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Imputation of label-free quantitative mass
spectrometry-based proteomics data using
self-supervised deep learning

Henry Webel 1,2, Lili Niu 1, Annelaura Bach Nielsen1, Marie Locard-Paulet 1,3,
Matthias Mann 1,4, Lars Juhl Jensen1 & Simon Rasmussen 1,2,5

Imputation techniques providemeans to replacemissingmeasurementswith a
value and are used in almost all downstream analysis of mass spectrometry
(MS) based proteomics data using label-free quantification (LFQ). Here we
demonstrate how collaborative filtering, denoising autoencoders, and varia-
tional autoencoders can impute missing values in the context of LFQ at dif-
ferent levels. We applied our method, proteomics imputation modeling mass
spectrometry (PIMMS), to an alcohol-related liver disease (ALD) cohort with
blood plasma proteomics data available for 358 individuals. Removing 20
percent of the intensities we were able to recover 15 out of 17 significant
abundant protein groups using PIMMS-VAE imputations. When analyzing the
full datasetwe identified 30 additional proteins (+13.2%) that were significantly
differentially abundant across disease stages compared to no imputation and
found that some of these were predictive of ALD progression in machine
learning models. We, therefore, suggest the use of deep learning approaches
for imputing missing values in MS-based proteomics on larger datasets and
provide workflows for these.

Proteomics is a technology for the identification and quantification of
proteins to answer a broad set of biological questions1 and together
with RNA and DNA sequencing offers a way tomap the composition of
biological systems. It is widely applied across many fields of research
including identification of biomarkers and drug targets for diseases
such as alcoholic liver disease (ALD)2, ovarian cancer3 and Alzheimer’s
disease4. Differentworkflowshave beendeveloped for analysis of body
fluids, cells, frozen tissues and tissue slides, and are rapidly evolving.
Recent technological advancements have enabled proteome analysis
at the single cell or single cell-population level5,6, allowing the selection
of single cells using image recognition7. However, for most approa-
ches, missing values are abundant due to the semi-stochastic nature of
precursor selection for fragmentation and need to be replaced for at

least some parts of the data analysis. Currently, imputation of missing
values in proteomics data usually assumes that the protein abundance
was below the instrument detection limit or the protein was absent. In
general, the community differentiates between missing at random
(MAR) which is assumed to affect all intensities across the dynamic
range, whereas missing not at random (MNAR) becomes more pre-
valent the more the intensity of a peptide approaches the limit of
detection of the instrument. However, not allmissing values are due to
this mechanism, and by assuming the limit of detection as the reason
for missingness will lead to potentially wrong imputations and sub-
sequently to biased statistical results that are limiting the conclusion
from data. A strategy is therefore to combine missing completely at
random (MCAR) and simulated MNAR in comparisons8.
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Various acquisitionmethods have been developed including data-
independent acquisition (DIA), BoxCar and PASEF to alleviate the
“missing value” problem in data-dependent acquisition (DDA)
methods9–11. Advances in informatics solutions have also greatly
improved data analysis of mass spectra acquired by these acquisition
methods and consequently proteome depth and data completeness12.
However, missing value imputation of search results for downstream
analysis remains a recurring task for most applications. The noise in
data from the instrument as well as peptide identification is most
abundant for label-free quantification proteomics in DDA with miss-
ingness ranging from 10-40%13, but for instance, blood plasma mea-
sured using DIA in a study of ALD still contained 37% missing values
across all samples and protein groups before any filtering. Indepen-
dent of the proteomics setup, once data is to be analyzed, the
remaining missing values between samples have to be imputed for
most methods. Therefore, how they are handled will influence the
downstream results.

Several methods have been evaluated for imputation of MS pro-
teomics data with an overview and a benchmark provided in work by
Wang et al., using NAguideR14. Despite an abundance of imputation
methods, an often-used approach to impute data at the protein group
level is to use random draws from a down-shifted normal (RSN) dis-
tribution. The mass spectrometry (MS) signal comes from ions and
most people are interested in the summary of ions through peptide
spectrum matches to groups of proteins. The protein intensities,
stemming from aggregation of the precursor and/or fragment ion
values in MS1 and MS2 scans, are assumed to be log-normally dis-
tributed, i.e. the log transformed intensities are entirely determined by
their mean and variance. In RSN replacements are then drawn using a
normal distribution with a mean shifted towards the lower detection
limit with a reduced variance. This is done on the assumption that the
data is left-censored, i.e. that proteins are missing due to absence or
lower abundance than the instrument detection limit. Following this
line of thought, several studies focus on determining what works best
for different causes ofmissing values using some formof simulation8,13.
Other studies focus their analysis on post-translationalmodifications15,
the best combination of software tools, datasets and imputation
method16, normalization and batch effects correction17 or downstream
analysis18,19. Other methods have been developed to handle specific
missing mechanisms, for instance, random imputation, fixed value
imputation such as limit of detection or x-quantile of feature, model-
based imputation using k-nearest neighbor (KNN), linear models13 or
tree-based models14. These either impute using a global minimum, a
statistic calculated on a single feature or a few features, with the need
to iteratively consider each feature at a time. Finally, approaches such
as DAPAR and Prostar offer several methods for imputing left-
censored data, e.g. the widely used drawing from a normal distribu-
tion around the lower detection limit where the Gaussian mean and
variance are estimated using quantile regression, abbreviated
QRILC8,20,21. Their latest development is Pirat exploiting correlations of
precursors from the same protein group22. MSStats offers end-to-end
statistical analysis. It requires MaxQuant running samples jointly and
providing both precursor as well as protein groups next to grouping
information and does not impute all values.

Most previous work on developingmethods for imputation ofMS
proteomics data focus on small scale setups where they for instance
evaluate two separate groups in three replicates16,23. Other studies
prefer to reduce the number of initial missing values by transferring
identification from one run to the next using e.g. Match Between Run
implemented in MaxQuant or cross-assignment by Proline24,25. Alter-
natively, an established laboratory method to tackle variability in
small-scale setups is to use replicates of samples to have com-
plementary measurements, in order to transfer identifications
between runs26. The specific evaluation strategy varies between the
setup of the data and the missing values simulation approach, but to

our knowledge, no scalable workflows are provided to run the eva-
luation on a new single tabular dataset generating a validation and test
dataset, as well as a generic and flexible approach to imputation.

We turn tomachine learning for imputation of missing intensities
as it offers the possibility to learn from the data itself. Deep Learning
(DL) has been used to improve over existing machine learning models
in a variety of biological data problems27–29. DL has been successfully
applied to predict peptide features such as retention times, collisional
cross-sections and tandem mass spectra, significantly boosting the
peptide identifications and precision of searches of MS-based
proteomics30–34. We use intensities from search results generated
from tools like e.g.MaxQuant or Spectronaut and apply DLmethods to
impute these. We considered three types of models that process the
search results of precursors, peptides or protein groups slightly dif-
ferently. First, we considered a collaborative filtering (CF) approach,
where each feature and each sample is assigned a trainable embed-
ding. Second, we considered an autoencoder with a deterministic
latent representation - a denoising autoencoder (DAE). Third, we
considered a variational autoencoder (VAE) as a generativemodel that
encodes a stochastic latent representation, i.e. a high-dimensional
Gaussian distribution. Although the inputs to all models are intensities
for a feature and sample combination, the training objectives, com-
plexity, and therefore capabilities of the models are different. The CF
and autoencoder objective only focus on reconstruction, whereas the
VAE adds a constraint on the latent representation. Furthermore, the
first two modeling approaches use a mean-squared error (MSE)
reconstruction loss, whereas the VAE uses a probabilistic loss to assess
the reconstruction error.

