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A B S T R A C T

In industrial-scale Reynolds Averaged Navier–Stokes (RANS) simulations, a wall-modeled approach is often
employed, specifically choosing a dimensionless wall-cell height much greater than one. However, in gas–
solid flows, a coarse description of the boundary layer may lead to inaccurate results in terms of particle
dispersion and deposition. In this study, we conducted an investigation on stochastic RANS dispersion models
with deposition on smooth walls using a wall-modeled approach. These models were applied to turbulent
channel flows in both vertical and horizontal orientations. The modeling approach involved the adoption of
the Euler–Lagrange formalism and the RANS 𝑘−𝜖 turbulence model in OpenFOAM®. To assess particle behavior
first, a simple homogeneous isotropic stationary turbulence (HIST) case was examined. Fluid elements were
also tracked in an inhomogeneous turbulence for dispersion analysis. These tests gave the good formulation
for the dispersion model to be used for particle tracking coupled with turbulent channel flow simulation.
However, the deposition results in turbulent channel using such stochastic dispersion model in the wall-cell
were found to be consistently overestimated across various scenarios for low-inertia particles. To address
these limitations arising from the coarse description of the boundary layer, we examined, implemented, and
evaluated a Lagrangian stochastic wall deposition model. The activated deposition model demonstrated good
agreement with experimental data.
1. Introduction

Transport of solid/liquid particles in turbulent flows is present in a
wide range of environmental, industrial, and medical applications. Un-
derstanding the mechanisms behind particle-laden flows is crucial for
understanding various phenomena, such as the atmospheric dispersion
of pollutants, filtration, fooling/erosion of turbine blades, deposition on
solar panels, etc. Thus, a thorough understanding of particle transport
and deposition in turbulent flow fields is important for the success-
ful development and application of reliable computational models in
addressing these complex problems.

In wall-bounded flows, turbulence is anisotropic and heterogeneous
in the near wall region (Dreeben and Pope, 1997), complex particle–
fluid interactions are at play (Arcen et al., 2005). How accurate the
boundary layer is captured by RANS simulations is crucial for particle
dispersion and deposition. In practical CFD simulations for industrial
applications, a wall-modeled approach (wall-cell dimensionless height
𝑦+ℎ ≫ 1) is often adopted to reduce the computational cost. As a
result, accurate particle dispersion and deposition becomes challenging
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as particles see a coarse description of the boundary layer. In the
context of particle-laden flows using RANS turbulence models, particles
only see average quantities of the fluid phase. In order to account for
particle dispersion, models must be employed. There is a variety of
ways to model turbulence effects on particles (Huilier, 2021). How the
fluid velocity ‘‘seen’’ or ‘‘experienced’’ 𝐮𝑓@𝑝 along the trajectory can be
simulated is the crucial question in all dispersion models.

Stochastic models are often used to consider the missing fluctuating
turbulent fluid velocity components. These quantities are obtained at
the particle position from the Eulerian field given by the RANS results
such as the turbulent kinetic energy, 𝑘, and dissipation rate, 𝜖. They also
rely on the different time, velocity and length scales used. Two types
of stochastic models are widely used to model particle dispersion: Eddy
Interaction Models (EIM) and Langevin models.

Eddy Interaction Models have been popular due to their relative
ease of implementation and reasonable computational expense. It was
first introduced by Hutchinson et al. (1971) and extended by Gosman
and Ioannides (1981). Kallio and Reeks (1989) employed such model
vailable online 25 June 2024
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along with a Root Mean Square (RMS) wall-normal velocity and a
Lagrangian timescale fitted to simulate particle deposition in a pipe
flow. Matida et al. (2000) studied the dependence of different fits in the
near wall region and additional forces. Parker et al. (2008) used an EIM
coupled with RANS two-equation models (𝑘 − 𝜖) and Reynolds-Stress
Model. The authors concluded that even when the boundary layer is
fully resolved, namely for 𝑦+ℎ ∼ 1 with 𝑦+ℎ = 𝑦ℎ𝑢𝜏∕𝜈𝑓 and 𝑦ℎ the height
of the first cell, 𝑢𝜏 the wall friction and 𝜈𝑓 the kinematic fluid viscosity,
eposition is overpredicted for low-inertia particles using two-equation
odels. Aguinaga et al. (2009) proposed a Lagrangian stochastic wall
eposition model coupled with an EIM in the bulk flow to account for
he coarse description of the boundary layer (𝑦+ℎ ≫ 1).

