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Abstract

Recognition memory is the ability to recognize previously encountered objects. Even

this relatively simple, yet extremely fast, ability requires the coordinated activity of

large-scale brain networks. However, little is known about the sub-second dynamics

of these networks. The majority of current studies into large-scale network dynamics

is primarily based on imaging techniques suffering from either poor temporal or spa-

tial resolution. We investigated the dynamics of large-scale functional brain networks

underlying recognition memory at the millisecond scale. Specifically, we analyzed

dynamic effective connectivity from intracranial electroencephalography while epi-

leptic subjects (n = 18) performed a fast visual recognition memory task. Our data-

driven investigation using Granger causality and the analysis of communities with the

Louvain algorithm spotlighted a dynamic interplay of two large-scale networks asso-

ciated with successful recognition. The first network involved the right visual ventral

stream and bilateral frontal regions. It was characterized by early, predominantly

bottom-up information flow peaking at 115 ms. It was followed by the involvement

of another network with predominantly top-down connectivity peaking at 220 ms,

mainly in the left anterior hemisphere. The transition between these two networks

was associated with changes in network topology, evolving from a more segregated

to a more integrated state. These results highlight that distinct large-scale brain net-

works involved in visual recognition memory unfold early and quickly, within the first

300 ms after stimulus onset. Our study extends the current understanding of the

rapid network changes during rapid cognitive processes.
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1 | INTRODUCTION

Visual recognition memory is the ability to recognize previously

encountered objects. This type of declarative memory has been stud-

ied since the 1960s (Milner, 1972), with numerous findings revealing

how accurate (Brady et al., 2008), fast (Besson et al., 2012), and long-

lasting (Larzabal et al., 2018) it can be. These studies have also pin-

pointed the medial temporal lobes (MTL), specifically the perirhinal

cortex and the hippocampus, as critical for successful recognition

memory (Brown & Aggleton, 2001; Eichenbaum et al., 2007; Staresina

et al., 2012). Alongside the MTL, visual recognition memory also

depends on the “what” system: the visual ventral stream involving

temporo-basal brain regions such as the lingual, fusiform, and parahip-

pocampal gyri (DiCarlo et al., 2012). The participation of the ventral

stream is asymmetric, as visual recognition memory relies more on the

ventral stream in the right hemisphere than in the left hemisphere

(Barbeau et al., 2008; Elger et al., 1997; Guerin & Miller, 2009;

Patterson & Bradshaw, 1975; Petrovska et al., 2021). In addition,

visual recognition memory also involves parietal and frontal lobe

regions in both hemispheres for a host of processes related to confi-

dence, decision-making, attention to memory, meta-memory, and

behavioral response (Bastin et al., 2019 for a review; Gonzalez

et al., 2015; Hoppstädter et al., 2015; Petrovska et al., 2021). There-

fore, even a simple task, such as deciding whether an object has

already been seen, involves a large number of brain regions through-

out the entire brain.

The activity of individual brain regions underlying recognition

memory has been extensively described in prior literature (Despouy

et al., 2020). Although the first behavioral responses occur around

360 ms (Besson et al., 2012), the first neural differences between tar-

gets and distractors are already identified around 200 ms (Barbeau

et al., 2008; Barragan-Jason et al., 2015). Yet, many different brain

regions are involved for up to 600 ms or more. Visual recognition

memory thus recruits many regions across the brain within a fraction

of a second.

However, brain regions do not operate in isolation but are inter-

connected in large-scale networks (Varela et al., 2001). The basis of

every network is connectivity, defined as either anatomical links

(structural connectivity), statistical dependencies (functional connec-

tivity), or causal interactions (effective connectivity) (Sporns, 2007).

Substantial evidence supports the hypothesis that brain network

architecture is non-random and optimized to support cognitive abili-

ties (Sporns, 2011). Brain networks are designed for effective informa-

tion processing and synthesis by balancing local segregation of

function and global integration of information. Given the continually

evolving environment and depending on the system's demands, there

are continuously changing interaction patterns between brain regions

(Bassett et al., 2011). Therefore, both the topology of the networks

and their interactions are highly dynamic (Hutchison et al., 2013;

Shine et al., 2016). It is generally assumed that their reconfigurations

are driven by higher-order cognitive control systems involving the

frontal lobes (Braun et al., 2015). Moreover, dynamic reconfiguration

is directly linked to cognitive performance during memory (Cohen &

D'Esposito, 2016; Meunier et al., 2014). Consequently, the field has

evolved toward a strong interest in the dynamic reorganization of

brain networks (Preti et al., 2017), sometimes called functional chron-

ectomics (Calhoun et al., 2014). However, current studies of large-

scale network dynamics are primarily based either on fMRI or scalp

electroencephalography (EEG) and thus suffer from limited ability to

precisely identify the timing and dynamics of brain activity (temporal

resolution) or the location of brain activity (spatial resolution).

One puzzling question in this context is what are the sub-second

brain network dynamics supporting cognitive abilities that unfold as

quickly as recognition memory? Despite how critical they are, little is

known about network organization and topology underlying these

first few hundred milliseconds of cognitive processes.