Here, we use large (N ≈ 450) and smaller (N ≈ 50) MS-based
proteomics datasets of HeLa cell line tryptic lysates acquired on a
singlemachine (Q Executive HF-XOrbitrap) over a period of roughly
two years to evaluate the general performance on repeated mea-
surements of an homogenous biological sample on a medium to
large-scale dataset. We apply three different DL models (CF, DAE,
VAE) which create feature representation holistic for the entire
distribution in a given dataset prior to any normalization. For eva-
luation, we develop a workflow that allows comparison between the
three DL models and 27 approaches (Supplementary Table 1).
Finally, we apply the VAE to a study of ALD patients and identify
30 (+ 13.2%) more significantly differential abundant protein groups
in comparison to no imputation and that additional protein groups
can be leveraged for predicting disease. We name our set of models
and workflows proteomics imputation modeling mass spectro-
metry (PIMMS) and make the workflows, code, and example configs
available at https://github.com/RasmussenLab/pimms. To enable
reproducibility and adaptation to new data and strategies, we share
our Python code along snakemake workflows.

Results
Evaluating self-supervised models for imputation of MS data
We assessed the capability of three unsupervised models for pro-
teomics data imputation. First, we consideredmodeling proteomics
data using CF assigning each sample and each feature an embedding
vector and using their combination to predict intensity values.
Second, we considered a standard autoencoder, training it using a
denoising strategy that has to learn to reconstruct masked values
making it a DAE. Third, we applied a VAE with a stochastic latent
space (Fig. 1a). The two autoencoder architectures used all features
to represent a sample in a low dimensional space, which was used to
reconstruct the original data. In contrast, the CF model had to learn
both a latent embedding space for the samples and features. We
compared these to a heuristic-based approach of median imputa-
tion per feature across samples and 26 other approaches such as
k-nearest neighbors (KNN) or random forest (RF) (Supplementary
Table 1). While the DL methods, KNN and median imputation were
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able to also impute large datasets, nine methods implemented in R
failed to scale to high-dimensional data.

Our development dataset consisted of 564 HeLa runs of one Q
Executive HF-X Orbitrap generated during continuous quality
control of the mass spectrometers35. We initially investigated the
structure of the dataset using the first two principal components
(Fig. 1b), which grouped the samples into two separate clusters.
The median prevalence per protein group, i.e. the median number
of samples where a protein group was detected, was 526 samples
[min: 45, max: 564], and samples had a median of 3768 protein
groups [min: 2170, max: 4185]. We generated another smaller
development dataset using the most recent 50 samples (Fig. 1c) to
test dependence of performance on sample size. Whereas median
imputation per feature across samples did not condition their
imputation on the value of other features in a given sample, our
and other machine learning approaches consider other feature
values. Validation and test data were drawn with 25, 50 or 75 per-
cent MNAR using the procedure laid out in Lazar et al.8 from all
samples in a dataset. This ensures that lower intensities are
represented sufficiently, but also makes training harder due to
additionally removing values from low abundant features with
fewer quantifications.

Imputing precursors, aggregated peptides, and protein
group data
We applied the imputation methods to the development dataset, e.g.
consisting of 564 samples for protein groups using our selection cri-
teria (Supplementary Fig. 1). We ran several configurations using a grid
search tofind thebest configurations using simulatedmissing values in
a validation and test split from all samples (see Methods, Supple-
mentary Data 1, 2). In absolute numbers these were 100,001 for the
protein group, 616,561 aggregated peptides and 661,817 precursors
intensities in the test set for our development dataset of instrument
6070.When investigating the performance of the imputationmethods
we used the mean absolute error (MAE) on the log2 scaled intensities
between predicted and true measured intensity values on our simu-
latedmissing values. Focusingon the bestperformingmodels from the
grid search, we evaluated these in a setup of 25 percent MNAR in the
simulatedmissingdata.We found that theDL approaches had less than
half MAE compared (0.55, 0.54 and 0.58 for CF, DAE and VAE,
respectively) to the median imputation with MAE of 1.24. KNN of
samples across HeLa cell line measurements had a MAE of 0.59 using
the scikit learn implementation and of 0.68 using an R based imple-
mentation using impute36,37. The R based random forest (RF)
imputation38 only completed for the protein groups andhad anMAEof

Fig. 1 | Overview of workflow for downstream analysis tasks and HeLa dataset.
a Single tabular results taken from MS data analysis software (search and quanti-
fication) were used as input for downstream analysis. Here we used MaxQuant for
data dependent acquisition to analyze raw MS data. We compared three different
self-supervisedDL approacheswith 27 othermethods:median imputation andKNN
interpolation exemplified. Green and red not-available (NA) indicate simulated and

real missing values. b Principal component one versus two of 539 selected HeLa
runs for protein groups recordedonone instrument. c Same as (b), based on the 50
runs forming the small development dataset. We used a cutoff of 25% feature
prevalence across samples to be included into the workflow shown in (a). Samples
were filtered in a second step by their completeness of the selected features
(Supplementary Fig. 1).
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0.59 and a Bayesian principal component analysis (BPCA) with 0.53.
Thus, BPCA was slightly better (0.01 MAE) compared to the second-
best model on protein groups however it did not finish for the other
two datasets within 24 h. Overall, when comparing the performance
across levels of data aggregation for the best models (Fig. 2a,c, Sup-
plementary Data 3) we found that the self-supervised models per-
formed similarly to other methods. Across all models, we found the
overall performance to be the worst for the protein-level data, better

for aggregated peptides, and best for precursors. This is in line with
previous results of Lazar and co-workers that showed better perfor-
mance for lower levels of aggregations as it avoids implicit imputations
by a neutral element8. A higher share (25, 50 and 75 percent) of MNAR
simulated missing values was associated with a decreased overall
performance ofmostmethods (SupplementaryData 3). One reason for
this could be that features with fewer observations are oversampled
and the total number of available training data points drops as low as

d)

g)

b)

c)c)c)

a)

e)

f )f )
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four intensities in the training data split. To balance available data for
low abundant features and statistical power in evaluation, we set the
share of MNAR to 25 percent in our evaluations.

