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Introduction: Tractography is a technique used to trace the pathways of the 
brain using noninvasive diffusion tensor imaging (DTI) data. It is becoming 
increasingly popular for investigating the brains of domestic mammals and other 
animals with myelinated fibers but the principle of DTI can also apply for those 
with unmyelinated fibers. In the case of camels, DTI tractography is a promising 
method for enhancing current knowledge of the brain’s structural connectivity and 
identifying white-matter tract changes potentially linked to neurodegenerative 
pathologies. The present study was therefore designed to describe representative 
white-matter tracts in the one-humped camel DTI tractography.

Methods: Post mortem DTI was used to obtain images of two one-humped camel brains 
using a 3 Tesla system. T2-weighted images were also acquired to identify regions of 
interest for each fiber tract and a fiber dissection technique was used to complement the 
DT images. The main association, commissural, and projection fibers were reconstructed 
and superimposed on T2-weighted images or fractional anisotropy maps.

Results: The results of the present study show the reconstruction of the most 
representative tracts, ie the cingulum, the corpus callosum and the internal 
capsule, in the one-humped camel brain using DTI data acquired post mortem. 
These DTI results were compared to those from fiber dissection.

Discussion: Anatomy of the cingulum, corpus callosum and internal capsule 
correlates well with the description in anatomical textbooks and appears to be 
similar to fibers describe in large animals. Further research will be required to 
improve and validate these findings and to generate a tractography atlas based 
on MRI and histological data, as such an atlas would be a valuable resource for 
future neuroimaging research.
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Introduction

Diffusion tensor imaging (DTI) is a popular MRI technique that is extensively used in brain 
research to describe the orientation of white-matter fibers (1). It was first introduced in 1994 
(2). DTI measures the impact of tissue architecture on the diffusion-weighted signal by 
examining the motion of water molecules. The procedure of fiber tracking, known as 
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tractography, allows for the virtual dissection and three-dimensional 
representation of white-matter tracts (3).

The distribution of action potentials is modulated by white 
matter, which functions as a relay system and coordinates 
communication among various brain regions. White matter tracts 
in the brain can be  categorized into three types: association, 
commissural, and projection fibers. Association fibers connect 
different regions within the same cerebral hemisphere and can 
be classified as short association fibers, which link adjacent gyri, 
and long association fibers, which establish connections between 
more distant areas. One of the important functions of association 
tracts is linking perceptual and memory centers in the brain. 
Commissural fibers are axons that connect the two hemispheres 
of the brain. These fibers form tracts such as the corpus callosum, 
the anterior commissure, and the posterior commissure. 
Commissural tracts facilitate communication between the left and 
right sides of the cerebrum and play a role in both homologous 
and heterotopic associations. Projection fibers encompass both 
efferent and afferent fibers that connect the cortex with the lower 
regions of the brain and the spinal cord. They serve as conduits 
for information transmission between the cerebrum and the rest 
of the body (4).

DTI tractography is extensively used in the field of brain 
research, as a means of measuring white-matter integrity. It has 
considerable potential in terms of both diagnosis and prognosis for 
a number of brain pathologies, including brain tumors, 
neurodegenerative diseases, and stroke (5–15). With the growing 
availability of high field-strength MRI (1.5 and 3 tesla) in veterinary 
facilities (16–19), this technique is being increasingly used to study 
white-matter anatomy (16, 20–22) and structural connectivity (23–
26) in domestic mammals such as dogs (16, 21, 23) cats (17, 24–26), 
ferrets (24), sheep (20, 27–29) and horses (19, 22) but also in other 
animal species such as reptiles (30), birds, cetaceans (31) and 
rodents (32).

MRI scanners designed for human medicine can also be used to 
examine large animal brains. Large animals can spontaneously 
develop a range of typically human brain diseases, not least 
Alzheimer’s disease (33, 34), along with Parkinson’s disease (35, 36), 
lysosomal storage diseases (37, 38), and gliomas (39), so these 
imaging data could be  extremely useful both in experimental 
research and in veterinary medicine. Especially, in experimental 
research, the use of large animal models, in addition to murine 
models might be useful to use innovative therapies in human due to 
their large and convoluted brain, closer to human than murine and 
the spontaneous development of the disease.

