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Over the past few decades, several radiotracers have been developed for neuroimaging

applications, especially in PET. Because of their low steric hindrance, PET radionuclides

can be used to label molecules that are small enough to cross the blood brain

barrier, without modifying their biological properties. As the use of 11C is limited by

its short physical half-life (20min), there has been an increasing focus on developing

tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood

flow and glucose metabolism to be measured, and the development of molecular

imaging has since enabled to focus more closely on specific targets such as receptors,

neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers

have become indispensable for innovative clinical research. Currently, the treatment

options for a number of pathologies, notably neurodegenerative diseases, remain only

supportive and symptomatic. Treatments that slow down or reverse disease progression

are therefore the subject of numerous studies, in which molecular imaging is proving to

be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose

several neurological diseases in vivo and at preclinical stages, yielding topographic,

and quantitative data about the target. As a result, they can be used for assessing

patients’ eligibility for new treatments, or for treatment follow-up. The aim of the present

review was to map major innovative radiotracers used in neuroscience, and explain

their contribution to clinical research. We categorized them according to their target:

dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein,

neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological

disorders, and indeed mental disorders, involve the dysfunction of one or more of

these targets. Combinations of molecular imaging biomarkers can afford us a better

understanding of the mechanisms underlying disease development over time, and

contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and

treatment follow-up in both research and clinical settings.
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INTRODUCTION

Molecular imaging is the visualization, characterization, and
measurement of biological processes at themolecular and cellular
levels in humans and other living systems (1). Over the past few
years, rapid improvement in molecular imaging has led to gain
in specificity and quantification helpful for early diagnosis and
disease follow-up, particularly within the field of neurology. A
key advantage of in vivomolecular imaging is its ability to identify
pathological processes without the need for invasive biopsies or
surgical procedures (2).

This imaging technique is currently performed with
positron emission tomography (PET) and single-photon
emission tomography (SPECT). Several PET and SPECT
radiotracers have been developed for neuroimaging applications.
The first ones, namely 123I-labeled amines, 99mTc-
hexamethylpropyleneamine-oxime (99mTc-HMPAO), and
99mTc-ethyl cysteinate dimer (99mTc-ECD), were developed
in the 1990s to measure regional cerebral blood flow in the
presurgical evaluation of patients with refractory partial epilepsy
(3). The 2000s saw the advent of PET with the use of fluorine-18
fluorodeoxyglucose ([18F]FDG) in clinical routine, for the
assessment of cerebral glucose metabolism. As such, it has also
been used in the preoperative evaluation of partial epilepsy, but
its indications equally include the early diagnosis and differential
diagnosis of dementing disorders, differential diagnosis of
cerebral space-occupying lesions, detection of viable tumor tissue
(recurrence), non-invasive grading, and differentiation between
Parkinson’s disease and atypical Parkinsonian syndromes (4).

During the past decade, advances in molecular imaging have
enabled scientists to focus on specific brain targets, such as
receptors, neurotransmitter transporters, or abnormal protein
deposits. There are a growing number of radiotracers, which
are regarded as valuable tools for many medical imaging
applications, including early detection, diagnosis, and treatment
follow-up (2). New imaging biomarkers (e.g., amyloid peptide)
allow for the diagnosis of neurological diseases at an early stage,
thus contributing to the emergence of the concept of preclinical
disease (5, 6). Several PET and SPECT radiotracers are used
for both routine clinical applications and research that aim
to improve the prevention, diagnosis and treatment of brain
diseases. For instance, molecular imaging biomarkers can be used
for treatment follow-up, or for selecting patients to be included in
clinical trials, or for exploring the neurobiological underpinnings
of disease progression.

The aim of the present review was to map out the main
innovative radiotracers used in neurology, and explain their role
in clinical research.We did not explore 11C-labeled tracers in any
depth, as they are not widely used for clinical purposes, owing
to their short half-life (20min). We classified the radiotracers
according to their target.

DOPAMINERGIC SYSTEM

Today, the main class of radiotracers targeting
neurotransmission is the one that enables the dopaminergic
pathways to be explored (7). These molecules allow for the

imaging of nigrostriatal neurons and dopamine receptors.
They are used as PET or SPECT radiotracers and assist with
the diagnosis of Parkinson’s disease (PD), other Parkinsonian
syndromes, and Lewy body dementia (LBD) (8).

The first radiotracer to be introduced for the non-invasive
assessment of nigrostriatal terminals was [18F]-DOPA in 1983
(9). This radiotracer reflects the activity of aromatic amino
acid decarboxylase (AADC), an enzyme that converts L-DOPA
to dopamine, through its subsequent accumulation in the
dopamine neurons (10). Striatal F-DOPA uptake has been
found to be closely related to the nigral cell count (11),
except at the beginning of the disease as a consequence of
functional compensation (F-DOPA uptake is preserved while
motor symptoms can be already presents) (12). This molecule
has a history of more than 30 years in clinical research and for the
diagnosis of PD. However, in the past decade, the clinical practice
led to prefer instead tracers targeting the plasma membrane
dopamine transporter (DAT). The latter is easier to use and
has a high sensitivity for detecting presynaptic dopaminergic
degeneration at early-stage of PD. F-DOPA has recently regained
interest in the context of regenerative therapy for PD such as
the implantation of dopamine cells or the infusion of drugs with
regenerating effects into the striatum (13, 14). The purpose of this
therapy is to regenerate the dopaminergic presynaptic function
by converting L-DOPA to dopamine. In that cases, DAT tracers
are considered to be less relevant for measuring therapeutic
response than F-DOPA.

As mentioned above, the second presynaptic dopaminergic
target is the DAT, located on dopamine nerve cell terminals.
In contrast to the AADC, the DAT is only expressed within
dopamine neurons. However, the ligands used for its imaging
may also bind to related transporters, such as the serotonine
reuptake transporter (SERT) or the norepinephrine reuptake
transporter (10). In SPECT imaging, several radiotracers have
been developed. The most commonly used are the two cocaine
derivatives: [123I]-βCIT and [123I]-FPCIT (8). Compared with
[123I]-βCIT, [123I]-FPCIT has better selectivity for DAT vs.
SERT, and due to its lower DAT affinity, it has better kinetic
properties, with a striatal peak time at 148min after intravenous
injection (15). Although direct comparison of FP-CIT SPECT
and F-DOPA PET has shown that both FP-CIT SPECT scans and
F-DOPA PET scans are able to distinguish patients with PD from
healthy controls with high levels of sensitivity and specificity,
the decrease in [123I]-βCIT binding more closely mirrors the
reduction in dopaminergic neurons than the decrease in F-DOPA
uptake does, suggesting that β-CIT binding is a better index of
dopaminergic neuron loss (16). These different sensitivity of the
two tracers to a reduction in dopamine transmission is linked
to differing degrees of decrease in the striatal uptake of the two
tracers, with less striatal FP-CIT uptake than F-DOPA uptake
at the early phase of disease (17). [123I]-FPCIT was licensed
as DaTSCAN (Amersham Health) in Europe in 2000, and is
now a frequently used SPECT radioligand in clinical routine,
particularly as an ancillary tool for diagnosing patients with
movement disorders, but also in clinical research (15). In the
latter context, [123I]-FPCIT has been used in numerous studies
seeking to determine the sensitivity and specificity of this tracer
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in the differentiation of several causes of dementia (18), as well
as to study variations in DAT density after different treatments,
such as antipsychotics in patients with schizophrenia (19), or
psychotherapy in individuals with depression (20).

Tropane derivatives have also been labeled with 99mTc:
TRODAT-1 has been compared with F-DOPA in patients with
PD (21), and may represent a reliable alternative. 99mTc-labeled
ligands are less expensive, and may therefore be more easily
accessible, and more suitable for routine use (22–24).

Another tracer has been developed to image the DAT: PE2I.
Like FP-CIT and β-CIT, this molecule is a cocaine derivative,
which can be labeled with iodine-123 or−125, carbon-11, or
tritium (25). This ligand has about a 30-fold higher affinity for
DAT than for SERT, and its lower affinity for DAT makes [123I]-
PE2I kinetics better than that of [123I]-FPCIT, with a striatal peak
time of 30–60min. However, despite its favorable properties,
[123I]-PE2I is not currently licensed as a SPECT radioligand for
clinical use (15).

The excellent properties of PE2I mentioned above recently
were exploited to develop a new DAT tracer: LBT-999, exploited
by Zionexa, which could be used in future PET explorations
using fluorine-18 (26–28). Because of its higher resolution,
PET imaging is more useful than SPECT for accurate in vivo
quantification of DAT density. LBT-999 is a phenyltropane
derivative that has demonstrated its suitability for in vivo
quantification of DAT in non-human primates (29). An in vivo
kinetic study in baboons confirmed that LBT-999 brain uptake is
fast, high, and mainly located in the putamen and caudate, with
peak uptake in these regions at 30 min postinjection.