Runtime for imputation of protein groups including data loading,
manipulations and training were between 14 s using the minimum and
roughly 8 h for IRM (for the best models in h:min:sec: KNN-IMPUTE:
0:19, KNN: 0:41, VAE: 1:58, DAE: 2:24, CF: 2:28, RF: 1:05:02, BPCA:
6:37:56) using 1CPUandup to 192GBof sharedmemory for the PIMMS
models (Supplementary Data 4). Runtimes of PIMMS models for the
precursor dataset were higher (KNN: 4:17, DAE: 33:08, VAE: 1:35:51 and
CF: 18:23), but could run faster with special hardware (GPUs). Among
themodels with good performance we found that BPCA,MICE-NORM,
SEQKNN and RF did not scale to the high dimensional datasets of
peptides and precursors for the large datasets. IMPSEQ ran into errors
for all larger datasets. In general runtimes varied based on the number
of epochs, mini batch-size, model architecture, patience for early
stopping and the initial random weights. Additionally, the grid search
results showed that the models could be trained without prior nor-
malization and were able to fit the data using many different hyper-
parameter configurations (Supplementary Fig. 2). Reducing the
training sample by roughly a tenth, performance on the smaller
development dataset (N= 50) was comparable to the performance on
the larger development dataset, while runtime reducedby 5 to 15 times
for precursors (Median: 0:23, KNN:0:33, VAE: 1:04, DAE:0:52, CF: 1:06).
On the medium sized HeLa datasets all models completed (Supple-
mentary Data 4) for the protein groups and 26 out of 27 for the pep-
tides and precursors. We found that IMPSEQ39 and BPCA40 performed
best on the 50 homogenous HeLa samples although some with longer
runtimes compared to PIMMS models (e.g. on precursors: IMPSEQ:
1:09, BPAC: 20:44, MICE-NORM: 4:42). For fewer than 50 samples the
PIMMS models can fit the data, but alternatives were better suited
(Supplementary Data 3). In summary, this indicated that on an
unnormalized, intensity varying dataset (Supplementary Fig. 3a) from
a single machine the PIMMS models were able to capture patterns
between detected features to impute values for as few as 50 samples
with competitive performance to other state-of-the-art methods.

Imputation was consistent across a wide range of intensities
We evaluated the performance across the dynamic range of intensities
by binning test intensities by their feature’s training median and
reporting the average error per bin for the best five models. For pro-
tein groups on both development datasets the minimal median
intensity was 23 for protein groups (Fig. 2c, d). The average error for
intensities was roughly twice as large for intensities from theminimum
median intensity bin in comparison to the best performance (Fig. 2e, f).
Interestingly, the worst performance on the large HeLa dataset was
observed for protein groups with the highest observed median

intensity, which for intensities from one protein group had a two to
four times worse MAE than the overall MAE. The relative performance
between the models was consistent across the bins. If we compared
this to the relative distribution of imputed intensities (with errors) to
the unmodified intensities in the test split, we found that low intensity
values were partly imputed towards the center of the intensity dis-
tribution (Fig. 2g). Furthermore, we investigated whether there was a
difference in the accuracy of the imputation based on how often a
protein group was observed. Here we found that the MAE varied
between 0.6 and 0.8 for proteins observed in 25-80% of the samples,
whereas for proteins observed in more than 80% of the samples the
MAE decreased to below 0.4 (Fig. 2c, e). We observed a similar trend
when analyzing the smaller dataset of only 50 samples (Fig. 2d, f). This
indicated that some protein groups were harder for all themethods to
impute than others, but also that the CF, DAE, and VAE predicted
consistently across a wide range of protein groups intensities. We
found similar results for the two other levels of data, aggregated
peptides and precursors (Supplementary Fig. 4). Finally, we investi-
gated how stable the self-supervised models trained. In a first step, we
randomly permuted all protein groups of the large development
dataset, which leaves the median performance unchanged. Accord-
ingly, training models on randomly permuted data could not outper-
form the imputation by the median of the training data split with an
MAE of 1.25 (Supplementary Fig. 5a, Supplementary Data 5, CF: 1.24,
VAE: 1.26, KNN_IMPUTE: 1,30 DAE: 1.32). Next, we trained the self-
supervisedmodels five times on the samedata split as well as repeated
training five times on new splits. The performance between fitted
models varied in a narrow margin (protein groups: CF: 0.538-0.550,
DAE: 0.535-0.545, VAE: 0.561-0.587 [Min-Max]) (Supplementary
Figs. 5b,c, Supplementary Data 5). We therefore conclude that the DL
models could be consistently fitted to data and that self-supervised
models were able to fit the data holistically for imputation purposes.

Competitive within-sample and feature-wise between-sample
correlation
We evaluated performance without a specific distance measure by
evaluating Pearson correlations of simulated missing values to the
truth (Supplementary Fig. 6, Supplementary Data 6). The mean Pear-
son correlation between samples for protein groups was a bit higher
for BPCA than the others, including the self-supervised models for the
imputations on the large development dataset (BPCA, DAE: 0.86, CF:
0.85, VAE: 0.84, RF: 0.83, KNN: 0.82, KNN_IMPUTE: 0.77). The corre-
lation between features within a sample was higher in general, with a
mean correlation of around 0.95 for all models seen among the best
along the sorting by theMAE (BPCA, DAE, CF: 0.96, VAE, RF, KNN: 0.95,
KNN_IMPUTE: 0.93). This showed that the ordering within a sample
was better than the correlation of protein groups between samples as

Fig. 2 | Different levels ofMS-based proteomics data can be imputed using self-
supervised DL models. a Performance of best imputation methods at the level of
proteingroups, aggregatedpeptides, andprecursors forMaxQuantoutputswith 25
percentMNAR.Mean absolute error (MAE) is shownon the y-axis. Blue: KNN (scikit-
learn), green: CF, red: DAE, purple: VAE, olive: BPCA, brown: random forest (mis-
sForest), orange: KNN_IMPUTE (impute), pink: IMPSEQ, dark-orange: MICE-NORM,
sand: SEQKNN. The DL methods performed better or equally good in comparison
to othermodels. Performancewas similar for all threeDLmodels on each data level
and less aggregated data, i.e models on precursors and aggregated peptides per-
formed better compared to models on protein groups. BPCA and RF did not finish
for aggregated peptides and precursors within 24 h. Models were ordered by
overall performance on the three datasets combining the best five for each. N:
number of samples, M: number of features. b As (a) but showing a decrease in
performance for a subset of the data with a maximum of 50 samples. The CF
adapted better to smaller sample sizes. c,d Protein groupsmedianswerebinnedby
their integer median value and the boxplot of the proportion of missing values per
protein group is shown for large and small development. N: Number of protein

groups inbin in parentheses. Theboxof theboxplots extends from thefirst quartile
to the third quartile of the proportions with their median as a separate line. The
whiskers extend no more than one and a half times the interquartile range, ending
at the farthest proportion within that interval. Outliers are plotted as separate dots.
e MAE 95% bootstrapped confidence interval for protein groups intensities in the
test split of the larger development dataset binned by the integer value of the
protein group’s median intensity in the training data split (N: number of intensities
in a bin from test split, 4495 protein groups, 103,902 intensities,models ordered by
overall performance, 1000 draws to compute the confidence interval). Models on
protein groups with a median intensity above 26 performed in the range of the
overall performance shown in (a). fMAE 95% bootstrapped confidence interval for
protein groups in test split of smaller development dataset binned by integer value
of intensity (N: number of intensities in a bin from test split, 4405 protein groups,
9327 intensities, models ordered by overall performance, 1000 draws to compute
the confidence interval).g Imputed and ground truth (observed) intensities for test
data on large protein group development dataset for top four overall models.
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the overall abundance level of single protein groups vary across sam-
ples. For the smaller development dataset we found similar trends of
within-sample correlation (IMPSEQ: 0.80, BPCA: 0.80, CF: 0.79,
SEQKNN, VAE: 0.78, DAE: 0.76) and between feature sample correla-
tion (IMPSEQ, BPCA, CF, SEQKNN, VAE: 0.95, MICE-NORM, DAE: 0.94).
Both correlation comparisons, therefore, indicated that the three self-
supervised models were able to model the data well without prior
normalization of the data.

