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ABSTRACT: Gas-particle flows are commonly simulated through a two-
fluid model at the industrial scale. However, these simulations need a very
fine grid to have accurate flow predictions, which is prohibitively
demanding in terms of computational resources. To circumvent this
problem, the filtered two-fluid model has been developed, where the
large-scale flow field is numerically resolved and small-scale fluctuations
are accounted for through subgrid-scale modeling. In this study, we have
performed fine-grid two-fluid simulations of dilute gas-particle flows in
periodic domains and applied explicit filtering to generate data sets. Then,
these data sets have been used to develop artificial neural network (ANN)
models for closures such as the filtered drag force and solid phase stress
for the filtered two-fluid model. The set of input variables for the subgrid
drag force ANN model that has been found previously to work well for
dense flow regimes is found to work as well for the dilute regime. In
addition, we present a Galilean invariant tensor basis neural network (TBNN) model for the filtered solid phase stress, which can
nicely capture the anisotropic nature of the solid phase stress arising from subgrid-scale velocity fluctuations. Finally, the predictions
provided by this new TBNN model are compared to those obtained from a simple eddy-viscosity ANN model.

■ INTRODUCTION
Gas-particle flows arise in technological applications, e.g.,
fluidized and circulating fluidized bed reactors, and in nature,
e.g., dust storms. There is much interest in studying the
characteristics of these flows via mathematical modeling with
complementary computer-aided simulations. Reliable model-
ing and simulations can aid in the design, retrofit, and
troubleshooting of industrial processes. As industrial-scale
fluidized beds contain trillions of particles, it is impractical to
analyze the flow behavior by following the motion of individual
particles. In contrast, two-fluid models (TFMs),1,2 which treat
the fluid and particle phases as interpenetrating continua, are
more viable to analyze and simulate the flows in industrial-scale
applications. They have been useful in the analysis of the onset
of instabilities in fluidization, and the emergence of
inhomogeneous flow structures (e.g., see refs 3−5). The
TFMs can readily be solved numerically using commercial
codes (e.g., ANSYS Fluent) and open-source simulation
platforms (e.g., MFIX, OpenFOAM).

It is now well-known that fluidized and circulating fluidized
beds manifest structures that span a wide range of length and
time scales. The scale of the spatial structures can range from a
few particle diameters to the size of the vessel, which can be as
large as 103−105 particle diameters. The macroscale flow
structures, termed coherent flow structures, can have a large
effect on the overall flow hydrodynamics in the device. At the
same time, mesoscale structures (such as streamers, clusters,
and small bubble-like voids) are also important as they affect
the emergence of the macroscale structures. As a result,
accurate simulations of TFM equations often require fine
spatial resolution down to the scale of a few particle

Received: December 29, 2023
Revised: March 18, 2024
Accepted: March 20, 2024
Published: April 24, 2024

Articlepubs.acs.org/IECR

© 2024 The Authors. Published by
American Chemical Society

8383
https://doi.org/10.1021/acs.iecr.3c04652

Ind. Eng. Chem. Res. 2024, 63, 8383−8400

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

IN
ST

 N
A

T
L

 P
O

L
Y

T
E

C
H

N
IQ

U
E

 D
E

 T
O

U
L

O
U

SE
 o

n 
Ju

ly
 2

3,
 2

02
4 

at
 1

3:
18

:2
9 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/page/virtual-collections.html?journal=iecred&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Baptiste+Hardy"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stefanie+Rauchenzauner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pascal+Fede"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Simon+Schneiderbauer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Olivier+Simonin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sankaran+Sundaresan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sankaran+Sundaresan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ali+Ozel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.iecr.3c04652&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04652?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04652?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04652?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04652?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/iecred/63/18?ref=pdf
https://pubs.acs.org/toc/iecred/63/18?ref=pdf
https://pubs.acs.org/toc/iecred/63/18?ref=pdf
https://pubs.acs.org/toc/iecred/63/18?ref=pdf
pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.iecr.3c04652?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org/IECR?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


diameters6−8 which, in turn, require very small time steps as
well. Such highly resolved simulations of industrial-scale
processes are not feasible due to the high computational
demands.9 This consideration led to the development of
filtered two-fluid models (fTFMs)7,8,10−12 where the TFM
model equations are filtered by a convolution kernel as in the
development of Large Eddy Simulation (LES) equations for
turbulent flows by averaging the Navier−Stokes equations.13

The fTFM equations contain several terms representing the
consequences of subfilter-scale fluctuations on the spatiotem-
poral evolution of the filtered variables. Similar to the LES
modeling, the importance of subgrid terms in the fTFM
equations could be studied by a priori tests. It has been shown
through the budget analysis of the filtered solid momentum
balance generated by filtering fine-grid simulations7,8,11 that
the correction to the fluid-particle drag force is of principal
importance for gas-particle flows with high mass loading of
particles because of the subfilter-scale inhomogeneous
distribution of particles. The solid phase stress associated
with the subfilter-scale particle velocity fluctuations is of
secondary importance,8 while all the other corrections are
essentially negligible. As a result, the literature on fTFM model
development has focused primarily on correction to the fluid-
particle drag force and, to a lesser extent, on the (filtered) solid
phase stress.
The drag correction models accounting for the effects of

unresolved drag due to particle clustering at mesoscale in the
literature can be classified as follows. The Energy Minimization
Multi-Scale (EMMS) model14−16 describes subgrid structures
through a heterogeneous index, which is used to estimate the
effective drag force. In the framework of fTFM, the explicit
correlations were proposed by Igci et al.,10 Milioli et al.,17

Sarkar et al.18 for the filtered drag in terms of the filtered
variables and the filter size. Parmentier et al.7 argued that in the
presence of subfilter-scale (aka subgrid-scale, as the filter size is
usually the same as the grid size in coarse simulations of the
fTFM equations) inhomogeneities, the average gas velocity
seen by the particles is not the same as the filtered gas velocity
and expressed the drag force correction in terms of a subgrid
quantity known as the drift velocity. Algebraic models for the
drift velocity have been proposed in several studies.7,8,19

Rauchenzauner and Schneiderbauer20 expressed the drift
velocity in terms of the subgrid turbulent kinetic energy of
the gas and the scalar variance of the particle volume fraction,
which were determined by solving corresponding dynamic
transport equations. In a recent study, Hardy et al.21 found that
the drift velocity could be expressed in terms of the scalar
variance of the particle volume fraction, with the same model
applying to all filter sizes.
Several research groups have applied machine learning (ML)

techniques to arrive at models for the filtered drag force. Jiang
et al.22 developed the transport equation for the drift velocity
and performed a budget analysis of the terms in the developed
equation to analyze their importance. They concluded that an
algebraic model for the filtered drift velocity would be
sufficient for dense fluidized beds. The algebraic model relates
the filtered drift velocity to the filtered gas phase pressure
gradient and solid volume fraction and the difference between
the filtered gas and solid phase velocities (referred to as the slip
velocity). These variables are taken as physics-inspired inputs
to an artificial neural network (ANN) model (specifically, a
multilayer perceptron, (MLP)) for the drift flux (which is the
product of filtered drift velocity and the filtered solid volume