A third way of investigating the function of dopamine
terminals is to measure the density of vesicular monoamine
transporter (VMAT2), which is responsible for taking up
neurotransmitters into presynaptic secretory vesicles. Although
a majority of VMAT2 are expressed in dopaminergic terminals,
this transporter is also located in various monoaminergic
neurons, and is involved in the vesicular trapping of a wide
variety of neurotransmitters including dopamine, serotonin,
norepinephrine, and epinephrine. This target can be investigated
with [11C]-DTBZ, or more recently with fluorinated analog
[18F]-AV-133, by PET (30). This presynaptic marker follows very
typical patterns in several neurodegenerative diseases affecting
dopaminergic function, such as PD, LBD, multiple system
atrophy (MSA), progressive supranuclear palsy (PSP), and
corticobasal syndrome (CBS). Their uptake/binding is altered
in several brain areas, depending on the disease and its stage
(31). In contrast to AADC activity or DAT binding, it has been
suggested that VMAT2 activity is less inclined to changes induced
by medication or compensatory mechanisms. However, VMAT2
activity can be impacted by the amount of vesicular dopamine,
competing at the recognition site. Hence, the level of VMAT2
binding may decrease with levodopa administration (32). These
tracers have a future in early detection/screening, diagnosis, and
neuroprotective treatment follow-up of these neurodegenerative
diseases, as well as in the monitoring of neural grafted cells after
transplantation (8).

Dopaminergic neurotransmission can also be explored by
visualizing postsynaptic D2 receptors. The binding potential of

these receptors can be assessed using SPECT with the ligands
[123I-IBZM and 123I]-IBF, as well as PET with [11C]-raclopride
and [18F]-fallypride as radiotracers (Figure 1) (8, 31). The
concomitant study of DAT and D2 receptors may improve the
diagnostic value of molecular imaging in differentiating between
PD and other parkinsonian syndromes (33, 34). Nowadays,
however, the measurement of cardiac [123I]-MIBG uptake
remains the most frequently used technique to differentiate PD
and MSA (35). Molecular imaging of dopamine D2 receptors
has also been used to study dopamine’s role in drug abuse
and addiction (36), and to evaluate several neuropsychiatric
disorders (37).

Key features of all these tracers are summarized in Figure 2

and Table 1.

AMYLOID IMAGING

β-amyloid (Aβ) plaques in the brain are one of the key
histopathologic lesions of Alzheimer’s disease (AD) (80).
Advances in the understanding of the physiopathology of AD
suggest that progressive amyloid accumulation begins during the
presymptomatic phase, followed by synaptic dysfunction, tau-
mediated neuronal injury, a reduction in brain volume, and
finally the emergence of cognitive symptoms, followed by a
clinical syndrome of overt dementia (81). This suggest that Aβ

imaging is a critical step for the early diagnosis of AD.
These deposits were first imaged in PET in 2002, using a

thioflavin-T derivative: 11C-Pittsburgh compound B ([11C]-PIB)
(82). Although this is the best known compound, its use is
restricted to the research field, owing to the short half-life of
11C. Numerous studies have showed that [11C]-PIB binds to Aβ

plaques in several cortical regions in patients with AD (82–84).
[11C]-PIB binding is correlated with a reduction in cerebrospinal
fluid Aβ42 (85), cerebral atrophy (86), and episodic memory
impairment in apparently healthy elderly individuals and those
with mild cognitive impairment (MCI) (87). These studies have
paved the way for the development of several Aβ plaque PET
tracers labeled with 18F. To date, three radiopharmaceuticals
with equivalent diagnostic performances have been authorized
by the European Medicines Agency and the US Food and

FIGURE 1 | Comparison of [123I]-IBZM image (A) and [18F]-fallypride image

(B) within the same individual.
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TABLE 1 | Main SPECT and PET dopaminergic tracers, molecular strucures, pharmacological properties, and examples of clinical studies.

Compounds Imaging

modality

Target/

measure

Affinity (nM) Clinical

studies

Compounds Imaging

modality

Target/

measure

Affinity (nM) Clinical

studies

[18F]-DOPA

PET AADC activity Uptake PD

(10, 13, 14)

LBD (38, 39)

MSA (40)

PSP (41) [11C]-DTBZ

PET VMAT2

density

Ki = 2 (42) PD (43, 44)

LBD (44, 45)

MSA (46, 47)

[123 I]-βCIT

SPECT DAT density Ki = 27±2 (DAT)

Ki = 3±0.2 (SERT)

Ki = 80±28

(NET) (48)

PD (49–52)

LBD (53)

MSA (34)

[18F]-AV133

PET VMAT2

density

Kd = 0.19 (striatum)

Kd = 0.25

(hypothalamus)(54)

PD (55)

LBD (56)

[123 I]-FPCIT

SPECT DAT density Ki = 3.5 (DAT)

Ki = 9.7 (SERT)

(48)

PD (57–59)

LBD (60)

MSA (61)

PSP (58)

[123 I]-IBZM

SPECT D2 receptors

density

Kd = 3.1±0.62

Ki = 0.32 (D2)

Ki = 4143 (D1) (62)

MSA (63, 64)

PSP (63, 65)

[99mTc]-TRODAT-1

SPECT DAT density Ki = 14.1±2.1

(DAT)

Ki = 360±44

(SERT) (23)

PD (21, 66)

[123 I]-IBF

SPECT D2 receptors

density

Kd = 0.106±0.015

Ki = 0.015±0.002 (D2)

Ki = 820±164 (D1) (67)

MSA (68)

PSP (68, 69)

[123 I]-PE2I

SPECT DAT density Ki = 17±7 (DAT)

Ki = 500±30

(SERT)

Ki >1000 (NET)

(25)

PD (70, 71)

LBD (72)

PSP (73)

[11C]-raclopride

PET D2 receptors

density

Ki = 7.5 (74) MSA (75, 76)

[18F]-LBT-999

PET DAT density Kd = 9.15±2.8

(DAT)

IC50 >1000 (SERT

and NET) (26)

PD (77)*

[18F]-fallypride

PET D2 receptors

density

IC50 = 0.6 (78) Epilepsy (79)

Kd, dissociation constant; Ki, inhibition constant; IC50, half maximal inhibitory concentration. *Preclinical study.
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FIGURE 2 | Schematic illustration of PET and SPECT techniques for assessing presynaptic and postsynaptic dopaminergic targets. L-DOPA is converted to

dopamine by DOPA decarboxylase, then stored in vesicles by a vesicular monoamine transporter. Dopamine reuptake into presynaptic neurons occurs via a

dopamine transporter (DAT). Two different types of dopamine receptors are expressed on postsynaptic neurons: D1 and D2.

Drug Administration: 18F-florbetapir, 18F-florbetaben, and 18F-
flutemetamol (88) (Table 2).

The clinical criteria that are currently used for AD diagnosis
have variable specificity and sensitivity, with pooled averages of
70 and 81% (100). A recent review assessing studies published
from January 1980 to March 2014 on the diagnostic utility
of these three radiotracers demonstrated a pooled weighted
sensitivity and specificity of 89.6% and 87.2% for florbetapir,
and 89.3 and 87.6% for florbetaben in differentiating patients
with AD from age-matched normal controls (101). These
results suggest that 18F-labeled tracers have better sensitivity
and specificity than clinical diagnosis and other biomarkers
commonly used in practice (89), and are comparable to 11C-
PiB. They have also been shown to have good patient tolerability
(96). However, the extent and distribution of Aβ plaques and
amyloid PET tracer binding in patients are only moderately
correlated with patterns of neurodegeneration and cognitive
deficits (102–104). This suggests that Aβ deposition, which
is a prerequisite for diagnosing AD, is just the starting-point
of a cascade of other neuropathological events, rather than

the actual driver of neurodegeneration and clinical disease
progression (105).

In this respect, these tracers are chiefly useful for their good
negative predictive value. A negative scan (i.e., amyloid burden
undetectable or extremely low) is considered to be incompatible
with a diagnosis of AD. Although a moderate-to-high amyloid
plaque density may point to AD, a positive test is not sufficient to
diagnose this disorder, especially in elderly participants. It was in
this context that the Society of Nuclear Medicine and Molecular
Imaging and the Alzheimer’s Association delineated “appropriate
use criteria” in 2013, identifying three clinical circumstances
in which amyloid PET imaging is recommended to clarify the
diagnosis: “Patients with persistent or progressive unexplained
mild cognitive impairment”, “Patients satisfying core clinical
criteria for possible (as opposed to probable) Alzheimer’s disease
(i.e., atypical clinical course or etiologically mixed presentation)”,
and “Patients with atypically young-onset dementia” (106).

In spite of its excellent diagnostic capacity, the use of
amyloid PET imaging in clinical practice is still limited.
However, this technique has proved extremely useful in clinical
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TABLE 2 | Main amyloid PET tracer, molecular structures, pharmacological properties, and examples of clinical trials in AD.