Performance of PIMMS on simulated missing values in real
use case
To assess the impact of imputation on a large real-world DIA dataset,
we applied PIMMS to 455 blood plasma proteomics samples from a
cohort of ALD patients and healthy controls2. After imputation we
again compared how well PIMMS imputed simulated missing values
with a share of 25 percent MNAR in the ALD data and found that DAE,
TRKNN, CF, RF and VAE achieved similar results of MAE between 0.52-
0.55 (Figs. 3a, 4a–c, Supplementary Data 3). BPCA which performed

well on the development dataset, was worse with an MAE of 2.95 and
took more than 10minutes to complete compared to between
30 seconds up to just above one minute for the best models (Supple-
mentary Data 3, 4). In the original study RSN was used for imputation
on a per sample basis, i.e. using themean and standard deviation of all
protein groups in a sample. This yielded 8 times worse results on the
simulated data (Supplementary Data 7). Having many samples avail-
able, we also tested to only simulate missing values on a stratified
subset of samples (by kleiner score, see “Methods”) leading to
68 samples and 69 samples assigned to the validation and test split.
Sampling simulated missing values only from these led to fewer
available intensities for comparison but matched the results when
sampling missing values from all available samples (Supplementary
Data 8). The correlation across samples for each protein group was
lower for the ALD data in comparison to the heterogeneous mea-
surements of HeLa cell line data for the self-supervised models
(median; DAE: 0.60, TRKNN: 0.58, CF: 0.54, VAE: 0.53, RF: 0.52) based
on 377 protein groups with at least 3 intensities in test data split
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Fig. 3 | Performance on simulated missing data with 25 percent MNAR in ALD
dataset and effects of imputation on differential analysis. a Performance for
protein groups of plasma proteome data using a share of 25 percent MNAR simu-
lated missing values on the full dataset and (b) on the 80% dataset using the same
configurations (LD: latent dimension, HL: hidden layer dimension). The perfor-
mance of best five imputation methods for protein groups of plasma proteome
data using a share of 25 percent MNAR simulated missing values (red: DAE, dark-
green: truncated KNN (TRKNN), green: CF, brown: RF, purple: VAE) c q-values, i.e.
multiple testing adjusted p-values using Benjamini-Hochberg method, for 17 pro-
tein groups which were differentially abundant using the full dataset without
imputation, but not for the 80%datasetwithout imputation. The gray line indicates
the five percent FDR cutoff. No imputation (None) shows the result without

imputing values. Original p values were calculated using an analysis of covariance
(ANCOVA), i.e. a regressionof the protein intensity along several clinical covariates.
d q-values for three protein groups which were differentially abundant using the
80% dataset without imputation, but not initially when using all data. e Count of
false negative (FN) and true positives (TP) per method on the reduced dataset
taking the 17 differentially abundant protein groups from (c) on the full dataset as
ground truth. f Same as in (e) for three protein groups in (d), labeling differentially
abundant protein groups in the 80% dataset as false positives (FP) since they did
not show up as differentially abundant in the full dataset. The three examples are
around the FDR cutoff without imputation. True negatives (TN) are not differen-
tially abundant here (SupplementaryData 9).No imputation (None) is the reference
defining the labels.
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(Supplementary Data 7). The median correlation within samples
(Supplementary Data 7) was around 0.98 for all models keeping the
order by MAE. This, thus, matched the overall results from the HeLa
data analysis.

Recovering lost differentially abundant protein groups
Then we tested the ability of the self-supervised methods to recover
differentially abundant protein groups. To achieve this, we subset the
dataset at a share of 25 percent MNAR and only kept 80 percent and
compared differentially abundant proteins to using the full dataset. We
found that theMAE performance on the simulatedmissing values with a
share of 25 percent MNAR data were nearly the same compared to the
full dataset (Fig. 3a, b, Supplementary Data 3). This can be explained by
the relatively stable measurements of the dataset (Supplementary
Fig. 3b) and indicates that most protein groups were stable across
patients. Comparing the results of the differential abundance analysis
using the complete dataset compared to the reduced dataset using no
imputations, we observed a decrease in the number of differentially
abundant protein groups from 226 to 212 (ANCOVA, Benjamini-
Hochberg multiple testing correction, p value≤0.05). Interestingly, we
found that besides 17 protein groups losing their differential abundance,
three became differentially abundant by randomly removing data. To
assess the effectiveness of various imputation methods, we used no
imputation as a benchmark. We found that VAE and TRKNN imputation
techniques successfully recovered 15 out of the 17 protein groups that
lost their differential abundance (DAE, RF: 14, CF: 13, Median, QRILC: 2)
(Fig. 3c, e, Supplementary Data 9). Three protein groups became dif-
ferentially abundant without imputation when intensities were removed
in the 80% dataset, which we labeled as false positives to follow our
approach (Fig. 3d, f). However, the three protein groups were nearly
statistically significantly abundant in the 100% dataset and therefore
adding back patients through imputation to the analysis can be seen as
beneficial. This indicated that the PIMMS models could recover lost
signals with simulated missing data with a share of 25 MNAR.

More differentially abundant proteins when using PIMMS
Then we investigated the number of differentially abundant protein
groups as well as the ability of the plasma proteome to predict the
fibrosis status of 358 individuals for the top five models, RSN, QRILC
and median imputation (Supplementary Data 10). The fibrosis status
was based on a liver biopsy, and individuals with all fibrosis scores
ranging from zero to four were included. By using these models for
imputation ofmissing data, leaving the available data as itwas,wewere
able to perform the analysis for 377 protein groups (ANCOVA,
Benjamini-Hochberg multiple testing correction, p value ≤0.05) com-
pared to only 313 protein groups when using the RSN imputation
approach as originally applied in Niu et al.2. Comparing RSN and VAE
we observed that both methods replaced missing values with a dis-
tribution shifted towards the lower abundance region. However, the
maximum intensity for missing values was higher for the VAE with a
value of 21 compared to the RSN with a value of 15 for protein groups
(Supplementary Fig. 7). Translating the overall shift in distribution by
the VAE to the RSN idea, the intensity distribution was shifted by one
standard deviation and the variance was shrunk by 0.7 in comparison
to 1.6 standarddeviations and0.3 shrinkage in theALD-RSN setup. This
difference underlies a fundamental difference in the approaches and
can be generalized for all other models (Supplementary Fig. 7).
Whereas the RSN always assumes missing values due to low abun-
dance, the VAE and other approaches assign some missing values a
higher intensity if other protein groups in the same sample suggest
that the missing value occurred rather due to a missed detection than
low abundance. QRILC is amore nuancedMNARmethod that does not
only assign low intensities formissing values andwe therefore added it
to the comparison, although it shifts the distribution more strongly
than RSN (Supplementary Fig. 7).

