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Abstract
Alarmins and damage‐associated molecular patterns (DAMPs) are powerful inflam-
matory mediators, capable of initiating and maintaining sterile inflammation during 
acute or chronic tissue injury. Recent evidence suggests that alarmins/DAMPs may 
also trigger tissue regeneration and repair, suggesting a potential contribution to tis-
sue fibrogenesis. High mobility group B1 (HMGB1), a bona fide alarmin/DAMP, 
may be released passively by necrotic cells or actively secreted by innate immune 
cells. Macrophages can release large amounts of HMGB1 and play a key role in 
wound healing and regeneration processes. Here, we hypothesized that macrophages 
may be a key source of HMGB1 and thereby contribute to wound healing and fibro-
genesis. Surprisingly, cell‐specific deletion approaches, demonstrated that mac-
rophage‐derived HMGB1 is not involved in tissue fibrogenesis in multiple organs 
with different underlying pathologies. Compared to control HMGB1Flox mice, mice 
with macrophage‐specific HMGB1 deletion (HMGB1ΔMac) do not display any modi-
fication of fibrogenesis in the liver after CCL4 or thioacetamide treatment and bile 
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1 |  INTRODUCTION

Sterile inflammation and regeneration are two biological 
processes that are tightly related to wound healing, but if 
uncontrolled could lead to scarring and fibrotic responses, 
contributing to the long term to organ loss of function.1,2 
Among cells involved in the modulation of these crucial 
functions, several types of macrophages play a central role 
in the clearance of dying/dead cells, and promote tissue re-
pair by secreting a broad variety of molecules, such as cyto-
kines, chemokines, or alarmins,1-4 that either maintain the 
inflammation process and/or activate tissue myofibroblasts 
in charge of synthesizing extracellular matrix components 
to promote tissue architecture restoration.2,5 Globally in 
the context of wound healing, immunostimulatory mole-
cules originating either from macrophages (alarmins) or 
dying cells (such as damage‐associated molecular patterns 
[DAMPs]) have been characterized as both pro‐inflamma-
tory but also as pro‐regenerating agents involved in progen-
itor cell proliferation and differentiation,1,3,4 thus potentially 
involve during chronic tissue injury, in inflammation and 
fibrosis processes which are now supported by several re-
ports in the heart and lungs.6,7 Among pro‐inflammatory 
and pro‐repair agents secreted by macrophages, high mo-
bility group box 1 (HMGB1), also known for its alarmin 
and DAMP properties, has drawn a lot of attention as it is 
considered as an attractive target to treat acute and chronic 
inflammatory diseases8-10 and is also envisioned as a rele-
vant biomarker of tissue injury11,12 in humans. HMGB1 can 
reach the extracellular space, once released by necrotic epi-
thelial cells and exerts its DAMPs function or when secreted 
by activated innate immune cells, where it mediates potent 
inflammatory effects.10,13 Macrophages and other innate im-
mune cells actively secrete HMGB1 upon an inflammatory 
challenge (interleukin 1β [IL1β], lipopolysaccharide [LPS], 
or tumor necrosis factor α [TNFα]) in vitro and in vivo14-17 
supporting a possible role of macrophage‐derived HMGB1 
in tissue scarring. Recent publications documented a criti-
cal role of extracellular HMGB1 in regeneration and tissue 
repair processes in bone, muscle, or liver18-21 suggesting a 

potential role in tissue fibrogenesis. Moreover, HMGB1 has 
been proposed to play a direct role in promoting fibrosis in 
the liver, lungs, kidney, and heart through different path-
ways such as inflammation or myofibroblast activation.22-24 
However, in liver fibrosis, hepatocyte‐derived HMGB1 is 
likely not involved in fibrogenesis as shown in recent stud-
ies,19,20 excluding any potential role of HMGB1 as a DAMP 
in liver scarring progression implying that non‐parenchymal 
cells, such as macrophages, could be the cellular source of 
HMGB1 during tissue fibrosis development.

To determine whether macrophage‐derived HMGB1 has 
a determinant role in fibrosis progression, we evaluated the 
impact of a macrophage‐specific HMGB1 genetic deletion 
on the liver, kidney, and cardiac fibrosis. Using very well‐
established fibrosis models in three different organs, our 
anatomo‐pathological explorations revealed that unexpect-
edly, macrophage‐derived HMGB1 has no major role in fi-
brogenesis in mice.

2 |  MATERIALS AND METHODS

2.1 | Animals
All experimental procedures were performed in accord-
ance with institutional guidelines for animal studies and 
are approved by the Ethics Committee (US006 CREFRE 
‐ CEEA‐122, 1710480320). Myeloid‐specific deletion of 
HMGB1 (HMGB1ΔMac) were generated crossing LysM‐
CRE+/− (a generous gift from a gift from Dr Pierre Gourdy, 
Toulouse France) with HMGB1Flox mice (a generous gift 
from Dr Robert F. Schwabe, Columbia University, NY), lit-
termates LysM‐CRE−/− HMGB1Flox/Flox (HMGB1Flox) were 
used as control. After randomization, 8 to 12‐week‐old male 
mice were used in this study. Mice were housed under specific 
pathogen‐free conditions at 20‐22°C and 50%‐60% humidity, 
with a 12 hour light/dark cycle and free access to water and 
food. For thermoneutrality studies, mice were housed at 30°C 
in a Noroit A‐Box (Noroit, Bouaye, France). Before running 
any experiments, mice were usually placed at 30°C for a 2‐
week period of acclimation. At the time of sacrifice, tissues 

duct ligation; in the kidney following unilateral ureter obstruction; and in the heart 
after transverse aortic constriction. Of note, even under thermoneutral housing, 
known to exacerbate inflammation and fibrosis features, HMGB1ΔMac mice do not 
show impairment of fibrogenesis. In conclusion, our study clearly establishes that 
macrophage‐derived HMGB1 does not contribute to tissue repair and fibrogenesis.
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and organs were dissected, weighted and directly snap frozen 
in liquid nitrogen and stored at −80°C for gene expression and 
western blot analyses. For histological analysis, tissues were 
fixed in 10% formalin (Sigma‐Aldrich, St. Louis, MO, USA).

