
HAL Id: hal-04691826
https://ut3-toulouseinp.hal.science/hal-04691826v1

Submitted on 9 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Event-B to Lambdapi
Anne Grieu

To cite this version:
Anne Grieu. From Event-B to Lambdapi. 10th International Conference on Rigourous State-Based
Methods (ABZ 2024), ABZ, Jun 2024, Bergamo, Italy. pp.387-391, �10.1007/978-3-031-63790-2_29�.
�hal-04691826�

https://ut3-toulouseinp.hal.science/hal-04691826v1
https://hal.archives-ouvertes.fr

From Event-B to Lambdapi ⋆

Anne Grieu1[0009−0006−3020−3660]

IRIT, Université de Toulouse, CNRS, INP, UT3, Toulouse, France
anne.grieu@irit.fr

Abstract. B, Event-B and TLA+ are modelling notations based on
set theory. Dedukti/Lambdapi is a logical framework based on the λΠ-
calculus modulo rewriting in which many theories and logics can be
expressed. In the context of ICSPA (ANR project), Lambdapi will be
used to exchange models and proofs between the set theory-based for-
mal methods B, Event-B and TLA+. They will rely on the encoding
of the respective set theories in Lambdapi. Our current work focuses
on translating the mathematical language of Event-B and proof trees
obtained with the Rodin platform for Event-B.

1 Context

Deductive formal methods are used to improve confidence in software develop-
ment, especially for critical systems. The purpose of the ICSPA1 ANR project
is to formally verify proofs performed in B [2], Event-B [3] and TLA+ [13] envi-
ronments, all based on set theory, and to exchange proofs and models developed
with their respective platforms Atelier B [9], Rodin [4] and TLAPS [8]. The
framework chosen to express this interoperability is Dedukti/Lambdapi [6] [10],
a logical framework making easy the definition of various logics. It is based on
Martin-Löf’s type theory and supports modulo reasoning through rewrite rules.
We will here focus on Event-B and the Rodin Platform, an Eclipse-based IDE
and logical framework.

Other works on Atelier B, like the BWare project [11] and its recent de-
velopment [14] or reconstruction of TLAPS proofs [5], share this objective of
interoperability with Dedukti/Lambdapi but have different approaches. For ex-
ample, in the BWare project, Atelier B proof obligations are translated to Why3
[1] platform which submits it to different SMT provers and then to Dedukti.
However the proof effort and the structure of the proof realised in Atelier B is
lost. It is expected that the proof can be entirely performed by an SMT tool.
Here we propose to translate not only proof obligations but also the user pro-
vided proofs so we are able to verify proofs realised with the Rodin toolbox and
its connected SMT-solvers. In this first work, our aim is to be able to check in
the Lambdapi framework, proof-trees restricted to Rodin basic deduction rules,
thus excluding calls to automatic provers.

⋆ Supported by the ICSPA french ANR project.
1 https://icspa.inria.fr

https://icspa.inria.fr

2 A. Grieu

2 Current work

A Rodin proof contains a proof tree annotated by intermediate sub-goals defined
by Event-B formulas, the applied deduction rule and its parameters (expressions,
hypotheses, positions in the term, . . .). To be able to check proofs made with
Rodin in Lambdapi, we have to translate the mathematical language of Event-B
and its deduction rules to Lambdapi. The formalism of Event-B is based on first
order classical logic with equality extended with arithmetic and set theory. The
embedding to Lambdapi relies on Lambdapi standard library of first order logic
and equality 2, to which we have added the classic axiom (P ∨ ¬P). Next we
have to express the typed set theory of B/Event-B [2] in Lambdapi and then,
when we are able to fully express predicates, we have to perform the translation
of the deduction rules of Rodin in Lambdapi. In the following, we present some
elements of the Lambdapi syntax and the outline of our work.

