
HAL Id: hal-04692230
https://ut3-toulouseinp.hal.science/hal-04692230v1

Submitted on 9 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Event-B to Lambdapi (Journées FAC 2024)
Anne Grieu

To cite this version:
Anne Grieu. From Event-B to Lambdapi (Journées FAC 2024). FAC 2024, groupe IFSE du RTRA
STAE, Apr 2024, Toulouse, France. �hal-04692230�

https://ut3-toulouseinp.hal.science/hal-04692230v1
https://hal.archives-ouvertes.fr

From Event-B to Lambdapi

Anne Grieu
IRIT, Université de Toulouse, CNRS, INP, UT3, Toulouse, France

anne.grieu@irit.fr

FAC 2024

Abstract

B, Event-B and TLA are development languages based on set theory. Dedukti/Lambdapi is a logical
framework based on the λΠ-calculus modulo in which many theories and logics can be expressed. In the
context of ICSPA (ANR project), Lambdapi will be used to exchange models and proofs between the set
theory-based formal methods B, Event-B and TLA. They will rely on the encoding of the respective set
theories in Lambdapi.

We will here focus on Event-B with the Rodin Platform, an Eclipse-based IDE and logical framework
(Java-based) for Event-B. In this first work, our aim is to check the proof trees generated by Rodin. For
this purpose, we use the Lambdapi framework. We present the translation of Event-B constructs based
on the set theory (first order equational classic logic, set based-logic) and some deduction rules. We also
discuss how the specific rules of Event-B related to set theory are translated.

1 Context

Deductive formal methods are used to improve confidence in software development, especially for critical
systems. The proposal of the ICSPA project (ANR project) is to enable B, Event-B and TLA, all based on
set theory, to exchange proofs and models made with their proof systems Atelier B, Rodin and TLAPS.

The framework chosen to express this interoperability is Dedukti/Lambdapi [4, 5], a logical framework
based on Martin-Löf’s type theory, adapted to express other logical theories. In Lambdapi, we can define
objects and types, rewriting rules and reason modulo these rules. Lambdapi has a small core that is easy to
verify.

We will here focus on the translation of Event-B mathematical language and proof trees to Lambdapi.
We are not concerned by the B-method by itself, i.e., development by refinement.

Event-B [2] is a formal method to specify and model complex systems using the notion of abstract machine
notation and Rodin a platform based on Eclipse to manage, edit and prove Event-B models.

We want to formalize the features of the first order classical logic, the typed-set language of Event-B in
the λΠ-calculus modulo of Dedukti/Lambdapi. We must be able to define the elements of Event-B such as
expressions and predicates and more generally its typed-set theoretical language together with its proof rules.

2 First order classical logic in Lambdapi

2.1 Lambdapi

In this part, we will give some outlines of the syntax of Lambdapi we will encounter in the encoding of Event-
B in Lambdapi. We won’t go into all details, that can be found in the user manual 1. We will illustrate the
declaration of objects and the definition of rules with examples taken from our formalisation.

1https://lambdapi.readthedocs.io/en/latest/index.html

1

https://lambdapi.readthedocs.io/en/latest/index.html

2.1.1 Lambdapi terms

The syntax of λΠ terms is given by:

t ::= V variable
| TYPE sort for types
| Π (V : t), t dependent product type
| λ (V : t), t abstraction
| t t application

The expression A → B stands for non-dependent product. It is syntactic sugar for
∏

(x : A), B when x
has no free occurrence in B.

Examples of Lambdapi terms are given in the following paragraph through the encoding of propositional
logic.

2.1.2 Propositions and data type representation in Lambdapi

As it is made in the standard library2 Prop.lp, we define the type of propositions with the symbol command.
We define as well the type of a proof of a proposition. This will allow us to reduce proof-checking to type-
checking. In Lambdapi, TYPE is the sort of types.

constant symbol Prop : TYPE; // Propositional logic

injective symbol π : Prop → TYPE; // the type of a Prop proof

To express typed-set theory, we define the type Set and how we will interpret sets in TYPE, as in the
file Set.lp of the standard library.

constant symbol Set : TYPE; // Type of set codes for quantifying over sets

injective symbol τ : Set → TYPE; // Interpretation of set codes in TYPE

Once these types are fixed, we can continue our encoding.