To achieve the spatial and temporal resolution needed for such a

study, we analyzed intracranial EEG (iEEG) recorded while epileptic

patients underwent a visual recognition memory task. To assess brain

network dynamics, we computed effective connectivity using multi-

variate Granger causality for all pairs of iEEG channels. We then

examined the temporal evolution of whole-brain network topology.

Specifically, network topology was characterized by measures of

dynamic network integration and segregation. Furthermore, we stud-

ied the connectivity dynamics of brain networks identified using data-

driven techniques. In addition, we tested whether the networks were

driven by bottom-up processes, as is classically known about rapid

visual processing (DiCarlo et al., 2012 for a review; Rousselet

et al., 2004; VanRullen & Thorpe, 2001). Finally, we probed how the

observed dynamics were associated with performance during

the visual recognition memory task and with successful memory

recognition.

2 | MATERIALS AND METHODS

2.1 | Experimental design

This study was approved by the Toulouse University Hospital Ethics

Committee (CER No. 47-0913). All patients signed informed consent

for the study.

2.2 | Participants

iEEG was recorded for 18 subjects with drug-refractory epilepsy

(8 women, age: 37.61 ± 11.37 years old; Table 1). The subjects were

admitted to the Epilepsy Monitoring Unit at Toulouse University Hos-

pital for the identification and possible subsequent resection of the

epileptogenic zone. In each subject, 8–13 depth electrodes were ste-

reotaxically implanted. The depth electrodes were 0.8 mm in diameter

and contained 8–18 platinum/iridium contacts, each 2 mm long

(Microdeep depth electrode, DIXI Medical, France). Each implantation

was individually tailored to the seizure onset zone, and the placement

of each depth electrode was based exclusively on clinical criteria,

independently of this study. Patients remain hospitalized for 1–

2 weeks until they have had one or more spontaneous seizures. The

visual recognition memory task was proposed to them generally 2–
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3 days after the implantation, allowing ample time to recover from the

effect of anesthesia.

Intracranial EEG activity was recorded using two synchronized

64-channel acquisition systems (SystemPlus Evolution, SD LTM

64 EXPRESS, Micromed, France) with a sampling frequency of 256 Hz

for two patients and either 1024 or 2048 Hz for the others (high

pass-filter: 0.15 Hz). None of the patients had a seizure within 6 h

before the recordings. The preoperative MRI and postoperative CT

images were fused and normalized to the Montreal Neurological Insti-

tute (MNI) brain atlas for precise contact localization.

To ensure an equal number of channels for each patient, we man-

ually selected channels localized in the grey matter (based on MRI

images) and on which we could visually recognize event-related

potentials induced by stimuli presentation. Furthermore, we only

included bipolar channels that did not share a common contact to

avoid spuriously high connectivity. Therefore, using this a priori selec-

tion, we analyzed 18 subjects with 30 channels per subject. The sum-

mary of data quality for the selected and excluded channels is

available in Figure S1.

2.3 | Visual recognition memory test

Each subject performed a speeded visual recognition memory task,

namely the speed and accuracy boosting procedure (SAB; Besson

et al., 2012), while their iEEG was being recorded (Figure 1). The SAB

test is demanding and requires one or two training sessions, which

were not included in subsequent analyses. Patients participated in 7–

10 blocks depending on their willingness and availability. Each block

began with an encoding phase, during which 30 trial-specific stimuli

(targets) were presented individually for at least 3 s (self-paced) in the

center of a gray screen. The stimuli were taken from an extensive

database of high-quality cropped photos of everyday objects. Partici-

pants were explicitly instructed to remember all stimuli. A distracting

phase followed, during which subjects watched a colored cartoon

video with sound on for 3 min. Finally, the recognition memory phase

consisted of presenting the 30 targets and 30 distractors. Subjects

were required to respond to the targets by raising their finger from an

infrared pad. A response deadline between 500 and 800 ms, depend-

ing on the patient's cognitive ability, was set, while audio feedback

motivated subjects to answer as quickly and accurately as possible.

Responses were based on a go/no-go design. If a go response was

given before the response time limit, positive audio feedback

was played if the stimulus was a target (Hit), or negative feedback was

provided if it was a distractor (False alarm). If a no-go response was

given, positive audio feedback was played if the stimulus was a dis-

tractor (Correct rejection), or negative feedback was provided if the

stimulus was a target (Miss). The intertrial-fixation period was 800–

1100 ms. We analyzed only the first 64 Hits and Correct rejections

trials in this study (maximum number of successful trials available for

TABLE 1 Participants' information and performance.