2.1 Elements of the Lambdapi syntax

Lambdapi is a proof assistant, an interactive version of the proof system Dedukti
based on λΠ-calculus modulo rewriting [7]. Here are examples of its syntax, as
found in the file Prop.lp. First, we see how to declare the type Prop of proposi-
tions and the function π which associates to a proposition the type of its proofs.
The type-checking of Lambdapi is performed between objects of type TYPE. The
command symbol declares typed identifiers with an optional definition.

constant symbol Prop: TYPE; injective symbol π: Prop → TYPE;

We can declare as well the logical connectors, for example, the conjunction, with
its signature and its introduction rule:

constant symbol ∧: Prop → Prop → Prop;

symbol ∧i p q: π p → π q → π(p ∧ q);

We have also at our disposal the rule command to give rewriting rules be-
tween terms formed using already declared symbols, separated with the curved
arrow ↪→. The two parts of the rewriting rule will be considered as identical,
thus allowing reasoning inside the quotient space. It is illustrated by the rule for
implication saying that the proof of an implication is a function associating a
proof of the conclusion to the proof of the hypothesis:

rule π ($p ⇒ $q) ↪→ π $p → π $q;

2.2 Some design alternatives

An important part of our work is to complete the implementation we began,
taking into account the different possibilities to express constructs in Lambdapi.

2 https://github.com/Deducteam/lambdapi-stdlib

https://github.com/Deducteam/lambdapi-stdlib

From Event-B to Lambdapi 3

For example, we thought about different ways to express the negation in
Lambdapi. The connector can be defined with its signature and some rewriting
rules, as seen in the left of Fig. 1. Or it could be a definition, with the command
symbol, using the implication already declared. Then the properties of negation
must be proved as theorems as seen in the right of Fig. 1.

Fig. 1. Different alternatives to define negation.

The choice will have consequences on the upcoming proofs and on the con-
tents of the proof term as rule application is implicit. However rule-based spec-
ifications will not be close to the usual formalization of classical logic. For now,
we use rules but it makes the kernel logic diverge from that of Rodin. We are
modifying our encoding, which makes negation elimination much more complex,
but closer to what is performed by the Rodin prover.

Another part is to take into account the peculiarities of Rodin. For instance,
some Rodin operators and thus some proof nodes are n-ary, while Lambdapi’s
operators are of a fixed arity. Currently the Java plug-in generates n-ary proof
schemes to match the structure of Rodin proof trees (for instance And nodes).
An improvement could be to do that processing in Lambdapi, so it could be used
by other systems, like TLA+, with n-ary operators.

2.3 Cantor’s theorem

To guide the beginning of our work, we made a user guided proof of Cantor’s
theorem3 in Rodin, without using internal or SMT provers, and we worked on
checking the translation of our proof with Lambdapi. Fig. 2 (left) shows the
beginning of the proof tree made with Rodin and the right part shows the four
first steps of the translated proof. The gray boxes, with rule details extracted
from the Rodin proof tree, are not part of the Lambdapi script. In the comments
(lines beginning with //), we can read the nodes exported by Rodin and between
the comments and the gray boxes, the Lambdapi tactics.

3 The Cantor’s theorem has been proposed as a case study in ICSPA.

4 A. Grieu

Fig. 2. Rodin proof tree and its Lambdapi translation.

3 Future work

There is still a significant work ahead to perform the complete translation of
Event-B proofs to Lambdapi.

Fig. 3. Rodin and SMT solvers[12].

The development is still at its be-
ginning and no prototype is available
yet. As it was suggested in the previ-
ous section, the choices of the repre-
sentations are not fixed and are meant
to move to answer future needs. We
have also to complete the translation
of all the deduction rules of Rodin.

Furthermore, the automated provers
are a strength of Rodin. They are
provided by integrated (deduction
or rewriting-based) tools or external
SMT solvers fig. 3 for which Rodin
removes set constructs. After treat-
ment, the SMT solver gives its result
to Rodin. Then Lambdapi terms or
tactics should be built from internal
provers and SMT proof traces and in-
corporated to the current proof. Then,
we will have to express the full formalism of Event-B, to define machines, events
and the mechanisms of proof obligations, some of the major features of the formal
method to be able to export Event-B developments.

