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A B S T R A C T   

The European Prevention of Alzheimer Dementia (EPAD) is a multi-center study that aims to characterize the 
preclinical and prodromal stages of Alzheimer’s Disease. The EPAD imaging dataset includes core (3D T1w, 3D 
FLAIR) and advanced (ASL, diffusion MRI, and resting-state fMRI) MRI sequences. 

Here, we give an overview of the semi-automatic multimodal and multisite pipeline that we developed to 
curate, preprocess, quality control (QC), and compute image-derived phenotypes (IDPs) from the EPAD MRI 
dataset. This pipeline harmonizes DICOM data structure across sites and performs standardized MRI pre-
processing steps. A semi-automated MRI QC procedure was implemented to visualize and flag MRI images next to 
site-specific distributions of QC features — i.e. metrics that represent image quality. The value of each of these 
QC features was evaluated through comparison with visual assessment and step-wise parameter selection based 
on logistic regression. IDPs were computed from 5 different MRI modalities and their sanity and potential clinical 
relevance were ascertained by assessing their relationship with biological markers of aging and dementia. 

The EPAD v1500.0 data release encompassed core structural scans from 1356 participants 842 fMRI, 831 
dMRI, and 858 ASL scans. From 1356 3D T1w images, we identified 17 images with poor quality and 61 with 
moderate quality. Five QC features — Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR), Coefficient of 
Joint Variation (CJV), Foreground-Background energy Ratio (FBER), and Image Quality Rate (IQR) — were 
selected as the most informative on image quality by comparison with visual assessment. The multimodal IDPs 
showed greater impairment in associations with age and dementia biomarkers, demonstrating the potential of 
the dataset for future clinical analyses.   

1. Introduction 

In recent years, data sharing in neuroimaging research communities 
has become increasingly common, with multiple collaborative efforts for 
pooling data to form large, diverse samples (Thompson et al., 2014; Jack 
et al., 2008). Advantages of clinical multicenter imaging studies include 
obtaining larger samples of subjects from potentially diverse de-
mographic populations, increasing statistical power, generalizability of 
sophisticated analyses (Friedman et al., 2006), and allowing the devel-
opment of site- and scanner-independent imaging biomarkers (Pompo-
nio et al., 2020). 

Research Data Management (RDM) is a complex and laborious pro-
cess in large multisite neuroimaging studies (Nourani, Ayatollahi, and 
Dodaran 2019), requiring well-defined practice to ensure the accessi-
bility and organization of data, and the provenance of processing steps 
(Borghi et al., 2018). The procedure of processing MRI data is highly 
flexible, and decisions made at early stages can lead to substantial 
variability in analysis outcomes (Carp 2012). Moreover, there is no 
standard systematic procedure for MRI quality control (QC) in large 
multicenter studies. While individual visual inspection is often too 
laborious, automated procedures can be promising, but highly depen-
dent on study design and the type of sequences acquired (Esteban et al., 
2017a,b; Fidel Alfaro-Almagro et al., 2018). 

The European Prevention of Alzheimer Dementia (EPAD) study is a 
prospective, multi-center, European cohort study that aims to charac-
terize the prodromal stages of Alzheimer’s Disease (AD) and create a 
pool of well-characterized individuals for recruitment in potential 
pharmacological trials (Solomon et al., 2019). Multimodal imaging data 
are acquired at each center and centrally stored and processed. 

This overview documents the methods and implementation details of 
the MRI data processing, QC procedures, and computation of several 
imaging-derived phenotypes (IDPs), as developed for the EPAD neuro-
imaging dataset. We then explored the sanity of IDPs by testing their 
sensitivity in their relationship with other biomarkers of neuro-
degeneration. The described pipeline is publicly available online 

(“https://github.com/ExploreASL/ExploreASL/tree/EPAD,” n.d.). 

2. Methods 

2.1. The European Prevention of Alzheimer’s dementia longitudinal 
cohort study (EPAD LCS) 

EPAD eligibility criteria were age above 50 years and no history of 
dementia (clinical dementia rating (CDR) < 1). After providing written 
informed consent, participants underwent an extensive multimodal test 
battery including five outcome measurements: cognitive tests, de-
mographics, cerebrospinal fluid (CSF) biomarkers, genetics, and brain 
MRI. Participants were followed up after 6 months, and after 12, 24, or 
36 months, depending on their CDR score at baseline. Details on the 
EPAD rationale and study protocol are provided elsewhere (Solomon 
et al., 2019). 

Here, we considered the EPAD LCS v1500.0 data release, which 
consists of the baseline data from the first 1500 participants included in 
the study. 

2.2. The EPAD MRI acquisition protocol 

The v1500.0 baseline data were acquired at 21 EPAD sites, including 
seven different scanner models from Siemens Healthineers, Philips 
Healthcare, and GE Healthcare. A common scanning protocol was 
developed during the preparation phase to keep between-site differences 
as small as possible while accommodating differences in scanner hard-
ware and software limitations, and fit in local site-specific protocols and 
ongoing studies. 

The EPAD LCS imaging protocol was composed of core and advanced 
sequences (Table 1). The core sequences provided structural information 
and confirmed participants’ eligibility status through baseline radio-
logical assessment, and the advanced sequences were designed to 
investigate brain structure and function in greater detail. Whereas the 
core sequences were conducted at all sites (n = 21), the advanced se-
quences were performed in a subset of EPAD sites (n = 13) with 3 T 
scanners. 

1 These two authors contributed equally to this study. 
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2.3. The EPAD imaging pipeline 

The EPAD image analysis pipeline consisted of four modules (Fig. 1): 
1) Curation of raw DICOM files, including harmonization of DICOM 
structure among sites, initial DICOM quality control (QC), and conver-
sion to NIfTI; 2) Image preprocessing for core and advanced sequences; 
3) Semi-automatic QC of processed data through an in-house code-based 
toolbox; 4) Computation of image-derived phenotypes (IDP) (Gong 
et al., 2020), i.e. extraction of numeric derivatives from images. Data 
sharing procedures are described in supplementary material section 2 
and elsewhere (https://ep-ad.org/erap/). 

All preprocessing steps were implemented in ExploreASL (Mutsaerts 
et al., 2020), an SPM-based toolbox designed to harmonize image pro-
cessing for multi-center structural MRI and arterial spin labeling (ASL) 
studies. The toolbox was extended to include resting-state functional 
MRI (rs-fMRI) and diffusion MRI (dMRI) preprocessing routines based 
on SPM12 r7771 and FSL 6.0.2 (Penny et al., 2011). Table S1 in sup-
plementary material summarizes the main processing steps and their 
software implementations in the EPAD pipeline. 

