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A B S T R A C T

Heat exchangers are essential in daily life and industries, but evolving demands, like miniaturization and
electrification, challenge traditional designs. The Generalized Graetz Decomposition method offers a powerful
solution, capable of efficiently modeling heat exchangers, even under these new conditions. Unlike conven-
tional approaches, it generates analytical expressions that require minimal meshing, reducing computational
costs. It accounts for all diffusion components, facilitating realistic modeling of low-velocity flows. This method
provides a versatile tool for various boundary conditions. The software based on this method simplifies heat
exchanger analysis, enables parametric studies, and has the potential to help heat exchanger design, impacting
both research and industry.
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. Motivation and significance

Heat exchangers are ubiquitous in many various industrial ap-
lications. They find applications across multiple domains, including
ransportation, electronic devices, cooling and heating systems [1],
hemistry [2], and the agri-food industry [3,4]. These devices are
undamental for efficiently transferring thermal energy within systems
f all sizes. In the current era of energy management and optimization,
aving precise tools for describing and predicting their behavior is of
tmost importance. This is why, since numerical simulations are faster
nd less costly than empirical experimental essays, they are used in
any cases in the design strategy [5,6], although not always being able

o account for every physical mechanisms involved.
Extensive analytical, numerical, and experimental research has been

edicated to the study of heat exchangers. However, recent trends
n miniaturization and electrification have led to an increase in the

∗ Corresponding author.
E-mail addresses: martin.rudkiewicz@toulouse-inp.fr (M. Rudkiewicz), gerald.debenest@toulouse-inp.fr (G. Debenest).

heat flux that heat exchangers must manage, often surpassing the
capabilities of traditional technologies. As a result, new designs have
emerged, featuring compact dimensions, smaller footprints [7], and
innovative phase change flows [8] or using non Newtonian fluid such
as proposed in [9] or [10].

The generalized Graetz decomposition is a semi-analytical method
rooted in the classic Graetz problem [11]. It is designed to solve sta-
tionary convection–diffusion problems within extruded-like domains,
which are challenging to compute accurately due to their highly hyper-
bolic nature. These problems can typically be solved analytically in the
convection dominated limit -neglecting longitudinal diffusion-, or nu-
merically using discretization methods, which can be computationally
intensive. For instance, achieving accurate results with finite volume
or finite difference methods often hinges on high-quality meshing,
which can be demanding for high-velocity flows, domains with high
vailable online 1 August 2024
352-7110/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
c-nd/4.0/).

ttps://doi.org/10.1016/j.softx.2024.101834
eceived 17 February 2024; Received in revised form 21 May 2024; Accepted 23 July 2024

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00103
http://www.gnu.org/copyleft/gpl.html
mailto:gerald.debenest@toulouse-inp.fr
mailto:martin.rudkiewicz@toulouse-inp.fr
mailto:gerald.debenest@toulouse-inp.fr
https://doi.org/10.1016/j.softx.2024.101834
https://doi.org/10.1016/j.softx.2024.101834
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101834&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


SoftwareX 27 (2024) 101834M. Rudkiewicz et al.

e
c

aspect ratios, or large volumes. The Generalized Graetz Decomposition
offers several advantages, chief among them being the generation of
an analytical expression that requires, at most, a 2D meshing of the
extruded base and remains independent of the domain size in terms
of computational cost [12] or [13] Moreover, unlike other analytical
solutions that are restricted to high Péclet flows, it accounts for all
range of diffusion [14], facilitating a realistic visualization of heat
transfers in scenarios with low-velocity flows and conjugated problems.
Lastly, this method equips users with a versatile tool for solving various
spatially-dependent boundary conditions, including Neumann, Dirich-
let, and Robin-Fourier conditions, in contrast to other solutions tailored
to specific boundary conditions [15]. The subsequent sections will
delve into the resolution of the Navier–Stokes energy equation using
the Generalized Graetz Decomposition and its practical implementation
in various configurations.

2. Software description

2.1. Generalized Graetz theory

In the Generalized Graetz method, the domain  is defined as  =
𝛺× [𝑎, 𝑏], where [𝑎 and 𝑏 are real numbers. In other words, the volume
is obtained by extending the base 𝛺 along a specific direction, 𝑧, over
a range [𝑎, 𝑏], which could be infinite, i.e. 𝑎 or 𝑏 → ±∞. Analytical
xpressions for eigenmodes (3) are feasible only for ducts consisting of
oncentric layers or plate geometries formed by stacking infinite planes.