2.2 | Genotyping
DNA extraction and polymerase chain reaction 
(PCR) were performed using Kapa mouse genotyp-
ing kit (Kapa Biosystems, Wilmington, MA) accord-
ing to the manufacturer protocol. PCR reactions were 
performed using following primers: LysM‐CRE: 5′‐
ACCGGTCGATGCAACGAGTGATGAG‐3′ (forward) 
and 5′‐AGTGCGTTCGAACGCTAGAGC‐3′ (reverse), 
LoxP1 5′‐TAAGAGCTGGGTAAACTTTAGGTG‐3′ (for-
ward) and 5′‐GAAACAGACAAGCTTCAAACTGCT‐3′ 
(reverse), LoxP2 5′‐TGACAGGATACCCAGTGTTAGG 
GG‐3′ (forward) and 5′‐CCAGAGTTTAATCCACAGAA 
GAAA‐3′ (reverse). Deletion PCR was performed using 
LoxP1 forward and LoxP2 reverse primers.

2.3 | Murine models of fibrosis
Liver chemically induced fibrosis was triggered by intraperi-
toneal injection (ip) of carbon tetrachloride (CCl4, 02671, 
Sigma‐Aldrich, St. Louis, MO, USA; 0.5 μL/g in corn oil, at 
a ratio of 1:3) for eight injections or by ip of thioacetamide 
(TAA, 163678, Sigma‐Aldrich, St. Louis, MO, USA) dis-
solved in NaCl 0.9% for 6 weeks (three injections per week) at 
increasing concentrations (first dose: 50 mg/kg, second dose: 
100 mg/kg, third to sixth dose: 200 mg/kg, all following doses: 
300 mg/kg) as previously described.25 Cholestatic‐induce liver 
fibrosis was induced in 8‐week‐old male mice by ligating the 
common bile duct for 21 days, as described.26 Kidney fibrosis 
was induced by unilateral ureteral obstruction (UUO) on 8‐
week‐old mice. UUO was performed by ligating the ureter just 
below the renal pelvis for 7 days, as previously described.27 
Transverse aortic constriction (TAC) was performed on 8 
to 12‐week‐old male mice for 28 days. After anesthesia, the 
transverse aorta was isolated and TAC was performed by tying 
a waxed braided silk suture, to induce pressure overload and 
cardiac hypertrophy as previously described.28 For all surgical 
procedures, sham‐operated animals underwent the same op-
eration except the suturing of inner organs.

2.4 | Cardiac function assessment
The left ventricle dimensions were determined using echocardi-
ography and (Time/Motion) mode acquisition from the paraster-
nal short axis view at the level of the papillary muscles using a 
Vivid7 echograph and a 14 MHz transducer (i3L, GE Healthcare, 
Little Chalfont, UK). Images were transferred and analyzed of-
fline with EchoPAC (GEHealthcare, Little Chalfont, UK).

2.5 | Hepatic stellate cell isolation
Hepatic stellate cells were isolated from mice as described 
previously.25 Briefly, after cannulation of the inferior vena 
cava, the portal vein was cut, allowing retrograde step‐wise 
perfusion with pronase (Sigma‐Aldrich, St. Louis, MO, 
USA) and collagenase (Roche Diagnostics, Risch‐Rotkreuz, 
Switzerland) containing solutions, and subsequent 9.7% 
Nycodenz gradient centrifugation. Purity was assessed by 
vitamin A autofluorescence under a fluorescent micro-
scope (Olympus 71IX). After 5 hours in dulbecco modified 
eagle medium (DMEM) 10% fetal calf serum (FCS), 1% 
Antibiotic‐Antimycotic (Gibco, Grand Island, NY, United 
States) and 0.1% Gentamicin (Gibco, Grand Island, NY, 
United States), stellate cells have been cultured with 1/1.74 
diluted bone marrow‐derived macrophages (BMDM) condi-
tioned media in DMEM 0.1% FBS for 24 hours.

2.6 | Plasma analysis
Aspartate transaminase (AST) and alanine transami-
nase (ALT) levels were determined in plasma by the 
Phenotypage‐CREFRE facility using a Pentra400 biochemi-
cal analyzer (HORIBA Medical, Kyoto, Japan). HMGB1 
circulating levels were assessed by ELISA (ST51011; IBL 
International, Hamburg, Germany) according to the manu-
facturer guidelines.

2.7 | Bone marrow‐derived macrophages
Bone marrow cells were obtained by flushing the cavity 
of femurs and tibia of HMGB1Flox and HMGB1ΔMac mice 
(8 week old) in sterile DMEM F12 supplemented with 
10% FCS and 1% penicillin/streptomycin (Sigma‐Aldrich, 
St. Louis, MO, USA). Cells were filtered on a 42 μm cell‐
strainer, and after erythrocyte lysis, harvested cells are plated 
and treated with 10 ng/mL recombinant murine macrophage 
colony stimulating factor (M‐CSF) (PeproTech, Inc, Rocky 
Hill, NJ, USA) for 7 days. The medium was renewed every 
2 days with DMEM 10% FCS with 10 ng/mL M‐CSF. 
Then, BMDM were treated with 10 ng/mL of LPS (055:B5, 
Sigma‐Aldrich, St. Louis, MO, USA) for 1 hour and 30 min-
utes, then washed two times to remove LPS using phosphate 
buffered saline (PBS), and conditioned media were gener-
ated in DMEM 0.1% FCS during 48 hours.

2.8 | Immunocytofluorescence
Bone marrow‐derived macrophages were fixed after 7 days of 
differentiation, with 10% formalin. Cells were permeabilized 
with 0.1% Triton and stained with a primary antibody against 
HMGB1 (1:200, ab18256; Abcam, Cambridge, UK) and Alexa 
Fluor 546‐conjugated secondary antibody (1:800, A11010; Life 
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Technologies, Carlsbad, CA, USA). Nuclei were stained with 
DAPI (Sigma‐Aldrich, St. Louis, MO, USA). Confocal micros-
copy was performed on an LSM 780 confocal laser microscope 
(Zeiss, Oberkochen, Germany) using a 63× oil immersion lens.

2.9 | Stromal vascular fraction preparation
Mice were anesthetized with pentobarbital (50 mg/kg), then 
perfused with PBS to wash out blood from tissues. Mice were 
euthanized and tissues were harvested. Liver and lungs were 
digested with collagenase D (2.5 mg/mL; Roche Diagnostics, 
Risch‐Rotkreuz, Switzerland) under agitation for 20 minutes at 
37°C. After centrifugation at 600 g for 10 minutes, stromal cells 
were separated in 30% percoll (GE Healthcare, 17‐0891‐01, 
Upsale, Sweden). After centrifugation at 600 g for 15 minutes, 
the pellet containing stromal cells were incubated with erythro-
cyte lysis buffer for 10 minutes followed by another centrifu-
gation (600 g, 10 minutes) and resuspension in PBS.