fraction), for a given filter size and physical properties of the
gas and particles. The drift flux was then used to predict the
filtered drag force, as illustrated by Parmentier et al.7 Jiang et
al.23 extended the analysis to include the filter sizes and the
Reynolds number based on the terminal settling velocity of the
particle as additional inputs so that the ANN model can be
used for a wide range of fluidized bed applications.
Interestingly, Jiang et al.22 concluded that a good correlation
could be obtained with their ANN model only when the
output variable was chosen to be the drift flux; in contrast,
their ANN model performed poorly when the drag correction
or drift velocity was used as the output variable. In a very
similar context, Zhang et al.24 found that an ANN model where
the hidden layers included a combination of convolutional
layers and fully connected layers revealed better predictions for
a priori tests of the filtered drag. Zhu et al.25 recently
developed data-driven models for the filtered drag force,
filtered heat transfer coefficient, and filtered reaction rate in
gas−solid flows and performed a posteriori validation analyses
for turbulent bubbling fluidized beds and risers. All these
studies considered systems without interparticle forces;
Tausendschön et al.26 report that the strength of the drag
correction is affected by interparticle forces and proposed an
ANN model including the Bond number as a measure of the
attractive interparticle forces. In the Eulerian−Lagrangian
approach, Lu et al.27 developed a filtered drag force ANN
model from fine-grid CFD-DEM simulations of dense fluidized
beds and they coupled this new drag correction model with the
MFiX software for large-scale simulations. For a more
extensive review of ML-based modeling efforts in multiphase
flow reactors, the reader is referred to the recent study by Zhu
et al.28

In spite of the progress in the application of ML methods for
formulating subgrid drag models for gas−solid flows without
the interparticle forces, unanswered questions remain. The first
objective of the present study is to address the following
questions:

• Why have prior studies found better predictions with
some output variables (namely, the drift flux) but not
others?

• Is this observation related to the underlying physics of
the problem or the use of suboptimal neural networks?

• Will the input variables for the ANN model identified by
Jiang et al.23 using data sets generated through
simulations of dense fluidized beds be sufficient to
model the filtered drift flux in dilute flows such as those
encountered in risers?

The last question has been addressed by the development of
neural network modeling of fTFM closures using two-
dimensional fine-grid TFM simulations of turbulent riser
flows and performing a posteriori fTFM simulations with
developed models.25,29 Different from these studies, we focus
on data-driven modeling of the filtered drag force in the dilute
regime using fine-grid, three-dimensional, unbounded fluid-
ization simulations and further study the effects of physical
parameters on the model development. Besides, it must be
stressed that, in this study, we characterize as dilute gas−solid
mixtures found in the lower range of the moderately dense
regime30 where particle−particle collisions start to contribute
significantly to the solid phase microscopic stress model.

As noted above, the filtered solid phase stress associated
with the subfilter particle velocity variations is the second most
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important correction. Although the budget analysis found this
stress term to be secondary, it could play a role in correctly
capturing the smaller-scale structures resolved in the fTFM
simulations, which in turn could affect the emergence of the
macroscale structures in some flow problems. Ozel et al.,8

Milioli et al.,17 Schneiderbauer31 proposed an isotropic model
for the stress which resembled the Smagorinsky model for the
stress in single-phase turbulent flows, and advanced explicit
functional models for the pressure and effective viscosity
associated with subfilter-scale fluctuations in the velocities of
both phases. The importance of anisotropy has been discussed
by several researchers.18,32−34 Rauchenzauner and Schneider-
bauer34 have proposed a dynamic multiphase turbulence
model for coarse-grid simulations, which includes transport
equations for the scalar variance of the solid volume fraction
and the individual components of the turbulent kinetic
energies of both phases, requiring additional closure models.
These extra transport equations improve predictions but add
to the computational cost. Thus, as a second objective of the
present study, we explore the use of tensor-based neural
network models, which have found use in single-phase
turbulent flows,35 to constitute the filtered solid phase stress.
The predictions offered by this new Galilean invariant model
are also compared with simple eddy-viscosity ANN models,
similar to earlier proposals in the literature.36 The proposed
Galilean-invariant tensor-based neural network model is able to
find the components of the filtered solid phase stress tensor,
and we demonstrate that it can capture the anisotropic particle
phase stress stemming from the subgrid velocity fluctuations.
Finally, a sample data set and Python ML model source codes
are placed in the GitHub repository (https://github.com/
bahardy/fTFM_ANN_modeling.git) for broader use.
The rest of the article is organized as follows. First, the

filtered two-fluid model equations and the subgrid terms to be
modeled are briefly recalled. Then, the flow configuration and
the filtering procedure used to generate data sets are detailed.
Subsequently, the Artificial Neural Network architecture
chosen to predict the filtered drag force is presented, and
the results obtained by this model are discussed. Finally, we
introduce the Tensor Basis Neural Network architecture for
the particle phase stress; we present the predictions yielded by
this more advanced model and compare them with a simple
eddy-viscosity approach. The review ends with a summary of
the achievements of this work and suggestions for future
research.
Filtered Two-Fluid Model. As detailed in the work of Igci

et al.10 and others,7,8,37 the filtering of the mass and
momentum balance equations of the “micro-scale” TFM
leads to the following set of equations for the gas and solid
phases:

+ · =u
t

( ) ( ) 0g g g g g (1)

+ · =u
t

( ) ( ) 0s s s s s (2)

+ ·

= · · +

u u u
t

p I g

( ) ( )

d

g g g g g g g

g g g g gs g g (3)

+ ·

= · · + +

u u u
t

p I g

( ) ( )s s s s s s s

s s g s gs s s (4)

Here, ρg and ρs are the gas and solid phase densities,
respectively, pg is the gas phase pressure, and g is the
gravitational acceleration. The filtered volume fractions for gas
(k = g) and solid (k = s) phases are defined as

= =t t Gx y y x y( , ) ( , ) ( ) d , k g, s
Vk k (5)

where ϕk(x, t) is the volume fraction for each phase given by
the “micro-scale” TFM, G(r) is the filter convolution kernel
satisfying ∫ VG(r) dr = 1. Similar to LES of compressible
flows,38 the phase velocities are filtered through the Favre-
averaging as

= = =u ut t t Gx y y y x y
u

( , )
1

( , ) ( , ) ( )d , k g, s
V

k
k

k k
k k

k

(6)

The filtered quantity for each phase, denoted with a bar, in eq
1 is defined as

= =t t Gx y y x y( , ) ( , ) ( ) d , k g, s
V

k k (7)

where ty( , )k is a quantity for each phase in the “micro-scale”
TFM. The filtered and its fluctuating quantities are described
as

= +t t tx x x( , ) ( , ) ( , )k k k (8)

Σ̅g
d and Σ̅s correspond to the deviatoric part of the filtered gas

phase microscale stresses and to the filtered solid phase
microscale stresses. Ig̅s is the filtered gas−solid interphase
momentum exchange term; in gas-particle systems, it is
principally only the drag force. The explicit expressions for
the filtered microscale stress tensors can be found in earlier
works.7,8,10

The filtered drag force term is defined as

=I u u( )gs g s (9)

where β is the microscopic drag coefficient (also defined as

= s s

p
, with τp the particle relaxation time7,8), here computed

from the drag law of Wen and Yu.39

In the l iterature, i t is a very common prac-
tice11,14,15,26,37,40−42 to account for the drag correction
required in the fTFM by introducing an effective drag
coefficient βe, namely

I u u( )gs e g s (10)

where βe has to be determined for fTFM simulations. The
relation between the effective drag coefficient and the
microscopic drag coefficient computed from the filtered
quantities, here noted β̃, is usually expressed in terms of a
drag correction factor Hd

15 defined as

=Hd
e

(11)

Numerous studies have sought to improve the functional
description of Hd.