Under the following assumptions:

1. The domain is invariant in the 𝑧 direction.
2. The solution is stationary.
3. Velocity is parallel to the 𝑧 direction.
4. Thermodynamic properties (including velocity profile) do not

depend on the 𝑧 direction.
5. Lateral boundary conditions are either non-homogeneous Dirich-

let or Neumann and depend only on 𝑧.

The stationary dimensionless energy convection–diffusion problem
is expressed as:

1
2
𝑤𝑓 (𝑟)

𝜕𝑇𝑓
𝜕𝑧

− 1
Pe

𝛥𝑇𝑓 = 0 (1)

In (1), the spatial variables, namely the radial and axial coordinates,
the length of the domain, and the outer radius, 𝑟, �̃�, �̃�, and �̃�0, are
rescaled by the inner radius �̃� (or the half height of the channel).
The non-dimensional velocity 𝑤𝑓 is defined with respect to the mean
velocity �̃�𝑠, as 𝑤𝑓 (𝑟) = �̃� (𝑟)∕�̃�𝑠. For Poiseuille flow, 𝑤𝑓 takes the
form 𝑤𝑓 = 𝑎(1 − 𝑟2), with 𝑎 = 2 for circular ducts and 3∕2 for plate
channels. The Péclet number 𝑃𝑒 = �̃�𝑠2�̃�∕𝛼𝑓 compares convection
effects to thermal conduction, with thermal diffusivity defined as 𝛼𝑓 =
𝑘𝑓∕(𝜌𝑐𝑝). The dimensionless fluid temperature 𝑇𝑓 is expressed as 𝑇𝑓 =
(�̃� − �̃�0)∕𝛥�̃�ℎ, where 𝛥�̃�ℎ and �̃�0 represent characteristic temperature
differences and temperatures in the problem, respectively. The non-
dimensional thermal conductivity is defined as 𝜅 = �̃�∕𝑘𝑓 . Within each
compartment of the domain, properties may change, particularly the
velocity, which is set to 0 inside solid compartments.

The solution to Eq. (1) relies on the properties of the associated
operator, which guarantees the existence of an orthogonal basis of
eigenvectors. With 𝑇𝑖 as the 𝑖th eigenmode and 𝜆𝑖 as the associated
eigenvalue, the temperature field is given by:

𝑇 (𝑟, 𝑧) =
∑

𝑖∈Z∗
𝛼𝑖𝑐𝑖(𝑧)𝑇𝑖(𝑟)𝑒𝜆𝑖𝑧+𝑓 (𝑧)+

∑

𝑖≥0
𝑥𝑖𝑇𝑖(𝑟)𝑒𝜆𝑖(𝑧−𝑧𝑖𝑛)+

∑

𝑖<0
𝑥𝑖𝑇𝑖(𝑟)𝑒𝜆𝑖(𝑧−𝑧𝑜𝑢𝑡)

(2)

Eigenmodes are divided into two groups based on the sign of
their eigenvalues: positive eigenvalues correspond to upstream modes
with negative indexes, while negative eigenvalues correspond to down-

boundary conditions, eigenmodes depend solely on the radial coordi-
nate [14]. Furthermore, as shown in [12], these eigenmodes can be
expressed as analytical functions of eigenvalues 𝜆𝑖 involving closure
functions 𝑡𝑝, as:

∀𝑖 ∈ Z∗ ∶ 𝑇𝑖(𝑟) =
∞
∑

𝑝=0
𝑡𝑝(𝑟)𝜆

𝑝
𝑖 (3)

The closure functions can be evaluated recursively following the
relation (4), while conditions between each compartment are imposed
by the continuity of thermal heat flux and temperature. In the 𝑗th
compartment,

𝛥𝑡𝑝 =
Pe𝑗
2

𝑤𝑓 (𝑟)𝑡𝑝−1 − 𝑡𝑝−2, (4)

with in each compartment, Pe𝑗 = �̃�𝑆𝑗2�̃�∕𝛼𝑗 . The closure functions
are determined by fluid flow characteristics, material properties, com-
partment organization, and lateral boundary conditions, ensuring the
temperature field’s shape and satisfaction of Eq. (1). In Eq. (4), an
infinite sum is mathematically prescribed, but numerically only a finite
number 𝑁 of closure functions is computed, defining the method’s
order. At this stage, the amplitudes 𝑥𝑖 remain unknown, since the inlet
and outlet boundary conditions are not yet specified.