When performing differential analysis, we found that 209 of the
313 protein groups originally included were significantly differentially
expressed using the RSN approach. However, 212 were significant
without any imputation and up to 221 were significant using the other
methods (TRKNN: 221, VAE: 220, DAE, CF: 219, RF: 217, QRILC: 216,
Median: 211). Adding the newly included 64 protein groups, 258 of 377
in the PIMMS-VAE setup were differentially expressed, an increase by
23% to the originally included and imputed protein groups with RSN
(see Methods and Supplementary Data 11). We found that using the
nine approaches, 287 decisions from the differential expression ana-
lysis were the same for the 313 shared protein groups. We went on
analyzing the 26 differences in detail (Supplementary Data 12). First,
we found that nine of the 26 protein groups were differentially abun-
dant without imputation. For these nine protein groups RSN imputa-
tion led to non-significant results, whereas the top five models found
these nine to be significant. For the four least significant protein
groups without imputation of missing values QRILC imputation made
these significantly abundant. For three protein groups with multiple
testing adjusted p-values (q-values) just above the 0.05 threshold the
self-supervised models and TRKNN imputation led to differential
abundance, whereas only Median imputation did not.

On one hand when using QRILC imputations six protein groups
(IGLV9-49, TTN, DEFA1B/DEFA3, PRDX1, ACTA2/ACTG2, SSP2, F7) were
significant which none of the other non-MNAR methods found, with
few having very diverging q-values. Few relatively non-prevalent pro-
tein groups, i.e. here below 70% prevalence (250/358 and less) of
quantified samples, showed a strong difference in differential analysis
testing between e.g. the VAE and the RSN imputation. The relatively
non-prevalent (222/358) protein group F5H8B0/P08709/P08709-2
associatedwith the gene F7was clearly not significant using the VAE or
no imputation, but passed the statistical thresholds when using QRILC
imputation and leaned towards significance using RSN. On the other
hand, a relatively rarely quantified protein A0A0D9SG88 (gene CFH)
was significant using VAE imputation, but not RSN or QRILC (Table 1,
SupplementaryData 12). Visualizationusing swarmplots indicated that
the RSN and QRILC imputation for these two protein groups were
shifted downwards of the original center (Fig. 4d-e). In combination
with a slight imbalance of targets in the 142 imputed samples, this led
to different results. Similarly, for two newly included protein groups
P06702 (gene S100A9) and Q8WUD1/Q8WUD1-2 (gene RAB2B) impu-
tation by a fixed median value or QRILC did not lead to significant
results (Fig. 4f-g, Supplementary Data 12). It could, therefore, be good
scientific practice to check the effect of imputation on differential
analysis before a single protein group is selected for further analysis,
especially for explicitly random methods such as RSN.

Finally, expanding the analysis to the 64 additional protein groups
included here, we found 16 of them to be significantly differentially
abundant without any imputation and 38 using VAE imputations
(TRKNN: 44, VAE: 38, RF: 34, CF: 33, DAE: 32, QRILC: 19,Median: 14, see
Supplementary Data 11). Therefore, apart from the difference from the
shared protein groups, which yielded 11 more significant hits, impu-
tation using e.g. the VAE allowed us to identify 38 additional protein
groups that were not considered for statistical analysis in the origi-
nal study.

Robustness of differently abundant protein group identification
Next, we decided to analyze in more detail which protein groups were
differentially abundant using the differentmodels andhow reliable the
differential outcome was per model. We repeated the analysis on the
ALDdata ten timeswith 25 percentMNAR simulatedmissing values, re-
training the models on the same training data split. In this scenario
median, TRKNN and RSN imputations were guaranteed to yield the
same result for all repetitions. Of the 313 originally included protein
groups, 27 did not have the same differently abundant outcome for all
models on all ten repetitions. Especially for protein groups with few
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missing values, seeing the same outcome is not unexpected. However,
for nine protein groups with two to 29 percent missing values, adding
RSN imputations changed the result from being differentially abun-
dant without imputation to being not differentially abundant. The
results did not change running DAE, TRKNN, CF, RF and VAE ten times
for these nine protein groups. A total of 46 out of the 64 newly
included protein groups with a higher percentage of missing values
were at least oncedifferentially abundant by using one of themethods.
Of these 46 newly included ones, 16 were differentially abundant
without imputation, which except bymedian or QRILC imputationwas
not changed using the top five model imputations. Additionally, 13
were at least identified seven times as differentially abundant using
DAE, TRKNN, CF, RF or VAE imputations (Supplementary Table 2,
Supplementary Data 13). Using CF imputation, we found 17 protein
groups to be differentially abundant in all ten repetitions. Determi-
nistic TRKNN imputation in our setup found 28 protein groups to be
differential abundant ten times. However, ten of thesewereonly found
using TRKNN imputations at least seven times (Supplementary
Table 2). We conclude that there is some variability in the analysis due
to imputations and that for certain imputed protein groups the choice
of the imputation method is crucial.

Novel protein groups could be biological relevant
We then investigated if these protein groups could be associated with
disease using the DISEASES database41 and found that 39 of the 64
novel proteins had an association entry to fibrosis. Of the 38 at least
once newly significant protein groups 30 had an association entry to
fibrosis, with four having a confidence score greater than two (Sup-
plementary Data 13, 14). For example, the protein P05362 from gene
ICAM1 had the highest disease-association with a score of 3.3. It was
found to be significantly dysregulated in the liver data and missing in
the plasma data in the original study. Following this reasoning, the
second highest scoring protein group was composed of P01033 and
Q5H9A7 (gene TIMP1). This indicated that the novel protein groups
using the PIMMS criteria for inclusion could be biologically relevant.

The additionally added protein groups were predictive of
fibrosis
Finally, in the work by Niu et al., the authors trained machine learning
models to predict clinical endpoints such as fibrosis from the plasma
protein groups. To assess the impact on themachine learningmodel, a
logistic regression, we used the data from the differential analysis
above. We replicated the workflow performed by Niu et al., and

evaluated the model using the ALD cohort for individuals with
histology-based fibrosis staging data available (N = 358). Using mini-
mum redundancy, maximum relevance (MRMR) approachwe selected
the most predictive set of features of each subset of features on the
assigned training samples42. Using median imputation for all available
protein groups yielded the best area under the receiver operating
curve (AUROC) of 0.90 compared to 0.86–0.90 for DAE, TRKNN, CF,
RF, QRILC and VAE on the test samples (Supplementary Fig. 8). For
models trained ononly the newly included protein groups theDAE and
VAE model imputation led to the best AUROC using only one protein
group (TIMP1) previously mentioned, whereas the model using five
median imputed protein groups was worse (VAE: 0.80, DAE: 0.82, CF:
0.73, RF: 0.79, Median: 0.66, TRKNN: 0.76, QRILC: 0.74). Therefore,
this suggests that the additional protein groups were retained with
moremissing valueswhenusing the PIMMSapproach compared to the
original study’s approach.