7,8,10,17,18,43 It must be stressed that eqs 10
and 11 implicitly assume that the required drag correction (i.e.,
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the subgrid drag force term) is aligned with the filtered slip
velocity and that the drag correction factor is isotropic. (Note:
the terms subgrid and subfilter are used interchangeably as in
fTFM simulations the filter size is usually taken to be the grid
size.) As noted by Tausendschön et al.,26 a more general model
would be

=I H u u( )gs d g s (12)

where Hd is a second-order tensor. Nevertheless, it has been
verified7,8,44 that eq 11 is adequate and that, to a very good
approximation, the filtered drag force can be written as

= +I u v u( )gs g d s (13)

where vd is the so-called drift velocity, defined as

=v u us d s g s g (14)

In this paper, the product ϕ̅svd will be referred to as the “drift
flux”. The filtered drag and the drift flux can be explicitly linked
as follows

= +I u u v( )gs
s s

p
g s

s

p
s d

(15)

where τp̃ is the particle relaxation time computed from filtered
quantities. Most functional models proposed in the literature
considered vd to be aligned with the resolved slip velocity7,8

(which eventually boils down to an expression of the form
given by eq 10) though, Ozel et al.45 suggested that the drift
velocity has an additional, albeit small, explicit dependence on
the subgrid variance of the solid volume fraction. The subgrid
variance of the solid volume fraction also enters the dynamic
drift velocity model of Rauchenzauner and Schneiderbauer46

while Hardy et al.21 recently proposed an explicit model to
deduce the drift velocity from the subgrid variance,
independently of the filter size. The strong alignment between
the drift velocity and the resolved slip velocity was recently
confirmed by Dabbagh and Schneiderbauer47 based on the
PDF of the relative angle between the two quantities.
The second most important subgrid contribution in the

fTFM comes from the filtered solid phase (or mesoscale)
stresses, defined as

= u u u us s s s s s s s s (16)

While the drag correction has been found to saturate as the
filter size increases, the mesoscale stress term grows monotoni-
cally with the filter size.8 Its modeling is therefore becoming
increasingly important, as the mesh resolution is lowered for
very large-scale simulations. Prior studies6,10,48 have concluded
that the filtered solid phase microscale stresses (Σ̅s) described
by the kinetic theory of granular flows are much weaker than
the mesoscale stresses, even for moderately large filter sizes
(typically filter sizes larger than 15−20 particle diameters).
Finally, the filtered pressure gradient term can be

decomposed as the sum of a resolved and a subgrid term as

= + =p p , k g, sk g k g k
sgs

(17)

Some authors37,49 proposed to model Φk
sgs as an added mass

term, but most studies concluded that this term was small with
respect to the filtered drag and mesoscale stress terms and that
it is sufficient to retain only the resolved part of the pressure
gradient, i.e., p pk g k g .

Flow Configurations and Generating Data Set
through TFM Simulations. A prerequisite for the training
and a priori validation of ANN models for the filtered drag and
filtered stresses is the generation of a database of fine-grid
TFM simulation results covering a wide range of physical
parameters. As noted earlier, Jiang et al.23 performed fine-grid
simulations of dense fluidized beds. Their data sets had only a
sparse representation of dilute flow conditions. Therefore, their
findings apply to flow conditions with particle volume fractions
exceeding 0.1 and become less accurate under more dilute
conditions. One of the goals of this study is to examine if the
input variables required for the ANN model for drag correction
are any different for dilute flow conditions. For that reason, we
have performed a number of dilute flow simulations using the
two(multi)-fluid solver neptune_cfd.50

The computational domain is triperiodic with the gravita-
tional acceleration acting along the z-direction. A source term
mimicking an external pressure gradient is added to the gas
and solid phase momentum transport equations to compensate
for the weight of the mixture against gravitational acceleration.
The list of simulated cases and their physical parameters
(particle diameter dp and density ρs) are summarized in Table
1. The following quantities are fixed through all simulations:

the gas density ρg = 1.2 kg m−3, the gas dynamic viscosity μg =
1.8 × 10−5 Pa s, the particle restitution coefficient ec = 0.9, and
the mean solid volume fraction ⟨ϕs⟩ = 0.05. We also report the
particle Reynolds number based on terminal settling velocity

=Re
Ud

p
tg p

g
, the particle Froude number =Fr U

gdp
t
2

p
, and the

Froude number based on the grid size =Fr U
g

t
2

. The terminal

settling velocity Ut was estimated from Schiller and Naumann
drag law.51 The mesh size Δ is uniform (and can be derived
from FrΔ in Table 1), with 640 cells along the vertical direction
and 160 cells along each horizontal direction.

In the remainder of this study, Case 1 will be considered as
the reference case, as it corresponds to typical conditions for
the fluidization of Geldart A particles with air. It must be
emphasized that this case has already been studied extensively
in the literature. A snapshot of the solid volume fraction field
from Case 1 is shown in Figure 1, highlighting the formation of
typical elongated clusters.
Filtering of Fine-Grid TFM data. Filtered and subgrid

terms in the fTFM equations can be computed by applying an
explicit filter on the fine-grid simulation data.10 In the present
work, we use a box (or top-hat) filter G̅ in the physical space:

Table 1. Physical and Flow Parameters of the Fine-Grid
TFM Simulations of a Gas−Solid Unbounded Fluidized Bed
in a Tri-Periodic Domain

dp (μm) ρs (kg m−3) Rep Frp FrΔ
case 1 75 1500 1.10 65.33 20.41
case 2 90 1500 1.79 101.09 20.41
case 3 100 1500 2.37 128.37 20.41
case 4 75 3000 2.05 228.50 20.41
case 5 150 2500 9.88 663.01 76.03
case 6 150 1800 7.63 395.71 53.90
case 7 180 1600 10.68 448.16 58.56
case 8 130 1800 5.40 304.23 45.23
case 9 180 2500 14.98 882.90 92.03
case 10 120 2000 4.83 309.96 45.80
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(18)

where Δ̅ is the filter width. By doing so, the filtered drag, the
drift velocity (and drift flux), and the filtered solid phase
stresses have been computed from eqs 13, 14, and 16,
respectively, for a range of filter-to-grid size ratios:

= [ ]2, 4, 6, 8, 10, 12, 16 .
To address the first objective, we build new ANN-based

models for the filtered drag force and solid stresses from a set
of well-chosen markers. The selection of those markers should
be inspired by the underlying physics and by the many studies
that have sought explicit coarser-grained models for fTFM.
The case of the filtered drag force and solid stresses will be
addressed separately later in more detail, but a few key
quantities can already be identified. The filtered slip velocity

=u u uslip g s (19)

appears in numerous functional models next to the filtered
solid volume fraction ϕ̅s and the filter size Δ̅ (see Cloete et
al.52 for a comparative study of different existing models). It
has been more recently observed by Jiang et al.22 and
confirmed by later studies23,24,53,54 that the addition of the
filtered pressure gradient acting against the gravitational

acceleration
p

z
g as an input to their filtered drag ANN model

dramatically improved their results. Based on that, Jiang et al.55

formulated an explicit drift velocity model with an additional
dependence on the filtered pressure gradient. Besides, recent
studies8,21,45,46 identified the subgrid variance of the solid
volume fraction as a potentially good marker for the filtered
drag. The underlying idea is that the drift velocity (and
therefore the drag correction) originates from a heterogeneous
distribution of the particles at the subgrid-scale and that the
subgrid variance of the particle volume fraction (henceforth

simply termed SV) is a good measure of this level of
heterogeneity. In this study, the SV will be defined as

=s
2

s
2

s
2

(20)

The SV was previously introduced for filtered drag force
modeling by Schneiderbauer11 where it appears in the
expression of their drag correction factor. Their model
additionally depends on the subgrid correlated kinetic energy
of the solid phase, kssgs, defined as

=k
1
2

tr( )s
sgs

s (21)

As for the filtered solid stresses modeling, single-phase
turbulence models56,57 and previous functional modeling
efforts for gas−solid flows8,17,31 suggest that the deviatoric
part of the filtered rate-of-deformation tensor, defined as

= + ·u u uS I
1
2

( )
1
3s s s

T
s (22)

should definitely play a role. The rotation-rate tensor

Ù = u uR
1
2

( )s s s
T

(23)

will also be involved in the ANN modeling of the filtered
stresses later on. Overall, the gradient of the phase-filtered
velocities and of the filtered solid volume fraction ∇ϕ̅s have
been extracted from our fine-grid TFM simulation results as
they contain nonlocal information that can potentially improve
the description of the filtered drag and filtered solid stresses.