Compounds Target/ measure Affinity (nM)(88) Clinical studies in AD

[11C]-PIB

Aβ plaques (fibrillar oligomer) Ki = 0.9 (82–84)

[18F]-florbetapir

Aβ plaques (aggregated form) Ki = 2.2 (89–92)

[18F]-flutemetamol

Aβ plaques (soluble form) Ki = 0.7 (93–95)

[18F]-florbetaben

Aβ plaques (aggregated form) Ki = 2.4 (96–99)

trials. Currently, the treatment options for AD are limited
to symptomatic drugs, with no attenuation of the ultimate
prognosis (107). Numerous studies are being conducted to
find new treatments, as well as to better understand the
physiopathology of AD. One of the research approaches to
develop new treatments involves targeting the two pathological
features associated with AD, namely senile plaques (Aβ)
and neurofibrillary tangles (NFTs) composed of aggregates of
hyperphosphorylated tau protein in paired helicoid filaments
(PHF). According to the amyloid cascade hypothesis, toxic
plaques are the earliest manifestation of the disease, a notion
supported by evidence of Aβ up to 20 years prior to the
onset of symptoms (107). Two main classes of medication
are under development as a result: monoclonal anti-amyloid
antibodies, and inhibitors of pathogenic cleavage of the amyloid
precursor protein (APP). PET amyloid radiotracers in clinical
trials evaluating the therapeutic potential of these medications
are used for selecting and including patients with significant
Aβ, or monitoring disease progression under treatment (108).
For example, in an amyloid-based immunotherapy study, PET
imaging used for treatment follow-up suggested that anti-
amyloid antibodies were more effective in the early stages of
amyloid accumulation (108). Soon after this discovery, another
study was therefore conducted to study the effect of this class of
medication in patients with few or no symptoms (MMSE 20–
26) but positive amyloid PET imaging (109). This study failed
to show a significant difference in cognitive outcomes between
the study group and asymptomatic controls; however other drug
studies with similar design using amyloid tracer PET imaging in
asymptomatic patients with AD are ongoing.

TAU IMAGING

As previously indicated, several studies have reported that
Aβ burden is only moderately correlated with glucose

hypometabolism, disease severity, progression, and clinical
presentation. Furthermore, clinical trials assessing monoclonal
anti-amyloid antibodies have mostly failed to show a clinical
benefit in AD. The other main histopathological figure of AD,
abnormal tau protein aggregates, has therefore be considered
with much interest. Several PET radiopharmaceuticals have
therefore been developed to accurately target abnormal
tau protein conformations. NFTs composed of aggregated
hyperphosphorylated tau in paired helicoid filaments are one
of the two key neuropathological substrates of AD, along
with Aβ plaques (110). Whereas, Aβ levels stabilize at an
early stage, the presence and extent of NFTs and neuronal
injury increase in parallel with disease duration and severity
of symptoms (111). Moreover, tau has been found to be more
closely related to memory decline in post mortem studies of
AD than amyloid pathology (112). Abnormal aggregation of
tau protein has also been observed in the pathophysiology of
other neurodegenerative diseases, including frontotemporal
dementia (FTD), CBS, PSP and, to a smaller extent, LBD; the
abnormal conformation of tau in these diseases are distinct from
that observed in AD which involves paired helicoid filaments
(PHF). These pathologies are collectively known as tauopathies.
These tauopathies differ by the isomeric form and ultrastructural
morphology of aggregated tau, affected brain regions, and spatial
patterns of tau accumulation (110).

Over the past few years, six promising tau imaging
agents have been developed: [11C]-PBB3, [18F]-AV-1451 (or
flortaucipir, previously known as T807), [18F]-T808, and
the THK family [18F]-THK523, [18F]-THK5105, and [18F]-
THK5351. These radiotracers have been synthesized, using
structure–activity relationship software, from N-benzylidene-
benzohydrazide compounds used for the detection of tau-paired
helical filament (PHF) (88).

One of the first radiotracers developed for tau imaging was
[18F]-FDDNP. This tracer is rapidly metabolized in hydrophilic
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compounds that cross the blood brain barrier (BBB), resulting in
non-specific binding and therefore significant background noise.
Furthermore, this tracer is not specific to NFTs, but also has an
affinity for Aβ plaques, meaning that it is not the best choice for
tau assessment (88, 113, 114).

The first tau-selective radioligand, [18F]-THK523 was
synthesized by Okamura et al. (115), and its selectivity for
phosphorylated tau was confirmed in post mortem studies, as
well as in several in vitro, ex vivo, and in vivo experiments (116).
However, this tracer is not able to bind to tau aggregates in non-
AD tauopathies such as PSP and CBD, and is characterized by
high retention in white matter (117, 118). New THK compounds
have since been developed: [18F]-THK5105, [18F]-THK5117,
and [18F]-THK5351. The latter has better kinetics, less white
matter binding, and a higher affinity for tau than [18F]-THK523
(119). However, it also binds to MAO-B sites, and has a lower
binding level in AD than AV-1451 does (110).

[11C]-PBB3 is another tau radiotracer with a high affinity for
NFTs, a low level of white matter binding, good BBB penetration
and rapid washout. The peculiarity of [11C]-PBB3 is its affinity
for the tau isoforms of several non-AD tauopathies. However, it
metabolizes to a radiolabeled compound that can cross the BBB,
thus limiting its quantification (110).

[18F]-T807 ([18F]-AV1451 developed by Lilly Research
Laboratories) and [18F]-T808 belong to the benzimidazole
pyrimidine family. They have a nanomolar affinity for the tau
PHF found in AD, and are 25 times more selective for tau
PHF than for Aβ (120, 121). Today, [18F]-AV-1451 is the
most widely used tau radioligand. Like [11C]-PBB3, it has low
retention in white matter. Several clinical studies have shown
a close correlation between [18F]-AV1451 binding and the
neuropathological stages of tau (122), cognitive decline and
tau levels in cerebrospinal fluid (123, 124). However, a recent
autoradiographic evaluation of AV1451 reported a lower level
of binding in non-AD tauopathies, as well as off-target binding
in the basal ganglia and substantia nigra in the absence of tau
pathology (125).

Recently, another radioligand ([18F]MK-6240, developed by
Merck laboratories) was administered to patients with AD
with promising results. This tracer showed a high specificity
and selectivity for NFTs, good pharmacokinetic properties, and
no apparent off-target binding, in contrast to [18F]-AV-1451
(110, 126–128).

As a link has been demonstrated between NFTs and
AD symptoms, tau PET tracers are increasingly being used
in AD clinical trials, especially those investigating drugs to
reduce the tau or Aβ burden (129), such as Aβ monoclonal
antibodies. The indirect effect of reducing Aβ on the rate
of PHF deposition downstream further supports the amyloid
hypothesis, and tau PET imaging may highlight the presumptive
disease-modifying impact of these drugs. Furthermore, as tau
monoclonal antibodies are designed and investigated, tau PET
imaging will be helpful in demonstrating and quantifying the
engagement of the molecular target. Many trials currently use
cerebrospinal fluid (CSF) biomarkers of tau and phosphorylated
tau to detect target engagement, but there are few data on how
CSF biomarkers and tau PET imaging correlate. Tau PET imaging

may also help to confirm that changes in tau deposition are
correlated with clinical disease progression (130). Several tau
vaccines have shown efficacity and safety in animal models (131).
In a recent study, an anti-tau drug exhibited a good safety profile
and even stimulated a positive immune response in human
patients (132). Several other early-phase trials of drugs that target
tau protein are currently underway, although the results are yet
to be published (133).

In this context, like amyloid tracers, tau radioligands
(summarized in Table 3) have an important role to play
in clinical studies assessing new treatments and measuring
disease progression.

NEUROINFLAMMATION

Neuroinflammation is an inflammatory and adaptive response
within the central nervous system, and depends on several
processes mediated by neuronal cells such as astrocytes, as well as
by non-neuronal cells such as the brain’s resident macrophages
and microglia.

Although initiation of an inflammatory response may be
beneficial in response to injury of the nervous system, chronic
or maladaptive neuroinflammation can have harmful outcomes
in many neurological diseases. During inflammatory processes,
cytokines, chemokines and reactive oxygen species (ROS) are
produced by glial cells, and all these molecules can be targeted
by molecular imaging (146).

The main target for imaging neuroinflammation is currently
translocator protein (TSPO) overexpression in activated
microglia. TSPO is a highly hydrophobic protein that is
mainly situated in the outer mitochondrial membrane.
Classically not present in healthy brain parenchyma, TSPO
has been widely identified in microglial cells in dementia
neuropathology, which involves neuroinflammatory processes
and microglial activation. The most widely used TSPO PET
radiopharmaceutical tracer used to be [11C]-(R)-PK11195.
A new generation of fluorinated tracers has been developed
in the past decade (147, 148), with different compound
families such as phenoxyarylacetamides derivatives ([18F]-
FEDAA1106, [18F]-FEPPA, [18F]-PBR06), imidazopyridine
derivatives ([18F]-PBR111), and pyrazolopyrimidine derivatives
([18F]-DPA-714) (Figure 3). However, while these fluorinated
compounds have turned out to be more sensitive and specific,
with a clear improvement in the signal-to-noise ratio, a major
additional problem has been identified, in the shape of a
polymorphism in the TSPO gene (rs6971) that affects TSPO
binding, with a significant impact on its visualization and its
quantification. To circumvent this drawback, a new generation of
rs6971-insensitive TSPO radioligands have been developed, such
as flutriciclamide ([18F]-GE180) (149), and this latest generation
of tracers is currently under evaluation (150).

Other PET tracers of gliosis have been tested, such as [11C]-
DED, which binds to MAO-B, and some results in transgenic
animals (151) seem to indicate that gliosis occurs early in AD
and precedes the deposition of Aβ senile plaque. Cyclooxygenase
was also investigated by Shukuri et al. (152), who showed that
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TABLE 3 | Main tau PET tracers, molecular structures, pharmacological properties, and examples of clinical studies.