2.3.1. DICOM Curation 
EPAD data were initially collected in DICOM format in the 

Table 1 
Core and Advanced MRI scan protocols.   

IDPs or radiological assessment Siemens Philips GE Healthcare 

Core Sequences  n ¼ 13 n ¼ 7 n ¼ 1 
3D T1w Regional and global GM volumes, regional GM thickness 1.2 × 1.05 × 1.05, 

176 × 256 × 240, 
Sagittal, 
TE = 2.95, TR = 2300, 
AT = 5:03 

1.1 × 1.1 × 1.2, 
176 × 256 × 256, 
Sagittal, 
TE = 3.11, 
TR = 1672.6/1526.6, 
AT = 05:34 

1.2 × 1.2 × 1.05, 
196 × 256 × 256, 
Sagittal, 
TE = 3.09, TR =
7184, 
AT = 04:31 

3D FLAIR Global WM lesions volume 1.0 × 1.0 × 1.0, 
192 × 256 × 256, 
Sagittal, 
TE = 393, TR = 5000, 
AT = 7:02 

1.0 × 1.0 × 1.0, 
192 × 256 × 256, 
Sagittal, 
TE = 395, TR = 5000, 
AT = 04:53 

1.0 × 1.0 × 1.0, 
188 × 256 × 256, 
Axial, 
TE = 155, TR =
5000, 
AT = 08:31 

2D T2w Radiological assessment of vascular pathology 0.9 × 0.9 × 3.0, 
232 × 256 × 47, 
Axial, 
TE = 78, TR = 4510, 
AT = 3:50 

0.9 × 0.9 × 3.0, 
232 × 256 × 47, 
Axial, 
TE = 80, TR = 3000, 
AT = 2:24 

0.9 × 0.9 × 3.0, 
256 × 256 × 47, 
Axial, 
TE = 82.4, TR =
4000, 
AT = 07:00 

2D T2*w Radiological assessment of cerebral microbleeds 0.9 × 0.9 × 3.0, 
256 × 256 × 47, 
Axial, 
TE = 20, TR = 640, 
AT = 5:29 

0.9 × 0.9 × 3.0, 
256 × 256 × 47, 
Axial, 
TE = 20, TR = 640, 
AT = 3:16 

0.9 × 0.9 × 3.0, 
256 × 256 × 47, 
Axial, 
TE = 20, TR = 640, 
AT = 02:21 

Advanced 
Sequences  

n ¼ 7 n ¼ 6  

3D SWI/SWIp Radiological assessment of hemorrhage/vascular 
pathology. 

0.5 × 0.5 × 2.0, 
384 × 312 × 60, 
Axial, TE = 23.7, 
TR = 29.0, 
AT = 5:06 

0.5 × 0.5 × 3.0, 
384 × 384 × 160, 
Axial, TE = 25, 
TR = 28, 
AT = 04:09 

NA 

rs-fMRI Resting State Networks connectivity strength 3.3 × 3.3 × 3.3, 
64 × 64 × 38, 
Axial, TE = 30.0, 
TR = 2020.0, 
v = 204, PEd = A > P, 
AT = 6:52 

3.3 × 3.3 × 3.3, 
64 × 64 × 43, 
Axial, TE = 30, 
TR = 1640, 
v = 202, PEd = A > P, 
AT = 5:35 

NA 

dMRI Global and local WM microstructure integrity 2.0 × 2.0 × 2.0, 
112 × 112 × 60, 
Axial, TE = 81.0, 
TR = 7400, 
N_B0 = 1, N_B1000 = 54, PEd = A > P, AT 
= 7:22  

2.0 × 2.0 × 2.0, 
128 × 128 × 56, 
Axial, TE = 70, 
TR = 6836, 
N_B0 = 1, N_B1000 =
48, 
PEd = P > A, AT = 6:08 

NA 

ASL Cerebral blood flow (CBF) and Spatial Coefficient of 
Variation (sCoV) 

3D GRASE PASL, 3,75 × 3,75 × 4.5, 
Axial, TI1 = 800, 
TI2 = 2000, v = 20, PEd = L > R, 
AT = 5:30  

2D EPI PCASL, 
3.4 × 3.4 × 4.5, 
64 × 64 × 36 
Axial, 
label duration = 1650, 
post-labeling delay =
2025 
PEd = P > A, AT =
05:00 

NA 

For each sequence, derived data, common uses and average vendor’s parameters are given. The shown acquisition parameters are acquisition voxel size (in mm), 
matrix size, echo time (TE, in ms), repetition time (TR, in ms), number of volumes (v), acquisition time (AT), phase encoding direction(PEd), number of B = 0 volumes 
(only dMRI, N_B0), number of B = 1000 volumes (only dMRI, N_B1000), label duration and post-labeling delay (only for Philips ASL, in ms). IDPs = image-derived 
phenotypes; N = number of sites; GM = gray Matter; FLAIR = fluid attenuated inversion recovery; SWI = susceptibility weighted imaging; SWIp = SWI-phase; rs-fMRI = resting- 
state functional MRI; dMRI = diffusion MRI; ASL = arterial spin labeling; GRASE = gradient and spin echo; PASL = pulsed ASL; EPI = echo planar imaging; PCASL = pseudo 
continuous ASL; w = weighted; A > R = anterior to posterior; L > R = left to right; NA = not applicable. 
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/sourcedata/ folder and each subject was saved under its EPAD ID. 
DICOM headers were loaded with ExploreASL’s wrapper around DICOM 
ToolKit (DCMTK v 1.18) and DICOM fields SeriesDescription, or Pro-
tocolName and ImageType were used to recognize the scan type using 
scanner-specific regular expressions provided in a TSV-file (Fig. S1). The 
assorted zipped files and directories with DICOM files were sorted by 
scan type. DICOM header information was also used for DICOM QC, e.g., 
to verify that the StudyID is concordant across scans within an MRI 
session, to exclude duplicates, and verify completeness of DICOM series 
and consistency of its parameters. 

Following the Brain Imaging Data Structure (BIDS) (Gorgolewski 
et al., 2016) convention, dcm2niiX r20190902 was used to convert 
DICOM images to NIfTI format (Li et al., 2016), along with an accom-
panying JavaScript Object Notation (JSON) sidecar storing relevant 
metadata. Additional modifications to convert the dcm2niiX output to 
BIDS included: sorting and splitting SWI magnitude and phase NIfTIs, 
splitting the ADC image from the dMRI NIfTI, sorting the phase encoding 
polarity (PEPolar) scans, obtaining PEPolar parameters and adding them 
to the JSON sidecars, managing ASL-specific conversion issues (Clement 
et al., 2019), and manage vendor- and scanner-specific conversion 
issues. 