2.1.3 First order equational logic connectors in Lambdapi

To translate our formalism, we have to define first order logic connectors with their rules. To declare objects
with their signature we use the same symbol command as to define types. This command can also be used
to give a definition, when followed by a term and potentially a type solving or unification goal proof.

The first-order logic of Event-B contains standard operators such as conjunction, disjunction, negation,
implication, equivalence, the quantifiers ∀, ∃, two constants ⊤ (truth) and ⊥ (falsity). [1]

In the following examples of the Prop.lp file, we can see how these operators are declared with their
signature:

constant symbol ⊤ : Prop; // True

constant symbol top : π ⊤;
constant symbol ⊥ : Prop; // False

constant symbol ⊥e p : π ⊥ → π p;

// Conjunction

constant symbol ∧ : Prop → Prop → Prop;

notation ∧ infix left 7;

constant symbol ∧i p q :

π p → π q → π (p ∧ q);

symbol ∧e1 p q : π (p ∧ q) → π p;

symbol ∧e2 p q : π (p ∧ q) → π q;

...

It is easy to recognize, in the above excerpt, some rules of the first order logic formalism, like introduction
of ∧ and eliminations of ∧ :

2https://github.com/Deducteam/lambdapi-stdlib

2

https://github.com/Deducteam/lambdapi-stdlib/blob/master/Prop.lp
https://github.com/Deducteam/lambdapi-stdlib/blob/master/Set.lp
https://github.com/Deducteam/lambdapi-stdlib/blob/master/Prop.lp

Γ ⊢ p Γ ⊢ q

Γ ⊢ p ∧ q
(∧i)

Γ ⊢ p ∧ q

Γ ⊢ p
(∧e1)

Γ ⊢ p ∧ q

Γ ⊢ q
(∧e2)

We can see a use of the rule command in the standard library to declare the implication, by taking
benefits of the Curry-Howard correspondence. A proof of an implication is a function taking as parameters
a proof of the antecedent and returning a proof of the consequent:

constant symbol ⇒ : Prop → Prop → Prop; // Implication

notation ⇒ infix right 5;

rule π ($p ⇒ $q) ↪→ π $p → π $q;

The negation and the equivalence connectors are introduced with already defined connectors:

symbol ¬ p := p ⇒ ⊥; // Negation

symbol ⇔ p q := (p ⇒ q) ∧ (q ⇒ p); // Equivalence

notation ⇔ infix right 5;

Let us illustrate the proof of a theorem with the reflexivity of equivalence.
The theorem is introduced with the symbol command and appears as a parameter of the π operator.

Proving this theorem comes to finding a term of which type is the stated theorem. Some tactics, like assume,
apply, are available to help to solve typing goals or unification goals of Lambdapi.

opaque symbol ⇔_refl [p] : π (p ⇔ p) := // ⇔ reflexivity

begin

assume p;

apply ∧i { assume h; apply h } { assume h; apply h }
end;

... // ⇔ symmetry, transitivity

We will need universal and existential quantifiers. The definition of the universal quantifier gives an
example of use of the dependent product:

constant symbol ∀ [a] : (τ a → Prop) → Prop;

notation ∀ quantifier;

rule π (∀ $f) ↪→
∏

x, π ($f x); // Universal quantification

constant symbol ∃ [a] : (τ a → Prop) → Prop;

notation ∃ quantifier; // Existential quantification

constant symbol ∃i [a] p (x:τ a) : π (p x) → π (∃ p);

symbol ∃e [a] p : π (∃ p) →
∏

q, (
∏

x:τ a, π (p x) → π q) → π q;

rule ∃e _ (∃i _ $x $px) _ $f ↪→ $f $x $px;

Note: the modifier quantifier allows to write `f x, t instead of f (λ x, t).