Nevertheless, DTI tractography cannot be  validated in large 
animals without a thorough knowledge of their white-matter tract 
morphology. A recent study provided detailed anatomical 
descriptions of the main association, commissural, and projection 
fibers in dogs, cats, and horses using a fiber dissection technique 
(40). However, although MRI of the one-humped camel [Camelus 
dromedarius (41)] brain under a 1 or 1.5 T field has been shown to 
be possible (42–46), the spatial anatomy of white-matter tracts in 
this species, which can develop poorly understood neurodegenerative 
diseases such as prion disease (47), Dubduba syndrome (48), and 
poliencephalomacia (49, 50), has not yet been complemented by DTI 
tractography. Researchers could use the latter to pinpoint damage in 

specific white-matter tracts. This damage could then be correlated 
with clinical symptoms (47–50). Furthermore, the use of DTI 
tractography in healthy individuals could enhance current 
knowledge about the camel brain’s anatomy and functioning, based 
on mapping of its structural connectivity.

The present study was intended to use DTI tractography to 
characterize the one-humped camel brain fiber bundles. In this 
context the aim of this study was to investigate the reconstruction of 
the most representative tracts that connect one part of the brain to 
another within the white matter, namely the cingulum (belonging to 
association fibers), corpus callosum (belonging to commissural 
fibers), and internal capsule (belonging to projection fibers). To this 
end, a fiber dissection technique and T2-weighted images were used 
in conjunction with 3 T MRI and the fiber tracking results were 
compared to the description of these tracts in the literature.

Materials and methods

Animal sampling and ethical statement

Two cadaver heads of healthy adult one-humped camels were 
used in this study. These heads were collected directly from a 
slaughterhouse (Tataouine, Tunisia). Immediately after slaughter, the 
brains were extracted from the skull and fixed for 1 month in 10% 
formalin solution. All experimental procedures were performed in 
accordance with the relevant guidelines and regulations, and approved 
by an institutional review board (Comité d’Ethique Science et Santé 
Animales - Toulouse – France).

MRI acquisition and preprocessing

MRI scans were performed at the Toulouse Institute for Brain 
Sciences, using a high-field 3.0 T magnet Philips ACHIEVA dStream, 
with two dStream flex M coils for signal reception. Twenty-four hours 
prior to MRI acquisition, the brain was rinsed with water and 
submerged in a saline solution. Immediately beforehand, the brain 
was placed in a zip-locked hermetic plastic bag (i.e., MRI-compatible 
container) that was then filled with saline solution. The bag was gently 
shaken to dislodge any air bubbles, after which it was sealed and 
lowered into a foam mold. Balls of cottonwool were used to fill any 
spaces between the bag and the mold, to ensure that it did not move 
during acquisition (51). Moreover the brain was positioned laying on 
the ventral aspect in the MRI.

The primary challenge in post-mortem imaging lies in the effect 
of tissue fixation, commonly using formalin, which can change 
tissue properties, including alterations in relaxation times like T1 
and T2. These changes make interpreting and quantitatively 
analyzing T1-w images difficult, as the signal intensities may not 
accurately represent tissue characteristics or allow for reliable 
comparisons with in vivo imaging data. Therefore, in this 
post-mortem imaging study, we  opted for other sequences like 
T2-weighted imaging (T2-w) or diffusion-weighted imaging 
(DWI). These sequences are less impacted by the changes 
caused by formalin fixation, offering more reliable and 
interpretable information.
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The imaging protocol comprised T2-weighted images using a 
spin-echo sequence (repetition time: 286 ms; echo time: 1500 ms; 
voxel size: 1 × 1 × 1 mm; matrix: 240 × 240 × 180) and diffusion-
weighted images using a spin-echo sequence (repetition time: 11.5 s; 
echo time: 76.1 ms; flip angle: 90°; voxel size: 1.97 × 1.97 × 2 mm; 
matrix: 112 × 112 × 48; 64 independent directions; b-value: 3000 s/
mm2). The acquisition time was 12 min and was repeated five times 
for averaging, for a total acquisition time of 1 h. We applied an LPCA 
filter combined with a Rician noise model (52) on MATLAB 
(MathWorks, Natick MA, United States) to denoise the raw diffusion-
weighted data. Using DSI studio (53) we then corrected these data for 
geometric distortion caused by eddy currents. We implemented the 
C++ ANTs toolkit (54) to register the T2-weighted images to b0 
images for the purpose of anatomical referencing and three-
dimensional rendering of the brain.