2.10 | Western blotting
Tissues were homogenized in RIPA buffer (TRIS 20 mmol/L, 
NaCl 150 mmol/L, EDTA 1 mmol/L, EGTA 1 mmol/L, 
TRITON X100 1%, Tetra‐Sodium Pyrophosphate 2.5 mmol/L, 
B‐Glycerophosphate 1 mmol/L, Sodium orthovanadate 
1 mmol/L) containing proteases and phosphatases inhibitors 
(Sigma‐Aldrich, St. Louis, MO, USA) using Precellys sample 
lyzer (Bertin Technologies, Montigny le Bretonneux, France). 
Western blots were performed using standard procedures 
using antibodies against HMGB1 (1:1000, ab18256; Abcam, 
Cambridge, UK) and α‐smooth muscle actin (α‐SMA) (1:1000, 
ab5694; Abcam, Cambridge, UK). GAPDH (1:2000, ab181602; 
Abcam, Cambridge, UK), was used as a loading control.

2.11 | Gene expression
RNA was extracted using GenJET RNA purification kit 
(ThermoScientific, Waltham, MA, USA) and DNAse treat-
ment (Qiagen, Hilden, Germany). After dosage with Xpose 

(Trinean, Gentbrugge, Belgium), reverse transcription was 
performed using High Capacity cDNA reverse transcrip-
tion kit (Applied Biosystems, Foster City, CA, USA) ac-
cording to the manufacturer protocol. Real‐Time‐qPCR 
(RT‐qPCR) was performed with indicated primer pairs 
gene expression is normalized using Rplp0 reference gene 
expression. Primer sequences were as follows: Acta2, 5′‐
GTCCCAGACATCAGGGAGTAA‐3′ (forward) and 5′‐
TCGGATACTTCAGCGTCAGGA‐3′ (reverse), Col1a1, 
5′‐TGTGTGCGATGACGTGCAAT‐3′ (forward) and 
5′‐GGGTCCCTCGACTCCTACA‐3′ (reverse), Col3a1, 
5′‐AAGGCGAATTCAAGGCTGAA‐3′ (forward) and 5′‐
TGTGTTTAGTACAGCCATCCTCTAGAA‐3′ (reverse), 
Emr1, 5′‐TGACAACCAGACGGCTTGTG‐3′ (forward) 
and 5′‐GCAGGCGAGGAAAAGATAGTGT‐3′ (reverse), 
Rplp0, 5′‐AGTCGGAGGAATCAGATGACGAT‐3′ (for-
ward) and 5′‐GGCTGACTTGGTTGCTTTGG‐3′ (reverse), 
Tnfα 5′‐TGGGACAGTGACCTGGACTGT‐3′ (forward) 
and 5′‐TTCGGAAAGCCCATTTGAGT‐3′ (reverse), Il6, 
5′‐GCCCACCAAGAACGATAGTCA‐3′ (forward) and 5′‐
CAAGAAGGCAACTGGATGGAA‐3′ (reverse), Il1β, 5′‐
CAACCAACAAGTGATATTCTCGATG‐3′ (forward) and 
5′‐GATCCACACTCTCCAGCTGCA‐3′ (reverse), Ccn2, 
5′‐GGCATCTCCACCCGAGTTAC‐3′ (forward) and 5′‐
GATTTTAGGTGTCCGGATGCA‐3′ (reverse). For Col1a1, 
Col1a2, and Acta2 mRNA expression displayed in Figure 
S4, RNA were extracted using High Pure RNA Isolation 
kit (Roche Diagnostics, Risch‐Rotkreuz, Switzerland) and 
qPCR analysis was conducted using Taqman‐primer probes 
(Applied Biosystems, Foster City, CA, USA).

2.12 | Histology and immunohistochemistry
10% formalin‐fixed samples were paraffin embedded and sliced 
at 5 µm. For picrosirius red staining, sections were dipped for 
1.5 hours in picric acid containing 1% direct red 80 (365548; 
Sigma‐Aldrich, St. Louis, MO, USA) and 0.5% fast green (F7258; 
Sigma‐Aldrich, St. Louis, MO, USA). Immunohistochemistry 
was performed using anti‐mouse α‐SMA (ab5694; Abcam, 

FIGURE 1  High mobility group B1 (HMGB1) regulation during fibrosis and validation and characterization of macrophage‐specific deletion of 
HMGB1. Representative immunoblotting against HMGB1 in oil (n = 9) or CCL4‐treated (n = 15) liver using glyceraldehyde‐3‐phosphate dehydrogenase 
(GAPDH) protein as a loading control (A). Representative immunoblotting against HMGB1 in liver extracts from sham (n = 9) or BDL (n = 4) animals 
using GAPDH protein as a loading control (B). Peritoneal macrophages isolated from HMGB1Flox (n = 3) and HMGB1ΔMac mice (n = 3) were analyzed 
by immunoblotting against HMGB1 and GAPDH (C). Cells from liver stromal vascular fraction, isolated from HMGB1ΔMac and HMGB1Flox mice, 
were analyzed by immunoblotting against HMGB1 and GAPDH (D). Cells from lung stromal vascular fraction, isolated from HMGB1Flox (n = 3) and 
HMGB1ΔMac mice (n = 3), were analyzed by immunoblotting against HMGB1 and GAPDH (E). Bone marrow‐derived macrophages (BMDM) isolated 
from HMGB1Flox (n = 3) and HMGB1ΔMac mice (n = 3) were analyzed by immunoblotting against HMGB1 and GAPDH (higher panel). BMDM 
isolated from HMGB1Flox and HMGB1ΔMac mice were analyzed by immunofluorescence confocal microscopy to detect HMGB1 (red) while nuclei 
were stained with DAPI (blue) (lower panel). Scale bar: 5 μm (F). Liver extracts of HMGB1Flox (n = 9) and HMGB1ΔMac (n = 6) mice were analyzed by 
western blotting directed against α‐smooth muscle actin (α‐SMA) (G). Representative images of liver fibrosis determined by picosirius Red staining from 
HMGB1Flox (n = 9) and HMGB1ΔMac (n = 6) mice. Scale bar: 500 μm (H). Representative images of myofibroblast activation determined by α‐SMA 
immunostaining from HMGB1Flox (n = 9) and HMGB1ΔMac (n = 6) mice liver sections. Scale bar: 500 μm (I)
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Cambridge, UK) followed by a biotinylated goat anti‐rat anti-
body (BA‐9400; Vector Laboratories, Inc, Burlingame, CA) and 
streptavidin‐HRP (DY998; R&D systems, Minneapolis, MN) 
with 3‐3'‐Diaminobenzidine (DAB) as substrate (11718096001; 
Sigma‐Aldrich, St. Louis, MO, USA). Stained slides were 
scanned using a Nanozoomer scanner (Hamamatsu Photonics, 
Hamamatsu City, Japan). Quantification was performed using 
Photoshop (Adobe Systems, San Jose, CA, USA) software.