■ NEURAL NETWORK MODELING OF FILTERED
DRAG FORCE

The first study to exploit the neural network approach for
modeling the filtered drag (FD) force was proposed by Jiang et
al.22 These authors first developed the transport equation of
the drift velocity. They used the fine-grid TFM simulation
results of a bubbling fluidized bed with Geldart-A type particles
to assess the importance of unclosed terms in the transport
equation. The transport equation was then simplified to the
algebraic model, which was closed by using a 3-marker model
using the filtered solid volume fraction ϕ̅s, the filtered slip

velocity ũslip,z and the gas phase gradient
p

z
g in the gravitational

acceleration direction. Instead of proposing an explicit
functional form for the 3-marker model, they used an MLP
made of three hidden layers of 128, 32, and 8 nodes to close
the component of the drift flux aligned with gravitational
acceleration, i.e. ϕ̅svd,z. The filtered drag force was then
deduced from an explicit relation derived from eq 13. These
authors observed that the inclusion of the filtered gas phase
pressure gradient significantly improved the degree of
correlation of their model with the exact filtered drag. Different
neural networks were trained for each filter size so that the
filter size was not considered as a distinct marker at that point.
They were unable to achieve a similar level of correlation when
the filtered drag force or the drift velocity was set as an output
variable of their ANN, instead of the drift flux. In a later
study,23 the same group verified that a filter-size dependent
ANN model could be applied to large-scale simulations. In
addition, they extended the range of application of their filtered
drag force model by training their ANN on a wide range of
physical parameters and by using appropriate scaling for the

Figure 1. Instantaneous solid volume fraction ϕs in a TFM simulation
of a triperiodic fluidized bed in Case 1 (see Table 1).
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input markers. They also concluded that the particle Reynolds
number or the Archimedes number should come as an
additional marker to account for variations in the physical
properties. The prediction improvement offered by the
addition of the filtered gas phase pressure gradient was also
confirmed by Ouyang et al.54 through interpretable ML
metrics. Zhang et al.24 proposed a convolutional neural
network (CNN) architecture to predict the filtered drag in
periodic unbounded gas−solid flows. Information of neighbor-
ing grid points was therefore inherently included in their
filtered drag force model by the structure of the network, and
the authors report increased performance with respect to MLP
models or explicit dynamic models. They also concluded that
the filtered gas phase pressure gradient improves the
predictions of their model but to a lesser extent than with
the MLP architecture since information from neighboring cells
is already embedded in the model. It is however expected that
such a CNN model will be more computationally intensive and
therefore less tractable for practical fTFM simulations at an
industrial scale. Zhu et al.53 compared a classical MLP and a
gradient boosting framework to predict the filtered drag and
integrated these ML models into fTFM simulations of
bubbling and turbulent fluidized beds. They subsequently
validated their ANN-assisted fTFM simulations against
experimental results of a bubbling fluidized bed and found
satisfactory agreement between the two approaches. Very
recently, Tausendschön et al.26 used Eulerian−Lagrangian
simulation results to propose distinct ANN models for the
different components of the drift flux. These authors found
that these anisotropic drag models lead to better results than
the isotropic counterpart, as previously noticed by Cloete et
al.32,58 for explicit models. These authors also added the Bond
number as an additional marker to account for cohesive effects
in gas−solid flows.
Artifical Neural Network (ANN) Architecture for

Filtered Drag Force. To address whether the many different
markers used in the previous NN models represent the
underlying physics or the use of suboptimal neural networks,
we developed our NN architecture, which is a feedforward
MLP similar to Jiang et al.22 This neural network architecture
is sketched in Figure 2. It consists of one input layer, some
hidden layers, and one output layer. The input layer

corresponds to the physical markers selected to predict the
target quantity. Hidden layers are made of a number of nodes
or neurons. Because the network is densely connected, each
node takes as input all of the nodes in the previous layer. The
outcome of a single neuron i within layer n is described by

= +( )z f ww zi
n n( ) T ( 1)

0 (24)

where z(n−1) is the output vector of layer n − 1, w is the weight
vector of the node, w0 is the bias and f is the activation
function. The number of hidden layers and the number of
nodes per layer are two hyperparameters of the problem that
are discussed further below. The output layer is made of a
single node whose value (the target quantity y) should allow us
to compute the filtered drag in a straightforward manner, i.e.,
using an explicit model.

Using the data sets generated for dilute systems in the
present study, to that end, we investigated the following
strategies:

1. develop an ANN model for the filtered drag force (FD-
ANN): the target quantity y is the filtered drag Ig̅s

2. develop an ANN model for the drift velocity (DV-
ANN): the target quantity is the drift velocity vd and one
uses an explicit expression similar to eq 13 to compute
the filtered drag force, and

3. develop an ANN model for the drift flux (DF-ANN):
the target quantity is the drift flux ϕ̅svd and one uses an
explicit expression similar to eq 15 to compute the
filtered drag force.

In what follows, the architecture of the ANN for filtered drag
force prediction is kept unchanged in order to compare the
capabilities of the aforementioned strategies for the same level
of complexity. The current ANN is made of 3 hidden layers
with 128, 32, and 8 nodes, respectively, using a ReLU
(Rectified Linear Unit) activation function. We tested the
ANN structures of 4 hidden layers with 64, 32, 16, and 8 nodes
and even a deeper structure of 5 layers with 32, 32, 32, 16 and
8 nodes. These structures provided a very similar root-mean-
squared error (RMSE) for the filtered drag force predictions.
Therefore, we preferred to use the ANN structure of 3 hidden
layers with 128, 32, and 8 nodes as a reference.

The output layer has a linear activation function to return
the regression result. The loss function used to train the
network is the mean absolute error (MAE), defined as

= | |
N

y yMAE
1

i

N

i i
(25)

where N is the number of data points used in a training batch.
The data set for the reference case is made of 1.792 × 106
entries (accounting for the 7 filter widths). Training and
testing procedures use subsets corresponding to 80 and 20% of
the data set, respectively. Among the training data set, 20% of
the data are further preserved for validation and to prevent
overfitting during the learning process.