DTI reconstruction

For the purpose of the present study, DTI reconstruction was 
performed on DSI studio, following Basser’s method (55). To model 
the diffusion, we used the diffusion tensor model described by Basser 
(56), which is derived from a three-dimensional model of Gaussian 
diffusion displacement.
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D is calculated for each separate voxel, using the b0 reference 
image and diffusion-weighted images. The matrix (D) is then 
diagonalized, yielding the three eigenvalues 1 2 3λ λ λ and three 
eigenvectors v v v1 2 3  required for the diffusion tensor to be visualized 
and described as an ellipsoid.

Mean diffusivity, fractional anisotropy, and 
red, green and blue channels

The three eigenvalues are averaged to obtain MD. This generates 
a parametric diffusivity map for each voxel, but without the direction 
of diffusion. Calculating MD allows fractional anisotropy (FA) to 
be retrieved. FA ranges between 0 (voxel where diffusion is totally 
isotropic) and 1 (anisotropic voxel where one direction 
is preponderant).

 

( ) ( ) ( )2 2 2
1 2 3

2 2 2
1 2 3

3
2

MD MD MD
FA

λ − + λ − + λ −
=

λ + λ + λ

Water diffusion is more extensive along the white-matter tracts 
because it is easier than passing through them that’s why voxels 
containing fibers have high FA values. We assigned the three values of 
the first eigenvector v1( )  to the red, green and blue channels. This 
produced an image where each color represented a specific fiber 
orientation: right–left (red), ventral-dorsal (green), and rostral-
caudal (blue).

Tractography

To achieve the most valid connection, we opted for deterministic 
tracking (53), rather than probabilistic tracking. We  have chosen a 
deterministic tractography approach based on two main reasons: its 
simplicity, speed, and the clear fiber orientation it provides. Firstly, 
deterministic tractography, by following the principal diffusion direction 
in each voxel, offers a straightforward, computationally efficient and fast 
approach. This is particularly valuable in situations requiring prompt 
analysis or when computational resources are limited. Secondly, this 
method enables clear representation of fiber orientations by directly 
estimating fiber pathways, proving useful in visualizing major neural 
tracts. However, while acknowledging the benefits of probabilistic 
tractography, our current acquisition does not meet the requirements 
for this method, hence our choice for the deterministic approach.

Parameter summary

For post-mortem deterministic tractography, we  adjust three 
main parameters: the fractional anisotropy (FA) threshold, the angle 
degree, and the step size. The FA threshold is typically lowered to 
account for potential post-mortem changes in tissue properties. The 
angle degree is often increased to allow more flexible curvature of fiber 
pathways, considering possible alterations in fiber orientation post-
mortem. Lastly, a larger step size is preferred to mitigate the impact of 
noise and inaccuracies in the data while still capturing the general 
tract trajectory. The parameters used for post-mortem DTI are: FA 
threshold = 0.15, angle degree = 40 degrees and step size = 1.5 mm.

Delineation of regions of interest and 
regions of avoidance

Delineation of regions of interest (ROIs) and regions of avoidance 
was performed manually for each tract. We targeted both median and 
transversal planes for the different fibers and delineated additional 
ROIs to segregate fibers of interest. In determining the placement of 
ROIs and regions of avoidance, we used several points of reference. 
These included T2-weighted images, FA and tensor maps, which 
provided valuable data regarding fiber density, tissue contrast, and the 
anisotropic properties of the tissue. We also referred to anatomical 
descriptions of T2-weighted images of the human brain, as detailed in 
reference (57). These images were particularly useful in identifying 
key anatomical landmarks that guided ROI delineation. Equine and 
human tractography atlases (3) further supplemented our process by 
offering established maps of fiber tracts, thereby serving as a key 
reference for tracing and distinguishing between different fiber 
pathways. In certain cases, ROIs were used as seeds to improve 
tractography results. This strategy allowed for a more focused analysis 
by tracking fibers specifically emanating from or converging into our 
ROIs, thereby improving the accuracy and reliability of our results.