Sex Age

Dominant

hand

Language

laterality

% contacts in L

hemisphere Successful trials d-prime minRT

F 42 R L 47 166 0.92 480

M 59 R x 60 152 1.70 420

M 35 R L 40 150 1.57 450

M 21 R L 17 198 2.54 390

M 24 L L 63 171 1.43 480

M 34 L L 0 198 1.39 420

F 63 L R 20 176 1.50 510

F 32 R L 63 104 1.21 480

F 31 A L 77 163 1.70 450

F 33 L R 63 208 2.03 420

M 47 A L 87 195 1.22 420

M 41 R L 73 100 2.47 510

M 21 L L 100 84 1.21 420

M 40 R L 67 131 1.22 420

F 37 R L 53 164 1.74 450

F 50 x x 27 194 1.92 420

M 39 x x 73 64 1.45 420

F 28 x x 97 214 2.00 390

Note: Table summarizing available information about the subjects who participated in this study, including biological sex, age, dominant hand, language

laterality, and the number of successful trials recorded. Since the electrode implantation varied significantly across subjects, we report the percentage of

contacts in the left hemisphere. Finally, we include two measures of test performance: minimal reaction time: the moment when the number of hits is

significantly higher than the number of false alarms (minRT) and d-prime.
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all subjects). The varying response time, aiming at facilitating the task

for the patients, did not change the minimal reaction time compared

with a group of healthy subjects as analyzed in a previous study

(Data S1, Despouy et al., 2020).

We evaluated each subject's performance using two discrimina-

tion indices. First, the subject's performance was characterized

using d-prime (difference in z-transforms of Hit rate and False alarm

rate) (Rousselet et al., 2004). Second, the minimal reaction time

(minRT), summarizing the speed of response, was defined as the

minimal processing time required to recognize targets. minRT was

computed by determining the latency at which correct go responses

(Hits) started to significantly outnumber incorrect go responses

(false alarms) (Besson et al., 2012). As in other studies, we used

20 ms time bins and a Fisher's exact test (p < .05), followed by at

least two significant consecutive bins to compute the minRT

(Despouy et al., 2020).

2.4 | Connectivity analyses

2.4.1 | iEEG preprocessing

We used a bipolar montage between adjacent contacts to remove

artifact contaminations, identify local activations, and provide a

reference-free representation of the phenomena under observation

(Lachaux et al., 2003). Visual inspection of the EEG of all trials, as well

as manual artifact rejection procedures, were used to reject interictal

activities period. The inspection was performed by ED, a trained PhD

student, supervised by JC, an epileptologist from the Toulouse Uni-

versity Hospital. This standard procedure led to exclusion of 14% of

all trials on average across participants (range: 8%–22%) with interictal

epileptiform activity, a percentage similar to previous studies. This

procedure decreased the risk of including trials modified by epileptic

activity. Finally, we downsampled each channel to 256 Hz (original

sampling frequency for two subjects).

Across all subjects, we analyzed 540 channels (Figure 2a), 308 of

which were in the left and 232 in the right hemispheres. Each record-

ing channel was assigned to one of 90 regions of the AAL atlas

(Tzourio-Mazoyer et al., 2002) based on its MNI coordinates using the

SPM12 software package (Wellcome Department of Cognitive Neu-

rology, London, UK) and the Anatomy toolbox (Eickhoff et al., 2005;

Figure 2b). All data were processed with MATLAB (Version 9.1.0, The

MathWorks Inc, Natick, MA).

2.4.2 | Connectivity estimation

We investigated dynamic effective connectivity covering the temporal

segment from 200 ms pre-stimulus baseline to 800 ms after stimulus

onset. We performed sliding-window connectivity analyses using win-

dows with a length of 64 samples (250 ms) and a shift of 4 samples

(similar results were obtained with a window of 16 samples). Each

500 ms

Target:

Hit

Target:

Miss

Distractor:

Correct
rejection

Distractor:

False alarm

No-go

Go
Stimulus

Next try

Fixation
cross

300–600 ms

(c)

(b)

(a)
Speed and accuracy

boosting test

Minimal RT

Time to respond: 500–800 ms

F IGURE 1 SAB test illustration and participant's performances. Eighteen subjects underwent the speed and accuracy boosting procedure
(SAB), a speeded visual recognition memory task, while iEEG was recorded. (a) SAB test procedure. Illustration of the SAB go/no-go testing
design with a response deadline of between 500 and 800 ms. We analyzed only Hits and Correct rejections in this analysis. (b) SAB test stimuli.
The stimuli used in the encoding phase were high-quality cropped photos of everyday objects. (c) SAB test performance. Each participant's
performance is characterized by a time of reaction and test performance, namely by minimal reaction time and d-prime.
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sliding window was multiplied by a Hanning window to suppress spu-

rious connectivity and reduce sensitivity to outliers (Preti et al., 2017).

Effective connectivity

We used dynamic multivariate Granger causality (MVGC) to estimate

the EC between channels. It implements a statistical, predictive notion

of causality, whereby causes precede and help to predict their effects.

Classical Granger causality from Y to X can be formally written as the

log-likelihood ratio:

FY!X ¼ ln
Σ1

Σ2

Σ1 ¼ var ε1tð Þ, Σ2 ¼ var ε2tð Þ

(b)

(a)

(c)
Correct rejectionsHits

G

Subject

G
ra

n
g
er
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au

sa
li

ty

N
o
rm

al
iz

ed
a m

p
l.