Compounds Target/measure Affinity (nM) Comments Clinical studies

[18F]-flortaucipir

(AV1451, T807)

PHF-tau Kd = 14.6

(88)

25 time more selective for tau

PHF than for Aβ.

Low retention in white matter.

Off-target binding has been

reported in the basal ganglia and

substantia nigra in the absence

of tau pathology.

AD (134–137)

[18F]-T808

PHF-tau Kd = 22 (138) Slow metabolic defluorination

(139)

AD (120)

[18F]-THK523

PHF-tau Kd = 86 (88) 12-fold selectivity for tau over Aβ.

High retention in white matter.

AD (118)

[18F]-THK5117

PHF-tau Kd = 5.19

(88)

High binding

selectivity to tau over Aβ.

Substantial white matter binding.

AD (140)

[18F]-THK5105

PHF-tau Kd = 2,63

(88)

Higher binding affinity to tau

fibrils than to Aβ1–42 fibrils (Kd =

35.9 nM) (141)

Substantial white matter binding.

AD (115, 142)

[18F]-THK5351

PHF-tau Kd = 2.9 (88) Low binding affinity for white

matter, and rapid

pharmacokinetics.

It also bind to MAO-B sites (110)

AD (119)

[11C]-PBB3

PHF and non-PHF tau Kd = 100 (88) 40–50 fold higher affinityfor NFTs

than for Aβ, rapid washout,

minimal white matter binding, but

it metabolizes to a radiolabeled

compound that cross the BBB

(110)

AD (143), PSP (144),

Amyotrophic lateral

sclerosis/parkinsonism

dementia complex

[ALS/PDC (145)]

[18F]-MK6240

PHF-tau Ki =

0.36±0.8 (88)

Poor affinity for Aβ plaques (Ki =

10µM) (127)

No apparent off-target binding.

AD (128)

[11C]-ketoprofen methyl ester, a specific tracer of COX1, is
useful for imaging cerebral inflammation in injured rats, with
very different kinetics from TSPO tracers. However, a study in
humans with this ketoprofen derivative in 2016 (153) failed to

yield positive results, suggesting that COX1 expression is more
specific for acute inflammation than for chronic inflammation.

Recently, researchers have shown increasing interest in the
ROS system. In cardiology, [18F]-DHMT makes it possible
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FIGURE 3 | [18F]-DPA-714 images obtained from two clinical studies: (A) Comparison between Amyotrophic Lateral Sclerosis (ALS) patients and healthy individuals,

and (B) stroke patient.

to visualize early ROS activation prior to ventricular function
deterioration induced by doxorubicin toxicity (154). In
neurology, [18F]-ROStrace, a tracer trapped in the brain when it
is metabolized by ROS is currently being assessed in models of
AD, PD and other neurodegenerative diseases (155).

These tracers are summarized in Table 4.

GLUTAMATE RECEPTORS

Glutamate is the most abundant excitatory neurotransmitter,
and glutamate receptors (GluRs) are implicated in plenty
of neurological functions within the central nervous system
(CNS). GluRs are classified into two groups: ionotropic
receptors (iGluRs) andmetabotropic receptors (mGluRs). iGluRs
form ligand-gated ion channels and are divided into three
subtypes based on their pharmacological properties: NMDA
(N-methyl-D-aspartate receptors, NMDARs), AMPA (α-amino-
3-hydroxy-5-methylisoxazole-4-proprionic acid) receptors, and
kainate receptors. mGluRs are G-protein coupled receptors and

include eight receptor subtypes, classified into three groups
according to their sequence homology, signal transduction, and
pharmacological profiles. Group I is comprised of mGluR1
and mGluR5, group II includes mGluR2 and mGluR3, and
group III contains mGluR4, mGluR6, mGluR7, and mGluR8
(171). A dysfunction of these receptors may be involved in the
pathophysiology of numerous brain disorders. Several PET and
SPECT probes have been developed for GluRs imaging (Table 5).

NMDARs
Linked to ligand- and voltage-gated ion channels, NMDARs
play an important role in many biological functions, including
neurotransmission, neuroprotection, neurodegeneration, long-
term potentiation, memory, and neurogenesis (188). These
receptors are heteromeric multimers composed of one GluN1
(NR1 subunit) and combinations of GluN2 (NR2 subunits) (189)
and GluN3 (NR3 subunits) (190). NR2 subunits come in four
subtypes (A D) that determine the type of receptor, with A
and B being the most widespread. NR2B subunits, preferentially
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TABLE 4 | Main PET tracers for neuroinflammation imaging, molecular structures, pharmacological properties, and examples of clinical studies.

Compounds Target/measure Affinity (nM) Clinical studies Compounds Target/ measure Affinity (nM) Clinical

studies

[11C]-(R)-PK11195

TSPO density Ki = 9.3 in rat

(156)

AD (157, 158), PSP (157),

multiple sclerosis (MS), PD,

ALS, HI,

Rasmussen’s encephalitis,

Herpes

encephalitis, Schizophrenia

(156)

[18F]-DPA714

TSPO density Ki = 7.0 in rat

(156)

AD (159, 160)

[18F]-FEDAA1106

TSPO density Ki = 0.078 in

rat (156)

AD (161)

MS (162)

[18F]-GE180

TSPO density Kd = 0.87 in

rats (163)

MS (164)

[18F]-FEPPA

TSPO density Ki = 0.07 in

rat (156)

AD (165)

[11C]-DED

MAO-B activity NA AD (166)

[18F]-PBR06

TSPO density Ki = 0.30 in

monkey (156)

MS (167)

[11C]-ketoprofen methyl ester

COX-1 IC50 = 47

(COX-1)

IC50 = 2.9µM

(COX-2) (152)

AD (153)

[18F]-PBR111

TSPO density Ki = 3.70 in

rat (156)

MS (168)

Schizophrenia (169)

Epilepsy (170)

[18F]-ROStrace

ROS activity NA Preclinical

studies
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TABLE 5 | Main SPECT and PET glutamatergic tracers, molecular structures, pharmacological properties, and examples of clinical studies.

Compounds Imaging

modality

Target/

measure

Affinity (nM) Clinical studies Compounds Imaging

modality

Target/

measure

Affinity (nM) Clinical studies

[123/125 I]-CNS-1261

SPECT NMDARs

density

Ki = 4.2 (171) Schizophrenia

(172, 173)

[18F]-FIMX

PET mGlu1Rs

density

IC50 = 1.8

(171)

(174)

[18F]-GE-179

PET NMDARs

density

Ki = 2.4 (171) -

[18F]-FPEB

PET mGlu5Rs

density

Ki = 0.2 (171) PD (175), alcohol

dependence (176),

depression (177),

autism (178)

[18F]-FNM

PET NMDARs

density

Ki = 3500

(179)

Tourette’s

syndrome

(GlutaTour project,

ToNIC TMBI)

(E)-[11C-]ABP688

PET mGlu5Rs

density

Kd = 5.7

(171)

Cocaine addiction

(180), depression

(181), FTD (182),

alcohol

dependence (183)

[11C]-ITMM: R = O11CH3

[11C]-ITDM: R = 11CH3

PET mGlu1Rs

density

Ki = 12.6

([11C]-ITMM)

(171)

(184)

[18F]-PSS232

PET mGlu5Rs

density

Ki = 1

(E-isomer)

(185)

(186)

Ki = 13.6

([11C]-ITDM)

(171)

Preclinical studies

[11C]-JNJ42491293

PET mGlu2Rs

density

IC50 = 9.2

(171)

(187)
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expressed on primary afferent fibers (PAFs), play a particular role
in the transmission of pain messages (191). NMDARs activation
requires several types of agonists interacting in cooperation and
the simultaneous presence of strong membrane depolarization.
Furthermore, NMDARs activation is modulated by extracellular
Mg2+, which exerts a voltage-dependent blockade of the
open ion channel (192). First, two co-agonists, glutamate and
glycine, have to simultaneously bind to their respective sites.
Membrane depolarization then causes the release of Mg2+

from the channel to allow for the intraneuronal entry of
calcium, the starting point for the synthesis of second and
third messengers [e.g., prostaglandins and nitric oxide (NO)]
(193). Under physiological conditions of synaptic transmission,
NMDARs are activated for only brief periods of time. However, in
pathological circumstances, their overactivation causes excessive
Ca2+ influx into nerve cells, and can lead to cell death (194).
This abnormal mechanism mediates excitotoxic neuronal injury
after acute brain damage (195) and is thought to contribute
to disorders of neuronal hyperexcitability (e.g., epilepsy) and
chronic neurodegenerative (e.g., AD, Huntington’s) (196) and
psychotic (197) disorders. Several tracers have been synthesized
in order to better understand the physiopathology of these
diseases. Most of them are phencyclidine site ligands (PCP) that
selectively bind to ion channels in the open and active state.
These tracers thus make it possible to visualize only activated
NMDARs. Several 123I-, 125I-, 11C-, or 18F-labeled SPECT/PET
radiotracers have been developed, based on phencyclidine (PCP),
thienylcyclohexyl piperidine (TCP) (198, 199), ketamine (200),
memantine (201, 202) or MK-801 (203, 204), as these ligands
are known to inhibit the intrachannel PCP sites of NMDARs.
Although most of these radiotracers have been found to cross
the BBB, none of them have detectable specific binding in vivo,
owing to high non-specific binding, poor brain retention, or
insufficient affinity for the small number of specific binding sites
(205, 206). To our knowledge, only few NMDARs radiotracers
have been used in human studies. The diarylguanidine analog,
[123I]-CNS-1261 exhibited limited success in a clinical study
of patients with schizophrenia (207). In PET imaging, despite
encouraging results (208), a recent preclinical study using

[18F]GE-179 was unable to demonstrate displaceable in vivo
binding that would have been evidence of an in vivo activity-
dependent NMDA signal in rats and primates (209–211).
Recently, a new [18F]-labeled derivative of memantine, [18F]-
fluoroethylnormemantine ([18F]-FNM), was synthesized. In vivo
evaluation of this novel PET tracer has yielded encouraging
results (179, 212), and it had been injected for the first time into
humans, in a pilot study to explore the glutamatergic system
in patients with Tourette syndrome (GlutaTour project, ToNIC
TMBI) (Figure 4).