2.3.2. Image preprocessing 
An overview of the preprocessing steps for the core and advanced 

sequences is shown in Fig 2. and Table S1. 

2.3.2.1. Core sequences preprocessing pipeline. The structural module of 
ExploreASL v1.0.2, described in (Mutsaerts et al., 2020), was used in 
combination with the Bayesian Model Selection (BaMoS) for WMH 
segmentation (Carole H. Sudre et al., 2015) to preprocess 3D T1 and 3D 
FLAIR images. Other 2D core sequences were only used for radiological 
assessment of patient eligibility and not preprocessed. 

Preprocessing began with the registration of the 3D FLAIR to the 3D 
T1w (rigid-body) and the 3D T1w to the MNI center of mass (rigid- 
body). WMH segmentation was computed using BaMoS (Carole H. Sudre 
et al., 2015), a hierarchical unsupervised model selection framework 
simultaneously accounting for healthy tissue and unexpected observa-
tions. The resulting WMH segmentations were then used with the Lesion 
Segmentation Toolbox (LST) v2.0.15 (Gaser 2009) to fill these lesion 
areas on the T1w image, which can be present as hypointensities and 
affect subsequent segmentation and non-linear registration (Schmidt 
et al., 2019). 

Tissue segmentation was then performed with the Computational 
Anatomy Toolbox (CAT) 12 (r1363), which estimates and corrects the 
bias field inhomogeneity in 3D T1w images, and iteratively improves the 
non-linear registration to MNI standard space and the creation of partial 
volume maps of gray matter (GM), white matter (WM) and CSF. All the 
described transformations were combined in a single transformation, to 
avoid multiple interpolations. 

2.3.2.2. Advanced sequences preprocessing pipeline. Rs-fMRI, dMRI, and 

Fig. 1. Image processing workflow in the EPAD study. DICOM = Digital Imaging and Communications in Medicine; NIfTI = Neuroimaging Informatics Technology 
Initiative; QC = quality control; IDP = Image-derived phenotypes. 

Fig. 2. Schematic diagram of preprocessing steps. Left: the core sequences preprocessing pipeline performed on 3D T1w and 3D FLAIR scans; Right: the three common 
steps of the advanced sequences preprocessing pipeline. Abbreviations: EPI = Echo-Planar Imaging. 
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ASL were handled by different preprocessing submodules and under-
went three common steps: geometric distortion correction, motion 
correction, and registration with the structural reference image T1w. 
Two additional steps were performed for dMRI (see below). SWI was 
only used for radiological assessment as no automated processing rou-
tines exist for this sequence. 

A) Geometric Distortion Correction. Echo-planar images (EPI) suffered 
from geometric distortion due to B0 field inhomogeneity induced by 
magnetic susceptibility variability (Holland, Kuperman, and Dale 2010). 
For this reason, the ASL, DTI, and fMRI scans were accompanied by an 
extra acquisition of a single-volume with reversed phase-encoding 
gradient polarity (see Table 1), which has an opposite distortion 
pattern. From this pair of images, the geometric distortion was estimated 
using a previously described method (Andersson and Sotiropoulos 2016) 
as implemented in FSL topup (Stephen M. Smith et al., 2004), and used 
to correct the geometric distortion of the fMRI, dMRI, and ASL with a 2D 
EPI readout. 

B) Motion Correction. Head motion within fMRI and ASL was esti-
mated with rigid-body transformations using the SPM12 realign func-
tion (Friston et al., 1995), where the ASL images were combined with 
the threshold-free outlier exclusion method ENhancement of Automated 
BLood flow Estimates (ENABLE) (Mutsaerts et al., 2020; Shirzadi et al., 
2018). In dMRI images, an additional off-resonance source is caused by 
the rapidly changing magnetic field inducing eddy currents (EC) within 
conductors (Zhuang et al., 2006). Head motion and eddy current- 
induced geometrical EPI distortions were estimated and corrected by 
the FSL Eddy tool (Andersson and Sotiropoulos 2016). 

C) Structural registration. Advanced sequences were registered to the 
3D T1w images using rigid-body transformations. Similar to the core 
preprocessing, all transformation fields are combined and applied 
simultaneously, to avoid multiple cumulative interpolations. 

D) dMRI Tensor Fitting. In the dMRI preprocessing submodule the 
registration output was fed into the FSL Brain Extraction Toolbox (BET) 
(Stephen M. Smith 2002) and then into FSL DTIFIT, to fit the diffusion 
tensor model to the data and produce diffusion tensor imaging (DTI) 
scalars maps (fractional anisotropy (FA), and mean (MD), axial (AD) and 
radial (RD) diffusivity). 

2.3.3. Semi-automatic QC 
To control the quality of the EPAD imaging cohort, we created an in- 

house workflow to perform semi-automatic QC of MRI data. This set of 
QC functionalities was written as an extension to ExploreASL called 
ExploreQC. The semi-automated QC procedure was based on two steps: 
feature estimation and visualization (Fig. 3). ExploreQC code avail-
ability and software specifications are listed in section 4 of the supple-
mentary material. 

2.3.3.1. QC – feature estimation. Image quality features were computed 
from five image feature domains: motion, noise, inhomogeneity, asym-
metry, and descriptives, in line with recent MRI QC studies (Esteban 
et al., 2017a,b; Fidel Alfaro-Almagro et al., 2018; Zarrar et al., 2015; 
Bastiani et al., 2019)). Definitions of domains and individual features 
are provided in Table S2. All QC features were included in the MRI data 
release and can be referred to for study-specific inclusion/exclusion 
criteria. 

2.3.3.2. QC – visualization. The visualization module consists of an 
interactive dashboard with violin and scatter plots for observing varia-
tion between and within sites, respectively (Fig. 3). Individual scans can 
be visually inspected by selecting their data points on the scatter plots, 
allowing to visualize the scans themselves together with the QC features. 

As a proof-of-concept for our semi-automated QC strategy, 3D T1w 
images were passed on to the visualization module. For all QC features, 
the difference with the site-specific mean was calculated as Z-score. Each 
scan was then sorted site-wise based on the sum of their absolute within- 

site Z-score values of all QC features. Scans with the 15% highest sum-
med deviations were then automatically flagged for “needing visual 
QC”. To control for possible false-negative cases, an equivalent subset of 
non-flagged images was randomly selected and visually checked. 