Time (ms) Time (ms)

F IGURE 2 iEEG recordings and effective connectivity. We calculate effective connectivity between each pair of 30 channels separately for
each of the 18 subjects totaling 15,600 unique electrode pairs. (a) Overview of all recording locations across subjects. Each subject's brain activity
was monitored using multiple intracranial depth electrodes that targeted different brain regions. The different colors correspond to different
subjects. (b) Mapping channels to AAL atlas. In order to generalize across subjects, we mapped each recording channel to the AAL atlas region
based on its MNI coordinates. In total, the channels covered 68 out of 90 possible regions, with a different number of channels sampled from
each region. The size of each sphere corresponds to the sampling density of the region. (c) Dynamic effective connectivity example. Using sliding
windows, we calculated dynamic Granger causality (i.e., effective connectivity) for all channel pairs (e.g., TP1-2 and B6-7) separately for the Hits
and Correct rejection trials. According to the definition of Granger causality, the source influences the target.
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Xt ¼
XM

j¼1
ajXt�jþε1t

Xt ¼
XM

j¼1
ajXt�jþ

XM

j¼1
bjYt�jþε2t

where X and Y represent recorded time series, aj and bj are parameters

of the autoregressive process corresponding to time lag j, ε1 and ε2

represent residuals of the autonomous and coupled system, respec-

tively, and M is the model order (we used a constant order of 10, but

similar results were observed using orders of 5 or 15).

In this manuscript, the F-statistic represented the magnitude of

Granger causality. The F statistic is computed as the ratio of the mean

square of residuals from the restricted model to the mean square of

residuals from the unrestricted model. Therefore, the F-statistic was

strictly positive. In addition, the use of a multivariate extension of

Granger causality ensured the control for common causal influences

(Seth et al., 2015).

Since our testing paradigm was time-constrained, we used rela-

tively short time windows for the dynamic connectivity analysis.

Therefore, estimating the multivariate autoregressive model parame-

ters is potentially challenging due to the use of short time series. Nev-

ertheless, we overcame this difficulty through the “vertical
regression” implemented in the freely available toolbox from Barnett

and Seth (2014) that addresses short time windows when multiple tri-

als are available. In particular, this method assumes that each trial is

an independent realization of the same underlying stochastic genera-

tive process. Therefore, we ended up with only one MVGC model

across all trials for each subject (Figure 2c).

2.5 | Bottom-up and top-down directions

Granger causality is a directed measure that allows for assessing the

direction of interactions. The key neurocognitive question is the role

of top-down and bottom-up information flow in neural networks.

Based on the definition given by Gaillard et al. (2009), the bottom-up

(feedforward) direction is the causal influence of posterior channels

onto the more anterior channel and vice versa for the top-down (feed-

back) direction. If their y coordinates were identical, bottom-up was

defined as the causal influence of the lower onto the higher channel

based on the z coordinates (this occurred in 3% of the cases).

2.5.1 | Statistical analyses

It is important to stress that studies using iEEG face several chal-

lenges, such as the relatively low number of subjects, short time win-

dows, and tailored implantations that offer only a limited sampling of

brain areas (see Pidnebesna et al., 2022 for more details concerning

the challenges of group network inference from intracranial EEG

data). To deal with varying electrode implantation across subjects, we

pooled connectivity estimates across all subjects after calculation

(apart from specific inter-subject analysis of SAB performance). We

thus adopted a so-called meta-patient approach, a technique that has

already been successfully applied elsewhere for the analysis of iEEG

data (e.g., Gaillard et al., 2009). In addition, we performed a sensitivity

analysis demonstrating that the obtained results are not driven by a

single subject (Figure S2). Finally, the significance level was predeter-

mined and set at α = 0.05.

2.6 | Bootstrap testing

We used bootstrapping as a resampling technique for statistical test-

ing of connectivity estimates. Bootstrapping employs random sam-

pling with replacement from the distribution of interest and can be

used to estimate the sampling distribution of almost any statistic

(Efron & Tibshirani, 1994).

According to our predefined hypotheses, we first investigated the

connectivity dynamics of brain networks. Specifically, we tested

whether there is a significant increase in dynamic connectivity by

comparing the mean connectivity at every time point to the baseline

connectivity (from a time window centered at �75 ms) using a

one-sided bootstrap hypothesis test for the difference in mean con-

nectivity across all channel pairs with 10,000 bias-corrected bootstrap

iterations. The bias-corrected implementation corrects for bias and

skewness in the distribution of bootstrap estimates (see Penn, 2020,

for a detailed description). The resulting p-values were corrected for

multiple comparisons in the time domain with the Benjamini–

Hochberg FDR algorithm (Benjamini & Hochberg, 1995).

Furthermore, we tested whether a network shows different con-

nectivity in the top-down and bottom-up direction across the time

course using a two-sided bootstrap hypothesis test for the difference

in mean connectivity across all channel pairs with 10,000 stationary

bootstrap iterations. Since the original bootstrap method is designed

only for independent, identically distributed data and is not appropri-

ate when data samples are dependent (such as time series), stationary

bootstrap is a block technique that attempts to preserve the underly-

ing autocorrelation (Lahiri, 2003). Stationary bootstrap wraps the data

around in a circle (end-to-start) and a random window length that

removes the edge effect of uneven weighing at the beginning and the

end (Politis & White, 2004). Finally, we used the same test to examine

the differences in mean connectivity between Hits and Correct

rejections.