Other NMDAR binding sites, such as the glycine and NR2B
sites located on the receptor’s extracellular domain, have been
the subject of various studies aimed at developing new tracers.
However, radiotracer development for these targets has so
far been unsuccessful, owing to the ligands’ suboptimum
physiochemical and pharmacological characteristics, such
as affinity, lipophilicity, stability, BBB penetration and
pharmacokinetics (171, 205, 206, 213–215).

mGluR
Group I

Group I mGluRs, predominantly expressed postsynaptically, are
involved in modulation of synaptic plasticity, and their activation
leads to increased neuronal excitability. They are implicated
in the physiopathology of several neurological and psychiatric
disorder, such as PD, motor dysfunction, multiple sclerosis,
epilepsy and stroke, and are the target of recently developed PET
probes (171).

mGluR1

mGluR1 are found extensively throughout the brain, but are
highly expressed in the cerebellar cortex, hippocampus and
thalamus. mGluR1 antagonists have shown promising anxiolytic
and antidepressant effects, whereas positive modulators of
mGluR1 have been reported to be useful for the treatment of
schizophrenia (171). Among all developed molecules to image
them, only two radioligands have been injected into humans.
The first is [11C]-ITMM. In vitro and preclinical studies found
that this ligand had high affinity and selectivity for mGluR1,

FIGURE 4 | Images from first-in-man injection of [18F]-FNM in a Tourette’s syndrome patient (GlutaTour project).
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and displayed high brain uptake, with highest uptake in the
cerebellum (richest mGluR1 area). This cerebellar uptake has
also been observed in human PET studies, however, [11C]-
ITMM showed relatively low uptake in the brain regions with
modest expression of mGluR1, such as thalamus, hippocampus,
and cerebral cortex, making it difficult to examine target
density in these regions (184). Nevertheless, [11C]-ITMM
could be used to evaluate alterations in cerebellar mGluR1
under pathological conditions, and further clinical studies
may be needed to assess the usefulness of this radioligand
as a PET probe for mGluR1 quantification. [11C]-ITDM, an
analog of ITMM, was considered superior to [11C]-ITMM
after in vivo studies in monkeys because of its higher regional
distribution volume in the mGluR1-rich region (216). To our
knowledge, clinical PET studies with this radiotracer have not
been published.

Finally, [18F]-FIMX, is the second high affinity mGluR1
radioligand injected into humans. The rank order of this tracer
uptake correlated well with mGluR1 expression levels in the
human brain, with a highest uptake in the cerebellum (174).

mGluR5

mGluR5 are found in the cerebral cortex, hippocampus,
accessory olfactory bulbs, and nucleus accumbens (171). In
physiological conditions, mGluR5 activates an intracellular
cascade by second messenger processes and modulates
functions as diverse as memory, anxiety, or learning. It has
been demonstrated that the disruption of brain homeostasis
in pathological conditions causes hyperactivation of mGluR5,
which then contributes to excitotoxicity. mGluR5 dysregulation
is therefore implicated in a broad variety of neuropsychiatric
disorders and mGluR5 is recognized as a relevant molecular
biomarker of glutamate pathology in these diseases. PET
imaging of mGluR5 has expanded in recent years and has
contributed to go deeper in the pathophysiology of brain
diseases and to better evaluate new treatment strategies.
Several PET radioligands targeting mGluR5 have been
synthetized (205, 217) and the most promising candidates
are currently being investigated in several preclinical and
clinical studies.

[18F]-FPEB has been developed by Merck Research
Laboratories and, regarding its high specificity and selectivity
for mGluR5, together with a suitable brain kinetics (218, 219),
has been extensively used to investigate mGluR5 density
in neurological disorders. In neurology, [18F]-FPEB has
shown mGluR5 upregulation in Parkinson’s Disease (220),
but recent main contributions of [18F]-FPEB imaging are
about psychiatry and addictions. Thus, Leurquin-Sterk et al.
studied the effects of acute alcohol intake on the glutamatergic
system (221), and demonstrated that mGluR5 availability
was lower in limbic regions of alcohol-dependent subjects
than in healthy controls, suggesting that limbic mGluR5 was
involved in a compensatory mechanism helping to reduce
craving during abstinence (176). The alteration of mGluR5
availability was also demonstrated in posttraumatic stress
disorder, with a higher cortical [18F]-FPEB in vivo binding
that was positively correlated with avoidance symptoms

(222). Besides, [18F]-FPEB PET imaging did not find any
mGluR5 contribution in Major Depressive Disorder (177),
whereas, considering neurodevelopmental diseases, an
increased [18F]-FPEB binding was observed in postcentral
gyrus and cerebellum of male individuals with autism Specter
disorder (178).

[11C]ABP688 is a selective, high-affinity mGluR5 antagonist
widely used in mGluR5 clinical PET imaging (223, 224).
Recently, [11C]ABP688 revealed in vivo evidence of reduced
availability of mGluR5 in behavioral variant frontotemporal
dementia (182) and in focal cortical dysplasia, in tissue
resected from epilepsy patients (225). Whereas, Akkus et al.
reported no significance difference in [11C]ABP688 binding
in individuals with schizophrenia compared with healthy
controls (226), a multi-modal imaging approach, combining
mGluR5 PET imaging with [11C]ABP688 together with fMRI
reported a lower mGluR5 availability and related functional
connectivity alterations in drug-naïve young adults with major
depression (227). Esterlis et al. confirmed this hypothesis and
objectified an antidepressant response of ketamine through
a change in [11C]ABP688 binding that was associated with
a significant reduction in depressive symptoms following
ketamine administration (228). In alcohol consumption abuse,
[11C]ABP688 evidenced altered mGluR5 signaling in the
amygdala, that was correlated with the temptation to drink (183).

Regarding the limitations in clinical availability of
[11C]ABP688, due to the short physical half-life of carbon-
11, fluorinated ABP688 derivatives have been proposed,
including the promising radioligand [18F]PSS232. After a
preclinical validation evidencing specific and selective in vitro
and in vivo properties (185), Warnock et al. reported recently
the first-in-human evaluation of this tracer, highlighting in
healthy volunteers a favorable brain uptake pattern and kinetics
of [18F]PSS232 (186).

These clinical studies, with sometimes ambiguous or even
discordant results, must be put in perspective with regard to
the influence of the intrasynaptic concentration in endogenous
glutamate on the binding of radioligands. For that purpose,
pharmacological challenges have been performed in both
preclinical and clinical settings, using several glutamate
modulators, including ceftriaxone, a potent GLT-1 activator
that decreases extracellular levels of glutamate, N-acetylcysteine
(NAC), a promoter of the cysteine–glutamate antiporter that
increases extrasynaptic glutamate release, and ketamine, an
NMDA glutamate receptor antagonist, that increases glutamate
release when administered at subanesthetic doses. To date, these
pharmacological explorations remain equivocal according to: 1-
the pharmacological compound used; 2- the tested radioligand;
3- the studied species (rodents, non-human primates, or human
subjects). Thus, whereas ketamine administration decreases
[11C]ABP688 binding in vivo in human subjects (229), this
result has not been confirmed in rats (230). On the other hand,
[18F]PSS232 binding appears to be not impacted to neither acute
glutamate shifts after stimulation with N-acetylcysteine (NAC)
in human (231) nor ketamine and ceftriaxone infusions in the
rat brain (232). This parameter has to be considered carefully to
accurately quantify mGluR5 expression in vivo using PET.
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Group II and III

Group II and III mGluRs are mostly located within presynaptic
regions and involved in the inhibition of neurotransmitter
release. Of all the subtypes, only an mGluR2 tracer has been
the subject of a human PET study. [11C]JNJ42491293 is a
selective, high-affinity radioligand for the positive allosteric
modulator (PAM) site of mGluR2. This site is a potential target
for treating anxiety, schizophrenia or addiction. In the first
human study, its in vivo distribution was consistent with known
mGluR2 expression patterns (highest uptake in the striatum and
cerebellum) (187). Unfortunately, recent experiments showed an
off-target binding in vivo and [11C]JNJ42491293 was considered
unsuitable for in vivo imaging of mGluR2 (233).