2.2. Resolution

To determine the coefficients 𝑥𝑖, appropriate values satisfying the
inlet and outlet conditions, a unique cost function is minimized, as
considered in [12]. This cost function is specific to a given class of
inlet/outlet conditions. Several examples illustrating its formulation are
presented in Section 3.

Fig. 1 illustrates the structure of the temperature decomposition in
a counter-current heat exchanger with five compartments (two fluid
compartments and three solid walls). The temperature field is divided
into two components: Part A, which accounts for the impact of lateral
boundary conditions, and Part B, which enforces conditions at the
inlet and outlet of the domain. Part B is further subdivided into two
sums: negative indices control the behavior at the outlet of the domain,
and positive indices govern the inlet conditions. Similar to a Fourier
decomposition, the amplitudes correspond to the projection of the
conditions onto the basis of eigenvectors.

2.3. Software architecture

The software is organized into five sections:

1. Configuration and Setup: in this initial section, users can spec-
ify various parameters, including the number of compartments,
their dimensions and arrangement, the various velocity profiles,
and material properties (thermal conductivity, thermal capacity,
and density). Additionally, boundary conditions and numerical
parameters, such as the method’s order and digital precision, are
prescribed.

2. Spectrum and Eigenmodes Computation: this section is dedicated to
computing the spectrum and eigenmodes. It begins by solving
the differential Eq. (4) from solving the closure functions in
each compartments. The eigenvalues are then deduced from
these closure functions, considering the type of lateral boundary
conditions. Finally, the eigenmodes are assembled as in (3).

3. 𝛼𝑖 and 𝑐𝑖(𝑧) evaluation: calculate 𝛼𝑖 and 𝑐𝑖(𝑧), based on the Dirich-
let or Neumann nature of the lateral conditions. These quantities
involve convolution products which can be computed analyti-
cally if the longitudinal applied boundary conditions are given
analytically.

4. Cost Function Minimization: regarding this step, the software
2

stream modes with positive values of 𝑖. Due to symmetric lateral constructs and minimizes the cost function, resulting in the
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Fig. 1. Structure of the temperature field.

determination of the missing amplitudes 𝑥𝑖. The minimization
of this cost function leads to the resolution of a linear system
defined over the amplitude vector 𝐱, i.e, 𝐌𝐱 = 𝐁. Notably, the
matrix 𝐌 depend on cross-projections between the eigenmodes
and can be evaluated whatever the applied inlet or outlet condi-
tions (thus it can be pre-computed and stored if one would like to
explore a lot of inlet/outlet conditions). On the contrary vector 𝐁
depends on the projections between the eigenmodes and applied
inlet/outlet conditions.

5. Temperature Field Assembly : this final section assembles the tem-
perature field, making it ready for post-processing, exporta-
tion, and grid evaluation, since the code provides a mesh-less
analytical solution.

3. Illustrative examples

To illustrate the range of possibilities within the field, we provide
detailed results in three examples. The first two examples present
local temperature profiles within channels, with the first one involving
a channel without solid walls and the second featuring a channel
with solid walls. The third example delves into global measurements,
specifically the characterization of the efficiency of a co-current heat
exchanger. A validation procedure has been rigorously followed in [16]
and readers can refer to this recent study where some natural heat
transfer loops have been studied compared to CFD tools.

3.1. Imposing a Gaussian inlet temperature profile

This example demonstrates how to apply an inlet boundary condi-
tion, such as a Gaussian temperature profile, to a straightforward circu-
lar semi-infinite channel with fixed wall temperature. In this case, the
channel extends from 𝑧 ∈ [0,+∞[. A laminar velocity profile is imposed
within this single-compartment domain, and the wall temperature �̃�𝑤
remains constant, serving as a reference temperature.

Consequently, the non-dimensional temperature field adheres to the
following conditions: 𝑇 (𝑟, 0) = exp(−10𝑟2) and 𝑇 (1, 𝑧) = 0. The outlet
of the channel at 𝑧 → +∞ does not necessitate a specific boundary
condition, and its temperature 𝑇 is an outcome of the problem.