The prediction accuracy of the developed ANN models will
be assessed using the coefficient of determination R2 defined as

=R
y y

y y
1

( )

( )
i i i

i i

2
2

2
(26)

where yi is the exact value of the target quantity for the ith
observation (specifically, the target quantity obtained by

Figure 2. Multilayer perceptron (MLP) architecture for filtered drag
force modeling.
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filtering the fine-grid TFM simulation results), ŷi is the
corresponding ANN model output value and ⟨y⟩ is the mean
value of y over the data set. The quality of the model can also
be quantified by the Probability Density Function (PDF) of
the relative error e, defined as

=e
y y

y

( )
i

i i

i (27)

■ RESULTS FROM THE ANN MODEL ANALYSIS OF
THE FILTERED DRAG FORCE

We begin this section by comparing the filtered drag force
results of Jiang et al.22 and Rauchenzauner and Schneiderba-
uer46 for dense fluidized beds. As these authors employed
different sets of input variables to model the filtered drag force,
the comparison described below illustrates the nonuniqueness
of the choices of input variables to model the filtered drag
force. We then turn our attention to ANN models for dilute
flows based on the simulations performed in our study, where
we consider the quality of predictions afforded by three
different combinations of input and output variables in the
ANN models.
Dense Bubbling Fluidized Bed: Different Choices of

Input Variables To Estimate the Drag Correction. Jiang
et al. developed an ANN model for the filtered drag force in
dense, bubbling fluidized beds with average solid volume
fractions in the range of 0.25−0.4.23 The authors trained the
ANN on about 20 different combinations of particle properties
in the Geldart-A and A/B groups. In order to obtain a
universally applicable model, the ANN model is based on
dimensionless input and output variables. For a specified gas-
particle system, the ANN model requires the following four
input quantities (and hence their model is referred to as the 4-
marker model): the filter size, the filtered solid volume
fraction, and the filtered slip velocity, and the component of
the filtered gas phase pressure gradient in the gravitational
acceleration direction, all of which are available in an fTFM
model simulation. They found that this model can be made
applicable to different gas-particle systems by including either
the particle Reynolds number based on the terminal velocity

Rep or the Archimedes number =Ar
d g( )s g g p

3

g
2 as an

additional input variable. They reported a model that
employed the Reynolds number as the extra input, which we
consider here. Their drift flux ANN model takes the form:
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(28)

where the characteristic length scale Lc is set equal to dpFrp1/3,
as suggested by Radl and Sundaresan.59

Rauchenzauner and Schneiderbauer46 performed fine-grid
simulations of a bubbling fluidized bed of Geldart-A type
particles, filtered their simulation results, and used them to
validate a functional model for drift velocity, which used the
filtered solid volume fraction, the SV, and the kinetic energy
associated with the subgrid particle phase velocity fluctuations
(which they referred to as the turbulent kinetic energy, TKE).
As SV and TKE are not available in an fTFM simulation,
additional transport equations must be solved to track their
spatiotemporal evolution. Nevertheless, it is interesting to see
that Rauchenzauner and Schneiderbauer46 and Jiang et al.23

employed different sets of input variables to model the drift
velocity. To test whether the data set generated by
Rauchenzauner and Schneiderbauer46 could have been
captured by the ANN model supplied by Jiang et al.,23 we
compared the predictions of the Jiang et al.23 model with the
data generated by Rauchenzauner and Schneiderbauer.46

(Specifically, we tested the results from case 2 of
Rauchenzauner and Schneiderbauer46 which closely corre-
sponded to case 2 of Jiang et al.23) Figure 3 reveals a fairly

good correlation, suggesting that the drift velocity could be
modeled by either combination of input variables. The
combination of inputs suggested by Jiang et al.23 is perhaps
advantageous as it does not require the simulation of additional
transport equations. It also suggests that SV and TKE can be
estimated in terms of the local quantities employed as input
variables by Jiang et al.;23 i.e., the transport equations for SV
and TKE can be approximated by a local-equilibrium
approximation. The filtered slip velocity and the filtered gas
phase pressure gradient in the Jiang et al.23 model appear in the
transport equations for SV and TKE (even when they are
simplified with a local-equilibrium approximation).
New ANN Filtered Drag Force Models for Dilute-to-

Moderately Dense Flows. Model for the Reference Case.
The MLP architecture described in Figure 2 was used to
predict the filtered drag force for the Reference Case (Case 1
in Table 1), involving Geldart A-type particles in the dilute
regime. We explored different choices of input quantities
(markers) to the network to see if conclusions drawn in the
dense regime apply to the dilute case as well. The present
analysis focuses on the vertical component of the filtered drag
force given its primary importance in fluidization.

We start by taking the filtered drag force itself as the output
quantity of the network (FD-ANN). Figure 4 compares the
predictions of the 3- and 4-marker FD-ANN models,
respectively, defined by

=I f u( , , )z zgs, s slip, (29)

and

i
k
jjjjjj

y
{
zzzzzz=I f u
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z
, , ,z zgs, s slip,

g

(30)

Figure 3. Drift velocity predicted by the ANN of Jiang et al.,23

compared to the filtered fine-grid simulation data produced by a
different research group46 for a dimensionless filter size Δ̅* = 9. The
filter-size was made dimensionless using the characteristic length-scale
Lc = dpFrp1/3.
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In line with Jiang et al.22 findings in the dense regime, we
observe that the inclusion of the filtered gas phase pressure
gradient in the markers of the ANN dramatically improves the
accuracy of the model prediction in the dilute flow regime as
well. Zhang et al.24 came to the same conclusion with an MLP
architecture, though the authors report lower correlation
coefficients, even when the filtered gas phase pressure gradient
is added. Jiang et al.22 found that the FD-ANN model
performed poorly for dense flows, which is clearly not the case
for dilute flows.
We show in Figures 5 and 6 the predictive capability of the

ANN model when the target quantity is the drift flux or the
drift velocity, respectively. It can be observed that the vertical
component of the drift flux ϕ̅svd,z is more accurately captured
by the ANN than the drift velocity itself, either with the 3- or
4-marker model. However, when the result of the ANN is
inserted into the explicit relations given by eqs 13 and 15 to
estimate the filtered drag force, the 3-marker DV-ANN and
DF-ANN models prove to be considerably inferior to the 4-
marker models. Both 4-marker DV-ANN and DF-ANN models
perform equally well in dilute flows; in contrast, Jiang et al.22

found that DF-ANN was much better than DV-ANN in the
dense flow regime. Taken together, the 4-marker DF-ANN
model appears to be better suited than DV-ANN and FD-ANN
models for both dilute and dense flows.
It can be inferred from Figure 7 that the 4-marker ANN

model described by

=v f u( , , , )z zs d, s slip, s
2

(31)

is capable of predicting the drift flux in the vertical direction
with quite high accuracy (R2 = 0.94). However, the quality of
the model for the filtered drag force decreases significantly (R2

= 0.78) as previously observed with the 3-marker DF-ANN
and DV-ANN models. We can therefore conclude that the
vertical component of the filtered gas phase pressure gradient
performs better as the fourth marker than the SV for this
reference case.
Zhang et al.24 argued that the flow information on the

neighboring grid cells was crucial in predicting the local filtered
drag, which is inherently provided by their CNN. Yet, if one

aims to build explicit models inspired by the machine learning
approach, we should identify which differential quantities add
the most information. To that end, we also tested 4-marker
DF-ANN models where the filtered gas phase pressure
gradient in the vertical direction is replaced by the vertical
component of the filtered solid volume fraction gradient or the
filtered solid phase velocity gradient. These attempts yielded
slightly better results than those of the 3-marker model,
without achieving the same predictive capacity as the gas
pressure gradient-based 4-marker model. Therefore, the
filtered gas phase pressure gradient appears to be the most
promising fourth marker in both the dense and dilute regimes.