2.13 | Statistics
Analyses are performed using GraphPad Prism 7 (GraphPad 
Software, La Jolla, CA, USA). All data are expressed as 
mean ± SEM, except otherwise indicated, statistical signifi-
cance was determined by t test, Mann‐Whitney or two‐way 
ANOVA tests. P values <0.05 were considered significant 
(*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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3 |  RESULTS

3.1 | Liver HMGB1 levels are upregulated 
during liver fibrosis
As HMGB1 is thought to be a determinant player in fibrogen-
esis, we first characterized the expression levels of HMGB1 
during fibrosis progression in the liver. Using two models of 
chemically (CCL4) or surgically (BDL)‐induced liver fibro-
sis, we show that HMGB1 protein levels were strongly up-
regulated in fibrotic livers compared to control livers (Figure 
1A,B) suggesting a possible role of HMGB1 during fibro-
genesis. To determine whether macrophage‐derived HMGB1 
could be responsible for fibrosis progression, we generated 
mice specifically deleted for Hmgb1 gene in macrophages 
(HMGB1ΔMac) by crossing LysM‐Cre29 and HMGB1‐floxed 
transgenic mice.30 Besides getting a clear recombination 
in the Hmgb1 gene locus (Figure S1A,B), western blotting 
analysis demonstrated an efficient deletion of HMGB1, in 
vivo in naïve peritoneum macrophages or in resident mac-
rophages from stromal vascular fraction of liver or lungs with 
88%, 55%, and 98% of deletion, respectively (Figure 1C‐E) 
and in vitro in BMDM with 99% deletion using immunob-
lotting or immunocytofluorescence (Figure 1F). Upon basal 
conditions, compared to HMGB1Flox, HMGB1ΔMac mice did 
not show any detectable differences of fibrosis features with 
comparable protein levels of α‐SMA protein as measured 
by immunoblotting (Figure 1G) and normal picrosirius red 
staining surrounding liver vessels and staining of vascular 
smooth muscle cells (Figure 1H,I).

3.2 | HMGB1ΔMac mice do not have 
an increased liver fibrogenesis after 
CCL4 treatment
To determine whether macrophage‐derived HMGB1 is play-
ing a key role in fibrogenesis, we first studied liver fibrosis. In 
this purpose, HMGB1Flox and HMGB1ΔMac mice were treated 
with eight i.p injections of carbon tetrachloride (CCL4) and 
were euthanized 2 days after the last injection. Hmgb1 gene 
deletion has been carefully monitored using deletion PCR 
on whole liver DNA extract from both HMGB1Flox and 
HMGB1ΔMac mice (Figure S1C). Following CCL4 treatment, 

HMGB1Flox mice exhibited a significant accumulation of col-
lagen compared to oil‐treated mice as shown by picrosirius 
red staining (Figure 2A), but no differences were detected 
between HMGB1Flox and HMGB1ΔMac mice. Similarly, 
HMGB1Flox and HMGB1ΔMac mice displayed comparable 
levels of α‐SMA immunostaining (Figure 2B). Moreover, 
there were no differences in α‐SMA protein levels (Figure 
2C) as well as similar mRNA expression levels of fibrogenic 
and pro‐inflammatory markers such as Acta2, Ccn2, Col1a1, 
Col3a1, Tnfα, and Il‐6 except for Emr1 and Il‐1β which 
were upregulated in HMGB1ΔMac mice (Figure 2D; Figure 
S2A). Finally, while CCL4 treatment induced a pronounced 
liver injury compared to oil‐treated mice, there were no dif-
ferences in serum ALT or AST levels between HMGB1Flox 
and HMGB1ΔMac mice (Figure 2E). To rule out a possible 
overpowering effect of 8× CCL4 on HMGB1 potential fi-
brogenic effect, we used a less severe experimental setup, 
where HMGB1Flox and HMGB1ΔMac mice were subjected to 
only four injections of CCL4. Even on a shorter CCL4 model, 
HMGB1Flox and HMGB1ΔMac mice displayed the same extent 
of fibrosis in the liver (Figures S2F & S3A‐E), suggesting 
that macrophage‐derived HMGB1 does neither contribute to 
early fibrogenic events during fibrosis progression.

3.3 | HMGB1ΔMac mice do not display 
increased TAA‐induced liver fibrosis
To confirm these findings in a second well‐established model 
of chemical‐induced liver fibrogenesis, we next challenged 
mice using TAA. HMGB1ΔMac and HMGB1Flox mice were 
treated with 18 i.p injections of TAA. As performed on 
CCL4 model, Hmgb1 gene deletion was carefully monitored 
using deletion PCR on whole liver DNA extract from both 
HMGB1Flox and HMGB1ΔMac mice (Figure S1D). Similar to 
our results obtained in the CCL4 model, we did not detect 
any differences between HMGB1Flox and HMGB1ΔMac mice. 
After TAA treatment, HMGB1Flox mice exhibited a pro-
nounced deposition of fibrillar collagen and α‐SMA staining 
compared to saline‐treated mice but the increase in fibrotic 
markers was identical between HMGB1Flox and HMGB1ΔMac 

mice (Figure 3A,B). In addition, α‐SMA (Figure 3C) pro-
tein levels, as well as mRNA expression of classical fibrosis 

