
HAL Id: hal-04696251
https://ut3-toulouseinp.hal.science/hal-04696251v1

Preprint submitted on 12 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling Tool Extension for Vulnerability Management
Avi Shaked, Nan Zhang Messe, Tom Melham

To cite this version:
Avi Shaked, Nan Zhang Messe, Tom Melham. Modelling Tool Extension for Vulnerability Manage-
ment. 2024. �hal-04696251�

https://ut3-toulouseinp.hal.science/hal-04696251v1
https://hal.archives-ouvertes.fr

Modelling Tool Extension for Vulnerability Management

Avi Shaked†
Department of Computer Science

University of Oxford

Oxford, UK

avi.shaked@cs.ox.ac.uk

Nan Messe
 IRIT

UT2

Toulouse, France

 nan.messe@irit.fr

Tom Melham
 Department of Computer Science

University of Oxford

Oxford, UK

 tom.melham@cs.ox.ac.uk

ABSTRACT

Managing vulnerabilities with respect to the design of systems is

essential to securing systems and establishing their trustworthiness.

Until now, there has been no modelling tool to support vulnerability

management within the context of system design. We present a

new, open-source extension of a systems security design and

assessment tool. First and foremost, this extension integrates a

pertinent vulnerability management domain ontology into the

tool’s underlying metamodel. Based on the extended metamodel,

the enriched tool supports importing information from

vulnerability-related knowledge bases as well as capturing new

vulnerability information and security rules. This information can

then be used in an integrative and scalable form to analyse and

reason about the security of systems designs. The extended tool

now includes an automated reasoning mechanism for establishing

the vulnerability posture of systems designs.

CCS CONCEPTS

• Computing methodologies→ Modeling and simulation→ Model

development and analysis→ Modeling methodologies • Security

and privacy→ Systems security→ Vulnerability management

• Security and privacy→ Software and application security→

Software security engineering

KEYWORDS

Model driven engineering, Threat modelling, Vulnerability

management, Security by design

ACM Reference format:

Avi Shaked, Nan Messe and Tom Melham. 2024. Modelling Tool

Extension for Vulnerability Management. In ACM/IEEE 27th International

Conference on Model Driven Engineering Languages and Systems

(MODELS Companion ’24), September 22–27, 2024, Linz, Austria. ACM,

New York, NY, USA, 5. https://doi.org/10.1145/3652620.3687791

1 Introduction

Establishing and maintaining the vulnerability posture of a

system is critical to securing the system and assessing its

trustworthiness. These efforts are commonly known as

vulnerability management. Vulnerability management allows

involved stakeholders (e.g., designers, risk managers, and

executives) to identify, understand and mitigate potential security

risks, consequently improving the trustworthiness of systems [5,

6, 13].

Vulnerability management practices are typically reactive, and

are traditionally approached with a “patching” state of mind, i.e.,

disclosed vulnerabilities in system components are mitigated by

applying software updates (patches). This is well exemplified by

the recent UK National Cyber Security Centre guidance on

vulnerability management [13]. A more mature mindset is to

secure systems by design, eliminating entire classes of

vulnerabilities by proper design and incorporation of security

controls [2]. Vulnerability classes are often referred to as

weaknesses.

The security posture of systems is constantly evolving. This is

due to two main reasons: 1) new functionality and updates are

introduced into systems, either during initial development or

throughout the operational lifecycle; 2) new vulnerabilities are

disclosed, and – as their exploits become widely available –

attackers’ capabilities increase. These necessitate an ongoing

vulnerability management effort, which should be underpinned by

a computer-aided tool. Previous works offer tools for vulnerability

management. Recent examples include the Cyber Intelligence

Alarm system, which alerts about vulnerabilities and

countermeasures[10] ; Vulnerability Management Center, which

scores vulnerabilities of organisational assets[14]; and

AMADEUS-Exploit, which generates feature models of

vulnerabilities[11]. They are focused on implementation-level

vulnerabilities, and none of these address vulnerability classes and

mitigation planning, which are essential to security by design.

Furthermore, to our knowledge, there is no modelling tool

available to support vulnerability management in context of

system design, let alone a tool that is driven by a rigorous,

research-informed metamodel (as in a model-driven engineering

approach).

In this article, we present a new extension of an existing

security modelling tool. The extension introduces – for the first

†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the Owner/Author.