Fiber dissection technique

After MRI acquisition, we used Klinger’s modified method for 
brain fixation and fiber dissection (58, 59). The dissection techniques 
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FIGURE 1

T2-weighted images in (A) median plane, (B) dorsal plane, and (C) transversal plane. Lines b and c on the median plane correspond to the section 
planes. OL: occipital lobe; PL: parietal lobe; FL: frontal lobe; IA: interthalamic adhesion; 1: caudal colliculus; 2: rostral colliculus; 3: corpus callosum 
(splenium); 4: corpus callosum (body); 5: fornix; 6: lateral ventricle; 7: corpus callosum (genu); 8: cingulate gyrus; 9: rostral commissure; 10: 
mammillary body; 11: cerebral peduncle; 12: pons; 13: pyramidal tract; 14: medulla oblongata; 15: spinal cord; 16: cerebellar medulla; 17: cerebellar 
cortex; 18: thalamus; 19: cerebellum (vermis); 20: longitudinal fissure; 21: corpus callosum; 22: caudate nucleus; 23: internal capsule; 24: 
hippocampus; 25: putamen; 26: globus pallidus.

followed the already reported ones (40, 60). This method involves the 
freezing and thawing of brain tissue, where white-matter fibers are 
gradually peeled away to expose the white-matter tracts.

Results

T2-weighted images

T2-weighted images provided good discrimination between white 
and gray matter, and were useful for anatomical reference, three-
dimensional rendering of the brain, and ROI placement. On 
T2-weighted images, the white matter was hypointense to grey matter. 
Relevant anatomical structures were identified and labelled in three 
planes (median, dorsal and transversal). Additional sections in dorsal 
and transversal planes are available in a Supplementary material. The 
T2-weighted images allow for the identification of white matter 
structures such as the corpus callosum on Figures 1B,C (number 21) 
and its different parts on Figure 1A (numbers 3, 4 and 7), the fornix 
on Figure  1A (number 5), the rostral commissure on Figure  1A 

(number 9), the internal capsule on Figures 1B,C (number 23) and the 
cerbellar medulla on Figure 1A (number 16). Similarly, some gray 
matter structures of the brain were easily identified on T2-weighted 
images (Figure 1).

DTI tractography

We were able to successfully reconstruct three fiber subgroups of 
groups typically examined in tractography studies, namely association, 
commissural, and projection: the cingulum, the corpus callosum and 
the internal capsule.

Association fibers

Association fibers link gyri (either neighboring or distant) within the 
same hemisphere. They form bundles, which have been studied to 
greater or lesser degrees. The bundles that have received the most 
attention in tractography research are the cingulum, inferior 
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fronto-occipital fasciculus, uncinate fasciculus, and superior and inferior 
longitudinal fasciculi. In our study we reconstructed the cingulum. The 
cingulum is a medial bundle located in the limbic system that crosses the 
cingulate gyrus. It is connected to the occipital, parietal and frontal lobes. 

Our DTI results show only the central part of the cingulum next to the 
corpus callosum while our fiber dissection results show a curved band 
of neural tissue located in the cerebral cortex, encircling the corpus 
callosum with parietal and occipital radiations (Figures 2, 3).

FIGURE 2

Example of association fibers (cingulum): (A) transversal plane – rostral view; (B) dorsal plane – dorsal view; (C) sagittal plane – left view; (D) oblique 
plane – dorsal view and (E) fiber dissection (underlined in black) using Klingler’s method. Cg: cingulum. All tracts are overlaid on the b0 image obtained 
by DTI.
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Commissural fibers

Crossing the midline, commissural fibers connect homologous 
cortical areas. They are present in three bundles: the rostral and 
caudal commissures and corpus callosum. Only the latter was 
successfully reconstructed in our study. The corpus callosum is 
composed of fibers connecting neopallial areas. Forming the 
ceiling of the lateral ventricles, they cross the fibers of the corona 
radiata in the centrum semiovale. The corpus callosum can 
be  divided into three parts: the central part (body) connects 
parietal and temporal areas; the rostral part (genu) connects 
frontal areas; and the caudal part (splenium) connects occipital 
lobes. The callosal sulcus separates the corpus callosum from the 
adjacent midline cortex, the cingulate gyrus (Figures  1A,C, 
number 8).

Whether in DTI or fiber dissection, our results show a large 
and extended corpus callosum throughout all the cortex 
(Figures 3, 4).

Projection fibers

Projection fibers are responsible for connecting the cerebral cortex 
to other parts of the nervous system, such as the deep nuclei, brainstem, 
cerebellum, and spinal cord. The most significant complex of projection 
fibers is the internal capsule and corona radiata. This complex contains 
two types of fibers: corticopetal fibers connecting the thalamus and 
metathalamus to the cerebral cortex; and corticofugal fibers running 
from the cortex to various parts of the nervous system, not least the 
cerebellum (corticopontocerebellar tract), ventral rhombencephalon 
(corticobulbar tract), pons (corticopontine tract), mesencephalon 
(corticomesencephalic tract), and spinal cord (corticospinal tract). In our 
study we were unable to distinguish between these different tracts. Our 
results show the internal capsule situated in the inferomedial part of each 
cerebral hemisphere of the brain forming a V-shaped band of neural 
tissue located in the cerebral cortex, on either side of the corpus callosum 
with fibers from parietal and temporal cortex. The fiber dissection results 
also showed parietal and temporal radiations (Figures 3, 5).

