 2005: The accuracy of de-

termining three-dimensional radiative transfer effects in

cumulus clouds using ground-based profiling instruments.

J. Atmos. Sci., 62, 2284–2293, https://doi.org/10.1175/

JAS3464.1.

2140 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 76

Unauthenticated | Downloaded 11/21/24 08:38 AM UTC

https://doi.org/10.1175/1520-0469(1992)049<0749:SRFFBC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1992)049<0749:SRFFBC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<2304:APFCGA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<2304:APFCGA>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)060<1881:MCSOSR>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)060<1881:MCSOSR>2.0.CO;2
https://doi.org/10.1175/JAS-D-15-0033.1
https://doi.org/10.1002/2015MS000601
https://doi.org/10.1002/2015MS000601
https://doi.org/10.1029/2001JD900158
https://doi.org/10.1256/003590002320373210
https://doi.org/10.1256/003590002320373210
https://doi.org/10.1175/1520-0493(1989)117<0261:FSOCF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1989)117<0261:FSOCF>2.0.CO;2
https://doi.org/10.1175/JAS-D-14-0277.1
https://doi.org/10.1002/qj.49712253107
https://doi.org/10.1002/qj.49712253107
https://doi.org/10.1175/MWR-D-13-00255.1
https://doi.org/10.1175/MWR-D-13-00255.1
https://doi.org/10.1175/1520-0450(1998)037<1283:AFDAOT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1998)037<1283:AFDAOT>2.0.CO;2
https://doi.org/10.1175/JAS3915.1
https://doi.org/10.1175/JAS3915.1
https://doi.org/10.1016/0034-4257(95)00257-X
https://doi.org/10.1002/qj.2506
https://doi.org/10.1175/2008JAS2643.1
https://doi.org/10.1175/JAS-D-12-041.1
https://doi.org/10.1029/2018MS001364
https://doi.org/10.1002/2016JD024875
https://doi.org/10.1002/2016JD024875
https://doi.org/10.5194/gmd-11-339-2018
https://doi.org/10.5194/gmd-11-339-2018
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2
https://doi.org/10.1175/JAMC-D-13-0202.1
https://doi.org/10.1175/JAMC-D-13-0202.1
https://doi.org/10.1175/JAS3535.1
https://doi.org/10.1029/2002JD003322
https://doi.org/10.1175/JAS3464.1
https://doi.org/10.1175/JAS3464.1


Schäfer, S. A. K., R. J. Hogan, C. Klinger, and B. Mayer, 2016:

Representing 3D effects in two-stream radiation schemes:

1. Longwave considerations and effective cloud edge

length. J. Geophys. Res. Atmos., 121, 8567–8582, https://
doi.org/10.1002/2016JD024876.

Shonk, J. K. P., and R. J. Hogan, 2008: Tripleclouds: An effi-

cient method for representing horizontal cloud inhomo-

geneity in 1D radiation schemes by using three regions at

each height. J. Climate, 21, 2352–2370, https://doi.org/

10.1175/2007JCLI1940.1.

——, ——, J. M. Edwards, and G. G. Mace, 2010: Effect of im-

proving representation of horizontal and vertical cloud

structure on the Earth’s global radiation budget. Part I:

Review and parametrization. Quart. J. Roy. Meteor. Soc.,

136, 1191–1204, https://doi.org/10.1002/qj.647.
Várnai, T., and R. Davies, 1999: Effects of cloud heterogeneities

on shortwave radiation: Comparison of cloud-top variability

and internal heterogeneity. J. Atmos. Sci., 56, 4206–4224,

https://doi.org/10.1175/1520-0469(1999)056,4206:EOCHOS.
2.0.CO;2.

Welch, R. M., and B. A. Wielicki, 1984: Stratocumulus cloud field

reflected fluxes: The effect of cloud shape. J. Atmos. Sci., 41,
3085–3103, https://doi.org/10.1175/1520-0469(1984)041,3085:

SCFRFT.2.0.CO;2.

Wissmeier, U., R. Buras, and B. Mayer, 2013: paNTICA: A fast 3D

radiative transfer scheme to calculate surface solar irradiance

for NWP and LES models. J. Appl. Meteor. Climatol., 52,

1698–1715, https://doi.org/10.1175/JAMC-D-12-0227.1.

Wood, R., and P. R. Field, 2011: The distribution of cloud hori-

zontal sizes. J. Climate, 24, 4800–4816, https://doi.org/10.1175/
2011JCLI4056.1.

Yi, B., P. Yang, B. A. Baum, T. L’Ecuyer, L. Oreopoulos, E. J.

Mlawer, A. J. Heymsfield, and K.-K. Liou, 2013: Influence of

ice particle surface roughening on the global cloud radiative

effect. J. Atmos. Sci., 70, 2794–2807, https://doi.org/10.1175/

JAS-D-13-020.1.

JULY 2019 HOGAN ET AL . 2141

Unauthenticated | Downloaded 11/21/24 08:38 AM UTC

https://doi.org/10.1002/2016JD024876
https://doi.org/10.1002/2016JD024876
https://doi.org/10.1175/2007JCLI1940.1
https://doi.org/10.1175/2007JCLI1940.1
https://doi.org/10.1002/qj.647
https://doi.org/10.1175/1520-0469(1999)056<4206:EOCHOS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056<4206:EOCHOS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1984)041<3085:SCFRFT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1984)041<3085:SCFRFT>2.0.CO;2
https://doi.org/10.1175/JAMC-D-12-0227.1
https://doi.org/10.1175/2011JCLI4056.1
https://doi.org/10.1175/2011JCLI4056.1
https://doi.org/10.1175/JAS-D-13-020.1
https://doi.org/10.1175/JAS-D-13-020.1