CHOLINERGIC SYSTEM

The cholinergic system is well known to be involved in cognitive
function, and cholinergic dysfunction has been shown to play
a key role in the physiopathology of dementia. Targets have
been identified by post mortem studies, which have highlighted
alterations in functional components of the cholinergic system
(234). These include both presynaptic dysfunction [e.g.,
in acetylcholinesterase (AChE) or vesicular acetylcholine
transporters (VAChTs)] and postsynaptic dysfunction [e.g.,
in nicotinic acetylcholine receptors (nAChR) or muscarinic
acetylcholine receptors (mAChR)] (235, 236). Several
radiotracers (summarized in Figure 2) have been developed for
each of these targets.

There are two PET tracer substrates for AChE: [11C]-PMP
and [11C]-MP4A. These have been used in several clinical
studies over the past two decades to highlight modifications
in AChE activity in patients with AD, PD, PSP or LBD
(237–242). [11C]MP4A has a high specificity for AChE,
but also a high rate of hydrolysis by this enzyme, and
radioligand uptake in regions with high AChE activity is
therefore strongly dependent on the rate of transport into the
brain (243). By contrast, [11C]PMP exhibits a hydrolysis rate
that is three to four times slower than that of [11C]MP4A,
allowing for more precise estimates of AChE activity in regions
of moderate-to-high AChE concentration (244). Presynaptic
cholinergic terminal density can also be assessed with selective
radioligands for presynaptic VAChTs. This has been done
in clinical studies with [123I]-IBVM (237, 245) and, more
recently, in PET imaging with [18F]FEOBV (246). [18F]FEOBV
exhibits lower binding in the mesopontine junction and
medulla than [123I]IBVM, providing a robust index of VAChT
binding (247).

Postsynaptic cholinergic dysfunction has been assessed in
patients with AD, using (S)-[11C]nicotine (248–250). However,
these [11C]nicotine studies were hindered by high levels of
non-specific binding, rapid metabolism, and washout from the
brain, as well as a strong dependence on cerebral blood flow
(234). New PET and SPECT radioligands have recently been
developed to target α4β2 nAChR, which is the most severely
affected receptor subtype in AD, with reductions of up to
50% in the neocortex, entorhinal cortex and hippocampus

(251). Some clinical studies using either the SPECT tracer
[123I]-5IA, or the PET tracer [18F]-2FA, in patients with
AD have highlighted significant reductions in α4β2 nAChR in
several brain areas, correlated with cognitive impairment (252,
253). Furthermore, another study found a negative correlation
between α4β2 nAChR availability and Aβ load (measured
by [11C]-PIB), suggesting that Aβ deposition induces the
degeneration of cholinergic neurons (254). It was suggested 10
years ago that the α7 nAChR subtype plays a neuroprotective
role, by modulating the neurotrophic system that is needed
to maintain cholinergic neuron integrity, and by stimulating
signal transduction pathways that support neuron survival.
In AD, α7 nAChR is implicated in Aβ toxicity and tau
phosphorylation (255). Moreover, deletion of the α7 nAChR
gene has been shown to reduce cognitive impairment in animal
models of AD (256). Further PET studies using radioligands
specific to the α7 nAChR, such as [18F]ASEM, are needed
to determine the relationship between α7 nAChR and AD
pathology (234).

In PD, LBD or PSP, mAChR has also been imaged with
[123I]QNB and [11C]NMPB (257, 258), which are high-
affinity mAChR antagonists with similar chemical structures
and regional brain distributions. These radiotracers are able to
penetrate the BBB efficiently, but non-specifically in relation to
the mAChR subtype (234).

All these cholinergic tracers are resumed in Figure 5

and Table 6.

GABAA RECEPTORS

γ-Amino butyric acid (GABA), is the predominant inhibitory
neurotransmitter in the central nervous system. This
neurotransmitter is able to bind to two types of receptor:
ionotropic GABAA/C and metabotropic GABAB. GABAA
receptors, also known as the central benzodiazepine receptor,
are found on most neurons in the brain, and are part of
a superfamily of ligand-gated ion channels. They have a
primary binding site for GABA, as well as multiple allosteric
modulatory sites. When benzodiazepines, or other allosteric
modulators such as barbiturates, bind to GABAA receptors,
conformational changes increase the permeability of the
central pore to chloride ions, resulting in a chloride flux
that hyperpolarizes the neuron (271). GABAA receptors can
be composed of several subunit isoforms (272), but only
pentamers containing α1, α2, α3, α4, or α5 subunits are
benzodiazepine sensitive. These various subunits have a region-
specific distribution in the brain, and are believed to subserve
different functional and physiological roles and mediate a variety
of pharmacological effects. Impairment of GABAA receptor
function is increasingly recognized to play a major role in
the pathophysiology of several neuropsychiatric diseases such
as AD, epilepsy, panic disorders, major depression, cortical
brain damage following an acute stroke, anxiety disorders,
and chronic alcohol dependency (273). Radiotracers that bind
to benzodiazepine sites on GABAA receptors (GABAA-BZ
sites) have been shown to be useful for investigating these
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disorders (274). The first molecules developed for GABAA
receptor imaging was carbon-11 labeled benzodiazepines such
as [11C]flunitrazepam, [11C]diazepam, or [11C]fludiazepam,
but the lack of specificity and in vivo affinity of these ligands
(Kd ≥ 10 nM) did not allow accurate determination of
GABAA receptor density (275). The triazolobenzodiazepine
[11C]alprazolam have also been investigated. Despite an
increased affinity (Kd = 3.4 nM), PET studies in six healthy
volunteers showed a low extraction into brain (<1% of injected
dose), and a substantial depot effect probably into the lungs
(276). Finally, the imidazobenzodiazepine flumazenil (Ro 15-
1788 or N-methyl-11C]flumazenil), became the most commonly
used radioligand for GABAA receptor imagingand is still
extensively used to quantify benzodiazepine binding in the
human brain (277–279). It was used to measure changes in
GABA levels (280), as well as to quantify BZ receptors density in
the epileptic foci of patients with partial epilepsy (281–283), in
schizophrenic patients (284), neuronal loss in stroke (285), and
more recently as a tool in clinical research to evaluate GABAA
receptor occupancy using molecules with potential anxiolytic
properties (286). [123I]iomazenil, a iodo-analog of flumazenil

with very similar binding profile, has also been widely used in
clinical studies (287–289).

[11C]Ro15-4513 is a partial inverse agonist at the GABAA-
BZ site, preferentially targeting α5 subunits (290, 291). Like the
previous ones, this tracer has also been used in clinical studies
to understand the precise involvement of GABAA receptors in
different neuropsychiatric diseases and the relationship between
GABAA receptor density and clinical symptoms (292, 293).

Several attempts of fluorine-18 labeling of flumazenil were
performed. Thus, [18F]-FEF, [18F]-FFMZ, and [18F]-flumazenil
have been tested. Studies have demonstrated the superiority of
[18F]-flumazenil because of a higher affinity and lower levels of
radiometabolites in brain (275, 294). Because of the longer half-
life of the isotope, this tracer could become the “gold standard”
in benzodiazepine PET studies.

The development of GABAA radioligands (summarized in
Table 7) need several improvements. Several improvements are
needed. First, is to develop receptor subtype specific radioligands
such as [11C]Ro15-4513. Radioligands specific for all the GABAA
receptor subtypes would be of great importance to PET imaging.
The second important enhancement is to develop and apply

FIGURE 5 | Schematic illustration of the main cholinergic PET and SPECT radioligands, and their presynaptic or postsynaptic targets. Acetylcholine (ACh) is

synthesized by choline acetyltransferase from choline and acetylCoA. ACh is released into the synaptic cleft, where it can bind to two types of receptors expressed on

postsynaptic neurons: nicotinic receptors (nAChR) and muscarinic receptors (mAChR). ACh is degraded to choline and acetate by acetylcholinesterase (AChE). The

reuptake of choline into presynaptic neurons occurs via a choline transporter. Choline is recycled within presynaptic neurons to form ACh, and stored in vesicles by a

presynaptic vesicular ACh transporter (VAChT).
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TABLE 6 | Main SPECT and PET cholinergic tracers, molecular structures, pharmacological properties, and examples of clinical studies.

Compounds Imaging

modality

Target/

measure

Affinity (nM) Clinical studies Compounds Imaging

modality

Target/

measure

Affinity (nM) Clinical

studies

[11C]-PMP

TEP AChE

activity

NA AD (237, 239, 240,

259), PD (239)

[123 I]-5IA

SPECT α4β2

nAChR

density

Kd = 0.011 in rats

(260)

AD (252)

[11C]-MP4A

TEP AChE

activity

NA AD (242), PD

(238, 241), LBD

(261), PSP (238)

[18F]-2FA

TEP α4β2

nAChR

density

Ki = 0.046 in rats

(262)

AD (253)

[123 I]-IBVM

SPECT VAChT

density

IC50 =

2.5±0.2 in

rats (263)

MSA (245)

[123 I]-QNB

SPECT mAChR

density

IC50 = 0.8 in

mouse (264)

AD (265), PD,

LBD (258)

[18F]-FEOBV

TEP VAChT

density

AD (266), LBD

(246)

[11C]-NMPB

TEP mAChR

density

IC50 = 1.8 in

mouse (264)

AD (267), PD,

PSP (257)

[11C]-nicotine

TEP α4β2

nAChR

density

Kd = 2.4 in

rats (268)

AD (248–250)

[18F]-ASEM

TEP α7 nAChR

density

Ki = 0.3 in

HEK293 cells

stably transfected

with rat α7 nAChR

(269)

Schizophrenia

(270)
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TABLE 7 | Main radioligands for GABAA receptors imaging, molecular structures, pharmacological properties, and examples of clinical studies.