Visual QC was performed within the same pane by a single rater (LL), 
blinded to whether the image was an outlier or flagged as a random 
inlier. The image quality was categorized as “good” — desired MRI 
contrast visible and no artifacts or quality degradation detected, 
“moderate” — desired MRI contrast visible but some quality degrada-
tion, or “poor” — no desired MRI contrast visible and/or clear artifacts 
are present. These flags were added to the EPAD data release as a QC 
category advice for external researchers, together with the estimated 
features. 

2.3.3.3. QC statistical analysis. After visual inspection, we explored the 
association of the QC features with participants’ characteristics and with 
visual QC judgments. First, we used linear models to assess whether each 
QC feature distribution was related to the scanning site, age, sex, MMSE, 
amyloid, and APOE status of the participant. P-values were Bonferroni 
corrected. 

To further investigate the features’ informative character in relation 
to the visual inspection, we built an ordinal logistic regression model 
with QC features as predictors of images showing quality issues among 
visual inspection, i.e. being classified as poor, moderate or good quality. 
A stepwise backward parameter selection based on the Akaike Infor-
mation Criteria was then performed to remove non-informative QC 
features from the final model. 

Furthermore, a similar analysis investigating informative character 
of QC features was run for dMRI images. However, as no standard 

Fig. 3. Overview of the quality control workflow. QC features are computed in 
the feature estimation module and cover 5 image features domains. Feature 
distributions can then be interactively inspected between-sites (2A) and within- 
sites (2B). Single-subject scans can be opened by clicking on the scatter-
plots (2C). 
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procedure for visual QC of tensor images exists, we used as outcome of 
the logistic regression the visual QC judgment of the FA images gener-
ated in the tract based spatial statistic (TBSS) pipeline (see below). The 
visual QC is described in section 2.3.4.2 and 3.3. Analogous to T1w 
images, dMRI QC parameters were used as predictor of visual QC 
outcome and stepwise backward parameter selection was implemented 
to select most informative features. 

As no procedure for systematic visual QC of functional sequences has 
been previously proposed, this analysis was not run for fMRI scans. In-
clusion or exclusion of fMRI scans was defined based on is described in 
section 2.3.4.2. 

2.3.4. Image-derived phenotypes (IDPs) 
IDPs are image-specific summary statistics that provide a quantita-

tive way to investigate structural and functional brain characteristics 
(Gong et al., 2020). 

2.3.4.1. Core IDPs. Regional GM volume and cortical thickness are 
established phenotypes in neurodegenerative diseases (Scheltens et al., 
2016). For 3D T1w sequences, we computed the volumetrics of several 
pipelines with different segmentation strategies. Template-based tissue 
volumetrics were computed from the CAT12-SPM tissue segmentation 
pipeline (Gaser 2009) described above. FreeSurfer v6.0.0 (Fischl 2012), 
one of the most widely used packages for measuring GM volumes and 
cortical thickness, was run on 3D T1w scans and included in the core 
IDPs release. WMH regional volumes were calculated from BaMoS seg-
mentations and constitute 3D FLAIR derived data (Sudre et al., 2018). 

2.3.4.2. Advanced IDPs 
2.3.4.2.1. rs-fMRI. Temporally correlated low-frequency (<0.1 Hz) 

fluctuations in the rsfMRI signal are defined as functional resting-state 
networks (RSNs) (S. M. Smith et al., 2009). To identify RSNs in fMRI 
time series, a group-level independent component analysis (ICA) was 
performed by FSL Melodic (Beckmann and Smith 2004) on the pre-
processed fMRI datasets. Following previous works, scans with a mean 
framewise displacement (FD) (Power et al., 2012) of more than 2 stan-
dard deviations (SD) from the group average measured over time were 
excluded from this analysis. Two atlases of RSNs with a predefined 
number of independent components were generated: a low dimensional 
atlas with 20 and a higher dimensional atlas with 50 independent 
components. A dual regression approach was then used to obtain 
subject-specific RSNs (Nickerson et al., 2017). First, each RSN’s sum-
mary time course was estimated at the participant level by spatial 
regression of the full set of independent components from the high and 
low dimensional Melodic analysis against each participant’s fMRI data. 
Second, the resulting time courses were regressed into the same par-
ticipants’ fMRI data to obtain subject-specific RSN maps. fMRI IDPs were 
computed as the mean within-network connectivity strength per subject. 
RSN of interest were identified by voxel-wise correlation of group 
components with previously identified canonical resting-state networks 
Networks showing a correlation greater than 0.3 were considered to 
have substantial overlap with canonical RSN and therefore used in the 
IDPs analysis (Smith et al., 2009). 

2.3.4.2.2. dMRI. Tract-based spatial statistics (TBSS) is an auto-
mated, observer-independent approach for assessing voxel-wise frac-
tional anisotropy in white matter tracts across groups of dMRI scans 
(Stephen M. Smith et al., 2006). The brain-extracted fractional anisot-
ropy (FA) images, obtained after tensor fitting, were aligned into a 
common space using nonlinear registration. Following the TBSS rec-
ommendations, aligned FA maps were visually checked to exclude scans 
with clear quality problems. Next, the mean FA image was thinned to 
create a mean FA skeleton representing the center of all tracts common 
to the group and use it as a mask to compute individual FA values. 
Diffusion MRI IDPs were computed as global and regional FA features 
from the JHU ICBM-DTI-81 atlas (Wakana et al., 2004). From the 48 

regional FA values derived from the JHU atlas, 8 tracks were derived 
based on previous literature (Molinuevo et al., 2014; Wolf et al., 2015). 

2.3.4.2.3. ASL. Arterial spin labeling perfusion MRI acquires cere-
bral perfusion in vivo in a non-invasive manner. Recent findings have 
shown that the 2D EPI readout on previous Philips software releases 
exhibits fat-saturation-related artifacts that considerably alter the 
quality of these scans, even to the point of being unusable (Mutsaerts 
et al., 2020). Therefore, we derived data only on a subset of ASL images 
that did not suffer from this artifact. Mean cerebral blood flow (CBF) and 
spatial coefficient-of-variation were computed as described in (Mut-
saerts et al., 2020). 