2.6.1 | Graph analyses

Two key concepts in graph theory are nodes and edges. In our ana-

lyses, nodes correspond to the 90 regions of the AAL atlas (Tzourio-

Mazoyer et al., 2002). After assigning each channel to the AAL atlas

region (Figure 2b), we discarded channels that did not belong to any

region and regions with no recorded signal were discarded, which

resulted in the coverage of 68 out of the 90 AAL atlas regions
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(Table S1). Note that the perirhinal, parahippocampal, and entorhinal

cortices are in the AAL atlas collectively referred to as the parahippo-

campal region.

The second constituent component of a graph is the set of edges.

We defined an edge between two regions as the mean connectivity

across all corresponding pairs of channels. Since every graph can be

represented as an adjacency matrix, and since we used a sliding win-

dow technique, our dynamic brain networks thus corresponded to a

set of adjacency matrices. Each adjacency matrix was based on data

from all patients and represented an incomplete weighted directed

graph.

Segregation and integration are two important network organiza-

tion concepts relevant to human cognitive abilities. Segregation is the

extent to which communication occurs primarily within tight-knit

communities of regions. Conversely, integration is the ability of the

network to integrate distributed information (Deco et al., 2015;

Sporns, 2013). In this study, we assess integration by global efficiency

and segregation by modularity (Cohen & D'Esposito, 2016). Since we

based our networks on effective connectivity, we used directed

counterparts of these measures. All analyses were performed using

The Brain Connectivity Toolbox for MATLAB (Rubinov &

Sporns, 2010).

2.7 | Modularity

Modularity quantifies the degree to which the network may be subdi-

vided into densely interconnected communities that maximize the

number of within-group edges and minimize the number of between-

group edges (Newman, 2006). To estimate modularity, we applied the

commonly used iterative Louvain algorithm to the adjacency matrix

with the (default) resolution parameter of γ = 1 and random initial

conditions for each time window of dynamic connectivity. A maximum

of the modularity function across 10,000 randomly initialized algo-

rithm runs was selected as the resulting modularity with its accompa-

nying network partition (Sporns & Betzel, 2016). Since the community

labeling can differ in each time window, we manually ensured consis-

tent labeling across the time course. Furthermore, a node could be

part of a different community in each time window. Therefore, we

defined the final community allegiance as the most commonly

assigned community across all time windows.

As we dynamically assign a community index to each node, we

define the instability index as a relative number of node allegiance

changes from the final community during the experiment.

2.8 | Efficiency

Global efficiency is defined as the average inverse shortest path

between any two nodes (Latora & Marchiori, 2001). Considering that

it is linearly dependent on connectivity strength between nodes, we

normalized it by dividing it by the mean connectivity across all non-

zero edges.

2.9 | Null model

The use and choice of a null model are crucial in graph analyses

(Hindriks et al., 2016; Hlinka & Hadrava, 2015). To create a stationary

system with an identical covariance structure, we used an amplitude-

adjusted multivariate extension of Fourier surrogates (MVFS) that

match the amplitude spectrum and amplitude distributions of

recorded iEEG activities (Schreiber & Schmitz, 2000). Specifically, we

repeated the above-described pipeline with 100 different realizations

of MVFS of recorded iEEG data. This procedure generated a distribu-

tion of 100 modularity and efficiency values, serving as null

distribution for our statistical testing.

In addition, we used MVFS to assess the significance of the differ-

ence in Hits and Correct rejections. To that end, we calculated Pear-

son's correlation between connectivity dynamics of Hits and Correct

rejections for each detected community. The significance was based

on the comparison with the null distribution generated by 1,000 cor-

relations between MVFS of respective time series.

2.10 | Linking connectivity and subjects'
performance

As the final step in our analyses, we set out to relate identified con-

nectivity patterns with performance during the SAB task. To that end,

we first calculated the mean connectivity in each identified commu-

nity separately for each subject. We then quantified the association

strength of the community-specific connectivity strength with

d-prime and minimal reaction time. We quantified the magnitude of

the linear relationship using Pearson's correlation. Associated p-values

were FDR-corrected across all performed tests.

3 | RESULTS

Subjects underwent a fast visual recognition memory task. All 18 sub-

jects performed well above chance (mean d-prime = 1.62 ± 0.44)

(Table 1), and their performance did not differ from healthy controls

(as reported in Despouy et al., 2020).

3.1 | Community analysis reveals three distinct
communities underlying recognition memory

Our study aimed to investigate brain network dynamics supporting

visual recognition memory. To detect networks driving successful rec-

ognition, we used the Louvain algorithm to detect community struc-

tures of the whole brain network. In other words, the Louvain

algorithm partitioned the brain network into communities characteris-

tic of strong connectivity between the regions within the community

and weak connection with regions outside the community. Connectiv-

ity between two regions was defined as the average connectivity

between all corresponding iEEG channels. We consistently identified
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three communities at each time window (Figure 3a). Based on the

most frequent allegiance of each node (cf. Methods), the first commu-

nity comprised regions of the right temporal lobe as well as many

frontal regions bilaterally. The second community was composed of

regions in the left hemisphere, mainly in the temporal lobe and other

parietal and frontal lobes. The third community comprised the left

amygdala, parahippocampal, and inferior frontal gyri, as well as the

right temporal sulcus. Consequently, since every channel belonged to

a brain region, it was also assigned to a corresponding community.