Furthermore, we have to declare the law of excluded middle, to be in the context of the classical logic of
Event-B:

symbol classic (P : Prop): π (P ∨ ¬ P); // Classical

3

2.1.4 Example

As an example, let’s consider the formalization in Lambdapi and the proof of the property:
∀ f : T → T, (∀ x y, fx = fy) ⇒ ∃ c, ∀ x, fx = c for a given non empty type T . After introducing

the data type T , the theorem is expressed as an argument of the π operator. The τ operator transforms T
to a Lambdapi type. t is introduced as a witness for the non emptiness of T . Thus, we get the following
statement of which proof uses the exists introduction rule and the hypothesis.

symbol T : Set;

symbol thm0: π (`∀ (f : τ T → τ T), `∀ (t:τ T),(`∀ (x:τ T), `∀ (y:τ T), f x = f y)

⇒ (`∃ (c:τ T), `∀ (x:τ T), (f x = c))) :=
begin

assume f t h;

apply (∃i (λ c, `∀ x, f x = c) (f t));

assume x;

apply (h x t)

end;

3 Event-B set theory in Lambdapi

B/Event-B [1] set theory is a typed-set theory. We will embed its constructs and its rules into Lambdapi.

3.1 Basic B type theory

First, we need to introduce in Lambdapi cartesian product, power set operators on types:

σ ::= σP σ power set
| σ σ× σ cartesian product
| σBOOL | σZ built-in boolean and integer types
| σS for each user declared set S

This extensible inductive type is encoded in Lambdapi by the following declarations:

injective symbol σP: Set → Set; // power set of type

injective symbol σ×: Set → Set → Set; notation σ× infix left 24;// cartesian product of types

constant symbol σBOOL: Set;

constant symbol σZ: Set;

constant symbol σS: Set; // user declared set S

3.2 Set operators

The classical set operators of Event-B derive from the declaration of the membership operator.

symbol ∈ [T:Set] : τ T → τ (σP T) → Prop;

Basic sets They are the maximal sets of elements of a given type. These maximal sets can be defined in
a generic way. For this purpose, B introduces the BIG generic set.

constant symbol BIG [T:Set]: τ (σP T); // BIG

rule $x ∈ BIG ↪→ ⊤; // BIG contains all elements of some type T

rule P BIG ↪→ BIG; // power set of BIG is also a maximal set

rule BIG × BIG ↪→ BIG; // cartesian product of two maximal sets is maximal

4

We use BIG to define the sets of booleans and integers, as well as the user defined basic sets:

symbol BOOL : τ (σP σBOOL) := BIG;

constant symbol TRUE : τ σBOOL;
constant symbol FALSE : τ σBOOL;

symbol Z : τ (σP σZ) := BIG;

... // operators, comparisons, min, max,...

symbol S: τ (σP σS) := BIG;

Set constructors

rule $x ∈ ∅ ↪→ ⊥;
...

constant symbol ∩ [T:Set] : τ (σP T) → τ (σP T) → τ (σP T); notation ∩ infix left 23;

rule $x ∈ $s1 ∩ $s2 ↪→ $x ∈ $s1 ∧ $x ∈ $s2;

...

rule $e ∈ P $S ↪→ $e ⊆ $S;

...

symbol × [T1:Set] [T2:Set] : τ (σP T1) → τ (σP T2) → τ (σP (T1 σ× T2));

constant symbol cset [T:Set]: (τ T → Prop) → τ (σP T); //set comprehension

3.3 Relational operators

Now we define relations from cartesian product, as E1 ↔ E2 is defined by P(E1 × E2).

symbol rel (T1 T2: Set) := τ (σP (T1 σ× T2));

injective symbol 7→ [T1:Set] [T2:Set] (x:τ T1) (y:τ T2) : τ (T1 σ× T2);

symbol ↔ [T1:Set] [T2:Set] (A:τ (σP T1)) (B: τ (σP T2)):