Discussion
Imputation is an essential step for many analysis types in proteomics,
which is often done heuristically. Here we tested three models using a
more holistic approach to imputation. We showed that CF, DAE and
VAE models reached a similar performance on simulated missing
values across the entire distribution of the data - including low abun-
dant features. In comparison tomost othermethods they scaled better
to high dimensional data or outperformed fast implementations as
scikit-learn based KNN, which was especially beneficial when working
with peptides instead of protein groups to avoid implicit imputations8.
Further, we investigated the effect of the imputation method on a
concrete analysis, using DIA data from 358 liver patients. Here we
found that missing values were imputed by the models towards the
lower end of the distribution but less pronounced as when using
QRILC or RSN imputation which shifts all replacements towards the
limit of detection (LOD) in a sample. We believe that this is due to the
lowest abundant features limiting the learned data distributions and
that some features are not set towards the LOD by the model due to
being missing at random. We therefore argue that our holistic model-
based imputations are more conservative than e.g. the RSN imputa-
tions and that the three self-supervised DL models offer a sensible
approach to proteomics imputation while scaling well to high feature
dimensions. We found that all methods besides RSN were a better
choice for the ALD dataset analyzed.

Simulating 20 percent missing values with a share of 25 percent
MNARwesaw the ability to recover signal by the three semi-supervised

Table 1 | Examples of diverging decisions between imputation methods

Protein Group F5H8B0
P08709
P08709-2

A0A0D9SG88 A0A075B6R2 P02741 I3L0A1
J3KPA1
P54108
P54108-2
P54108-3

P59665
P59666

Gene F7 CFH IGHV4-4 CRP CRISP3 DEFA1B
DEFA3

None (ref.) 0.954 0.117 0.000 0.030 0.018 0.365

DAE 0.916 0.022 0.000 0.038 0.001 0.025

TRKNN 0.470 0.059 0.000 0.029 0.000 0.082

VAE 0.918 0.038 0.000 0.039 0.000 0.023

RF 0.915 0.061 0.000 0.040 0.000 0.061

CF 0.841 0.079 0.000 0.031 0.001 0.022

Median 0.937 0.113 0.000 0.030 0.051 0.373

RSN 0.082 0.951 0.080 0.052 0.745 0.012

QRILC 0.002 0.727 0.003 0.062 0.626 0.029

Based oncomparison ofq-values, i.e. multiple testing corrected p-values using the Benjamini-Hochbergmethod, for previously includedprotein groups. Analysiswithout imputed values is denoted
as None and used as reference (ref.). All diverging decisions are in Supplementary Data 11,12.
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models. TRKNN and RF recovered lost signal in this application, but
median imputation and QRILC were too heuristic to recover most of
the signal (Fig. 3). However, the analysis also revealed that some pro-
tein groups will be false positives or negatives as removing some
observations can change the outcome. This suggests that imputation
using our or other data driven models can recover lost biological sig-
nals which is in line with the observation that significant values were
not made insignificant when using data driven models (DAE, TRKNN,
CF, RF, VAE) in comparison toRSNorQRILCon the ALD cohort (Fig. 4).
Finally, we offer a workflow to reproduce the comparison done here
for all 30 general imputation methods using any other single tabular
data provided by the user.

A limitation of the model-based approach is that the models
should only be used for imputation if the samples are related. There-
fore, the best imputation strategy will be dependent on the experi-
mental setup. We showed that the models can learn to perform
imputation on plasma samples from a diverse set of clinical pheno-
types ranging from healthy to liver cirrhosis. However, the data-driven
models would not perform well when imputing for instance one liver
proteome togetherwith tenplasmaproteomes. In sucha case thedata-
drivenmodelswouldnot have any other liver proteomes to learn from.
If replicas on a small number of samples are the study design, KNN
interpolation canbe a good remedyorusing a set of testswhichamong
others capturemissingness23. DAE and VAE are not suited to be trained
on too few samples, however the exact cutoff will need to be evaluated
on a per dataset basis. CF will by the training design not be too
dependent on the number of samples if trained sufficiently. We
showed that performance is at least competitive with at least 50 sam-
ples. In summary, for highly varying features in a complex experi-
mental setting with many differing samples, a holistic model trained
with all features and potentially additional related samples can capture
dependencies between features - such as the ones implemented
in PIMMS.

In general, the modeling approaches here are restricted to the
samples in a particular study and all models are fitted for each new
dataset. However, transfer of models between datasets can be
envisioned although a recent study suggested that this brings no
benefits43. The potential to fine-tune a model trained on one dataset
to a new dataset for a fixed set of features is possible without further
efforts for autoencoders. For CF one would need to find the closest
training samples in the case where samples are separated strictly
into train, validation and test set. However, feature embeddings
could be transferred and extended easily. Therefore, all models
could potentially be envisioned in a clinical setup, wheremodels are
re-trained with the latest samples. This could be implemented using
similar cohorts, e.g. for the same tissue and similar patients, which is
then the basis to build a database of tissue specific models - or by
incorporating tissue embeddings as an additional source of infor-
mation. The difficulty in achieving this will be a stable setup for
comparable results without major batch effects due to sample
handling or different instruments. How to approach and the
potential for data integration from different setups is an unresolved
issue. In general, community-curated benchmarks including data-
sets and detailed metrics should be discussed by creating one or
more ProteoBench modules in a community effort44.

To ensure reproducibility and further extension we offer an eva-
luation workflow for simulatedMCARmissing values of the entire data
distribution and oversampling low abundant intensities (MNAR)
instead of only reporting results on our specific datasets. Everything is
available and continuously tested on GitHub, including the workflows,
which allows for additional methods to be added to our comparisons.
This includes comparisons on simulated missing values with varying
degrees of MNAR which can be extended to further holistic models.
The potential extensibility of the workflow allows for comparison of

different ideas on different datasets, including the downstream
analysis.

We evaluated imputation on different levels of proteomics fea-
tures and found that lower-level data was easier to learn due to being
less aggregated8. Therefore, it would be great to assess further if
machine learning models can be trained on lower-level data as pep-
tides are themost sensible unit and imputation onprotein groups level
performs one form of implicit imputation at the peptide level8. One
could assess if imputed features on lower-level data can be reag-
gregated to protein groups, e.g using ideas from Sticker and
coworkers45 or MSStats46. Additionally, the three self-supervised DL
models could also be explored for denoising of samples, especially the
generative VAE, or by adding diffusion models as they are trained by
adding noise to the data47.

Finally, an interesting application will be single cell proteomics
with hundreds of MS runs. This community in proteomics has not yet
developed their own methods to our knowledge, but might not want
to fall back to the ones established for discrete count-based single cell
RNA data48,49 for intensity based label-free quantified proteomics data
without further testing. In conclusion we suggest that holistic models
such as the ones implemented in PIMMS can improve imputation for
proteomics and that our evaluation workflow allows further experi-
mentation leading to more robust imputation.