As mentioned above, the first community primarily comprised

regions in the right hemisphere. Concretely, 72% of all connections

between iEEG channels corresponded to connections between right-

hemisphere regions (Figure 3b). In contrast, the third community only

included one region in the right hemisphere (64% of all iEEG channels

corresponded to links between regions in the left hemisphere). The

second community consisted of regions in both the left and right

hemispheres, such as the left and right hippocampi (39% of channel

connections were between hemispheres).

We then focused on the properties of each of the three commu-

nities, including their preference for top-down and bottom-up pro-

cesses or stability. The communities differed significantly in the

direction of information flow (i.e., the strength of connectivity in top-

down and bottom-up directions) (Figure 3c). The first and second

communities showed stronger connectivity in the bottom-up direction

(two-sided bootstrap t-test pfirst = .04, resp. psecond = .05). In compar-

ison, the third community displayed significantly stronger connectivity

in the top-down direction (two-sided bootstrap t-test p = .0002).

Finally, we probed the stability of the three communities. Even

though the core of each community remained stable across the time

course, some nodes changed network allegiance during the SAB test.

Specifically, we found that the three communities differed in their sta-

bility (one-way ANOVA, p < 10�3), with the first and third communi-

ties being very stable (Figure 3b). The second community was the

least stable, meaning that its regions were relatively often members of

the other two communities throughout the SAB test in comparison to

the other two communities. In summary, we found two networks

across the two hemispheres driven by bottom-up processes and a

third network localized in the left hemisphere that supported top-

down processes.

3.2 | Topology analyses reveal a link with
community dynamics

After investigating the properties of the three communities, we

focused on the connectivity dynamics of these sub-networks. Based

on averaging connectivity across channels in each community, the

first community showed the earliest connectivity increase compared

with the baseline at around 115 ms (Figure 4a). The connectivity

increase in the first community was followed by a significant connec-

tivity increase in the third community at �220 ms (Figure 4a). The

connectivity of the second community remained comparable to

the baseline. These results highlighted two networks with significant

changes in connectivity dynamics underlying successful recognition.

As a last step of our connectivity analysis for the networks under-

lying successful recognition, we aimed to link significant changes in

connectivity dynamics with the changes in brain network topology.

We characterized the topology of the whole brain network using

modularity (a measure of segregation) and efficiency (a measure of

integration). In other words, we quantified how modularity and effi-

ciency evolved over time. We observed a highly segregated network

topology at 110 ms after stimulus onset. It then transitioned into a

more integrated topology at �220 ms (Figure 4b).

The global increase in modularity (MVFS p < .05, FDR-corrected)

co-occurred with the significant connectivity increase in the first com-

munity at around 115 ms (Figure 4c). On the other side, the overall

increase in efficiency was accompanied by the connectivity increase

in the third community at 220 ms. Since the two communities differed

in bottom-up and top-down connectivity, these results suggest that

changes in overall brain network topology could be associated with

network-specific changes in information flow.

3.3 | Network changes underlying successful
recognition and correct rejection

According to our aims, we further investigated whether there was a

difference in successful recognition of known versus unknown stimuli,

that is, Hits and Correct rejections. We calculated Pearson's correla-

tion between connectivity dynamics of Hits and Correct rejections for

each community. We observed a strong positive correlation between

connectivity dynamics in the first and third communities (rfirst = .52,

rsecond = �.21, rthird = .50; Figure 5a). Only the correlation for the first

community was significant (pfirst = .05, psecond = .75, pthird = .07)

based on the comparison with the null distribution generated by

1,000 correlations between MVFS of respective time series. In other

words, for the first community, the connectivity dynamics during Hits

resembled the connectivity dynamics of Correct rejection trials.

To complement the observed similarity in dynamics for the first

community, we further compared connectivity strength between Hits

and Correct rejections (Figure 5b). The first community displayed

stronger connectivity for Hits compared with Correct rejections (boot-

strap two-sided t-test p-value <10�5) across the timecourse of

SAB test.

Finally, we assessed the relationship between the network

dynamics and the subjects' performances. For each subject separately,

we calculated the mean connectivity in each of the three identified

communities. We then tested whether this subject-specific and

network-specific connectivity strength was associated with test per-

formance. To this end, we correlated d-prime and minimal reaction

time with the connectivity strength. We found the connectivity

strength in the third community to be associated with minimal reac-

tion time (r = �.51, p = .05, FDR corrected). This result suggested

that connectivity strength was linked with faster responses

(Figure 5c). We did not observe a significant association with connec-

tivity strength in other communities or with d-prime. In addition, we

studied the relationship between the subject's sampling frequency

and the mean connectivity in each of the three identified communities
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F IGURE 3 Community analyses of brain networks supporting recognition memory. (a) The Louvain algorithm consistently identified three
main communities in our brain network. The first community comprised the right visual ventral stream, right subhippocampal structures, and
frontal regions in both hemispheres. The second community comprised regions in the left MTL but also the right hippocampus. The third
community comprised the left parahippocampal gyrus, left amygdala, and left inferior frontal gyrus. The size of the spheres in the brain graph
corresponds to the nodal strength. The circular form (Krzywinski et al., 2009) shows only 3% of the strongest connections for visualization
purposes. (b) Stability of the three communities. The three communities differed in their stability (one-way ANOVA, p < 10�3). The second