2.3.4.3. IDPs relationship with AD markers. Eventually, we explored the 
sanity and relevance of IDPs by assessing their relationship to non- 
imaging data whose association with brain phenotypes has been estab-
lished in the Alzheimer literature. Specifically, the association of each 
computed IDP with age was assessed through the Pearson correlation 
coefficient, while relationship with amyloid status (CSF amyloid posi-
tivity), cognitive status (CDR score) and APOE e-4 carriership was 
evaluated using T tests. Amyloid positivity was defined with CSF Aβ1-42 
levels < 1000 pg/mL (fully automated Roche cobas Elecsys System), 
following previous works on the same cohort (Ingala et al., 2021). IDPs 
used for this analysis included global WMH volume, GM volume in 10 
regions which have shown to involved in the early stages of Alzheimer’s 
Disease (Marizzoni et al., 2019), mean functional connectivity in ca-
nonical RSN from the low dimensional ICA, global and regional FA 
values (for 9 regions of interest), and global CBF values. We did not 
explore the effect of covariate correction or multiple testing on these 
correlations. 

3. Results 

3.1. The EPAD LCS baseline imaging dataset 

Of the 1500 screened participants, 144 did not fulfill the EPAD LCS 
eligibility criteria and were excluded from the analysis (Solomon et al., 
2019). The resulting dataset has a complete set of core sequences for 
1356 participants. Advanced sequences were performed at thirteen sites, 
with 756 SWI, 842 fMRI, 831 dMRI, and 858 ASL scans acquired. The 
mean age was 65.46 ± 7.14 (ranging from 50 to 88) and 775 (55.71 %) 
were female. All participants were without dementia at inclusion with 
an average MMSE of 28.58 ± 1.66, and 259 (19.11%) had a CDR of 0.5. 
A total of 1246 participants had CSF measurements, of which 845 (67.8 
%) individuals were CSF amyloid negative and 401 (32.2 %) CSF amy-
loid positive, following previously defined study-specific cutoffs (Ingala 
et al., 2021). A detailed description of the baseline clinical and de-
mographic characteristics of the EPAD cohort can be found in (Ingala 
et al., 2021). 

Pre-processing steps were successful for all the T1w images, while 
failed for 8.6 % of fMRI and 8.6% of dMRI data. These failures were 
mostly due to lack of necessary files for pre-processing (e.g. reverse- 
phase, b-values or vectors for dMRI). A high percentage (62.3%) of 
the ASL sequences showed fat-saturation artifacts and are currently 
excluded from the dataset; preprocessing failure rate for the remaining 
ASL sequences was 0%. The final preprocessed EPAD dataset resulted in 
1356 T1w and FLAIR, 770 fMRI, 759 dMRI, and 237 ASL scans. Details 
on the number of scanned and available processed data are provided in 
Fig. 4. 

3.2. Quality control 

49QC features for each scan from 3 different image modalities (3D 
T1w = 12, fMRI = 17, dMRI = 20; per scan) were computed and are 
included in the current release. 

Linear models showed that the QC feature distribution of T1w, fMRI, 

L. Lorenzini et al.                                                                                                                                                                                                                               



NeuroImage: Clinical 35 (2022) 103106

7

and DTI significantly differed between scanning sites. Participants’ de-
mographic characteristics, such as age and sex, were related to the 
motion- and noise-related QC features for the 3D T1w and fMRI images 
(P < 0.05), but not for the dMRI images (P greater than 0.05). Amyloid 
status and MMSE were associated with 3D T1w motion- and noise- 
related QC features. APOE ε4 status was not related to any QC feature 
(Table S3). 

Based on within-site distributions of the 12 QC features extracted 
from 3D T1w images, 197 scans (15% of the whole sample) were flagged 
as “needing-QC’’ for the visualization module. Of those, 16 (8.1 %) were 
categorized as “poor quality” on visual inspection, while 51 (25.9%) 
were labeled as “moderate quality”. In the same number of visually 
inspected non-flagged scans, only one image (0.5%) was labeled “poor” 
while 10 (19.7) were judged to have “moderate” quality. 

For the T1w visual QC, the stepwise ordinal logistic regression 
analysis backward parameter elimination removed four out of the 12 
structural QC features in the final reduced model (Table 2). Five of those 
— Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR), Coeffi-
cient of Joint Variation (CJV), Foreground-Background energy Ratio 
(FBER), and Image Quality Rate (IQR) — were significantly associated 
with the QC visual judgment (i.e. scans being judged as “poor”, “mod-
erate” or “good” quality) and thus considered the most informative. 
When comparing the reduced model (i.e., after backward elimination) 
with the initial full model (i.e. before backward elimination), there was 
no significant loss of fitting. Adding site, sex, and age as covariates in the 
model did not significantly affect our findings (data not shown). 

For the dMRI visual QC, the stepwise logistic regression backward 
parameter elimination selected 5 out of 20 QC features Four of those — 
motion translation on z axis, motion outliers percentage, standard 
squared error, FA outliers, FA standard deviation in the WM — were 
significantly associated with the QC visual judgment (i.e. scans being 
judged as “poor”, “moderate” or “good” quality) and thus considered the 
most informative (Table S4). 

A detailed description of the presented QC parameters can be found 
in section 5 of the supplementary material. 

This analysis was only run for T1w and dMRI scans as visual QC was 

not performed for fMRI. 

3.3. Image-derived phenotypes 

358 IDPs per subject were computed from core sequences and pro-
vided information about total and regional GM volumes, cortical 
thickness, and white matter lesions. Regional FreeSurfer volumes 
showed negative associations with age, most markedly in the hippo-
campus (r = -0.37, p < 0.001), middle temporal lobe (r = -022, p <
0.001) and precuneus (r = -0.20, p < 0.001); and strong positive 

Fig. 4. Consort diagram representing number of scanned and successfully processed sequences. Abbreviations: EPAD = European Prevention of Alzheimer’s De-
mentia; T1w = T1 weighted; FLAIR = Fluid attenuated inversion recovery; fMRI = functional magnetic resonance imaging; dMRI = diffusion magnetic resonance 
imaging; ASL = Arterial spin labeling. 

Table 2 
Results of stepwise backward parameter elimination in T1w QC ordinal logistic 
regression.  