Methods
Description of the HeLa proteomics dataset
The HeLa cell lines were repeatedly measured as maintenance (MNT)
and quality control (QC) of the mass spectrometers at Novo Nordisk
Foundation Center for Protein Research (NNF CPR) and Max Planck
Institute of Biochemistry. The samples were run as QC samples during
the measurement of cohorts or as MNT samples after instrument
cleaning and calibration using different column lengths and liquid
chromatographymethods. The cells were lysed by different protocols,
which are expected to include digestion using trypsin, but on a per
sample basis the exact protocol was not annotated50. The injection
volume ranges from one to seven microliter.

Therefore, our dataset contains repeated measures of similar
underlying biological samples acquired using DDA label-free quantifi-
cation and can be used to explore general questions of applicability of
self-supervised learning to proteomics data.

Description of raw file processing of HeLa proteomics dataset
We used 564 raw files of quality and maintenance runs of HeLa cell
lines from a larger set of 7444 quality control andmaintenance runs.
We processed all of these in a Snakemake51 workflow as single runs
in MaxQuant 1.6.1224 yielding single abundances for precursor,
aggregated peptide and protein group intensities using LFQ. As
FASTA file the UNIPROT human reference proteome database
2019_05 release, containing 20,950 canonical and 75,468 additional
sequences, was used for the DDA analysis. Contaminants were
controlled using the default contaminants fasta shipped with Max-
Quant. From the MaxQuant summary folder we then used the evi-
dence.txt for precursor quantifications, peptides.txt for aggregated
peptides and proteinGroups.txt for protein groups. The full dataset
and detailed pre-processing steps are explained in a Data
Descriptor35.

Feature selection strategy for quantified runs in general com-
parison workflow
We applied a two-step procedure for feature and sample selection
(Supplementary Fig. 1). We used a cutoff of 25% feature prevalence
across samples to be included into the workflow. Samples were then
filtered in a second stepby their completeness of the selected features.
To be included a sample had to have 50% of the selected features. In
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order to create train, validation and test splits, a dataset was split in the
long-data view, where a row consists of a sample name, feature name
and its quantification.Wedivided90%of the data into training data, 5%
into validation and 5% into the test split, including per default 75%
MCAR and 25% MNAR simulated missing values. This ensured that the
validation and test data were representative of the entire data, while
enough low abundant intensities were available for evaluation of fea-
tures from the lower range of intensities. The validation cohort was
only used for early stopping and the performance on the validation
and test data was therefore expected to be similar. On a few hundred
sample datasets, the number of sampled quantifications for both
validation and test split is quickly in the order of hundred thousand for
protein groups and several hundred thousands for peptide-related
measurements.

GALA-ALD dataset
The clinical data consisted of a cohort of patients with liver disease2.
457 plasma samples were measured in data-independent acquisi-
tion (DIA) and processed using Spectronaut v.15.452 with the
libraries as described in detail by Liu and coworkers2. Peptide
quantification was extracted from “PEP.Quantity” - representing the
stripped peptide sequence. Data for downstream analysis was
selected with the same two-step procedure as described for the
HeLa data. 3048 aggregated peptides were available in at least 25%
of the samples of a total of 4345 aggregated peptides being present
at least once. Protein group quantifications were extracted from
“PG.Quantity”, dropping filtered-out values. 377 protein groups
were available in at least 25% of the samples of a total of 506 protein
groups being present at least once. We used a fibrosis marker
(kleiner53 score ranging from zero to four, N = 358) to compare the
effects of different imputation methods. In the original ALD study
the features were further selected based on QC samples where a
maximum coefficient of variation of 0.4 on the non log transformed
quantification per feature was used as cutoff for inclusion. This step
was omitted in the comparison with the original study results in
Fig. 4 as we wanted to have a standardized workflow applicable also
to approaches without interspersed QC samples. In numbers this
means that we retained 313 protein groups instead of 277 omitting
the selection criteria on QC samples. For the differential abundance
analysis we had 348 complete clinical samples with both the kleiner
score and the clinical control measurements we used.

Self-supervised DL models
All models used self supervision as their setup, i.e. the data itself
is used as a target in a prediction task. CF builds on the idea to
combine a sample representation with a feature representation
to a target value of interest54–56. The simplest implementation is to
combine embedding vectors of equal length using their scalar
product to the desired outcome, here the log intensity value
assigned by a proteomics data analysis program. The approach is
flexible to the total number of samples and features, and the
model was trained only on the non-missing features. The loss
function is the mean squared error.

A DAE is at inference time a plain autoencoder. During training its
input values were partly masked and needed to be reconstructed. For
each mini-batch the error was used to update the model so that the
model learned better to reconstruct the data57,58. The loss was the
squared error:

Lreconstruction =
XNB

i

XFi

f
Ipredf ,i � Iobsf ,i

� �2 ð1Þ

where NB is the number of samples in a batch B, Fi is the number of
features notmissing in a sample i and If ,i is the predicted and observed
label-free quantification intensity value I of feature f in sample i.

Missing features in a sample, which were not missing due to the
training procedure of masking intensity values, were not used to
calculate the loss. VAE introduces a different objective andmodels the
latent space explicitly, here and as most often done as a standard
normal distribution59,60. The latent space of a VAE has two components
that are used for the first part of the loss function, the regularization
loss:

Lregularization =
XIB

i

XL

l
max 0,0:5* μz

l,i + e
υz
l,i � 1� υzl,i

n o� �
ð2Þ

where μz
l,i is the mean and υzl,i the log variance of dimension l and

sample i of the isotropic multivariate Gaussian with L dimensions of
the encoder output, i.e. the latent representation z. The reconstruction
loss was based assuming a normal distribution for the decoder as
output60,61, leading to

Lreconstruction =
XNB

i

XFi

f
0:5 lnð2πÞ+ Iobsf ,i � μI

f ,i

� �2
� �

�e�υIf ,i + υIf ,i

� �
ð3Þ

where NB, Fi and Iobsf ,i are as before and μI
f ,i and log variance of υIf ,i are

the parameters of the isotropic multivariate Gaussian distribution of
the decoder outputs, i.e. of the modeled feature distribution. Training
of the VAEwas augmented bymasking input values as in the denoising
autoencoder62, although this is not strictly necessary due to the sto-
chastic nature of the latent space. For inference, missing values are
predicted using both the mean of the encoder and decoder output.
The models were developed using a variety of software including
numpy (v.1.20)63, pandas (v.1.4.)64,65, pytorch (v.1.10)66 and fas-
tai (v.2.5)55.