Compounds Imaging modality Target/ measure Affinity (nM) Clinical trials

[11C]-FMZ

PET GABAA-BZ sites (α1,

α2, α3, and α5

subunits)

Ki ≈ 1.3 (BZRs containing

α1, α2, α3, or α5 subunits)

Ki ≈ 150 (BZRs containing

α4, or α6 subunits) (295)

Epilepsy (281–283)

Stroke (285)

Schizophrenia (284)

[123 I]-IMZ

SPECT GABAA-BZ sites Ki = 0.47 (in primates) (296) Stroke (287)

Epilepsy (288)

Anorexia nervosa (289)

[11C]Ro15-4513

PET GABAA-BZ sites

α5 subtype

Ki = 0.3 (BZRs containing

α5 subunits) (290)

Alcohol dependence

(292)

Schizophrenia (293)

Autism (297)

[18F]-flumazenil

PET GABAA-BZ sites – Epilepsy (298, 299)

full agonist radioligands sensitive to changes in endogenous
neurotransmitter levels. Finally, development of radiotracers
specific to other sites than the BZ binding site will be important
in order to further investigate GABAA pharmacology as well as
to investigate the role of GABAA receptors in various disease
staFinally, development of radiotracers specific to other sites
than the BZ binding site will be important in order to further
investigate GABAA pharmacology as well as to investigate the
role of GABAA receptors in various disease states (275).

SEROTONINERGIC SYSTEM

The serotonergic system plays an important modulatory role
in many central nervous system functions. It is the target of
many drugs commonly used to treat brain disorders, either
through reuptake blockade or via interactions with serotonin (5-
HT) receptors. Serotonergic dysfunction has been involved in
the etiology of many psychiatric disorders, including depression,
anxiety and schizophrenia, as well as neurological diseases such
as AD and epilepsy. Currently available radiotracers for in
vivo brain imaging of the 5-HT system in humans include

radioligands for the 5-HT1A, 5-HT1B, 5-HT2A and 5-HT4
receptors, and for the 5-HT transporter (SERT) (300).

The 5-HT1A receptor is one of the most extensively studied
receptors in the serotonergic family. Like most 5-HT receptors, it
is a G protein-coupled receptor (GPCR) with seven membrane-
spanning domains. It serves as an inhibitory autoreceptor in the
raphe nuclei, and is targeted by serotonin reuptake inhibitors. It
also plays a role with 5-HT4 and 5-HT6 receptors in learning and
memory (301, 302). Several radioligands have been synthesized
up to now, but only three are in frequent use in clinical studies.
The two most widely used are [carbonyl-11C]WAY-100635 and
[18F]MPPF (300). These two radioligands are selective and
high-affinity 5-HT1A receptor antagonists with a high target-
to-background ratio. These tracers have been used in numerous
studies of patients with psychiatric disorders such as panic
disorder (303), bipolar depression (218) and anorexia nervosa
(304), as well as in neurological disorders such as epilepsy,
cognitive impairment, AD and migraine (305–311). The third
5-HT1A antagonist radioligand used in clinical studies is [18F]-
FCWAY (312), a fluorinated analog of WAY-100635, which also
has high 5-HT1A affinity and a high hippocampal-to-cerebellar
binding ratio (313–317). However, this compound undergoes
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high defluorination in vivo, leading to high bone radioactivity
uptake. Although this radiodefluorination has been prevented
in humans by preadministering disulfiram, this drawback may
explain why its use has not been expanded beyond a single PET
center (300). A novel and promising 18F-labeled radiotracer,
[18F]MefWAY, that is thought to be resistant to defluorination
in vivo was recently administered to healthy humans, but no
clinical study has yet been published (318). There has been recent
interest in the use of 5-HT1A agonists to study variations in
endogenous 5-HT levels. [11C]CUMI-101 shows high affinity,
but its sensitivity to endogenous 5-HT variations in vivo has not
yet been reported (319).

Because they are involved in the etiology and treatment
of many psychiatric disorders, 5-HT2A receptors have also
been imaged. Five specific radioligands of this receptor have
successfully been used in clinical studies: [123I]-R91150,
and the PET radioligands [18F]setoperone, [18F]altanserin,
[18F]deuteroaltanserin, and [11C]MDL 100, 907. Despite its low
signal-to-noise ratio, [123I]-R91150 has often been used in drug
occupancy studies, on account of the widespread availability of
SPECT (320, 321). It has also been used to study changes in
5-HT2A receptor density that are implicated in various diseases,
including cognitive decline (322), suicidal behavior (323), and
anorexia nervosa (324). [18F]altanserin is the most frequently
used PET tracer. Although it is metabolized to lipophilic
radiometabolites, which contribute to non-specific binding, like
the previous one, this tracer has been used to determine 5-
HT2A receptor density in relation to several psychiatric diseases,
such as depression (325), cognitive decline (326), Tourette’s
syndrome (327), schizophrenia (328) and other neuropsychiatric
disorders (329, 330).

Another target allowing for serotoninergic system imaging
is the SERT. Interest in SERT imaging has been stimulated
by the success of serotonin reuptake inhibitors. The three
most widely used belong to the diarylsulfide family: [11C]-
DASB, [11C]-MADAM, [123I]-ADAM (300). These radiotracers
have been successfully used to estimate SERT occupancy by
selective serotonin reuptake inhibitors (331–337), in order to
demonstrate changes in SERT density in several neuropsychiatric
disorders and throughout their treatment (338–344), as well
as in healthy individuals to investigate physiological variations
such as personality traits (345) or seasonal changes (346). Other
specific radiotracers for this target are still being developed:
4-[18F]ADAM has yielded promising results (347, 348).

All these serotoninergic tracers are summarized in Table 8.

α-SYNUCLEIN

α-synuclein (α-Syn) is a phosphoprotein found in Lewy bodies
(LBs), pathological inclusions that are the hallmark of PD
and LBD, as well as in the glial cytoplasmic inclusions
(GCIs) that are typical of MSA. All these diseases fall now
under the heading of synucleinopathies (363). α-Syn aggregates
might induce mitochondrial and proteasomal dysfunction, and
interfere with vesicular trafficking within dopamine neurons,
leading to their degeneration (364). These protein aggregates

have been shown to spread from cell to cell via the extracellular
space, and the presence of α-Syn has been demonstrated in
extracellular matrices such as plasma, conditioned cell media,
and cerebrospinal fluid (365, 366). It is thought that occult
α-Syn deposition may occur years before the onset of motor
symptoms. Hence, accurate and early detection of premotor
synucleinopathies may benefit more from α-Syn imaging,
rather than from evidence of dopaminergic changes (367, 368).
Although several molecules are able to bind to aggregated α-
Syn, a selective imaging biomarker has not been found yet. A
sensitive and specific α-Syn radiotracer would have to fulfill
several criteria. First, α-Syn exist in different forms, including
soluble and insoluble oligomers. An imbalance between these two
species led to the formation of pathologic aggregates (369, 370),
which have to be recognized by the tracer. Secondly, α-Syn
aggregates have distinct cellular localization patterns according
to the synucleinopathy, with intraneuronal aggregates (e.g., LBs)
in PD, and oligodendrocytic aggregates (e.g., GCIs) in MSA. The
ideal α-Syn radiotracer would be able to detect and differentiate
these different locations, thereby providing a potential tool
for differential diagnosis. Third, colocalization between α-Syn
aggregates and other aggregating proteins, such as tau and Aβ

(371), has frequently been reported. The optimum tracer would
have to be able to specifically detect α-Syn with regard to other
deposits, despite their small size and low density. Finally, α-
Syn undergoes various posttranslational modifications, such as
oxidative modification (372), phosphorylation (373, 374), and N-
terminal acetylation, all of which the tracer should be able to
detect (363).

As explained above, several molecules are able to cross
the BBB and bind to aggregated α-Syn. Unfortunately, these
molecules also tend to bind to other aggregated proteins,
including Aβ plaques. In this context, diverse Aβ-binding
compounds have been investigated for potential affinity for α-
Syn, such as [11C]-PIB (375), and more especially [18F]-BF227.
In vitro binding studies indicate that [18F]-BF227 binds with
high affinity to two binding sites on Aβ1–42 fibrils, and to
one class of binding site on α-Syn fibrils. [18F]-BF227 has
been found to bind to Aβ-containing AD brain, but failed
to bind to Aβ-free LBD or age-matched control homogenates.
Furthermore, [18F]-BF227 labeled both Aβ plaques and LBs in an
immunohistochemical/fluorescence analysis of human AD and
PD brain sections (376). [18F]-BF227 has also been reported
to stain GCIs in post mortem tissues, and [11C]-BF227 PET
was used to measure the aggregated α-Syn load in eight cases
of probable MSA (377). This study demonstrated high signals
in GCI-rich brain regions, including subcortical white matter
and the putamen, globus pallidus, primary motor cortex, and
anterior and posterior cingulate cortex. However, a very recent
autoradiography study failed to support binding of [18F]BF-227
to CGI at concentrations typically achieved in PET experiments
(378). The lack of specificity and affinity of [18F]-BF227 means
that it cannot be used to diagnose synucleinopathies, although
it could, theoretically, still be used to monitor changes in α-Syn
aggregate load after interventions such as immunotherapy. Levels
of other aggregated proteins, such as Aβ, would first have to be
independently determined (368).
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TABLE 8 | Main serotoninergic radioligands, molecular structures, pharmacological properties, and examples of clinical studies.