MODELS Companion '24, September 22–27, 2024, Linz, Austria

© 2024 Copyright is held by the owner/author(s).

ACM ISBN 979-8-4007-0622-6/24/09.

https://doi.org/10.1145/3652620.3687791

https://doi.org/10.1145/3652620.3687791

MODELS 2024 A. Shaked et al.

time – concepts related to vulnerability management into the

modelling tool’s underlying metamodel, and provides integrated

metamodel-driven vulnerability management functionality. In

Section 2, we provide background about the modelling tool that

we used as an infrastructure as well as on pertinent knowledge

bases that the extended tool uses. In Section 3, we describe the

new vulnerability management functionality and detail how it is

implemented in the newly extended tool. Finally, in Section 4, we

conclude by highlighting the benefits and potential of the

extended tool.

2 Background

TRADES Tool [8] is an open-source systems security design

and assessment tool. It is a domain-specific modelling tool which

relies heavily on a domain metamodel and carefully designed

representations. TRADES Tool is based on Eclipse infrastructure,

and utilises Ecore for its metamodel and Sirius for its metamodel-

driven representations. TRADES Tool also supports the

integration of several, widely used security knowledge bases [9].

However, until now, TRADES Tool was limited to a threat-

oriented security design and analysis perspective, based on

ontological concepts such as threat pattern, allocated threat / risk,

component and security control. Specifically, it did not offer a

vulnerability-oriented security design and analysis perspective.

In our research work to extend TRADES Tool to support

vulnerability management, we derived the pertinent domain

ontology, i.e., concepts and relations that characterise the domain.

While the full details of uncovering the vulnerability management

domain concepts and designing the ontology extend beyond the

scope of this article, we highlight two knowledge bases that were

used for this: CWE (Common Weakness Enumeration) and CVE

(Common Vulnerabilities and Exposures).

The standard security terminology by MITRE – a global leader

in systems engineering and cyber security – considers weaknesses

as classes of vulnerabilities at various levels of abstraction, and

vulnerabilities as implementation vulnerabilities. Implementation

vulnerabilities can manifest weaknesses [3, 4]. The online CWE

knowledge base is a hierarchical organisation of weaknesses [1].

The CWE knowledge base offers its content as a downloadable

archive of structured information. Since this knowledge base

offers class-related definitions, the content is not frequently

updated and is relatively manageable (as of July 2024, a total of

938 weaknesses). The online CVE knowledge base holds details

about implementation vulnerabilities [7]. New CVEs are being

disclosed daily, and it is therefore unrealistic to use a single

archive download. NIST provides an Application Programming

Interface (API) for querying its online CVE knowledge base (the

National Vulnerability Database, NVD)[12].

3 Tool Extension for Vulnerability Management

The TRADES Tool extension for supporting vulnerability

management uses the same infrastructure of the original tool

(namely, Eclipse and its different features). The extension is an

inherent part of the main tool, with the new functionality fully

integrated into the previously-implemented functionality. It is

available under a permissive EPL-2.0 license at

https://github.com/UKRI-DSbD/TRADES.

Figure 1 shows the elements of the extended tool’s metamodel

that take part in providing vulnerability management

functionality. Concepts and relations that existed in the original

TRADES Tool (prior to implementing the extension) are denoted

using a yellow box and red font. All other elements – including

non-red attributes – are part of the new extension. New concepts –

Vulnerability, Rule, and ComponentType – extend the original

tool’s ontology, which featured the vulnerability management

related concepts: Analysis, Component and Control. New relations

between new concepts and themselves as well as between new

concepts and previously-implemented concepts are added, e.g.,

“componentTypesAffected” between Rule and ComponentType

and “controls” between Rule and Control. New attributes and

operations are added to previously implemented concepts, e.g.,

“vulnerable” and “mitigated” in Component. Some of the new

relations and attributes are derived, i.e., their value is

automatically computed by the tool based on other model

elements. Derived metamodel elements are identified by a slash

(/) prefix in their name.

The metamodel’s extension provides the core support for

vulnerability management in systems security modelling. The new

Vulnerability concept allows to accommodate various

vulnerability definitions within any specific model. These can be

either class-level definitions (weaknesses) or implementation-

level definitions (vulnerabilities). The manifests relation between

one Vulnerability and another can capture the hierarchical

organisation between vulnerability classes, as offered by the CWE

knowledge base; as well as the relation between an

implementation vulnerability (CVE) and the class that it manifests

(CWE).