F I G U R E  2  Macrophage‐specific deletion of high mobility group B1 (HMGB1) does not modify liver fibrogenesis after CCL4 treatment. 
Representative pictures of picrosirius red staining of HMGB1Flox mice and HMGB1ΔMac of liver section and quantification of positive pixels per 
liver section. Scale bar: 500 μm (A). Representative pictures of immunohistochemical staining with an antibody against α‐smooth muscle actin 
(α‐SMA) and quantification of positive pixels per liver section. Scale bar: 500 μm (B). Liver extracts from HMGB1Flox mice and HMGB1ΔMac were 
analyzed by western blotting directed against α‐SMA (C). Liver mRNA expression levels of classical fibrosis markers were detected using real‐time 
RT‐PCR, the dotted line indicates the baseline (D). Hepatic injury in HMGB1Flox mice and HMGB1ΔMac was determined by alanine transaminase 
(ALT) (left panel) and aspartate transaminase (AST) (right panel) levels (E). Statistical analysis was performed using Mann‐Whitney test. Data 
are expressed as means ± SEM. n = 9 in HMGB1Flox‐oil group; n = 6 in HMGB1ΔMac‐oil group; n = 15 in HMGB1Flox‐CCL4 group; n = 12 in 
HMGB1ΔMac‐CCL4 group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs oil/CCL4
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and inflammatory markers such as Acta2, Ccn2, Col1a1, 
Col3a1, Emr1, and Il‐6 except for Tnfα, Il‐1β which were 
upregulated in HMGB1ΔMac mice (Figure 3D; Figure S2B) 
and serum levels of liver injury markers (Figure 3E), were 
comparable in HMGB1Flox and HMGB1ΔMac mice subjected 
to TAA treatment.

3.4 | HMGB1ΔMac mice do not have an 
increased hepatic fibrogenesis after BDL
To corroborate these findings, we used a complementary 
model of cholestatic liver injury, bile duct ligation (BDL). 
As done previously, Hmgb1 gene deletion was carefully 
monitored using deletion PCR on whole liver DNA extracted 
from both HMGB1Flox and HMGB1ΔMac mice (Figure S1E). 
Twenty‐one days after BDL, HMGB1Flox mice displayed 
severe hepatic fibrosis as shown by picrosirius red staining 
but again no differences were detected between HMGB1Flox 
and HMGB1ΔMac mice (Figure 4A). Expression of α‐SMA 
was also increased in HMGB1Flox mice assessed by immuno-
histochemistry and immunoblotting but with no differences 
compared to HMGB1ΔMac mice (Figure 4B,C). mRNA ex-
pression of fibrogenic markers Acta2, Ccn2, Col1a1, Col3a1, 
Acta2, Col1a1, Col3a1, and inflammatory markers Emr1 
and Il‐6, except for Tnfα, Il‐1β which were upregulated in 
HMGB1ΔMac mice (Figure 4D; Figure S2C) as well as serum 
ALT and AST levels, were also similar in HMGB1Flox and 
HMGB1ΔMac mice (Figure 4D,E).

As several studies suggested a direct effect of HMGB1 
on hepatic stellate cells (HSCs) in the development of liver 
fibrosis,31,32 we sought to further study the role macrophage 
derived‐HMGB1. Because (a) macrophages have a key role 
in promoting HSC activation, HSC survival, and liver fi-
brosis,26,33 (b) LPS promotes liver fibrosis34 and (c) macro-
phages can release HMGB1 following LPS stimulation, we 
used LPS‐stimulated conditioned media from HMGB1Flox 
and HMGB1ΔMac macrophages to determine the role of mac-
rophage‐derived HMGB1 in HSC activation. Of note, LPS 
strongly increased HMGB1 release over time, with a peak at 
48 hours, which was almost completely blocked in HMGB1‐
deleted macrophages (Figure S4A). Forty‐eight hour‐condi-
tioned medium (CM) from LPS‐stimulated BMDM increased 
the activation of HSC compared to CM from unstimulated 

BMDM as shown by mRNA expression fibrogenic markers 
Col1a1, Col1a2, and Acta2 (Figure S4B‐D). However, HSC 
activation did not differ between CM prepared from bone 
marrow isolated from HMGB1Flox and HMGB1ΔMac mice, 
demonstrating that the pro‐fibrotic effects of BMDM are in-
dependent of HMGB1 (Figure S4B‐D).

3.5 | Macrophage‐derived HMGB1 
does not play a crucial role in UUO‐induced 
kidney fibrosis
As the results collected on three relevant injury models un-
expectedly showed no effects of HMGB1 deletion on liver 
fibrosis, we next tested whether the role of macrophage 
HMGB1 in kidney fibrosis, where fibrotic mechanisms are 
slightly different compared to the liver. For this purpose, we 
employed a classical model of tubulointerstitial fibrosis in-
duced by UUO.27 As performed in the liver, Hmgb1 gene de-
letion was carefully monitored using deletion PCR on whole 
kidney DNA extract from both HMGB1Flox and HMGB1ΔMac 
mice (Figure S1F). Seven days after UUO, HMGB1Flox mice 
displayed typical fibrosis features with a drastic deposition 
of fibrillar collagen and myofibroblasts activation (Figure 
5A,B) compared to sham‐operated mice, as determined by 
immunohistochemistry. But similar to the liver fibrogenesis 
models, no differences were detected between HMGB1Flox 
and HMGB1ΔMac mice in UUO‐induced kidney fibrosis pro-
gression. Moreover, α‐SMA protein levels (Figure 5C), as 
well as mRNA expression of fibrogenic and inflammatory 
genes Acta2, Ccn2, Col1a1, Col3a1, Emr1, Il‐1β, and Il‐6 
were comparable between HMGB1Flox and HMGB1ΔMac 

mice in the harvested kidney following UUO, except for 
Tnfα which was upregulated in HMGB1ΔMac mice (Figure 
5D; Figure S2D).