Compounds Imaging

modality

Target/

measure

Affinity (nM) Clinical studies Compounds Imaging

modality

Target/

measure

Affinity (nM) Clinical studies

[11C]-WAY-100635

PET 5-HT1A
density

(antagonist)

Kd = 0.2–0.4

(300)

PD (306), depression

(349), panic disorder

(303), social anxiety

disorder (302), anorexia

nervosa (304) [18F]altanserin

PET 5-HT2A
density

Ki = 0.13 (300) AD (326), depression

(325), schizophrenia

(328), Tourette’s

syndrome (327),

anorexia nervosa (329),

obsessive compulsive

disorder (330)

[18F]MPPF

PET 5-HT1A
density

(antagonist)

Kd = 0.3

(300)

AD (308), epilepsy

(282, 307, 311),

migraine (309, 310)

[18F]deuteroaltanserin

PET 5-HT2A
density

– AD (350)

[18F]FCWAY

PET 5-HT1A
density

(antagonist)

Ki = 0.25

(300)

Epilepsy (313–315),

panic disorder (316)

[11C]MDL-100,907

PET 5-HT2A
density

Kd = 0.14–0.19

(300)

Depression (351),

obsessive compulsive

disorder (352)

[18F]MefWAY

PET 5-HT1A
density

(antagonist)

IC50 = 26 in

rats (353)

–

[11C]DASB

PET SERT density Ki =

0.97±0.07(354)

Depression (340),

schizophrenia (341),

alcohol dependence

(343), obsessive

compulsive disorder

(342), bipolar disorder

(344)

[11C]CUMI-101

PET 5-HT1A
density

(partial

agonist)

Ki = 0.15

(300)

Measure of

endogenous changes

in serotonergic

neurotransmission

(355) [11C]MADAM

PET SERT density Kd = 0.02 (356)* –

[123 I]R91150

SPECT 5-HT2A
density

Kd = 0.11

(300)

AD (322), anorexia

nervosa (324), suicidal

behavior (323)

[123 I]ADAM

SPECT SERT density Kd = 0.03 (356) Depression (338),

migraine (339)

[18F]setoperone

PET 5-HT2A
density

Kd = 0.7 in

rats (357)

AD (358), migraine

(359), stroke (360),

depression (361)

4-[18F]ADAM

PET SERT density Ki = 0.081 (362) Depression (348)

*Determined for [3H]MADAM.
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TABLE 9 | Main PET and SPECT radiotracers relevant to α-Syn imaging, molecular structures, pharmacological properties, and examples of clinical trials. *determined for

[3H]-PIB.

Compounds Imaging modality Affinity for α-Syn fibrils (nM) Affinity for Aβ fibrils (nM) Clinical trials

[11C]-PIB

PET Kd = 4.16* (381) Kd1 = 0.71*

Kd2 = 19.80* (Aβ1−42 fibrils)

(382)

Not used in clinical trials for

α-Syn imaging

[18F]-BF227

PET Kd = 14.03 ± 43.52 (380) Kd1 = 0.82±1.08

Kd2 = 125.2±29.05 (Aβ42

fibrils) (380)

MSA (377)

[125 I]-SIL23

SPECT Kd = 148 (379) Kd = 635 (379) –

The last reported α-Syn radioligand is [125I]-SIL23 (379).
This tracer has been found to bind to α-Syn fibrils in post
mortem brain tissue from patients with PD, as well as to α-
Syn in a transgenic mouse model for PD. However, the affinity
of SIL23 for α-Syn vs. Aβ and tau fibrils is not optimum for
imaging fibrillar α-Syn in vivo. Moreover, high non-specific
binding, including non-specific binding in white matter liable
to be secondary to lipophilic interactions, also appeared to limit
autoradiography with SIL23 in preliminary experiments.

To conclude, the development of an α-Syn PET radiotracer
is particularly challenging, and although several studies have
tried to develop suitable PET α-Syn radiotracers (380), the ideal
candidate remains elusive. These three radiotracers and their
main properties are resumed in Table 9.

DISCUSSION

Molecular imaging agents have evolved from non-specific agents
to ligands with very high selectivity for specific brain targets
such as receptors, neurotransmitter transporters, or abnormal
protein deposits over the last decades. Through the nine targets
mentioned above, we have seen that the specificity of the
ligands for their target is of paramount importance. Indeed,
cross binding affinities of several radioligands could reduce the
specificity of the results and may interfere with diagnosis.

More and more the diagnosis of dopaminergic disorders
is sustained by molecular imaging combined with clinical
examination and have been included in guidelines (383, 384).
Thus, molecular imaging is used as an ancillary tool when
clinical symptoms are insufficient to confirm a diagnosis.
Dopaminergic imaging rests on F-DOPA, but mostly on DAT
imaging (especially [123I]-FPCIT), which is considered more
relevant to evaluate dopaminergic neuron loss. Thus, LBT-999
could be of great interest in the future because of its better
sensitivity, and the higher resolution of PET imaging. In parallel,
the increase in attempted to graft dopaminergic neurons may

drive up F-DOPA imaging tomonitor cell survival. An interesting
target remain particularly challenging: indeed, to date, α-Syn
cannot be specifically detected with existing radiotracers. This
target constituting the hallmark of PD, LBD and MSA, its early
visualization could be considerably helpful for diagnosis.

In regards to AD imaging, the first investigations was the
assessment of cerebral perfusion. Then, [18F]FDG has allowed
to assess cerebral glucose metabolism, and remains a widely
prescribed exam at present. Within the last decades, amyloid
imaging became the most specific examination because of
its excellent negative predictive value, and allow therapeutic
stratification in clinical trials. In 2007 (later updated in 2010),
Dubois and al. published revised criteria for AD that for the
first time included AD biomarkers (amyloid PET and CSF
Aβ42) as a supportive criteria. However, Aβ plaques are not
correlated with cognitive decline, therefore, clinical research
is increasingly turning to tau and neuroinflammation imaging
to assess new treatments and follow-up disease progression.
Further radiotracers targeting other mechanisms, such as
[18F]FNM or [18F]-2FA, could be used in AD studies to
improve understanding of the cascades of events leading
to neurodegeneration.

Psychiatric diseases diagnosis does not call for molecular
imaging in clinical routine. However, in psychiatry,
physiopathological modifications behind the symptoms
remain not well known and understood. Hence, PET and SPECT
radioligands such as, serotonergic, GABAergic or glutamatergic
tracers, are a powerful tool to improve psychiatric nosography.
Nowadays, it is possible to quantify receptors and transporters
imbalances in numerous psychiatric diseases including
depression, anxiety and schizophrenia, and explore different
treatments options. Moreover, several hypothesis suggest a
potential link between excitotoxicity and psychiatrics disorders
especially schizophrenia. The hypothesis suggest that progressive
excitotoxic neural cell death in hippocampal and cortical areas
occurs via “disinhibition” of glutamatergic projection to these
areas. Disinhibited glutamatergic activity could result from
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inhibition of glutamate-mediated neurotransmission and a
consequent failure to stimulate inhibitory GABAergic neurons,
and/or degeneration of inhibitory GABAergic interneurons
(385). Unfortunately, too few studies have been performed yet to
highlight this hypothesis. Today, more tracers are be needed to
explore glutamatergic and GABAergic systems.

CONCLUSION

After several decades of research, some radiotracers targeting
a hallmark of a disease are valuable diagnostic tools in clinical
routine and research, and are used on a large scale. Recently,
numerous radiotracers have been developed in order to detect
primary changes in brain tissue, and improve our understanding
of physiopathological mechanisms of neuropsychiatric diseases.
These radioligands provide quantitative and topographical
information on the evolution of their target during the course
of the disease. More than diagnostic tools, they are one of the
only ways to better understand the functioning of the brain in
the healthy man and in pathological conditions. Their future
usefulness is more focused on therapy monitoring than on
the diagnosis itself. As in oncology, molecular neuroimaging

is now becoming a therapeutic assistance tool, for screening
patient’s eligibility for drugs and monitoring the proper
functioning of therapy. These new companion drugs are
a new challenge for molecular imaging, and quantitative
and kinetic analyzes seem to be increasingly relevant for
image interpretation. Further development in understanding
radiotracer metabolization, binding characteristics, BBB
crossing, and clinicopathologic correlations of all these
imaging probes will assert their clinical utility, and will
lead to the development of more neuroimaging probes in
the future.
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