Langevin models provide a more physical representation of turbu-
ence as particles see continuous fluctuating fluid velocity components.
everal types of Langevin models are found in the literature (Simonin
t al., 1993; Sommerfeld et al., 1993; Arcen and Tanière, 2009; Minier,
015). Dehbi (2008) used a normalized Langevin model coupled with
ear wall Direct Nunmerical Simulation (DNS) fits to study particle
eposition in vertical turbulent channel flows. Guingo and Minier
2008) employed a standard Langevin model and their results show
n overprediction of deposition for low-inertia particles, as a results,
stochastic coherent structures model was employed for correction.

heir model improved the predictions on deposition when compared
ith experiments. In addition to a Langevin model, Chibbaro and
inier (2008) also proposed an ad-hoc boundary condition for particles

itting the wall, to introduce features of coherent structures based on
article residence time in the near-wall region (𝑦+ < 30). A particle
eposits when its particle residence time is greater than a characteristic
ime scale, whose parameters are obtained from DNS. Their findings
emonstrated a good agreement with experimental data when the
oundary condition is used.

Vertical channel flows have been widely utilized to evaluate dis-
ersion models, whereas studies on horizontal channel flows are less
ommon. Furthermore, there is a limited availability of research on
eposition using wall-modeled approaches. This study aims to evaluate
ispersion models and their predictions in terms of particles deposition
hen a coarse description of the boundary layer is adopted. These
odels are evaluated using the OpenFOAM®v2006 open-source CFD

or turbulent channel flows (ESI Group, 2020), both in the vertical and
orizontal orientations. Wall-modeled approaches are employed in the
hole study and a stochastic wall deposition model (Aguinaga et al.,
009) is revisited, implemented and tested. In contrast with the work
f Chibbaro and Minier (2008), this stochastic wall deposition model
s applied above the wall in fully turbulent zones (𝑦+ ∼ 60) where the

Langevin models are applicable.
The article is structured as follows. First, we introduce the dis-

persion model currently available in OpenFOAM®, along with the
single-step Langevin model proposed by Sommerfeld et al. (1993).
These models are tested in both a simplified Homogeneous Isotropic
Stationary Turbulence (Section 3) and turbulent channel flow scenar-
ios (Section 4) to assess their capabilities in particle dispersion and
deposition analysis. In Section 5 a stochastic wall deposition model is
introduced. The model is then applied in the Section 6 for analyzing the
deposition in horizontal and vertical channel. Conclusions are drawn in
the last section.

2. Dispersion models

2.1. Eddy-Interaction Model (EIM)

The EIM also called ‘‘Eddy-Life-Time’’ model consists of modeling
particle dispersion in turbulence. It is widely used in commercial CFD
softwares when using RANS simulations. The interaction between a
particle and turbulence is modeled by a series of eddies based on the
statistical turbulent properties of the flow at its position. It is a stochas-
tic discrete random walk treatment where each particle experiences a
2

fluctuating fluid velocity based on a random number sampled from a
Gaussian distribution and scaled by the RMS of the fluctuating velocity
component.

The interaction time between a particle and an eddy is limited by
two criteria, namely, the eddy life time 𝜏𝑒 and the time required for a
particle to cross the eddy (also called transit time 𝜏𝑅). The later takes
into account the so-called ‘‘crossing trajectory effect’’. It is assumed that
at time 𝑡, a particle with velocity 𝐮𝑝 is captured by an eddy which moves
with a velocity composed of the mean fluid velocity, augmented by
a random ‘‘instantaneous’’ component which is piecewise constant in
time. When the lifetime of the eddy is over or the particle crosses the
eddy, another interaction is generated with a different eddy, and so
forth.

An EIM is implemented in OpenFOAM®v2006 as StochasticDisper-
sionRAS. The interaction time 𝜏𝑖𝑛𝑡 is obtained from the following

𝜏𝑖𝑛𝑡 = min
(

𝜏𝑒, 𝜏𝑅
)

𝜏𝑒 =
𝑘
𝜖

𝜏𝑅 =
𝜆𝑒

‖𝐮𝑟‖

𝜆𝑒 =
𝐶3∕4
𝜇 𝑘3∕2

𝜖

(1)

with 𝐮𝑟 = 𝐮𝑓@𝑝 − 𝐮𝑝, the relative fluid–particle slip velocity and 𝜆𝑒 the
eddy length scale. The isotropic turbulence modeling is adopted and
during the interaction between the eddy and the particle, the sampled
velocities are left unchanged and are obtained using