Figure 8 shows the PDF of the relative error in the filtered
drag force predictions. The different ANN approaches (FD,
DV, DF) lead to very similar distributions of the modeling
error in the 3-marker case, although the DF-ANN model
displays a slightly narrower distribution. In the 4-marker case,
the PDF curves of the different ANN models are not
distinguishable and are symmetric. The scalar variance-based
4-marker model leads to a narrower distribution of the error
than the 3-marker model, without reaching the level of
accuracy of the filtered gas phase pressure gradient-based 4-
marker model, as discussed above. Based on all these
considerations, we consider only the DF-ANN model for the
rest of this article.

Generalized ANN Model. For practical use in large-scale
simulations, it is desirable that the filtered drag force ANN
model can be generalized to a wide range of physical
parameters. To that end, the input markers of the ANN
must be made dimensionless using proper characteristic scales,
and the ANN should be trained with different data sets to
cover a large range of these dimensionless input quantities.
This approach has been investigated by Jiang et al.23 for
bubbling to turbulent fluidized beds, but the corresponding
range of solid volume fractions was confined to the fairly dense
regime. To take the analysis further, simulation results from
Cases 1 to 9 in Table 1 have been used to train a generalized
drift flux ANN model. Assuming that the 4-marker DF-ANN
model examined in the previous section is sufficient to capture

Figure 4. Assessment of the FD-ANN model predictions: (a) 3-marker model (ϕ̅s, Δ̅, ũlip,z); (b) 4-marker model
i
k
jjj y

{
zzzu, , ,z

p

zs slip,
g .

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.3c04652
Ind. Eng. Chem. Res. 2024, 63, 8383−8400

8390

https://pubs.acs.org/doi/10.1021/acs.iecr.3c04652?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04652?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04652?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c04652?fig=fig4&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c04652?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the filtered drag force for constant physical parameters, a more
general DF-ANN model can expressed as

i
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jjjjjj

y
{
zzzzzz=v f u

p

z
d e, , , , , , , ,z zs d, s slip,

g
p s c g g

(32)

The restitution coefficient is kept constant in our TFM
simulations so that its influence could not be assessed. The
scaling proposed by Jiang et al.23 in the dense regime to reduce
the number of independent variables is given by eq 28. They
could not discriminate between the three different definitions
of Lc usually found in the literature: Lc,I = dpFrp1/3 and

= =L d FrU
gc,II p p
t
2

and Lc,III = dp, and the authors set Lc = Lc,I.

We started by adopting the same characteristic length scale in
our analysis. Figure 9 shows the predictions of the generalized
DF-ANN model described in eq 28 with Lc = Lc,I. The training
has been performed using 80% of the data points of Cases 1−9
while the remaining 20% have been preserved for testing
purposes (as shown in Figure 9). It can be concluded that the
generalized ANN model is able to predict the filtered drag

force with very good accuracy (R2 = 0.94). The model is also
tested against data from Case 10 (Figure 9), which was not
used for the training process. It can be observed that the
performance level of the model is preserved, which means that
the scaling proposed in eq 28 is also appropriate in the dilute
regime and that the data set used for the training was
sufficiently populated in order to build a robust model.

Then, considering that the characteristic length scale could
be more generally written as =L d Fr Re( , )pc p p (where is
some function of the Froude and Reynolds numbers), we
studied the case where Lc is taken equal to the particle
diameter (Lc = Lc,III) and the Froude number is added as an
additional marker in eq 28, i.e.,
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It is shown in Figure 10 that the predictions of this model are
not superior to the one presented above with the presumed
definition of the characteristic length scale, and the choice Lc =
Lc,I appears as the best option for now, also in the dilute

Figure 5. Assessment of the DV-ANN model predictions on (a, b) the drift velocity and (c, d) the filtered drag force using explicit eq 15. (a, c) 3-

marker model (ϕ̅s, Δ̅, ũslip,z). (b, d) 4-marker model
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regime. Nevertheless, we note that we used 9 different cases to
train our model while Jiang et al.23 trained their model with
more than 20 different cases. Thus, enlarging the dilute regime
data sets in future studies to include more cases spanning a
wider range of parameters and solid volume fractions appears
to be the best approach to further improve the model’s
predictive capabilities. It is reassuring to know (based on the
present study) that the DF-ANN model for drag correction
trained with a comprehensive set of data can bridge both dilute
and dense flow conditions.
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■ NEURAL NETWORK MODELING OF FILTERED
SOLID STRESSES

Machine learning-based modeling of the filtered solid phase
stresses has also been addressed in the literature, although
more sparsely. By relying on an eddy-viscosity concept,
Ouyang et al.36 used fine-grid 2-D simulation results to train

a 7-layer ANN and predict the filtered solid phase pressure and
the effective viscosity of the solid phase. These authors claim
that an anisotropic model using the filtered solid volume
fraction, the filter size, the filtered solid phase velocity, and its
gradient improves the accuracy of the predictions with respect
to isotropic markers, e.g., using only the norm of the rate-of-
deformation tensor. Recently, Ouyang et al.29 implemented
their ANN solid stress model into an fTFM solver and
compared their results with explicit closures. They conclude
that anisotropic models are needed for low fluidization
velocities in a laboratory-scale dense gas−solid fluidized bed.
In this study, we adapt the advanced ANN architecture
proposed by Ling et al.35 to model the Reynolds stresses in
single-phase flow turbulence with embedded Galilean invari-
ance, and formulate a model for the subgrid solid phase stress
in fTFM.
Artificial Neural Network Architecture for Solid Phase

Subgrid Stresses. To the best of the authors' knowledge,
only eddy viscosity-type ANN models inspired by the
Smagorinsky56 model in single-phase flow turbulence have
been developed to close the deviatoric part of the filtered solid

Figure 6. Assessment of the DF-ANN model predictions on (a, b) the drift flux and (c, d) the filtered drag force using explicit eq 15. (a, c) 3-

marker model (ϕ̅s, Δ̅, ũslip,z). (b, d) 4-marker model
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stresses. The filtered solid stress tensor is split into its isotropic
and deviatoric parts as

= + I
1
3

tr( )s s s (34)

The filtered solid pressure, or so-called mesoscale pressure, is
given by

=P
1
3

tr( )s,meso s (35)

Smagorinsky-type models assume the alignment between the
deviatoric solid stress tensor and the deviatoric part of the
filtered solid rate-of-deformation tensor, namely,

= S2s s,meso s (36)

where μs,meso is the so-called mesoscale viscosity, which is
usually estimated from filtered fine-grid data as

=
S S

:

2 :
s,meso

s s

s s (37)

So far, ML-based models for the filtered solid stresses sought
to describe the mesoscale pressure and mesoscale viscosity
through functional models or with distinct ANNs. In single-
phase turbulence, the effective viscosity models have known
drawbacks: they are completely dissipative, which means that
they do not unveil energy backscattering,60 and they do not
capture accurately anisotropic stresses, even in simple shear
flows.61 In the Reynolds-averaged Navier−Stokes approach for
single-phase flows, various ML methods have been recently
developed to model the individual components of the
turbulent stresses.61−63 One of the most promising ideas has
been proposed by Ling et al.35 with a special neural network
architecture referred to as a Tensor Basis Neural Network
(TBNN). This architecture, sketched in Figure 11, satisfies the

Figure 7. Assessment of the DF-ANN model predictions on (a) the drift flux and (b) the filtered drag force using explicit eq 15 with the scalar
variance-based 4-marker model ( u, , ,zs slip, s

2).