3.6 | HMGB1ΔMac mice do not display an 
increased cardiac fibrosis after TAC

In addition to the liver and kidney, we finally assessed 
the impact of HMGB1 deletion in macrophages on fibrosis 
progression in the heart as it has been reported recently that 
HMGB1 could play a key role in cardiac fibrosis,22 using TAC 
as a well‐established and clinically relevant model of cardiac 

F I G U R E  3  Macrophage‐specific deletion of high mobility group B1 (HMGB1) does not modify liver fibrogenesis after TAA treatment. 
Representative pictures of picrosirius red staining of HMGB1Flox mice and HMGB1ΔMac of liver section and quantification of positive pixels per 
liver section. Scale bar: 500 μm (A). Representative pictures of immunohistochemical staining with an antibody against α‐smooth muscle actin 
(α‐SMA) and quantification of positive pixels per liver section. Scale bar: 500 μm (B). Liver extracts from HMGB1Flox mice and HMGB1ΔMac were 
analyzed by western blotting directed against α‐SMA (C). Liver mRNA expression levels of classical fibrosis markers were detected using real‐time 
RT‐PCR, the dotted line indicates the baseline (D). Hepatic injury in HMGB1Flox mice and HMGB1ΔMac was determined by alanine transaminase 
(ALT) (left panel) and aspartate transaminase (AST) (right panel) levels (E). Statistical analysis was performed with Mann‐Whitney test. Data are 
expressed as means ± SEM. n = 6 in HMGB1Flox‐saline group; n = 6 in HMGB1ΔMac‐saline group; n = 7 in HMGB1Flox‐TAA group; n = 11 in 
HMGB1ΔMac‐TAA group. *P < 0.05, **P < 0.01, ***P < 0.001 vs saline/TAA
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fibrosis.35 As performed previously, Hmgb1 gene deletion 
was carefully monitored using deletion PCR on whole heart 
DNA extract from both HMGB1Flox and HMGB1ΔMac mice 
(Figure S1G). Twenty‐eight days after TAC, HMGB1Flox 

mice displayed pronounced impairments of cardiac function 
such as left ventricular end‐systolic and ‐diastolic dimen-
sion (Table1) compared to sham‐operated animals, accom-
panied with a strong collagen deposition (Figure 6A). But 
once again, HMGB1Flox and HMGB1ΔMac mice subjected to 
TAC showed a similar extent of functional alterations and 
extracellular matrix accumulation determined by picrosirius 
red staining or α‐SMA immunohistochemistry and immuno-
blotting (Table 1; Figure 6A‐C). In addition, similar levels 
of mRNA expression of classical fibrogenic markers such as 
Acta2, Ccn2, Col1a1, and Col3a1 mRNA, and inflammatory 
marker Emr1, Tnfα, and Il‐1b (except for Il‐6 which was up-
regulated in HMGB1ΔMac mice) mRNA were detected using 
real‐time qPCR in operated HMGB1Flox and HMGB1ΔMac 

mice (Figure 6D; Figure S2E).

3.7 | Thermoneutral housing 
has no incidence on fibrosis progression 
in HMGB1ΔMac mice compared to 
HMGB1Flox mice
In the recent years, several striking studies have demon-
strated that for rodent models, as opposed to thermoneutral 
housing (30‐32°C), room temperature housing (20‐22°C) 
initiates and maintains a chronic cold stress that dramati-
cally impairs physiology and immune response (eg, to in-
flammatory stimulus).36-38 As a severe alteration of immune 
responses has pronounced consequences on fibrosis progres-
sion,39,40 we hypothesized that thermoneutral housing, rather 
than room temperature housing performed so far, might be a 
more relevant context to evaluate the impact of macrophage‐
derived HMGB1 deletion on fibrosis development. For this 
purpose, after 2 weeks of acclimation at 30°C, HMGB1Flox 
and HMGB1ΔMac mice were subjected to two fibrosis mod-
els: BDL‐induced liver fibrosis and UUO‐induced kidney fi-
brosis. As done at room temperature conditions, Hmgb1 gene 
deletion has been carefully monitored using deletion PCR on 
whole liver or kidney DNA extract from both HMGB1Flox and 
HMGB1ΔMac mice (Figure 1H‐J). As expected, we found that 

compared to room temperature, thermoneutral housing af-
fected global mouse physiology, and remarkably HMGB1 cir-
culating levels were higher in mice housed at 30°C compare to 
20°C housing conditions (Figure 5A). In addition, serum ALT 
and AST levels (Figure 5B‐C) and liver inflammation and fi-
brosis (Figure 5D‐E) were increased when mice are housed at 
30°C compared to 20°C suggesting a higher hepatocyte turno-
ver at 30°C. In both models and similar to what we observed 
at room temperature, HMGB1Flox mice exhibited a severe 
deposition of collagen and myofibroblast activation com-
pared to sham‐operated animals (Figure 7A‐D). But similar 
to room temperature housing, HMGB1Flox, and HMGB1ΔMac 
mice displayed the same extent of fibrosis progression in-
duced by either BDL or UUO procedures determined by pic-
rosirius red staining and immuno‐detection (Figure 7A‐D). 
Expression of α‐SMA using immunoblotting and mRNA ex-
pression of fibrogenesis markers as Acta2, Ccn2, Col1a1, and 
Col3a1 displayed similar levels after BDL and UUO between 
HMGB1Flox and HMGB1ΔMac mice (Figure 7E‐H, Figure 
S2G‐H). Interestingly, most of the inflammatory markers 
Emr1, Tnfα, Il‐1b, and Il‐6 were decreased in HMGB1ΔMac 
compared to HMGB1Flox mice (Figure 7E‐H; Figure S2G,H) 
although no functional incidences have been emphasized. 
Finally, compared to sham‐operated mice, BDL induced a 
pronounced liver injury (Figure S6A,B) but there were no dif-
ferences in serum ALT or AST levels between HMGB1Flox 
and HMGB1ΔMac mice. In parallel, BDL and UUO procedures 
provoked a marked increase of circulating levels of HMGB1 
(Figure S6C), albeit not significant, compared to sham‐op-
erated animals, and operated HMGB1Flox and HMGB1ΔMac 
mice displayed comparable amount of serum HMGB1 levels 
(Figure S6C). Altogether these results suggest that, despite a 
stronger level of fibrosis compared to room temperature con-
ditions, thermoneutral housing did not reveal any role of mac-
rophage‐specific HMGB1 in fibrosis progression. Therefore, 
conclusions drawn from room temperature experiments were 
fully confirmed under thermoneutral conditions.