Fig. 2. Temperature profiles in a circular tube with prescribed wall and inlet
temperatures. Black lines represent the results obtained using the Graetz model,
while the symbols illustrate those obtained through a CFD simulation performed with
Code_Saturne.

For a Dirichlet lateral boundary condition [15], we have the follow-
ing equations:

∀𝑖 ∈ Z∗ ∶ 𝛼𝑖 = −2𝜋𝑅
𝜆2𝑖

𝑑𝑇𝑖
𝑑𝑟

(𝑅) ; 𝛼0 = 1 ; 𝑓 (𝑧) = 𝑇𝑤 = 0

∀𝑖 > 0 ∶ 𝑐𝑖(𝑧) = −∫

𝑧

0

𝑑𝑇𝑤
𝑑𝑧

𝑒𝜆𝑖(𝑧−𝜉)𝑑𝜉

∀𝑖 < 0 ∶ 𝑐𝑖(𝑧) = ∫

+∞

𝑧

𝑑𝑇𝑤
𝑑𝑧

𝑒𝜆𝑖(𝑧−𝜉)𝑑𝜉

(5)

In this particular case, part A of the temperature field (discussed in
Fig. 1) is reduced to zero. The determination of the amplitudes 𝑥𝑖 in part
B is based on the minimization of the cost function 𝐹 (𝐱) = ∫ 1

0 𝑟(𝑇 (𝑟, 0)−
𝑇 )2𝑑𝑟. Fig. 2 presents successive radial temperature profiles within the
3

∞ 𝑖𝑛
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Fig. 3. Temperature profiles in a circular channel with a solid wall, 1 ≤ 𝑟 ≤ 1.4, the temperature is imposed at the outer extremity of the wall, 𝑟 = 1.4, with a periodic condition
n 𝑧. Black lines highlight the profiles obtained through the Graetz method ; the symbols, those with Code_Saturne. Two configurations are considered with the same conditions
xcept for the thermal conductivity ratio between the fluid and the solid wall, 𝜅𝑠, respectively imposed at two values, 𝜅𝑠 = 0.25, in 3(a) and 𝜅𝑠 = 678, in 3(b). (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

hannel at increasing axial positions. The results obtained with the gen-
ralized Graetz model are overlaid with those from a CFD simulation
f the same configuration, demonstrating excellent agreement between
he two methods. Both indicate the widening of the Gaussian profile
long the channel due to thermal radial diffusion.

.2. Effect of solid wall thermal conductivity

In this example, we demonstrate the use of a z-dependent lateral
oundary condition within a two-compartment domain. The domain
onsists of a finite circular channel with a solid wall. At the outer
order of the wall (𝑟 = 𝑅0), a sinusoidal temperature profile, �̃�𝑤 =
�̃�ℎ sin

(

2𝜋�̃�
�̃�

)

+ �̃�0, is imposed, while a periodic condition is applied be-
ween the outlet and the inlet of the tube at 𝑧 = 0 and 𝑧 = 𝐿. The inner

compartment (0 ≤ 𝑟 ≤ 1) features fluid flow according to the Poiseuille
aw (but any analytical radial dependence for the longitudinal velocity
ield c an be chosen), while the outer compartment (1 ≤ 𝑟 ≤ 𝑅0)

represents the solid wall. Using the non-dimensional expression of the
lateral condition, 𝑇𝑤 = sin

(

2𝜋𝑧
𝐿

)

and the relations detailed in (5), the
𝑐𝑖(𝑧) are no longer equal to zero.

For the B part of the temperature field, the amplitudes can be
determined analytically [17]:

∀𝑖 ≥ 0 ∶ 𝑥𝑖 = 𝛼𝑖
𝑐𝑖(𝐿) − 𝑐𝑖(0)
1 − 𝑒𝜆𝑖𝐿

𝑖 < 0 ∶ 𝑥𝑖 = 𝛼𝑖
𝑐𝑖(𝐿) − 𝑐𝑖(0)
𝑒−𝜆𝑖𝐿 − 1

(6)

In Fig. 3, we present five temperature profiles along the channel for
wo values of the wall thermal conductivity. Generally, the temperature
ariation in the fluid (blue and orange symbols) remains slightly lower
han in the solid (red and purple symbols). On the left, a significant
adial temperature gradient within the wall is observed, which is due
o a relatively insulating material. On the other side, when the wall is
n excellent thermal conductor, it is nearly impossible to distinguish
he temperature profile in the solid, indicating that the temperature is
lmost constant in the radial direction. As in Section 3.1, a comparison
etween the results obtained with the Graetz methodology and those
rom a CFD simulation shows a very good agreement.