Parameter Domain Odds 
Ratio 

CI p 

Signal to Noise Ratio 
(SNR) 

Noise  0.99 0.979–0.991  <0.001 

Contrast to Noise 
Ratio (CNR) 

Noise  0.91 0.882–0.947  <0.001 

Coefficient of Joint 
Variation (CJV) 

Inhomogeneity  0.94 0.891–0.992  0.026 

Foreground- 
Background energy 
Ratio (FBER) 

Inhomogeneity/ 
Motion  

1.01 1.001–1.004  <0.001 

Asymmetry Index 
percentage 
(AI_perc) 

Asymmetry  1.00 0.999–1.001  0.107 

Image Quality Rate 
(IQR) 

Inhomogeneity/ 
Noise  

1.08 1.068–1.096  <0.001 

Kurtosis in the CSF 
(CSF_k) 

Descriptives  0.99 0.970–1.002  0.092 

White Matter to 
Maximum Intensity 
ratio (WM2MAX) 

Inhomogeneity/ 
Descriptives  

0.98 0.965–1.003  0.116 

The reduced model included 8 parameters, 5 of which showed a p-value smaller 
than 0.05 for the association with the visual QC judgment (“poor”, “moderate”, 
“good” quality). P-values < 0.05 are shown in bold. 
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association in lateral ventricles (r = 0.39, p < 0.001; Fig. 5 and 
Table S5). Moreover, only hippocampus and lateral ventricles volumes 
were significantly associated with amyloid status, CDR and APOE e-4 
(Table S5) A similar association is shown for the global GM volume 
computed with the CAT12 segmentation (Fig. 5). WMH global volume 
showed a positive significant relationship with age and negative with 
APOE e-4. Regional patterns of the association between WMH volumes 
and age are shown in Fig. 6 for males and females respectively 
(Table S5). 

From the 776 pre-processed fMRI scans, 30 were excluded for 
excessive motion (mean framewise displacement of more than 2 SD 
above group average). Fig. S3 shows an example of excluded and 
included rs-fMRI scans and relative motion QC parameters. The mean 
network connectivity was computed for 70 ICA components for the low 
(20) and high (50) dimensional ICA resulting in 70 fMRI IDPs. Complete 
sets of extracted components from both high and low dimensional ICA 
are shown in supplementary material Figs. S4 and S5. From the 20-com-
ponents ICA, 12 showed high correlation with previously defined RSN 
(Table S6) and were studied in association to other non-imaging data. 
Overall, RSN showed mild positive relationship with age while 
decreased connectivity was observed in amyloid positive participants, 
most markedly in the default mode, visual and executive networks (all p 
< 0.001; Fig. 7 and Table S6). 

Visual inspection of group-aligned and skeletonised FA maps led to 
exclusion of 139 scans, resulting in n = 626 FA maps for IDP compu-
tation. Fig. S6 shows examples of included and excluded FA maps. Sig-
nificant negative correlations of age with both global and regional WM 
integrity were found for all tracts, and lower FA values were specifically 

observed in CDR = 0.5 participants (Fig. 8 and Table S7). 
Usable ASL data (without fat-saturation artifact) were derived from 

237 participants. Mean CBF maps across participants showed consider-
able regional variability across the brain with high perfusion in the 
cingulate and precuneus GM and lower perfusion in basal ganglia 
(Fig. 9A). However, no significant association of global CBF was found 
with the investigated non-imaging data (Table S8). Fig. 9 reports an 
example association of CBF with age and APOE-e4 carrier status. 

4. Discussion and future directions 

Here, we provided a detailed description of the EPAD MRI dataset 
and the semi-automatic pipeline developed to process raw multimodal 
multicenter imaging data from the v1500 baseline data release, and 
illustrate its IDP feature extraction. We proposed to use a combination of 
distribution-based statistics and subpopulation visual assessments to 
help identify low-quality images in EPAD. Finally, we described the 
computation of MRI summary measures (IDPs) from the core and 
advanced sequences and provided evidence of meaningful associations 
between brain phenotypes and other non-imaging metadata. We antic-
ipate that this work may benefit both EPAD investigators by providing a 
structured, organized, and well-characterized neuroimaging dataset. 

4.1. MRI cohorts research data management 

The proposed pipeline for the EPAD study represents an attempt to 
deliver standardized data in a multicenter MRI study, in a similar way to 
what has been previously done in other cohorts. Among publicly 

Fig. 5. 3D T1w derived phenotypes. Example association between core sequences derived data and age. A) FreeSurfer surface reconstruction of one 3D T1w image; 
B) Association of eight cortical regional volumes with age; C) CAT12 tissue segmentation of one 3D T1 scan output: green = cerebrospinal fluid, blue = white matter, 
red = gray matter; D) Association of total gray matter volume, as computed with CAT12 segmentation, with age. 
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available neuroimaging cohorts, extensive work on the documentation 
of MRI data management strategies has been recently published by two 
large MRI cohort studies (Sudlow et al., 2015; Bookheimer et al., 2019). 
These efforts entail fully automated pipelines for MRI processing, QC, 
and computation of IDPs from multimodal single-scanner imaging 
datasets (F. Alfaro-Almagro and Jenkinson 2016; Glasser et al., 2013). 
Compared to these studies, a unique feature of our pipeline is that it 

caters multiple scanners from multiple vendors and harmonizes differ-
ences between different scanner outputs to allow for automated pro-
cessing and semi-automated QC. Multisite neuroimaging RDM 
represents a more complex procedure due to the variety of DICOM 
output structures from different manufacturers and scanners. The 
multisite Alzheimer Disease Neuroimaging Initiative (ADNI, (Mueller 
et al., 2005)) has focused on MRI standardization across sites, mainly 

Fig. 6. FLAIR derived phenotypes. A) 
Example FLAIR scan from one EPAD partic-
ipant with relatively high lesion volume; B) 
Result of the white matter hyperintensities 
(WMH) segmentation using BaMoS; C, D) 
Lobes and layer atlases, respectively, used for 
regional WMH volume computation, meth-
odological details are given in (Sudre et al., 
2018); E, F) Effect of age on WMH frequency 
(expressed in percentage of increase in fre-
quency, i.e. the proportion of lesion in a 
given region, per additional year of age) for 
male and female respectively.   

Fig. 7. Resting-state fMRI derived phenotypes. A) Six group resting-state networks spatial maps from a low dimensional (20 independent components) melodic ICA; 
B) Scatter plots showing the non-linear relationship of mean within-network functional connectivity with age, grouped by clinical dementia rating (CDR) score. R 
values are computed as the Pearson correlation coefficients between the quadratic age term (age2) and mean within network connectivity values. 
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during the preparation phase (Jack et al., 2008) where QC and pre-
processing were done centrally and also provided extracted MRI metrics 
to investigators. The Preprocessed Connectome Project (Cameron et al., 
2013) is a community effort to systematically process data from several 
available multicenter datasets including structural and functional MRI 
workflows and comparing outputs of different processing choices and 
toolboxes. As an example, the Autism Brain Imaging Data Exchange 
(ABIDE) dataset (Di Martino et al., 2014), which includes 1114 partic-
ipants with structural (3D T1w) and rs-fMRI data from 16 sites, was 
processed using three different structural and four functional pipelines, 
and corresponding derivatives were made available. While both these 

studies and our EPAD pipeline managed to deal with such diverse 
datasets, we specifically aimed at creating a unified workflow by 
delivering a uniform and QCed shared outcome, promoting reproduc-
ibility, and avoiding redundancy and variability of results. 