Other imputation approaches
Weused othermethods which were available either in scikit-learn or
R14,67. R or bioconductor packages were e1071, impute36, SeqKnn68,
pcaMethods69, norm, imputeLCMD8, VIM70, rrconNA71, mice72,
missForest38, GSimp73 and msImpute67 (Supplementary Table 1),
which were included in a previous comparison14 except the last one.
We did not include non-general imputation methods as e.g. pro-
vided by MSstats46 or without reusable software74. We used KNN
interpolation of replicates based on the HeLa cell line measure-
ments being repeated over time. The only parameter to set was how
many neighboring samples should be used as replicates. We used
three replicates for the scikit-learn75 based implementation as this
was found to be the best setting by Poulous and coauthors26, which
is also the most widely encountered replication number used in the
field and set as default of both packages we used. However, the R
based implementation of KNN (SEQKNN, TRKNN, KNNIMPUTE)
used ten neighbors in NAguideR14 and we kept the default. We also
used a simple median calculation for each feature across samples.
This requires estimating one parameter per feature. For features
that did not vary a lot, this strategy should yield robust estimates for
missing values. We used a random forest implementation using
missForest38. The implementation works well for datasets on the
protein group level, but fails for datasets on the peptide and pre-
cursor level as these are roughly ten times higher dimensional. We
also included methods which assume MNAR missing values, such as
the random shifted normal (RSN) distribution for imputation or
QRLIC21. RSN has as parameters a global mean shift and scaling
factor for standard deviation, as well as a mean and standard
deviation for each unit of interest, i.e. all quantified features of a
sample or for a feature all quantification of that feature across
samples. Note, that RSN and other MNAR focused methods assume
that measurements are not present as they are below the limit of
detection (LOD). Therefore, in our default setup we sample 25
percent of the simulatedmissing values asMNAR into the validation
and test data splits to represent the lower range of intensity values
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(Supplementary Fig. 9), aiming to make the methods more com-
parable. All methods are available through our workflow and at least
one method per included R package is tested via a GitHub action.
Some methods and packages did however not work being called as
in NAguideR for some of our data.

Hyperparameter search using simulated missing values
In order to find good configurations for the self-supervised models
a grid search was performed on three data levels on the develop-
ment dataset. We sampled simulated missing values completely at
random from the dataset, i.e. 5% for validation and 5% for testing.
The training procedure and architecture of models was refined
using the validation data. The performance of the best performing
models on the validation data were then reported using the test
data. We found that test performance metrics matched validation
metrics up to the second decimal and that many model configura-
tions yielded similar results. Performance was compared between
the three self-supervised models to improve performance during
model development. In this work all results were reported based on
the simulated missing values in the test data split. Different latent
representation dimension, namely 10, 25, 50, 75 and 100 dimen-
sions were connected to a varying dimension and composition of
hidden layers with a leaky rectified linear activation: (256), (512),
(1024), (2056), (128, 64), (256, 128), (512, 256), (512, 512), (512, 256,
128), (1024, 512, 256), (128, 128, 128), (256, 256, 128, 128) - for the
encoder and inverted for the decoder. The total number of para-
meters using these combinations ranged from a couple of ten-
thousands in the case of the CF models to tens of millions for the
autoencoder architectures. We picked the smallest model in terms
of parameters of the top 3 performing ones as their performance
was nearly equal on the validation data split. Then we retrained the
best models with a share of 25 percent MNAR simulated missing
values. Besides the best models on all simulated missing values, we
reported results using other plots. The intensities in a split were
binned by the median of the feature, e.g. protein group, they ori-
ginated from based on the training data split. The MAE per bin was
then reported (Fig. 2e, f), which allows for selection of the best
models in the intensity range of interest. This is accompanied by a
plot showing the proportion of missing values of a feature based on
itsmedian value over samples (Fig. 2c, d). The correlation plots were
based on Pearson correlation of predicted intensities and their
original values in the test split. The Pearson correlation was calcu-
lated for a feature across all predictions of all samples, denoted “per
feature correlation”, or for all predictions within one sample,
denoted “per sample correlation” (Supplementary Fig. 6).

Evaluation, imputation and differential expression in GALA-ALD
dataset
We used the same splitting approach of the data as for the devel-
opment dataset for evaluation with a share of 25 percent MNAR.
We evaluated using a dimension of ten for CF’s sample and feature
embeddings, and the DAE and VAE latent spaces. The auto-
encoders were composed of one hidden layer with 64 neurons
both for the encoder and decoder, leading to a total number of
parameters between 9,174 and 74,462 for the three models. The
RSN imputation for the missing values in the original ALD study
was done on a per sample basis, i.e. mean and standard deviation
for each sample. Using the two-step procedure with defaults as in
the original study, this yielded 313 protein groups for comparison
(see ALD data description). Using a filtering of 25% for feature
prevalence prior to imputation with the VAE (Supplementary
Fig. 1) we increased the share of missing values to 14% for the
selected 377 protein groups in comparison to roughly 5% for the
313 features using the selection approach as in the original study2.
The differential analysis was done using an analysis of covariance

(ANCOVA) procedure using statsmodels (v.0.12) and pingouin
(v.0.5)76,77. We used a linear regression with the original kleiner
score53 as the stratification variable of interest for the patient’s
cirrhosis disease stage to predict protein quantifications, con-
trolling for covariates. Therefore, effects for each protein group
were based on an ANCOVA controlling for age, BMI, gender,
steatosis, and abstinence from alcohol as well as correcting for
multiple testing as done in the original study. The multiple com-
parison corrections (q-values) were based on 313 protein groups in
the original data imputed using RSN, and on 377 protein groups
retained here. Correction for multiple testing correction was done
using Benjamini-Hochberg’s correction78. The q-values of each DA
were then compared for the overlapping 313 protein groups
(Supplementary Data 10–12).

Machine learning in GALA-ALD dataset
In order to assess the predictive performance of newly retained
features, we evaluated a logistic regression using different feature
sets for the binary target of a fibrosis score greater than one (F2
endpoint in the original study, False: kleiner <2, True, kleiner ≥2).
The feature sets were: First, the features retained using the selection
approach with settings as in the ALD study; second, all features
available when using PIMMS selection approach; third, and the
difference between both feature sets termed “new feat”. We used
maximum relevance, minimum redundancy using the F-test based
implementation, in detail the F-test correlation quotient (FCQ)42,79

to select a set of features to be used in the logistic regression. Using
cross validation we selected the best set of up to 15 features for each
of the three sub datasets. Then, the model was retrained on a final
80-20 percent training-testing data split of samples for each sub-
dataset. Areas under the curve (AUC) for the receiver operation
(ROC) and precision recall (PRC) curves were compared between
these three sub datasets. The shown graphs and reported metrics
were calculated on the test split75,76.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE80 partner repository with
the dataset identifier PXD042233. A manuscript50 describing these
data has been published in Scientific Data and is available at https://
doi.org/10.1038/s41597-024-02922-z. The clinical data is not freely
available, but can be requested as specified by Niu et al.2: “The full
proteomics datasets and histologic scoring generated and/or analyzed
(…) are available (…) upon request, toOdensePatientData Exploratory
Network (open@rsyd.dk) with reference to project ID OP_040. Per-
mission to access and analyze data can be obtained following approval
from the Danish Data Protection Agency and the ethics committee for
the Region of SouthernDenmark.” Source data for themain figures are
provided with this paper. Source data are provided with this paper.

Code availability
The PIMMSpackage and all analysis scripts are available on PyPI and at
github.com/RasmussenLab/pimms81. The differential analysis and
machine learning procedure used on the ALD data is available on PyPI
and GitHub at github.com/RasmussenLab/njab.
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