τ (σP (σP (T1 σ× T2))) := P (A × B); notation ↔ infix 11;

constant symbol dom [T1:Set] [T2:Set] : rel T1 T2 → τ (σP T1); notation dom prefix 30;

rule $x ∈ dom($r) ↪→ `∃ y, $x 7→ y ∈ $r;

constant symbol ran [T1:Set] [T2:Set] : rel T1 T2 → τ (σP T2); notation ran prefix 30;

rule $y ∈ ran($r) ↪→ `∃ x, x 7→ $y ∈ $r;

3.4 Functions

After that, we define functions, following Event-B formalism. As a reminder, we give the definitions of the
functions we will need in the beginning of our example:

Meaning Construct Definition

partial functions f ∈ A 7→ B {f . f ∈ A ↔ B ∧
∀ x, ∀ y1, ∀ y2, x 7→ y1 ∈ f ∧ x 7→ y2 ∈ f ⇒ y1 = y2 }

partial surjective functions f ∈ A 7↠ B {f . f ∈ (A 7→ B) ∧ ran f = B }
total surjective functions f ∈ A ↠ B {f . (dom f) = A ∧ f ∈ A 7↠ B }

5

And here is the excerpt of the Lambdapi library needed to define surjective functions:

constant symbol 7→ [T1:Set] [T2:Set] :

τ (σP T1) → τ (σP T2) → τ (σP (σP (T1 σ× T2))); notation 7→ infix 11;

rule $f ∈ ($A 7→ $B) ↪→
$f ∈ ($A ↔ $B) ∧ (`∀ x, `∀ y1, `∀ y2, x 7→ y1 ∈ $f ∧ x 7→ y2 ∈ $f ⇒ y1 = y2);

constant symbol 7↠ [T1:Set] [T2:Set] :

τ (σP T1) → τ (σP T2) → τ (σP (σP (T1 σ× T2))); notation 7↠ infix 11;

rule $f ∈ ($A 7↠ $B) ↪→ ($f ∈ ($A 7→ $B)) ∧ (ran $f = $B);

constant symbol ↠ [T1:Set] [T2:Set] :

τ (σP T1) → τ (σP T2) → τ (σP (σP (T1 σ× T2))); notation ↠ infix 11;

rule $f ∈ $A ↠ $B ↪→ (dom $f) = $A ∧ $f ∈ $A 7↠ $B;

4 Event-B deduction rules

Proofs in Event-B are driven by deduction rules. When giving a goal to prove to Rodin, it will apply some
automated tactics. In case they fail, or if the user wants to guide the proof, he can choose the rules to apply,
either transforming hypothesis or goal, or adding lemmas so the proof could be complete. The user can
interact with Rodin by clicks on elements or by adding terms.

All these actions will appear in the proof tree of Rodin. However their granularity may vary from the
application of basic proof rule to a call of an external tool. So far, we have only considered low level rules
that have direct translations to Lambdapi proofs. This proof tree is in encoded in XML. We access it through
a Java plug-in, to generate a Lambdapi file.

Each step of Rodin’s proof tree has to be expressed in Lambdapi. With above extracts of library, we
gave an idea of what is necessary to write expressions and predicates and we will now present how to express
some deduction rules in Lambdapi.

Simple tactics First, we can simply use Lambdapi tactics, in the same way as Coq’s tactics. The following
arrays show the expression of some Rodin proof rules and the related Lambdapi’s tactic:

Rodin proof rule Lambdapi tactic

Γ, h : p ⊢ p
(hyp) refine h

h : p,Γ ⊢ q

Γ ⊢ p ⇒ q
(⇒ goal) assume h

Γ, h : xi ∈ Ti ⊢ p

Γ ⊢ ∀x1, . . . , xn · p
(∀goal) assume x1 . . . xn

Γ ⊢ p Γ ⊢ q

Γ ⊢ p ∧ q
(∧goal) apply ∧i p q

Tactics defined as theorems Deduction rules will mainly be defined as theorems, using the command
symbol, with the type-checking proof:

6

symbol Or2ImpGoal [P Q: Prop] : π (((¬ P) ⇒ Q) ⇒ (P ∨ Q)) :=
begin

assume P Q h;

apply (λ h1 h2, ∨e P (¬ P) (P ∨ Q) h1 h2 (classic P))

{assume hp;

apply (∨i1 _ _ hp)

}{assume hnp;

apply (∨i2 _ _ (h hnp))

}
end;

Remark: the brackets are used to signal optional arguments of an axiom.

This theorem can now be used, as in the following example, with the apply tactic of Lambdapi:

Rodin proof rule Lambda-Pi tactic

Γ ⊢ ¬p ⇒ q

Γ ⊢ p ∨ q
apply Or2ImpGoal

N-ary operators Some operators in Rodin are n-ary, while Lambdapi’s operators are binary. The current
choice is to transform n-ary expressions, with a plug-in Java included in Eclipse, in series of binary operators.

For instance, if the goal is x ∈ E ∩ F ∩ G, Rodin generates 3 sub-goals as the ∩ operator is seen as
an n-ary operator. In Lambdapi, we macro generate a composition of introduction rules in order to get
corresponding sub-goals:

apply (∧i (x ∈ E ∩ F) (x ∈ G) (∧i (x ∈ E) (x ∈ F) _ _) _)

We note that x ∈ A ∩B is equivalent to x ∈ A ∧ x ∈ B.

5 Cantor’s theorem

To guide the beginning of our work, we focused on the proof of Cantor’s theorem and we are able to check the
translation of our proof with Lambdapi. A similar proof has been developed in TLA/TLAPS/VeriT/Lamb-
dapi [3].

We made a strongly guided proof of Cantor’s theorem, defined in the following context:

and obtained the following tree proof:

7

In the following lines we have the first steps of the translated proof. The gray boxes are not in the
Lambdapi script, these are the rule details given by Rodin during the proof. In the comments (lines with
//), we can read the nodes exported by Rodin and between the comments and the gray boxes, the lambdapi
code.

require open lib.Set lib.Prop lib.FOL lib.Eq

evb_ml.evb_ml evb_ml.evb_int evb_ml.evb_bool evbprf.evbprf;

constant symbol σS: Set;

symbol S: τ (σP σS) := BIG;

symbol th'THM : π (¬((`∃ (f: τ (σP (σS σ× (σP σS)))), f ∈ (S ↠ (P S))))) :=
begin

// rule: org.eventb.core.seqprover.rn

// rewriting rule of Lambdapi

simplify ¬; // useless in Lambdapi

refine ((λ (__: π (`∀ (f: τ (σP (σS σ× (σP σS)))), ¬(f ∈ (S ↠ (P S))))), __) _);

// syntactic identification following rewriting rules.

⊢ ¬(∃f.f ∈ S ↠ P(S))
remove ¬ in goal−−−−−−−−−−−−−→ ⊢ ∀f.¬f ∈ S ↠ P(S))

// rule: org.eventb.core.seqprover.allI

assume f; //Added free identifier f

8

⊢ ∀f.¬f ∈ S ↠ P(S))
∀ goal (free f)
−−−−−−−−−−−→ ⊢ ¬f ∈ S ↠ P(S)

// rule: org.eventb.core.seqprover.contrL1

apply not_intro [f ∈ (S ↠ (P S))];