Figure 8. Relative error on the vertical component of the filtered drag force predictions for the various ANN models investigated.
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Galilean invariance by relying on the decomposition of the
deviatoric stress tensor as a function of the basis of tensors. In
this way, the output of the neural network is not modified by
an arbitrary rotation of the reference frame, which is a key
principle in turbulence model development.
The TBNN approach developed by Ling et al.35 was

inspired by the work of Pope,64 who showed that, in the single-
phase incompressible case, a general eddy viscosity model that
is a function of the rate-of-deformation and rate-of-rotation
tensors only could be expressed as a linear combination of 10
basis tensors:

=
=

ga T( , . . . , )
n

n n

1

10
( )

1 5
( )

(38)

where a is the deviatoric stress tensor normalized by the
turbulent kinetic energy, while λ1,...λ5 (the scalar basis) and
T(1)...T(10) (the tensor basis) are functions of the filtered strain-
and rotation-rate tensors. As mentioned by Ling et al.,35 any

tensor that can be expressed as in eq 38 will satisfy Galilean
invariance by construction. The simple eddy-viscosity model is
recovered by limiting the summation to n = 1. We adopt the
same approach for the modeling of the filtered solid phase
stresses in gas−solid flows, where, by analogy with Pope,64 the
tensor and scalar bases can be expressed as
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Figure 9. Assessment of the generalized DF-ANN model prediction with characteristic length scale Lc = Lc,I: testing on (a) Cases 1−9 (used for the
training phase) and (b) Case 10.

Figure 10. Assessment of the generalized DF-ANN model prediction with characteristic length scale Lc = dp and Frp added as a distinct marker:
testing on (a) Cases 1−9 (used for the training phase) and (b) Case 10.
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where S̃s and R̃s are the suitably scaled (see below) rate-of-
deformation and rate-of-rotation tensors, respectively, defined
by eqs 22 and 23.

Every tensor in the basis defined by eq 39 is traceless and
symmetric, consistent with the tensor to be modeled. The goal
of the TBNN is therefore to capture the scalar functions g(n) in
eq 38 and the construction of the final tensor is performed by
the output merge layer as shown in Figure 11. Similar to Ling
et al.35 and Pope,64 the tensor a is identified as the deviatoric
part of the filtered solid stress scaled by the mesoscale pressure
(or, equivalently, the subgrid turbulent kinetic energy):

= *
P

a
3

s

s,meso
s

(41)

The input tensors S̃s and R̃s are scaled using the time-scale U
g

t .

The scaled deviatoric part of the solid stress tensor and its
eigenvalues (ξ1 ≥ ξ2 ≥ ξ3) must satisfy the following
realizability conditions:65

| |a

a

1
3

2
3

, (3 )/2

1
2

1
2

for ,
1
3

1 2 2

1 2 (42)

where μ, ν = {1, 2, 3}. Ling et al.35 suggest adding a
postprocessing step after the TBNN model to iteratively
enforce conditions given by eq 42. From our experience, the
number of data points that do not satisfy the realizability
condition is fairly limited. Moreover, this additional procedure
is computationally costly and does not increase the level of
correlation between the predicted values and the data.
Therefore, we chose not to keep it for the results presented
below.

However, in addition to the TBNN model for the deviatoric
part of the stress, a distinct ANN model is needed to predict
the mesoscale pressure. Once Ps,meso is known, the anisotropic
stress τs can be retrieved from eq 41 and the full stress tensor
σs (given by eq 34) can be closed. In addition to the scalar
basis defined by eq 40, other scalar inputs specific to the
modeling of filtered solid stresses might enter the network,
namely, the filtered solid volume fraction and/or the filtered
slip velocity. The filter width Δ̅ is also added as an extra marker
to account for the variation in the mesh size. In the present
study, we only consider the reference case (Case 1) to examine

Figure 11. Tensor Basis Neural Network (TBNN) architecture for
modeling of the filtered solid phase stresses. λ1,...λ5 refer to the scalar
bases, given by eq 40, and T(1)...T(10) refer to the tensor bases, which
are functions of the strain- and rotation-rate tensors given by eq 39.

Figure 12. Prediction of the scaled mesoscale solid phase viscosity in Case 1 by (a) the 3-marker and (b) the 14-marker ANN models.
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the merits of TBNN-based stress modeling for fTFM analysis.
Additional markers accounting for variation in physical
properties (such as Rep, Frp) will enter the network (as was
done for the drift flux model development) when the model is
generalized to cover a wide range of gas-particle systems.

■ A PRIORI BENCHMARK RESULTS ON ANN SOLID
SUBGRID STRESS MODELING
MLP Models for Mesoscale Solid Pressure and

Effective Viscosity. As a preliminary step, and for a point
of comparison, simple MLP models similar to the one used for
the filtered drag force are built to predict the mesoscale
viscosity and mesoscale pressure. In both cases, the three-layer
network architecture detailed earlier is employed with the same
number of nodes (124, 32, 8). From our experience, deeper
networks did not yield superior results. The mesoscale pressure
and viscosity are scaled as follows:

* = * =
g

U
P

P

U
,

t t
s,meso

s,meso

s
3 s,meso

s,meso

s
2

(43)

In line with the work of Ouyang et al.,36 we compare two
ANN models for μs,meso* and Ps,meso* with different input
markers:

• A 3-marker model with λ1 = tr(S̃s2), ϕ̅s, and Δ̅ as inputs,
• A 14-marker model with ϕ̅s, Δ̅ and the components of ũs

and ∇ũs as inputs.
Ouyang et al.36 concluded from their 2-D analysis that the
second “anisotropic” model showed improved predictive
capacity with respect to the first isotropic version. It must be
stressed that this model is anisotropic in the sense that the
input markers contain directional information, but the final
eddy-viscosity model still relies on the alignment between τs
and S̃s (see eq 36). Nevertheless, Figures 12 and 13 confirm
that the more complete 14-marker ANN model fed with the
individual components of ũs and ∇ũs shows reduced scatter
with respect to the simpler 3-marker one, both for the
mesoscale pressure and viscosity.
TBNN Model for the Subgrid Stresses. It was shown in

the previous section that the mesoscale pressure and viscosity
can be quite successfully captured with simple ANN models,
which can be enough if one is only interested in low-order
modeling of the stresses. We now address the TBNN model
described earlier, when a more complete description of the

stresses accounting for anisotropic effects is sought. The
TBNN network sketched in Figure 11 was built with 8 hidden
layers of 30 nodes. The number of layers was initially
determined by following the work of Ling et al.35 It is worth
noting that we tested the TBNN model with 4 layers (30
nodes each) and found out that the RMSE of the model
predictions increases by less than 1%. Although the simpler
ANN structure of the TBNN model gave very similar results,
in this manuscript, we report the results obtained with eight
layers in order to be consistent with Ling et al.35

The activation function of the hidden layers is the ReLU and
the loss function is the minimum absolute error (MAE) as for
the classical MLP studied above. The MAE is computed on all
components of the final deviatoric stress tensor. To assess the
predictive capacity of different variants of the TBNN, we also
introduce the root mean squared error, computed on the six
independent components of τs*:

= * *
= = =N

RMSE
1

6
( )

m

N

i j i
ij ij

data 1 1

3 3

s, s,
2

data

(44)

Although the expression given by eq 38 is very general,
simpler variants of the decomposition into basis tensors might
yield results of similar accuracy. To that end, Table 2 compares

the RMSE of different versions of the TBNN model, where we
vary both the number of tensors in the basis and the scalars fed
to the network. We also introduce in Table 2 the RMSE of the
eddy-viscosity models studied in the previous section for
comparison. First, it comes out that, even though the 14-
marker eddy-viscosity model was shown to be more accurate

Figure 13. Prediction of the scaled mesoscale solid phase pressure in Case 1 by (a) the 3-marker and (b) the 14-marker ANN models.