.3. Characterizing the efficiency of a parallel co-current heat exchanger

This example shows the implementation of a finite co-current heat
xchanger with semi-infinite inlet and outlet channels. In practice,

Fig. 4. Variation in the efficiency of a co-current plate heat exchanger versus the
Number of Transfer Units (NTU) for different mass flow ratios between 0.1 and 0.9.
Black lines represent the analytical solution for a 2D co-current heat exchanger, while
the symbols depict the results achieved with the generalized Graetz decomposition.

specifying inlet and outlet conditions can be a challenging aspect of
simulating heat exchangers. While it is straightforward to impose a
temperature profile, it often does not account for the effect of thermal
diffusion, which can alter the imposed temperature. To address this
concern, inlet conditions need to be placed at a significant upstream
position, which, in turn, increases the domain’s volume and compu-
tational cost in the case of CFD simulations. Outlet conditions can be
equally challenging, as the shape of the outlet temperature profile is
typically a result of the simulation and cannot be prescribed in advance.
The common solution is to extend the outlet of the heat exchanger far
enough from the heat exchanger to allow the temperature profile to
establish. In contrast, solving this configuration with the generalized
Graetz decomposition incurs only a modest additional cost, as the
domain’s length does not significantly influence the numerical cost of
the Graetz method [18].
4
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In this configuration, the heat exchanger comprises two fluid chan-
nels, −2𝐻𝐼𝐼 − ℎ ≤ 𝑦 ≤ −ℎ and ℎ ≤ 𝑦 ≤ 2𝐻𝐼 + ℎ, separated by a solid

all (−ℎ ≤ 𝑦 ≤ ℎ). The channel with the higher mass flow is identified
s the primary channel, and the other as the secondary channel. The
emi-infinite tubes that enter and exit the heat exchanger, along with
he heat exchanger’s extremities, are insulated. Inlet temperatures are
mposed at −∞ for both the primary, 𝑇∞

𝐼 , and the secondary, 𝑇∞
𝐼𝐼 ,

hannels.
For Neumann lateral boundary conditions, the coefficients 𝛼𝑖 and 𝑐𝑖

re determined as follows [15]:

𝑖 ∈ Z∗ ∶ 𝛼𝑖 =
2𝜋𝑅
𝜆𝑖

𝑇𝑖(𝑅) ; 𝛼0 =


∫ 2𝐻𝐼+ℎ
−2𝐻𝐼𝐼−ℎ

Pe𝑤𝑓
2𝜅 𝑑𝑦

; 𝑓 (𝑧) = ∫ 𝜑𝑤𝑑𝑧 = 0

∀𝑖 > 0 ∶ 𝑐𝑖(𝑧) = −∫

𝑧

0
𝜑𝑤𝑒

𝜆𝑖(𝑧−𝜉)𝑑𝜉

∀𝑖 < 0 ∶ 𝑐𝑖(𝑧) = ∫

+∞

𝑧
𝜑𝑤𝑒

𝜆𝑖(𝑧−𝜉)𝑑𝜉

with  = ∫𝜕𝛺
𝑑𝑙, and 𝜑𝑤 = 𝜅 𝜕𝑇

𝜕𝑦
|𝜕𝛺

(7)

Since the lateral boundaries are adiabatic, the A contribution to the
temperature field equals zero. However, the amplitudes’ determination
is more complex in this case. In addition to the inlet conditions at
−∞, there are four junctions between the semi-infinite channels and
the inlets and outlets of the heat exchanger. Each junction enforces the
continuity of temperature and heat flux, resulting in a cost function:

𝐹 (𝐱) = ∫𝛤 𝐼
0 ∪𝛤

𝐼𝐼
0

(𝑇𝑢 − 𝑇𝑒𝑥𝑐 )2 +
(

𝜕𝑇𝑢
𝜕𝑧

−
𝜕𝑇𝑒𝑥𝑐
𝜕𝑧

)2
𝑑𝛺

+ ∫𝛤 𝑠
0

(

𝜅𝑠
𝜕𝑇𝑒𝑥𝑐
𝜕𝑧

)2
𝑑𝛺

+ ∫𝛤 𝐼
𝐿∪𝛤

𝐼𝐼
𝐿

(𝑇𝑒𝑥𝑐 − 𝑇𝑑 )2 +
(

𝜕𝑇𝑒𝑥𝑐
𝜕𝑧

−
𝜕𝑇𝑑
𝜕𝑧

)2
𝑑𝛺

+ ∫𝛤 𝑠
𝐿

(

𝜅𝑠
𝜕𝑇𝑒𝑥𝑐
𝜕𝑧

)2
𝑑𝛺

(8)

Here, 𝛤 𝐼∕𝐼𝐼∕𝑠
0∕𝐿 represents the normal section to 𝑧 of one of the

ompartments at either 𝑧 = 0 or 𝑧 = 𝐿. The subscripts 𝑢, 𝑑, and 𝑒𝑥𝑐
correspond to upstream, downstream, and heat exchanger, respectively,
and denote the volumes placed before 𝑧 ∈ ] − ∞, 0], after 𝑧 ∈
[𝐿,+∞[, and within the heat exchanger 𝑧 ∈ [0, 𝐿]. Fig. 4 illustrates
the efficiency of the heat exchanger,  = (⟨𝑇𝐼𝐼 ⟩(𝐿) − 𝑇∞

𝐼𝐼 )∕(𝑇
∞
𝐼 − 𝑇∞

𝐼𝐼 ),
where ⟨𝑇𝐼𝐼 ⟩ = ∫𝛤 𝐼𝐼 𝑤𝑓𝑇𝑑𝛺∕ ∫𝛤 𝐼𝐼 𝑤𝑓𝑑𝛺, as a function of the Number
of Transfer Units (NTU), defined by (9), for various mass flow ratios,
𝐶 = (�̃�𝑆𝐼𝐼�̃�𝐼𝐼 )∕(�̃�𝑆𝐼�̃�𝐼 ). The results obtained with the generalized
Graetz decomposition are in excellent agreement with the analytical
solution [3].

𝑁𝑇𝑈 = ∫

𝐿

0

𝜅𝑠
𝜕𝑇
𝜕𝑦

⟨𝑇𝐼 ⟩ − ⟨𝑇𝐼𝐼 ⟩
𝑑𝑧

𝑘𝑓
�̃�𝐼𝐼�̃�𝑆𝐼𝐼𝛤 𝐼𝐼 𝑐𝑝𝐼𝐼

(9)

4. Impact and conclusion

The implementation of a semi-analytical solution to solve general
2D conjugated heat transfer convection/diffusion has been presented
and illustrated. This methodology has undergone successful validation
against computational fluid dynamics (CFD) simulations and analytical
solutions across a range of configurations.

The analytical expression for temperature, derived from this soft-
ware, facilitates straightforward and versatile post-processing. This
becomes particularly valuable when evaluating temperature gradients
or collecting global measurements based on integrated variables. No-
tably, the Generalized Graetz modes method proves highly adaptable

for deducing simplified expressions or asymptotic behaviors in specific
scenarios [19].

One distinctive advantage of the Generalized Graetz Decomposition
is the elimination of a meshing stage, which significantly reduces the
computational cost, making it especially attractive for large domains.
This feature proves invaluable when dealing with the imposition of
inlet and outlet conditions. However, it is essential to acknowledge
that the quality of these boundary conditions directly hinges on the
method’s order and the complexity of the conditions. For instance,
imposing a variety of conditions in a multi-compartment domain may
necessitate a higher-order method compared to a single-compartment
setup.

Another key attribute of the Graetz Method is its capacity to account
for thermal conduction along the flow direction. This capability is
crucial for modeling entrance regions, thick solid walls, and low Péclet
number flows — characteristics commonly encountered in miniaturized
or micro-scale heat transfer problems.

Furthermore, the Generalized Graetz Modes offer a notable ad-
vantage in terms of computational efficiency, making it an attractive
option for parametric optimization processes, code validations and the
generation of extensive datasets solutions. The combination of low
computational time and analytical rigor positions this method as a
powerful tool in the field of thermal analysis.
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