4.2. Quality control 

Our data-informed QC procedure was focused on selecting a handful 
of most informative image features in a semi-automatic fashion. On the 
other hand, most recent MRI studies focused on predicting the scan 
quality automatically using a fairly large number of potentially helpful 

Fig. 8. Diffusion MRI-derived phenotypes. A) The FA skeleton as computed in the TBSS pipeline (upper row) and the skeletonized white matter atlas used to extract 
local FA values (bottom row); B) Association of mean global FA values with age and amyloid status (as defined in (Ingala et al., 2021)). C) Association of 4 regional 
FA values with age and amyloid status. Abbreviations: FA = Fractional anisotropy; TBSS = Tract based spatial statistics; WM = White Matter; Sp. = Superior; CC = Corpus 
Callosum; r = Pearson correlation coefficient. 
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image features through unsupervised or semi-supervised methods (F. 
Alfaro-Almagro and Jenkinson 2016; Pizarro et al., 2016). The appli-
cation of machine learning classifiers has proved its efficiency in recent 
QC efforts on classifying 3D T1w image-quality from QC features dis-
tribution, both the UKBiobank (F. Alfaro-Almagro and Jenkinson 2016) 
and atasets. Similarly, random forest classifiers trained on FreeSurfer QC 
output showed good accuracy in scanning site identification, supporting 
the use of multivariate approaches for QC metrics’ importance evalua-
tion (Raamana et al., 2021). However, while these works aimed at the 
fully automatic prediction of image quality from unseen scans/sites, we 
focused on identifying a set of informative QC features as a pre-selection 
and guide for visual inspection. Similar semi-automated procedures 
have also been proposed in the literature. Previously ((Bastiani et al., 
2019)), dMRI QC features were used to create individual and group 
reports and, similar to our work, interactively inspect automatically 
flagged problematic scans. MRIQC (Esteban, Gorgolewski, and Poldrack 
2017) provides interactive individual reports created for straightfor-
ward low-quality image visualization. Likewise, well-established pro-
cessing pipelines for different MRI modalities (Esteban et al., 2019; 
Mutsaerts et al., 2020) produce single-subject visual QC reports for the 
quality assurance of specific processing steps. 

We showed a valuable pragmatic and intuitive solution for identi-
fying problematic acquisitions and reducing the number of scans for 
visual inspection in large multicenter cohorts. Moreover, considering 
the recent efforts to relate quality metrics to the output of expert visual 
rating (Esteban et al., n.d.), another advantage of our QC procedure was 
the possibility of using statistical regression models to evaluate the 
informative character of single QC features and their agreement with a 
human visual inspection, as well as their relationship with scanning site 
and other participants’ demographic data. Using this approach we 
demonstrated the relevance of noise and inhomogeneity measurements 
for identifying low quality T1w scans, as shown in Table 2, which may 
provide a reference for future works aiming at creating automated QC 
procedures from a set of informative quality metrics. Likewise, motion 
and noise measurements also demonstrated strong contribution in pre-
dicting DTI scans quality, in line with previous studies (Bastiani et al., 
2019). While our approach descriptively showed an association between 
these features and human visual QC, further work is needed in under-
standing how those findings could be implemented in a fully automated 
multimodal MRI QC pipeline. 

In line with previous work (Esteban et al., 2017a,b), all QC features 
were strongly dependent on scanners and their sites, advocating for 
within-site normalization of quality metrics in multicenter MRI cohorts, 
as similar features’ values might be related to different quality of images 

from different scanners. Moreover, we also showed that demographic 
and clinical participants’ characteristics are related to image quality 
metrics. Former studies had already shown that age and sex can relate to 
impact the quality of structural derived measures of brain atrophy 
(Gilmore, Buser, and Hanson 2021), and fMRI derived functional con-
nectivity (Hodgson et al., 2017). Together with our results, these find-
ings suggest that scan quality might confound effects attributed to 
clinical variables and, consequently, that fully automated QC proced-
ures might be more prone to exclude scans from selected groups of 
participants (e.g. older participants or clinical groups). 

4.3. Image-derived phenotypes 

In agreement with current literature (Damoiseaux 2017), we showed 
an overall effect of age in modulating brain IDPs across different MRI 
modalities in the EPAD-LCS data set. However, different from more 
clinically oriented papers, we here only reported basic association 
without investigating the effect of covariates correction and multiple 
testing adjustment on the studied associations. Similar to our findings 
using FreeSurfer and CAT12 segmentations, studies on structural brains 
converge on a gradual loss of brain volume with advancing age and 
demonstrate significant regional overlap with our results (Salat et al., 
2004). Notably, in line with our results, hippocampus and lateral ven-
tricles have previously shown the strongest association with preclinical 
AD and cognitive decline (Marizzoni et al., 2019). The observed increase 
of global WMH volume has also been reported in literature and is further 
confirmed by the regional pattern of fronto-parietal lesions shown in 
Fig. 6, previously observed in association with age (Chabriat and Jou-
vent 2020). 

The positive association of functional network connectivity with age 
is less often observed, but might be interpreted as a nonlinear age- 
related decline in resting-state fMRI networks as previously demon-
strated. In (Persson et al., 2014), while participants below 66 years 
showed an increase in DMN connectivity over time, while participants 
older than 74 years showed a decline. Additionally, reduction of func-
tional connectivity in relationship to amyloid deposition and cognitive 
decline have been extensively observed in previous works, showing 
substantial overlap with the networks observed in this work (Brier et al., 
2012). 