FIGURE 3

Cingulum (in yellow), corpus callosum (in orange) and internal capsule (in purple): (A) transversal plane – rostral view; (B) oblique plane – rostral view 
and (C) dorsal plane – dorsal view. All tracts are overlaid on the b0 image obtained by DTI.
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Discussion

First, it is important to note that no published data are available 
on DTI tractography of normal white-matter tracts in the one-humped 
camel. The present study yielded T2-weighted images of normal camel 

brain in 3 T with good resolution for the first time. It was essential to 
perform T2-weighted images, in order to understand the normal 
anatomy of white-matter fibers in the DT images. The anatomical 
description of the three fiber subgroups of association, commissural 
and projection fibers we established in the present study was closely 

FIGURE 4

Example of commissural fibers (corpus callosum): (A) transversal plane – rostral view; (B) dorsal plane – dorsal view; (C) sagittal plane – left view; 
(D) oblique plane – dorsal view and (E) fiber dissection (underlined in black) using Klingler’s method. Cc: corpus callosum; 1: corpus callosum (genu); 
2: corpus callosum (body); 3: corpus callosum (splenium). All tracts are overlaid on the b0 image obtained by DTI.
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correlated with descriptions found in dissection and anatomical 
textbooks. When we compared our results with those of other studies 
where DTI tractography and fiber dissection were performed to 
examine the brains of other species, we  found both similarities 
and differences.

Concerning similarities, the corpus callosum in the one-humped 
camel consists of a flat bundle of fibers spanning part of the 
longitudinal fissure. This result is similar to that described in many 
large animals, especially in horses, large and small ruminants (20, 27, 
40, 60). The internal capsule anatomy described in this study is similar 

FIGURE 5

Example of projection fibers (internal capsule): (A) transversal plane – caudal view; (B) dorsal plane – dorsal view; (C) sagittal plane – left view; 
(D) oblique plane – dorsal view and (E) fiber dissection (underlined in black with margins framed by arrows) using Klingler’s method (cerebellum was 
removed). Ci: internal capsule. All tracts are overlaid on the b0 image obtained by DTI.
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to that of other large animals. The internal capsule carries sensory 
information from the thalamus to the cerebral cortex, allowing for the 
processing and interpretation of sensory inputs. It also carries motor 
information from the cerebral cortex to the spinal cord, enabling 
voluntary movements and coordinated motor responses. Given the 
unique adaptations of one-humped camels to desert environments, 
the internal capsule in these animals likely plays a role in supporting 
their specialized behaviors and physiological needs (61). For example, 
the internal capsule may contribute to the one-humped camel’s ability 
to navigate challenging terrains, since the internal capsule works as a 
relay station for the body’s motor fonction (61).

Differences concerning our DTI tractography findings relate to 
the cingulum. Our fiber dissection results show a curved band of 
neural tissue located in the cerebral cortex, encircling the corpus 
callosum with parietal and occipital radiations also described by 
Pascalau et  al. in 2016. For instance, we  failed to observe in DTI 
tractography theses parietal and occipital radiations. Moreover, only 
a small part of the cingulum attached to the corpus callosum could 
be reconstructed.