⊢ ¬f ∈ S ↠ P(S)
ct goal−−−−−→ f ∈ S ↠ P(S) ⊢ ⊥

assume _H1; // f∈S ↠ P(S)
// rule: org.eventb.core.seqprover.rmL1

apply (Generalize _H1); // f∈S ↠ P(S)
refine (and_imp _);

f ∈ S ↠ P(S) ⊢ ⊥ remove ∈ in f∈S↠P(S)−−−−−−−−−−−−−−−−→ f ∈ S 7↠ P(S), dom(f) = S ⊢ ⊥

assume _H2; // dom(f)=S

assume _H3; // f∈S 7↠ P(S)
// rule: org.eventb.core.seqprover.rmL1

apply (Generalize _H3); // f∈S 7↠ P(S)
refine (and_imp _);

f ∈ S 7↠ P(S), dom(f) = S ⊢ ⊥ remove ∈ in f∈S 7↠P(S)−−−−−−−−−−−−−−−−−→ f ∈ S 7→ P(S), ran(f) = P(S), dom(f) = S ⊢ ⊥

assume _H4; // f∈S 7→ P(S)
assume _H5; // ran(f)=P(S)
// rule: org.eventb.core.seqprover.rmL1

apply (Generalize _H4); // f∈S 7→ P(S)
refine (and_imp _);

f ∈ S 7→ P(S), ran(f) = P(S), dom(f) = S ⊢ ⊥ remove ∈ in f∈S 7→P(S)−−−−−−−−−−−−−−−−−→
f ∈ S ↔ P(S),∀x, x0, x1 · x 7→ x0 ∈ f ∧ x 7→ x1 ∈ f ⇒ x0 = x1, ran(f) = P(S), dom(f) = S ⊢ ⊥

assume _H6; // f∈S ↔ P(S)
assume _H7; // ∀x,x0,x1·x 7→ x0∈f∧x 7→ x1∈f⇒x0=x1

// rule: org.eventb.core.seqprover.typeRewrites

f ∈ S ↔ P(S),∀x, x0, x1 · x 7→ x0 ∈ f ∧ x 7→ x1 ∈ f ⇒ x0 = x1, ran(f) = P(S), dom(f) = S ⊢ ⊥

type rewrites−−−−−−−−−−→ ∀x, x0, x1 · x 7→ x0 ∈ f ∧ x 7→ x1 ∈ f ⇒ x0 = x1, ran(f) = P(S), dom(f) = S ⊢ ⊥

// rule: org.eventb.core.seqprover.setEqlRewrites

apply (set_eq_elim (ran f) (P S) _ _H5); // ran(f)=P(S)
refine (and_imp _);

ran(f) = P(S)
rewrites set equality−−−−−−−−−−−−−−−−→ ran(f) ⊆ P(S),P(S) ⊆ ran(f)

assume _H8; // ran(f)⊆P(S)
assume _H9; // P(S)⊆ran(f)
// rule: org.eventb.core.seqprover.typeRewrites

9

∀x, x0, x1 · x 7→ x0 ∈ f ∧ x 7→ x1 ∈ f ⇒ x0 = x1, ran(f) ⊆ P(S),P(S) ⊆ ran(f), dom(f) = S ⊢ ⊥

type rewrites−−−−−−−−−−→ ∀x, x0, x1 · x 7→ x0 ∈ f ∧ x 7→ x1 ∈ f ⇒ x0 = x1,P(S) ⊆ ran(f), dom(f) = S ⊢ ⊥

// rule: org.eventb.core.seqprover.typeRewrites

have _H10: π ((`∀ (x: τ (σP σS)), (x ∈ (P S) ⇒ x ∈ (ran f)))) { refine _H9 };

P(S) ⊆ ran(f)
remove ⊆ in P(S)⊆ran(f)−−−−−−−−−−−−−−−−−−→ ∀x · x ∈ P(S) ⇒ x ∈ ran(f)

// rule: org.eventb.core.seqprover.typeRewrites

have _H11 : π (`∀ (x: τ (σP σS)), (⊤ ⇒ x ∈ (ran f))) { // ∀x·⊤⇒x∈ran(f)
refine _H10; // ∀x·x∈P(S)⇒x∈ran(f)

};

∀x · x ∈ P(S) ⇒ x ∈ ran(f)
type rewrites−−−−−−−−−−→ ∀x · ⊤ ⇒ x ∈ ran(f)