As observed with the dMRI IDPs, alterations of white matter integrity 
are a typical sign of aging brains (Barrick et al., 2010). Previous publi-
cations agree with our result of reduced TBSS values in relationship to 
early cognitive impairment in the preclinical stages of AD (Gyebnár 
et al., 2018). Finally, our result of a lack of association between CBF and 

Fig. 9. Arterial spin labeling IDPs. A) Mean CBF in the gray matter across 237 participants. B) CBF in the GM relationship with age and APOE e4 carriership. 
Abbreviations:CBF = Cerebral blood flow; GM = Gray matter; APOE = Apolipoprotein E. 
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age is in contrast with previous studies (Juttukonda et al., 2021). This 
result could be explained by the reduced sample size of participants with 
an ASL scan, as well as by the use of global measures of CBF which might 
be less sensible than regional quantifications. However, as shown in 
Fig. 9, CBF could show a differential relationship with age based on risk 
groups, such as for example APOE e-4 carriers. Previous studies on CBF 
with APOE genotype have shown higher brain perfusion related to worse 
cognitive impairment in older adults carrying the APOE e4 allele (Zlatar 
et al., 2016), and higher regional perfusion in e4 carriers in the left 
cingulate and lateral frontal and parietal regions (McKiernan et al., 
2020). Moreover, similar group regional variability, showing high 
perfusion in the cingulate, precuneus, and frontal cortices and low 
perfusion in basal ganglia, has been previously reported (Pfefferbaum 
et al., 2010). 

5. Limitations 

Although we acknowledge the heterogeneity of existing MRI pro-
cessing methodologies and implementations, we focused here on a 
purely descriptive overview of the procedures implemented for the 
EPAD study. As we followed generally accepted and standard pipelines, 
a potential limitation of this study could be the lack of more novel and 
AI-based processing routines. For example, performing denoising of 
signal drift correction is becoming a preferable procedure for dMRI 
preprocessing (Vos et al., 2017), even if few implementations exist. It is 
important to stress that the aim of this work was to distribute open- 
access data and IDPs. We anticipate that the reuse of the same pro-
cessing pipeline and QC procedures by investigators would result in 
more comparable EPAD studies than reusing the EPAD data only. 
Several possibilities of MRI between-scanner harmonization exist in 
literature (Eshaghzadeh Torbati et al., 2021), which would be inter-
esting to compare and use in future work. In our current processing 
pipeline we aimed to use well-established processing procedures, 
increasing the chances of future investigators reusing our derived results 
rather than reprocessing the EPAD data. 

Another weakness of the proposed pipeline is the lack of longitudinal 
routines. Challenges of longitudinal MRI processing and QC entail the 
necessity of additionally taking into account within-subject variability, 
which could be added to this pipeline in future extensions (Mills and 
Tamnes 2014). Moreover, one main limitation of the validation 
approach used for the QC workflow is the partial circularity of con-
structing and testing the visual QC assessment based on the estimated 
QC features. Nonetheless, while our first aim was to automatically flag 
poor quality images for visual inspection, we then elaborated on the 
informative characters of QC features, studying their association with 
visual judgment. Furthermore, in contrast to more systematic proced-
ures, in which visual inspection is performed on the whole sample 
(Waber et al., 2007), we only focused on automatically flagged scans 
and on a subset of non-flagged. The observation of one “poor” quality 
image in the set of non-flagged scans shows that our semi-automated QC 
strategy is not perfect, and future studies will be needed to validate and 
tune this procedure on fully annotated (visual QCed) strategies, possibly 
including more parameters. The present work is a pragmatic approach of 
combining image feature-based QC with visual QC of a limited number 
of scans, which may be more feasible for large imaging cohorts. 
Reflective of EPAD’s multi-center and multi-vendor design, ExploreQC 
was tailored to this dataset and requires further validation and testing 
before it can be generalized to other studies. Eventually, the lack of 
visual QC standards for functional MRI sequence motivates the devel-
opment of more standardized approaches in future works and hampers 
the interpretation of fMRI QC metrics informative character. However, 
as shown in supplementary Fig. 3, a mean frame-wise motion parameter 
was able to detect outliers and clear differences could be visualized in 
the SD over time images of those scans, proposing this to be a possible 
standard for fMRI visual QC in future works. The IDPs found in the EPAD 
v1500.0 data sample cover a broad range of structural and functional 

brain phenotypes. However, several possibilities for summary brain 
measures exist (Gong, Beckmann, and Smith 2020). Future efforts 
should focus on widening the present number of IDPs to entail a new 
range of brain phenotypes, including measures of longitudinal changes 
where applicable. In addition, the IDPs analyses performed in this work 
were not targeting any specific hypothesis but only thought to be a 
sensitivity check for data sanity, reporting associations that were pre-
viously found in literature. 

6. Conclusion 

We provide a detailed description of the baseline EPAD LCS MRI 
dataset including the processing and QC procedures and details of the 
computation of derived data from core and advanced MRI sequences 
yielding biologically plausible IDPs. The introduced procedures and 
results may serve as a reference point for future developments and 
promote replicability and stability of results on the EPAD cohort. We 
made the pipeline available for external investigators aiming at the 
comparability of outcomes between different cohorts. We anticipate that 
this work will help both imaging and non-imaging researchers working 
on EPAD for an easier understanding and use of the shared data. 
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Writing – review & editing. José Luis Molinuevo: Writing – review & 
editing. Juan Domingo Gispert: Writing – review & editing. David M. 
Cash: Writing – review & editing, Supervision. David L. Thomas: 
Writing – review & editing, Supervision. Sjoerd B. Vos: Writing – re-
view & editing, Supervision. Ferran Prados: Writing – review & editing. 
Jan Petr: Writing – review & editing, Supervision, Software, Data 
curation. Robin Wolz: Writing – review & editing, Data curation. 
Alessandro Palombit: Writing – review & editing, Data curation. Adam 
J. Schwarz: Writing – review & editing. Gaël Chételat: Writing – re-
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Molinuevo, J.L., Ripolles, P., Simó, M., Lladó, A., Olives, J., Balasa, M., Antonell, A., 
Rodriguez-Fornells, A., Rami, L., 2014. White Matter Changes in Preclinical 
Alzheimer’s Disease: A Magnetic Resonance Imaging-Diffusion Tensor Imaging 
Study on Cognitively Normal Older People with Positive Amyloid β Protein 42 
Levels. Neurobiol. Aging 35 (12), 2671–2680. 

Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C.R., Jagust, W., 
Trojanowski, J.Q., Toga, A.W., Beckett, L., 2005. Ways toward an Early Diagnosis in 
Alzheimer’s Disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). 
Alzheimer’s & Dementia: J. Alzheimer’s Assoc. 1 (1), 55–66. 

Mutsaerts, H.J.M.M., Petr, J., Groot, P., Vandemaele, P., Ingala, S., Robertson, A.D., 
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