4 |  DISCUSSION

In the expanding field of sterile inflammation biology, many 
open questions remain in regard to the effects of alarmin/DAMPs 

F I G U R E  4  Macrophage‐specific deletion of high mobility group B1 (HMGB1) does not alter liver fibrogenesis after BDL. Representative 
pictures of picrosirius red staining of HMGB1Flox mice and HMGB1ΔMac of liver section and quantification of positive pixels per liver section. 
Scale bar: 500 μm (A). Representative pictures of immunohistochemical staining with an antibody against α‐smooth muscle actin (α‐SMA) and 
quantification of positive pixels per liver section. Scale bar: 500 μm (B). Liver extracts from HMGB1Flox mice and HMGB1ΔMac were analyzed by 
western blotting directed against α‐SMA (C). Liver mRNA expression levels of classical fibrosis markers were detected using real‐time RT‐PCR, 
the dotted line indicates the baseline (D). Hepatic injury in HMGB1Flox mice and HMGB1ΔMac was determined by alanine transaminase (ALT) (left 
panel) and aspartate transaminase (AST) (right panel) levels (E). Statistical analysis was performed with Mann‐Whitney test. Data are expressed as 
means ± SEM. n = 6 in HMGB1Flox‐sham group; n = 6 in HMGB1ΔMac‐sham group; n = 4 in HMGB1Flox‐BDL group; n = 7 in HMGB1ΔMac‐BDL 
group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs sham/BDL
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in acute inflammation, tissue regeneration, scarring, and fi-
brosis. Here, using conditional deletion of HMGB1 protein 
specifically in macrophages, we clearly demonstrate that 
macrophage‐derived HMGB1 protein does not play a key 
role in fibrogenesis in three different organs using a wide 
range of well‐established models in vivo. In contrast, a recent 
study by Ge et  al, using macrophage‐specific genetic abla-
tion (LysM‐CRE) or neutralization strategies demonstrates 
that macrophage and hepatocyte‐derived HMGB1 rather par-
ticipates in liver fibrosis.41 Employing cell‐specific knockout 
of HMGB1 in macrophages in vivo, our report questions the 
contribution of a prototypical DAMP or pro‐inflammatory 
cytokine HMGB1 in the pathogenesis of fibrosis. The oppo-
site conclusions of both studies might be due to the use of 
different mice. While Ge et  al used a conditional deletion 
of HMGB1 exons 2‐3, we employed mice expressing floxed 
exons 2‐4. It is hard to fully explain this obvious discrepancy 
but the presence of the exon 4 in the study of Ge et  al may 
be a possible caveat as bioinformatics analysis tend to dem-
onstrate the presence of an active open reading frame (ORF) 
even after CRE recombination, suggesting that exons 4 and 
5 are still possibly translated and biologically active. These 
two different floxing strategies resulted in opposite results 

on HMGB1 and mitochondrial quality control and autophagy 
mechanism in vivo,30,42 but similar outcomes in liver cancer 
progression19,43 without really finding a rational molecular 
explanation.44-46 Further studies will be needed to decipher 
why both transgenic lines lead to similar conclusions in cer-
tain contexts and to opposite conclusions in specific settings.

The present work is clearly questioning the potential role 
of macrophage‐derived HMGB1 during fibrosis and its rele-
vance in vivo. Numerous reports have been published in re-
cent years, showing in vitro that innate immune cells might 
actively secrete HMGB1, after an inflammatory challenge 
such as LPS. In vivo, few reports suggesting that macro-
phage‐derived HMGB1 may be involved in acute inflamma-
tion diseases like in the colon or lungs.47,48 But most of these 
in vivo studies used pharmacological agents such as ethyl‐
pyruvate that has been identified as a potential blocker of 
the nuclear to cytoplasmic translocation47 typically observed 
in macrophages cell lines. In the meantime, other publica-
tions have demonstrated that epithelial cells might be capable 
of an active secretion of HMGB1 such as adipocytes, skin 
 fibroblasts, or colon cancer cells49-51 implying that ethyl‐ 
pyruvate may also prevent active secretion in these  epithelial 
cells and would then not be specific of macrophages, 

F I G U R E  5  Macrophage‐specific deletion of high mobility group B1 (HMGB1) does not play a role in UUO‐induced kidney fibrosis. 
Representative pictures of picrosirius red staining of HMGB1Flox mice and HMGB1ΔMac of kidney section and quantification of positive pixels per 
kidney section. Scale bar: 500 μm (A). Representative pictures of immunohistochemical staining with an antibody against α‐smooth muscle actin 
(α‐SMA) and quantification of positive pixels per kidney section. Scale bar: 500 μm (B). Kidney extracts from HMGB1Flox and HMGB1ΔMac mice 
were analyzed by western blotting directed against α‐SMA (C). Kidney mRNA expression levels of classical fibrosis markers were detected using 
real‐time RT‐PCR, the dotted line indicates the baseline (D). Statistical analysis was performed with Mann‐Whitney test. Data are expressed as 
means ± SEM. n = 3 in HMGB1Flox‐sham group; n = 3 in HMGB1ΔMac‐sham group; n = 12 in HMGB1Flox‐UUO group; n = 10 in HMGB1ΔMac‐
UUO group. *P < 0.05, **P < 0.01, ***P < 0.001 vs sham/UUO

T A B L E  1  Echocardiographic and anatomical analysis as a function of transverse aortic constriction (TAC). Statistical analysis was 
performed with a two‐way ANOVA analysis