The new Rule concept allows to bind Vulnerability,

Component Type and Control elements in support of defining

meaningful security rules. This binding is interpreted as the

specific set of controls (Rule.controls) can be used to mitigate the

specific set of vulnerabilities (Rule.vulnerabilities) in the context

of any component that has one of the component types (associated

in Rule.componentTypesAffected). This is the basis for a fully

functional automated reasoning capability. While the full details

of the automated reasoning mechanism are beyond the scope of

this article, we note that the tool’s automated reasoning results are

reflected in some of the derived attributes and relations. For

example, the Boolean “vulnerable” attribute of a Component

element indicates if there are any vulnerabilities that are relevant

to the component yet are unmitigated, and the

“unmitigatedVulnerabilities” relation between Component to

Vulnerability allows indicating the set of vulnerabilities that might

affect a specific component and are unmitigated.

https://github.com/UKRI-DSbD/TRADES

Figure 1: TRADES Tool metamodel extension.

TRADES Tool is an integrative modelling platform [9]. When

extending it for vulnerability management purposes, we

considered it essential to integrate pertinent information from the

expert knowledge bases, namely CWE and CVE. Accordingly, we

introduced new tool functionalities to import CWE and CVE

information into modelling projects.

Importing the CWE catalogue is approached similarly to the

previously implemented Security Controls catalogue import

functionality, offering a consistent user experience. Figure 2

shows the main dialogue screen of the CWE import functionality.

It allows to select a CWE catalogue (in the form of an XML file)

and import it into a selected modelling project. Once the import is

completed, the entire CWE catalogue is available for use, with

every weakness catalogue entry being a Vulnerability element.

Figure 3 shows the Model Explorer panel of TRADES Tool, with

a CWE catalogue being available.

Figure 2: Import CWE catalogue dialogue.

Importing CVE information required a different strategy, due

to the frequent disclosure of new vulnerabilities and the volume of

CVE records. Instead of importing a complete catalogue of CVE

vulnerabilities, which would have overloaded a specific modelling

project, we allow a user to import specific vulnerabilities that

relate to a specific design. We use the NIST Vulnerabilities API to

query the NVD knowledge base and retrieve CVE vulnerabilities.

We provide two options for that. Figure 4 shows the first option,

in which component types that are defined in the design (model)

can be used to import the vulnerabilities that affect them. For this,

we use Common Platform Enumeration (CPE) definitions. CPE is

a structured naming scheme for information technology systems,

software, and packages. A CPE name can be specified as a

component type within TRADES models. The NVD API supports

the retrieval of CVEs that affect specific CPEs. Figure 5 shows

the second option, in which a user can create an API query to

retrieve a set of vulnerabilities. In each of the cases, the resulting

set of vulnerabilities is shown to the user, who can then decide

which of the vulnerabilities to import into the modelling project.

Once they are imported, they appear as a catalogue, alongside

other catalogues (such as the CWE and the Security Controls

catalogue). Figure 6 shows the “Relevant CVEs” catalogue, next

to the imported CWE and Security Controls (NIST SP 800-53)

catalogues.

MODELS 2024 A. Shaked et al.

Figure 3: CWE catalogue incorporated into a modelling project.

Figure 4: Importing CVE records using component types

available in the model.

Figure 5: Importing CVE records using custom queries.

Figure 6: Imported CVE records available as a catalogue

within a modelling project.

Figure 7 demonstrates the results of the automated reasoning

mechanism. The automated reasoning mechanism is applied

continuously, on-the-fly, based on the metamodel-compliant

design model, and is therefore fully synchronised with the model

of the system security design. The figure shows the attributes of a

Component element named LinuxInstance. The element has a

component type corresponding to a Linux version (based on

CPE), and it is assigned a security control named Global Control.

The assignment of this control mitigates many vulnerabilities and

weaknesses (some shown in CVA and CWA derived attributes;

CVA stands for Collection of Vulnerabilities Associated with a

component, and CWE stands for Collection of Weaknesses

Associated with a component), based on a pre-defined rule (Rule

Global). However, some vulnerabilities and weaknesses remain

(evident in the Unmitigated Vulnerabilities and Unmitigated

Weaknesses attributes), resulting in the component being assessed

as vulnerable (true value for the Vulnerable derived attribute).