network showed the lowest stability, that is, the highest number of allegiance changes per node. (c) Community distribution across the
hemispheres. The bar plots depict the relative number of iEEG connections in each hemisphere. The first community was anchored in the right
hemisphere (72% of connections), while the third community was centered in the left hemisphere (64% of connections). The second community
comprised regions from the left hemisphere, although some right-hemisphere regions were included as well. (d) Connectivity directionality in the
communities assessed using Granger causality. The direction of information flow was significantly different between the three communities. The
first community exhibited significantly stronger connectivity in the bottom-up direction. Conversely, the third community displayed significantly
stronger connectivity in the top-down direction (*p < .05; **p < .001, FDR-corrected).
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F IGURE 4 Changes in network topology are associated with changes in information flow. We quantified the connectivity dynamics in each
community and the dynamics of brain topology. (a) Community connectivity dynamics. The plot depicts the mean connectivity in each of the
three communities. The first community showed the earliest increase in connectivity (115 ms). The third community followed with a significant
increase in connectivity at approximately 220 ms. The second community did not display any significant increase throughout the SAB test.
(b) Dynamics of network modularity and efficiency. We dynamically quantified the overall brain network topology. At �110 ms, the network
showed a more modular topology. This segregated state is followed by a more integrated structure characterized by higher efficiency at 220 ms.
Horizontal lines represent periods of significant increase/decrease based on MVFS testing with 100 iterations. (c) Two modes of information
processing. The overall brain network properties (modularity, efficiency) were temporally related to the connectivity dynamics of two networks
displaying significant connectivity changes. The first peak of modularity and significant connectivity increase in the first community appeared
simultaneously at 110 ms. The first peak of efficiency at 220 ms occurred together with a significant connectivity increase in the third
community. Solid lines indicate significant values. The rectangles highlight the time intervals of interest.
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(Figure 5c). Pearson's correlations did not reach significance for any of

the three tests (all p-values >.05).

4 | DISCUSSION

This study investigated the dynamic reorganization of brain networks

during a fast visual recognition memory task. We show that even

within the first 300 ms after stimulus presentation, three large brain

networks are intertwined, each with a specific topography, temporal

dynamics, information flow, and stability. The first large-scale network

involved the right visual ventral stream and frontal areas bilaterally. It

was characterized by predominant bottom-up information flow,

peaking around 115 ms post-stimulus. Another involved network was

centered around the left MTL but also included the right hippocam-

pus. It did not display any significant change in connectivity dynamics.

A third network involved predominantly left anterior regions and

showed top-down information flow peaking at 220 ms. Furthermore,

linking connectivity dynamics with network topology, the increase in

bottom-up information flow was accompanied by a transition of the

brain into a more segregated topology at 115 ms. Conversely,

the increase in top-down information flow was associated with a tran-

sition to a more integrated topology around 220 ms. These analyses

provide a picture of different functional networks that underlie fast

visual recognition memory. More generally, it demonstrates that brain

networks can shape very rapidly after stimulus onset and transition
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connectivity strength in the third community and d-prime was not significant (r = .01, p > .05). We also did not observe a significant relationship
for the other two communities and minimal RT or d-prime.
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quickly from one to the other, leading to different modes of informa-

tion processing depending on different network configurations.

Our results revealed a highly modular state of the brain network

and a community-localized significant connectivity increase during the

early stages of the recognition memory task. These specific network

properties appear in concordance with the modular organization of

the ventral visual pathway (DiCarlo et al., 2012) and the necessity for

efficient processing of visual stimuli (Maffei & Sessa, 2021). The archi-

tecture and dynamics of this first network are highly consistent with

previous iEEG studies demonstrating early involvement of the right

visual ventral pathway in visual recognition memory (Barbeau

et al., 2017; Despouy et al., 2020). The extent of the first identified

network was surprising as it comprised the visual ventral stream but

also many frontal lobes areas bilaterally. However, it has already been

established that frontal lobe regions are involved in object processing

and recognition memory very early, as soon as 110 ms after stimulus

presentation (Bar et al., 2006; Barbeau et al., 2008). In addition, there

is strong support for the idea that the rapidity of the visual ventral

stream is supported by feedforward mechanisms (DiCarlo

et al., 2012), which appears to agree with our finding that the first

community mainly involves bottom-up information flow. Overall, the

first network could correspond to an early stage of relatively auto-

matic processing of visual stimuli.