From Event-B to Lambdapi 5

References

1. Why3, a tool for deductive program verification, GNU LGPL 2.1, https://www.
why3.org/

2. Abrial, J.R.: The B-Book - Assigning programs to meanings. Cambridge University
Press (1996)

3. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010). https://doi.org/10.1017/CBO9781139195881, https://doi.
org/10.1017/CBO9781139195881

4. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

5. Alessio, C.: Reconstruction of TLAPS proofs solved by VeriT in lambdapi. In:
Glässer, U., Campos, J.C., Méry, D., Palanque, P.A. (eds.) Rigorous State-Based
Methods - 9th International Conference, ABZ 2023, Nancy, France, May 30 - June
2, 2023, Proceedings. Lecture Notes in Computer Science, vol. 14010, pp. 375–
377. Springer (2023). https://doi.org/10.1007/978-3-031-33163-3 29, https://doi.
org/10.1007/978-3-031-33163-3 29

6. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert,
F., Halmagrand, P., Hermant, O., Saillard, R.: Expressing theories in the λΠ-
calculus modulo theory and in the Dedukti system. In: TYPES: Types for Proofs
and Programs. Novi SAd, Serbia (May 2016), https://minesparis-psl.hal.science/
hal-01441751

7. Boespflug, M., Carbonneaux, Q., Hermant, O.: The λ
∏

-calculus modulo as a uni-
versal proof language. In: Pichardie, D., Weber, T. (eds.) Proceedings of the Sec-
ond International Workshop on Proof Exchange for Theorem Proving, PxTP 2012,
Manchester, UK, June 30, 2012. CEUR Workshop Proceedings, vol. 878, pp. 28–43.
CEUR-WS.org (2012), http://ceur-ws.org/Vol-878/paper2.pdf

8. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety properties with
the TLA + proof system (11 2010). https://doi.org/10.1007/978-3-642-14203-1 12

9. CLEARSY: Atelier B Tool (2024), https://www.atelierb.eu/en/
10. Cousineau, D., Dowek, G.: Embedding pure type systems in the Lambda-Pi-

calculus modulo (2023)
11. Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The BWare project: Build-

ing a proof platform for the automated verification of b proof obligations. In:
Proceedings of the 4th International Conference on Abstract State Machines,
Alloy, B, TLA, VDM, and Z - Volume 8477. p. 290–293. ABZ 2014, Springer-
Verlag, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3 26,
https://doi.org/10.1007/978-3-662-43652-3 26

12. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in
Rodin. Science of Computer Programming 94, 130–143 (2014). https://doi.
org/https://doi.org/10.1016/j.scico.2014.04.012, https://www.sciencedirect.com/
science/article/pii/S016764231400183X, Abstract State Machines, Alloy, B, VDM,
and Z

13. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002), http://research.microsoft.com/
users/lamport/tla/book.html

14. Stolze, C., Hermant, O., Guillaumé, R.: Towards Formalization and Sharing of Ate-
lier B Proofs with Dedukti (Jan 2024), https://hal.science/hal-04398119, working
paper or preprint

https://www.why3.org/
https://www.why3.org/
https://doi.org/10.1017/CBO9781139195881
https://doi.org/10.1017/CBO9781139195881
https://doi.org/10.1017/CBO9781139195881
https://doi.org/10.1017/CBO9781139195881
https://doi.org/10.1007/978-3-031-33163-3_29
https://doi.org/10.1007/978-3-031-33163-3_29
https://doi.org/10.1007/978-3-031-33163-3_29
https://doi.org/10.1007/978-3-031-33163-3_29
https://minesparis-psl.hal.science/hal-01441751
https://minesparis-psl.hal.science/hal-01441751
http://ceur-ws.org/Vol-878/paper2.pdf
https://doi.org/10.1007/978-3-642-14203-1_12
https://doi.org/10.1007/978-3-642-14203-1_12
https://www.atelierb.eu/en/
https://doi.org/10.1007/978-3-662-43652-3_26
https://doi.org/10.1007/978-3-662-43652-3_26
https://doi.org/10.1007/978-3-662-43652-3_26
https://doi.org/https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/https://doi.org/10.1016/j.scico.2014.04.012
https://www.sciencedirect.com/science/article/pii/S016764231400183X
https://www.sciencedirect.com/science/article/pii/S016764231400183X
http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
https://hal.science/hal-04398119

	From Event-B to Lambdapi