// rule: org.eventb.core.seqprover.autoRewritesL4

have _H12 : π ((`∀ (x: τ (σP σS)), x ∈ (ran f))) { // ∀x·x∈ran(f)
apply (Generalize (rsimpl_intro _H11)); // ∀x·⊤⇒x∈ran(f)
refine (λ p,p); // ∀x·⊤⇒x∈ran(f)

};

∀x · ⊤ ⇒ x ∈ ran(f)
simplification rewrites−−−−−−−−−−−−−−−−−→ ∀x · x ∈ ran(f)

// rule: org.eventb.core.seqprover.allD

apply (Generalize ((_H12 (`cset (x: τ σS), (`∀ (U: τ (σP σS)), ((x 7→ U) ∈ f ⇒ x /∈ U))))));

∀x · x ∈ ran(f)
∀ hyp instanciated with−−−−−−−−−−−−−−−−−−→ {x|∀U · x 7→ U ∈ f ⇒ x /∈ U} ∈ ran(f)

Antecedent 1 (OP): ⊢ ⊤
Antecedent 2:

∀x, x0, x1 · x 7→ x0 ∈ f ∧ x 7→ x1 ∈ f ⇒ x0 = x1, {x|∀U · x 7→ U ∈ f ⇒ x /∈ U} ∈ ran(f), dom(f) = S ⊢ ⊥
. . .

6 Conclusion

There is still a significant work ahead to perform the complete translation of Event-B proofs to Lambdapi.

Figure 1: Rodin and
SMT solvers[6].

The encoding is going to evolve to take into account all the peculiarities of Event-
B, Rodin and Lambdapi. We have also to complete the translation of all the deduc-
tion’s rules of Rodin.

Another point is that the automated proofs are a strength of Rodin.
They are provided by integrated solvers or external SMT solvers. We
have to implement the treatment made by Rodin for SMT solvers. It
begins by removing all set-theoretical constructs in the formulas before
sharing them with the SMT solvers. The SMT solver gives its result
and sometimes useful data to Rodin. In the future, we will look for

10

an appropriate way to translate this information of the solver in Lamb-
dapi.

Last, we will have to express the full Event-B, define machines, events, refinements
and the mechanisms of proof obligations, some of the major features of the formal
method Event-B.

References

[1] Jean-Raymond Abrial. The B-book - assigning programs to meanings. Cambridge University Press, 1996.

[2] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cambridge University
Press, 2010.

[3] Coltellacci Alessio. Reconstruction of TLAPS proofs solved by verit in lambdapi. In Uwe Glässer,
José Creissac Campos, Dominique Méry, and Philippe A. Palanque, editors, Rigorous State-Based Meth-
ods - 9th International Conference, ABZ 2023, Nancy, France, May 30 - June 2, 2023, Proceedings,
volume 14010 of Lecture Notes in Computer Science, pages 375–377. Springer, 2023.

[4] Ali Assaf, Guillaume Burel, Raphal Cauderlier, David Delahaye, Gilles Dowek, Catherine Dubois,
Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Expressing theories in the
λΠ-calculus modulo theory and in the Dedukti system. In TYPES: Types for Proofs and Programs, Novi
SAd, Serbia, May 2016.

[5] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-calculus modulo,
2023.

[6] David Déharbe, Pascal Fontaine, Yoann Guyot, and Laurent Voisin. Integrating smt solvers in rodin.
Science of Computer Programming, 94:130–143, 2014. Abstract State Machines, Alloy, B, VDM, and Z.

11

	Context
	First order classical logic in Lambdapi
	Lambdapi
	Lambdapi terms
	Propositions and data type representation in Lambdapi
	First order equational logic connectors in Lambdapi
	Example

	Event-B set theory in Lambdapi
	Basic B type theory
	Set operators
	Relational operators
	Functions

	Event-B deduction rules
	Cantor's theorem
	Conclusion