DTI tractography has a major advantage over post mortem 
anatomical techniques such as fiber dissection, as it allows for 
noninvasive dissection, yielding a three-dimensional representation 
of several white-matter tracts from a single imaging dataset (1, 3, 62). 
Due to its reliance on water molecule diffusion, DTI tractography 
provides an indirect assessment of axonal pathways. However, it 
struggles to accurately distinguish between crossing and branching 
patterns within a single voxel. As a result, tractography algorithms 
may produce erroneous connections or prematurely terminate 
tracked fibers, leading to anatomical inconsistencies between 
MRI-based reconstructions and dissection (53). As can be seen in our 
results, the current study is no exception. In our study, 
we acknowledge that due to the limitations mentioned earlier, such 
as difficulties in accurately characterizing crossing and branching 
patterns, certain white matter tracts were likely reconstructed 
incorrectly and exhibited anatomical inaccuracies. Specifically, 
we anticipate that the inferior fronto-occipital fasciculus, uncinate 
fasciculus, superior and inferior longitudinal fasciculi (associative 
fibers), as well as the rostral and caudal commissures (commissural 
fibers), and the corona radiata (projection fibers), may have been 
affected by these challenges and consequently misrepresented in our 
findings. The poor bad quality of the brain specimens can also explain 
the difficulty of some tracks reconstruction. This also explains the 
artefacts or halos present on T2-weighted images (Figure 1) and b0 
images (Figures 2, 3). Moreover, even though manual ROI delineation 
can generate biases, we were unable to use automated segmentation, 
as there are currently no digital atlases of the one-humped camel 
brain. To minimize the biases of manual ROI delineation, we used 
T2-weighted images.

Given that the brain specimen used in this study was extracted 
from the skull and underwent formalin fixation, it is important to 
consider the potential impact of fixation-induced tissue changes and 
magnetic susceptibility artifacts at the tissue-air interface on the 
quality of MRI data. Postmortem DTI acquisitions require fixation to 
prevent autolysis, which can degrade the structural characteristics 
observed in in vivo conditions. Although the fixation process generally 
reduces overall water diffusion compared to in vivo conditions, its 
specific effect on diffusion anisotropy is not yet fully understood. 

Some studies indicate a decrease in anisotropy in fixed brains (63, 64), 
while others suggest that the fixative preserves relevant tissue 
microstructure (65, 66). To avoid these artifacts as far as possible, 
we immersed the brain in a bag filled with saline solution immediately 
prior to acquisition, as saline solution is isosignal with cerebrospinal 
fluid (51).

We chose to perform DTI reconstruction because it is the most 
popular and extensively used (and thus the most reproducible) fiber 
exploration technique (1). Future studies, however, should compared 
DTI with others algorithms on fiber tracking. For example, Q-ball 
imaging (QBI) reconstruction, in contrast to DTI reconstruction, 
takes multiple fiber orientations into account, rather than simply 
yielding an ellipsis. It could therefore prove particularly useful when 
multiple fibers cross within a single voxel (67).

We demonstrated that DTI tractography is possible in the ex vivo 
one-humped camel brain, allowing for the reconstruction of white-
matter tracts. Scanning time (1 h) was compatible with anesthesia, and 
the T2-weighted and DTI parameters used in this study can 
be referenced for subsequent studies of the camel head. Finally, theses 
acquisition parameters could be easily adapted for in vivo studies, and 
it would be possible to reduce acquisition time, which is a limiting 
factor for the MRI examination of one-humped camels because 
anesthesia in large animals requires a lot of attention and is very often 
risky for the animal. Another limiting factor for in vivo studies is the 
requirement for high field MRI systems that can adequately support 
the weight of the animal being scanned. However, there are numerous 
MRI systems available that are capable of scanning the head of large 
animals in vivo, such as horses. Therefore, it appears feasible to use 
these existing MRI resources for scanning the head of a one-humped 
camel as well.

Furthermore, ex vivo imaging protocols necessitate the use of 
larger b-values (3,000 in our study). This is done to counterbalance the 
significant reduction in the apparent diffusion coefficient observed ex 
vivo and thereby maintain diffusion contrast. Additionally, the T2 
relaxation time is substantially reduced in ex vivo conditions, which 
limits the available window for data acquisition. Consequently, 
stronger gradient magnitudes are required to minimize echo times 
and preserve the signal-to-noise ratio in ex vivo imaging (68, 69). In 
the present formaldehyde-fixed post mortem study, we had to run five 
series of acquisitions (5 × 12 min) on average in order to achieve a 
sufficient signal, but this would not be necessary for in vivo studies, 
given that the signal would naturally be stronger. Fewer iterations of 
each direction would be  acquired, thereby possibly reducing 
acquisition time. However, only one sequence was tested in our study, 
so it would be  necessary to compare this one with any other 
potential sequences.

Conclusion

The results of the present study show the reconstruction of the 
most representative tracts in the one-humped camel brain using 
DTI data acquired post mortem. Cingulum, corpus callosum and 
internal capsule could be reconstructed. Further DTI studies are 
needed to improve and validate these findings and to produce a 
tractography atlas for future neuroimaging research in the 
one-humped camel.
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