Figure 7: Various attributes of a component within a model, including automated reasoning results.

4 Conclusion

The trustworthiness-critical effort of establishing and

maintaining the vulnerability posture of systems is not supported

by systems design modelling tools. This hinders the ability to

secure systems by design as well as the ability to reason about the

security of systems.

We developed a new extension that is seamlessly integrated

into an open-source systems security design and assessment

modelling tool. This extends the modelling tool with vulnerability

management related concepts and features, including

vulnerability-related rule specification, importing vulnerability-

related information from widely used knowledge bases and

employing automated reasoning to reason about the security of

systems designs at scale. We intend to integrate a reporting

functionality that will allow to report the automated reasoning

mechanisms’ findings, so that pertinent information can be

communicated to various stakeholders, particularly decision-

makers such as executive managers.

Our open-source offering can be leveraged by security

researchers who wish to introduce and exercise rigorous and

scalable modelling artifacts into their research. Both researchers

and practitioners can adapt the tool for their specific needs, while

relying on the tool as a research-informed infrastructure.

The extended tool allows to integrate information from

multiple knowledge bases and use the information in an integrated

manner to solve domain problems, e.g., specifying security rules

as an organisational policy and reasoning about the vulnerability

posture of a system throughout its development and operation.

These capabilities enable to use the extended modelling tool for

educating security researchers and students about vulnerability

management, and specifically how it integrates into security

analyses and security by design practices.

ACKNOWLEDGMENTS

The authors wish to thank System C for its role in implementing

the extended tool.

This work is funded by Innovate UK, grant number 75243.

REFERENCES
[1] CWE - Common Weakness Enumeration website:

https://cwe.mitre.org/.
[2] Cybersecurity & Infrastructure Security Agency 2023. Secure-by-

Design Shifting the Balance of Cybersecurity Risk: Principles and

Approaches for Secure by Design Software.

[3] Cybersecurity & Infrastructure Security Agency 2023. The Case

for Memory Safe Roadmaps.

[4] Huff, P. and Li, Q. 2021. Towards Automated Assessment of

Vulnerability Exposures in Security Operations. (2021), 62–81.

[5] Khalil, S.M. et al. 2024. Threat modeling of industrial control

systems: A systematic literature review. Computers & Security.

136, (Jan. 2024), 103543.

DOI:https://doi.org/10.1016/j.cose.2023.103543.

[6] McGraw, G. 2012. Software Security. Datenschutz und

Datensicherheit - DuD. 36, 9 (Sep. 2012), 662–665.

DOI:https://doi.org/10.1007/s11623-012-0222-3.

[7] MITRE CVE website: https://cve.mitre.org/.

[8] Shaked, A. 2023. A model-based methodology to support systems

security design and assessment. Journal of Industrial Information

Integration. 33, (Jun. 2023), 100465.

DOI:https://doi.org/10.1016/j.jii.2023.100465.

[9] Shaked, A. 2024. Facilitating the Integrative Use of Security

Knowledge Bases within a Modelling Environment. Journal of

Cybersecurity and Privacy. 4, 2 (Apr. 2024), 264–277.

DOI:https://doi.org/10.3390/jcp4020013.

[10] Syed, R. 2020. Cybersecurity vulnerability management: A

conceptual ontology and cyber intelligence alert system.

Information & Management. 57, 6 (Sep. 2020), 103334.

DOI:https://doi.org/10.1016/j.im.2020.103334.

[11] Varela-Vaca, Á.J. et al. 2023. Feature models to boost the

vulnerability management process. Journal of Systems and

Software. 195, (Jan. 2023), 111541.

DOI:https://doi.org/10.1016/j.jss.2022.111541.

[12] Vulnerabilities API at NVD:

https://nvd.nist.gov/developers/vulnerabilities. Accessed: 2024-

07-08.

[13] Vulnerability management Guidance:

https://www.ncsc.gov.uk/collection/vulnerability-management.

Accessed: 2024-07-08.

[14] Walkowski, M. et al. 2021. Vulnerability Management Models

Using a Common Vulnerability Scoring System. Applied

Sciences. 11, 18 (Sep. 2021), 8735.

DOI:https://doi.org/10.3390/app11188735.