The early activation of frontal lobe regions has been proposed to

prepare a stage for top-down processing (Bar et al., 2006). Staresina

and Wimber (2019) have suggested that bottom-up, cue-driven input

processes are followed by a reversal of the information flow to a top-

down, memory-driven output process. Mashour et al. (2020) recently

discussed the existence of a sudden divergence in brain activity at

around 200 to 300 ms in various tasks. Similarly, independent recogni-

tion memory task studies have identified network changes occurring at

around 240 ms (Barbeau et al., 2008; Goddard et al., 2016; Maillard

et al., 2011). In addition, fMRI studies have consistently reported net-

work reorganizations during cognitive tasks (Ekman et al., 2012; Shine

et al., 2016). Overall, there is strong support for an early critical time

point during which brain networks largely reorganize after initial stimu-

lus processing. Here, our results highlight the simultaneous changes in

global network topology and information flow that underlie or accom-

pany these transitions. Specifically, we observed the transition from a

highly segregated (115 ms) to a highly integrated state (220 ms) to be

accompanied by the activation of a bottom-up network followed by

the activation of a top-down network. The change in brain network

topology stresses the brain's ability to quickly reconfigure dynamic net-

works in response to changing cognitive demands (Cohen &

D'Esposito, 2016). Importantly, we observed reconfigurations occurring

much faster than suggested in other memory studies, likely because our

task was time-constrained (see Staresina & Wimber, 2019 for a review).

Westphal et al. (2017) suggested that efficient episodic (internally

oriented) memory requires reduced modularity and a more integrated

state, enabling higher information flow fluidity. Increased cognitive

load has been shown to drive global integration, whereby the brain

can adopt a more global workspace configuration (Ekman et al., 2012;

Kitzbichler et al., 2011). The identified predominantly top-down net-

work could thus be related to a host of explicit and controlled

cognitive processes, such as top-down modulation by valence or con-

text effects (Ishai et al., 2006), the build-up of an internal representa-

tion of the stimulus (Rijsbergen & Schyns, 2009), access to a

distributed semantic system and language (Burke et al., 2014), moni-

toring and controlling responses (Westphal et al., 2017), or more gen-

erally to conscious processing (Mashour et al., 2020). The variety and

simultaneity of these adaptive processes could explain the need for

integrated information processing. Petrovska et al. (2021) consistently

stressed in an fMRI study of 1410 subjects the importance of left-

lateralized networks in recognition memory (although the network

encompassing the anterior ventral stream was, as expected, more

right-lateralized), which is in agreement with the predominant left-

lateralization of our identified network. In summary, given the differ-

ent architecture of the top-down and bottom-up networks, as well as

the different characteristics and cognitive processes they are thought

to support, these networks may underlie highly different subjective

experiences.

There have been many debates about the role of the hippocam-

pus in recognition memory. Prior research suggests that the hippo-

campus may not be necessary when the response can be based on

familiarity, as in our task design (Aggleton & Brown, 1999; Besson

et al., 2012). Interestingly, both the right and left hippocampi

belonged to the second network in this study, which did not show sig-

nificant changes in connectivity dynamics. Although this result may

need to be confirmed in future studies, it lends support to the idea

that the hippocampus may not necessarily play a pivotal role in all

declarative memory tasks (Basile et al., 2020).

Finally, linking behavioral responses with underlying network

dynamics, we observed a strong negative correlation between minimal

reaction times and the connectivity strength in the community charac-

teristic of increased top-down connectivity. This observation implied

that the strength of the connectivity is related to better brain proces-

sing efficiency. Behavioral responses require frontal lobes regions for

confidence judgment, motor preparation, and decision (Bastin

et al., 2019), which seems in line with the brain areas involved in this

community (Despouy et al., 2020). As this was the only significant cor-

relation between network properties and behavioral responses

(e.g., no correlation was found with d-prime), it remains an interesting

open question which of the two communities contributes most to the

responses and whether they are underlined by different subjective

experience (e.g., familiarity or recollection; Bastin et al., 2019; Besson

et al., 2012). Future work should aim at clarifying these issues. It

would also be highly informative to understand whether the identified

network patterns are generic, that is, relatively replicable across differ-

ent tasks, or specific to our task.

The limitations of this study followed the limitations inherent to

all iEEG studies, that is, a relatively low number of subjects and

subject-specific, tailored implantations that do not cover the entire

brain. Obtaining generalizable findings across subjects necessitates

subsequent channel selection based on criteria for which no golden

standard exists. Furthermore, the definition of bottom-up and top-

down processes corresponded to those operationally defined by Gail-

lard et al. (2009). These definitions represented a simplification, and

their relationship with feedforward and feedback processes remains
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to be clarified. Future studies could benefit from frequency-resolved

measures to detect networks that operate on specific frequencies

(Maffei & Sessa, 2021). Adding frequency analyses was beyond this

study's scope. Finally, it is worth reminding that epilepsy could impact

the generalization of the results. However, as in all similar studies, we

removed EEG periods contaminated with interictal epileptic activities.

In addition, results based on iEEG are generally replicable across stud-

ies and centers (Hill et al., 2020).

In conclusion, this study revealed how different large-scale func-

tional networks unfold early on and rapidly, that is, in <300 ms, during

a cognitive task. It also highlighted specific characteristics of these

networks and pointed to a critical transitional time point. It demon-

strates that chronectomics studies based on intracerebral EEG could

be particularly fruitful in clarifying functional networks' dynamics at

the millisecond scale. Specific hypotheses could be tested explicitly in

future work: for example, the notion that changes in network topol-

ogy drive changes in information flow or the idea that network shap-

ing could start even before stimulus presentation, given the rapidity

of the changes we report. It will also be critical to examine the physio-

logical mechanisms that enable modular coordination within networks

or transitions between different networks.
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