Time post surgery 4 wk

Genotype HMGB1Flox Sham HMGB1ΔMac Sham HMGB1Flox + TAC HMGB1ΔMac + TAC

Echocardiographic parameters

LVEDD (mm) 3.443 ± 0.12 3.435 ± 0.11 4.018 ± 0.15** 3.846 ± 0.12**

LVESD (mm) 1.955 ± 0.09 1.98 ± 0.12 2.604 ± 0.22* 2.39 ± 0.16*

FS (%) 43.25 ± 1.93 42.25 ± 1.79 36.25 ± 3.29 38.36 ± 2.37

Anatomical parameters

BW (g) 31.94 ± 0.54 30.49 ± 1.25 27.29 ± 0.90** 28.73 ± 0.69**

Heart weight (mg) 144.3 ± 7.14 152 ± 3.51 169.5 ± 11.21* 174.3 ± 6.38*

HW/TL (mg/mm) 78.27 ± 3.81 82.51 ± 1.70 97.8 ± 6.22** 98.6 ± 3.64**

Data are expressed as means ± SEM. n = 4 in HMGB1Flox/sham group; n = 4 in HMGB1ΔMac/sham group; n = 8 in HMGB1Flox/TAC group; n = 13 in HMGB1ΔMac/
TAC group.
BW, body weight; FS, fractional shortening; HMGB1, high mobility group B1; HW/TL, heart weight to tíbia length ratio; LVEDD, left ventricular end‐diastolic dimen-
sion; LVESD, left ventricular end‐systolic dimension; TAC, transverse aortic constriction.
*P < 0.05. 
**P < 0.01 vs sham/TAC. 
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undermining conclusions drawn from previous in vivo works 
using ethyl pyruvate. In this context, the in vivo role of mac-
rophage‐derived HMGB1 is still elusive, and only cell‐spe-
cific deletion strategy might help to decipher precisely which 
processes are driven by macrophage‐derived HMGB1. To the 
best of our knowledge, only a few studies have been already 
published using a genetic model of macrophage‐specific in-
validation of HMGB1. Among them, the work from Huebener 
et al demonstrated using two different CRE lines (MX1‐Cre 
and VAV1‐Cre) targeting bone marrow‐derived cells, that 
circulating levels of HMGB1 were severely blunted after 
an LPS challenge in vivo,52 meanwhile Yanai et  al, using 
LysM‐Cre deleter targeting more specifically macrophages, 
showed no changes in HMGB1 circulating levels after the 
same LPS stimulation.53 Taken together these results tend 
to suggest that macrophages might be marginally involved, 
as opposed to in vitro studies, in active secretion process of 
HMGB1 after an LPS challenge questioning the relevance 
of HMGB1 active secretion by macrophages in vivo. It is 
possible that LPS is substantially different from stimuli en-
countered by macrophages during fibrogenic challenges such 
as CCL4 injections. But while we noted that HMGB1 circu-
lating and liver levels were increased during all fibrogenic 
models used in our study, we found no changes in HMGB1 
levels in plasma (Figure S7A‐E), but a slight decreases in 
fibrotic livers (Figure S7F,G) harvested from HMGB1ΔMac 

compared to HMGB1Flox mice supporting one more time a 
marginal contribution of macrophage‐derived HMGB1 in the 
whole circulating pool but a rather more significant role at 
the tissue level in the liver after CCL4 injection or following 
BDL (Figure S7F,G).

Despite being the best possible approach in vivo, HMGB1 
cell‐specific deletion may also have potential caveats that 
need to be considered. As now well established, HMGB1 is 
within the cell, an abundant nuclear factor conserved among 
all eukaryotic cells, which regulates chromatin conformation 
and gene regulation and once outside the cells, a danger signal 
promoting inflammatory reactions. By deleting HMGB1 in 
the macrophages, we de facto blunted both intra and extracel-
lular pools of HMGB1. And in their report, Yanai et  al stated 
that HMGB1 macrophage‐specific deletion may have altered 
intracellular homeostasis and notably autophagy pathways,53 
which would have serious consequences on macrophages 
physiology, polarizing them toward a pro‐inflammatory 

phenotype with notably a higher capacity to secrete IL1β and 
IL‐18 and promoting eventually macrophage cell death.53 
In this context, we cannot rule out that deletion of Hmgb1 
gene in macrophages may have altered macrophages function 
in our settings. Thus, we could hypothesize that generating 
such confounding factors (modifying macrophage global 
function and survival) could prevent us to properly assess 
the sole HMGB1 extracellular function in vivo and possible 
impact on fibrogenesis. Only sophisticated genetic strategies 
could help to discriminate between the role in macrophages 
of HMGB1 as a nuclear factor in one hand and as a secreted 
factor in the other hand.

Despite unexpected results on macrophage‐derived 
HMGB1 and fibrogenesis, our study does not question 
the overall role of DAMPs in fibrogenesis. Several pub-
lications demonstrated using well‐characterized DAMPs 
receptors, belonging to the pattern recognition receptor 
(PRR) family, that DAMPs and sterile inflammation play-
ers are definitely driving tissue scarring and fibrogenesis. 
Reports addressing potential HMGB1 receptors involve-
ment in fibrogenesis clearly demonstrate that PRRs such 
as toll‐like receptors (TLRs) or receptor for advanced 
glycation end products (RAGE) are causally connected to 
tissue scarring in the lungs, kidney, heart, or liver. TLR4 
knockout mice are protected against fibrogenesis upon 
chemically or surgically induced fibrosis in the liver,34 
heart,54 and lungs,55 TLR2 knockout mice are preserved 
toward cardiac fibrosis,56 and TLR9 has been involved in 
liver fibrosis.57,58 And RAGE has also been connected to 
fibrogenesis in the lungs59,60 and kidneys.61 Thus, there is 
a consistent body of literature demonstrating that PRRs 
such as TLRs or RAGE are involved in fibrogenesis, 
therefore suggesting that DAMPs or other types of ligands 
besides HMGB1, may exert a pro‐fibrotic activity.62 In 
this context, HMGB1 certainly acts as DAMP in certain 
conditions or as an alarmin in other conditions depending 
on the cell source. Considering the complexity of sterile 
inflammation response, with such a variety of ligands 
and receptors, one could hypothesize that initiation of 
an inflammatory or pro‐fibrotic response may depend on 
an unknown threshold of necrosis, type of tissue injury 
combined with micro‐environmental conditions—not yet 
identified—which could affect and influence the channel-
ing toward no response, or inflammatory and/or fibrotic 

F I G U R E  6  Macrophage‐specific deletion of high mobility group B1 (HMGB1) does not modify cardiac fibrogenesis after transverse aortic 
constriction (TAC). Representative pictures of picrosirius red staining of HMGB1Flox mice and HMGB1ΔMac of heart section and quantification 
of positive pixels per heart section. Scale bar: 500 μm (A). Representative pictures of immunohistochemical staining with an antibody against α‐
smooth muscle actin (α‐SMA) and quantification of positive pixels per heart section. Scale bar: 500 μm (B). Heart extracts from HMGB1Flox mice 
and HMGB1ΔMac were analyzed by western blotting directed against α‐SMA (C). Heart mRNA expression levels of classical fibrosis markers were 
detected using real‐time RT‐PCR, the dotted line indicates the baseline (D). Statistical analysis was performed with Mann‐Whitney test. Data are 
expressed as means ± SEM. n = 3 in HMGB1Flox‐sham group; n = 3 in HMGB1ΔMac‐sham group; n = 8 in HMGB1Flox‐TAC group; n = 11 in 
HMGB1ΔMac‐TAC group. *P < 0.05, **P < 0.01, ***P < 0.001 vs sham/TAC
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response. Further in vivo work is needed, using sophis-
ticated genetic tools, to clearly assess how on a molec-
ular level, how nuclear and secreted HMGB1 may drive 

regeneration, inflammation, or fibrosis and to identify 
which cell source is specifically involved in each biolog-
ical pathway.
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