Table 2. Comparison between Linear Eddy-Viscosity and
Various TBNN Models To Predict the Solid Phase
Deviatoric Subgrid Stress Tensor

model markers RMSE

eddy-viscosity ANN model λ1, ϕ̅s, Δ̅ 0.4170
eddy-viscosity ANN model ũs, ∇ũs, ϕ̅s, Δ̅ 0.4048
TBNN model: T(1), T(3) λ1, λ3, ϕ̅s, Δ̅ 0.2076
TBNN model: T(1)−T(4) λ1−λ3, ϕ̅s, Δ̅ 0.0697
TBNN model: T(1)−T(4) λ1−λ3, ϕ̅s, ũslip, Δ̅ 0.0695
TBNN model: T(1)−T(4) λ1−λ5, ϕ̅s, Δ̅ 0.0697
TBNN model: T(1)−T(10) λ1−λ5, ϕ̅s, Δ̅ 0.0692
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than the 3-marker model to predict the mesoscale viscosity, i.e.
the norm of the stress tensor, both models have similar RMSE
computed on the individual components of the deviatoric
stress tensor. Thus, the improvement achieved by increasing
the number of markers from four to fourteen is only marginal.
In contrast, all variants of the TBNN model show better
accuracy. This highlights the limitation of the eddy-viscosity
concept for subgrid stress modeling in gas−solid flows (just as
in turbulent single-phase flows). A first TBNN model can be
built only with tensors T(1) and T(3), and the scalars λ1 and λ3,
i.e. discarding quantities that involve the rotation-rate tensor
R̃s. This model shows a reduced RMSE with respect to the two
eddy-viscosity models. However, models that account for the
first four tensors in the basis display a much better
performance. Among these models, we observe that using
only the first three scalars λ1−λ3 defined by eq 40 appear
sufficient. The last two scalars λ4 and λ5 do not seem to provide
extra information in order to capture the solid phase subgrid
stress tensor. Likewise, the addition of the slip velocity vector
as an input marker only marginally reduces the RMSE value.
Finally, using the complete tensor basis (T(1)−T(10)) reduces
only slightly the error made on the predicted stress tensor,
while increasing the complexity of the network and the
computational cost of the convergence algorithm. Therefore,
for practical use in fTFM simulations, we suggest using the
TBNN model with the first four basis tensors (T(1)−T(4)), and,
as an input to the network, the first three scalars of Pope’s basis
(λ1−λ3), the filter size Δ̅ and the filtered solid volume fraction
ϕ̅s.
The relative contribution of the different basis tensors in the

construction of the final stress tensor can be estimated by the
mean absolute value of the scalar functions g(1) to g(4). This
analysis shows that the eddy-viscosity term, i.e., g(1), only
contributes to 0.6% of the final model, while the second, third,
and fourth tensors contribute respectively to 57.9, 24.6, and
16.9%. Future works should therefore investigate why the
eddy-viscosity term virtually vanishes when a more complete
tensor basis is used to build the deviatoric stress tensor and
whether this conclusion is valid for a wide range of regimes.
Figure 14 shows the parity plots between the predicted

values and the filtered fine-grid data for the 6 individual

components of tensor τs* and for the square of its norm τs*:τs*.
It appears that the scatter increases substantially in the second
case. If the norm of the stress tensor is of higher importance
for the prospective fTFM simulation, the loss function of the
network could be customized for a more balanced error
between the individual components and the norm of the
tensor.

■ PUBLICLY AVAILABLE ANN PYTHON LIBRARY
FOR FTFM CLOSURES

As we discussed before, the Python ML model source codes
are available in the GitHub repository: https://github.com/
bahardy/fTFM_ANN_modeling.git. Instructions for inter-
ested end-users who need to develop ANN models for the
filtered drag force and the filtered solid phase stresses through
TBNN using their own filtered data sets are as follows: The
code reads the filtered data set from a txt file, which should be
generated by the end-user by filtering fine-grid simulation
results. As an illustrative example, and to avoid sharing a very
large data set of filtered simulation results generated by
neptune_cfd,50 we have uploaded about 6% of the filtered
simulation results for a benchmark case. After training the
networks, the output files from the training process are saved
using Keras API:66 (1) a JSON file that contains the neural
network structure; (2) an HDF5 file that contains weight
information required for the evaluation of the neural network
model. These files could then be read by an open-source
interface Fortran/C++ code and are suitable for MFIX and
OpenFOAM simulation platforms. This implementation allows
the user to read the flow quantities during simulation runtime
and evaluate the prediction with the ANN models. With ANN
models and implementation approach, it is possible to assess
its accuracy in a posteriori simulations.

■ CONCLUSIONS
Jiang et al.22,23 proposed an artificial neural network (ANN)
model for the dense flow regime in which the filter size, the
filtered particle volume fraction, the filtered slip velocity, and
the filtered gas phase pressure gradient, which are available in
an fTFM model simulation, are used to estimate the drift flux.

Figure 14. Prediction of the TBNN model built with four basis tensors (T(1)−T(4)) and 5 input markers (λ1, λ2, λ3, ϕ̅s, Δ̅) in Case 1 for (a) the 6
independent components of τs* and (b) the square of the norm of τs*.
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The drift flux is then used to estimate the correction of the
drag force for fTFM simulations, which are feasible for
industrial-scale gas−solid flows. Rauchenzauner and Schnei-
derbauer20 used the filtered particle volume fraction, the scalar
variance of the subgrid particle volume fraction variation, and
the kinetic energy associated with the subgrid velocity
fluctuations of the particles to find the drift velocity in the
dense flow regime. Both approaches work well when applied to
a common data set generated by filtering the results from a
dense fluidized bed simulation.
We then extended these studies through gas-particle

fluidization simulations in periodic domains in the dilute
regime and examined several different approaches to finding
the correction for the drag force needed for fTFM models. It
was found that the approach adopted by Jiang et al.23 for the
dense flow regime works well for the dilute flow regime as well.
This implies that a single ANN model that covers both regimes
can be found by pooling together the dense and dilute flow
regime data sets.
Furthermore, we introduce a Galilean-invariant tensor-based

neural network (TBNN) model to capture the anisotropic
particle phase stress stemming from the subgrid velocity
fluctuations, which need closure for the fTFM approach. The
proposed approach first utilizes distinct ANNs to find the
filtered solid phase pressure and effective viscosity, which is a
classical way of turbulence modeling in single-phase flows for
subgrid velocity fluctuations. It then employs a TBNN model
to find the components of the filtered solid phase stress tensor.
It is demonstrated that the TBNN approach captures the
anisotropy quite nicely.
Future work should strive to generate a comprehensive drift

flux model that combines the data sets generated through
dense and dilute flow simulations. It should also examine how
the level of sophistication of the stress model, a simple
Smagorinsky-like eddy viscosity model vs the TBNN model
allowing for anisotropy, influences the predictions of fTFM
simulations. Besides, the present data-based filtered drag and
subgrid solid stress models should be compared with earlier
functional anisotropic closures proposed in the literature,32,33

and their respective performance assessed. A further step will
be to perform fTFM simulations, namely, a posteriori tests,
with the developed models, and compare the predictions with
the fine-grid TFM simulations and the experimental studies to
assess their accuracy.
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