𝐮′𝑓@𝑝 = 𝜎𝑓 |𝑁𝑤|𝐝𝑟 (2)

where 𝐝𝑟 is a random isotropic direction vector and 𝑁𝑤 a random
variable which follows a standard normal distribution  (0, 1),

𝑟 =
⎛

⎜

⎜

⎝

𝑎 cos(𝜃)
𝑎 sin(𝜃)

𝑢

⎞

⎟

⎟

⎠

𝜃 = 𝜔𝑟12𝜋 𝑢 = 2𝜔𝑟2−1 𝑎 =
√

1 − 𝑢2

(3)

where 𝜔𝑟1 and 𝜔𝑟2 are two independent random numbers uniformly
distributed between 0 and 1. For an isotropic turbulence, adopted here,
the three RMS components of the fluid fluctuating velocity vector
𝐮′𝑓@𝑝 are equal to 𝜎𝑓 =

√

2𝑘∕3. This way of sampling the fluctuating
elocity differs from standard EIMs gathered in Huilier (2021) review
n dispersion models.

.2. Langevin model

According to Pope (1994), in high Reynolds number, Langevin equa-
ion can be used to model fluid velocity fluctuations in homogeneous
tationary turbulence. It represents the change in the velocity of a fluid
lement over time and can be broken down into two components: a
amping (or ‘drift’) term, that is proportional to the velocity of the
luid and a random forcing term that has an average value of zero.
he Langevin equation is a stochastic differential equation which uses
arkov chains (Obukhov, 1959) for the fluctuating fluid velocity 𝐮′𝑓

𝐮′𝑓 = 𝐮′𝑓 (𝑡 + 𝛿𝑡) − 𝐮′𝑓 (𝑡) = −
𝐮′𝑓
𝜏𝑡𝑓

𝛿𝑡 + 𝜎𝑓

√

2
𝜏𝑡𝑓

𝛿𝐖 . (4)

In (4), 𝜏𝑡𝑓 is the fluid Lagrangian timescale and 𝛿𝑡 is the time increment.
𝛿𝐖 is a Wiener process having the following properties 𝛿𝐖 = 0 and
𝛿𝐖2 = 𝛿𝑡 where the overline bar is the time average operator. The
discrete form of (4) correlates the fluid velocity fluctuation 𝐮′𝑓 (𝑡 + 𝛥𝑡)
to its value 𝐮′𝑓 (𝑡) at the previous time step (Sommerfeld et al., 1993)

𝐮′𝑓 (𝑡 + 𝛥𝑡) = 𝐮′𝑓 (𝑡)𝑅𝐿(𝛥𝑡) +
𝜎𝑓
√

𝛥𝑡

√

1 − 𝑅2
𝐿(𝛥𝑡)𝛥𝐖. (5)

ere 𝑅𝐿(𝛥𝑡) is the Lagrangian fluid velocity auto-correlation function
iven by

𝐿(𝛥𝑡) = exp

(

− 𝛥𝑡
𝑡

)

.

𝜏𝑓
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In the case of modeling the fluctuating fluid velocity at the particle
position 𝐮′𝑓@𝑝, inertial and crossing-trajectory effects must be taken
into account for inertial particles under gravity. In fact, they no longer
follow the fluid elements and the Lagrangian autocorrelation function
𝑅𝑓 (𝛥𝑡) in (5) must be modified to include space and time correlations
through the following proposed model by Sommerfeld et al. (1993).

𝑅𝐸𝐿,𝑖𝑗 (𝛥𝑡,∆𝐬) = 𝑅𝐿(𝛥𝑡)𝑅𝐸,𝑖𝑗 (∆𝐬).

With the Eulerian space correlation given by

𝑅𝐸,𝑖𝑗 (∆𝐬) = [𝑓 (∆𝐬) − 𝑔(∆𝐬)]
𝛥𝑠𝑖𝛥𝑠𝑗
‖∆𝐬‖2

+ 𝑔(𝛥𝑠)𝛿𝑖𝑗 (6)

where ∆𝐬 is the distance between a fluid element and the particle
over a timestep 𝛥𝑡 (i.e. ∆𝐬 = (𝐮𝑝 − 𝐮𝑓@𝑝)𝛥𝑡). Here 𝑓 (∆𝐬) and 𝑔(∆𝐬)
are respectively the longitudinal and transversal correlation coefficients
given by

𝑓 (∆𝐬) = exp
(

−
‖∆𝐬‖
𝐿𝐸

)

(7)

𝑔(∆𝐬) =
(

1 −
‖∆𝐬‖
2𝐿𝐸

)

exp
(

−
‖∆𝐬‖
𝐿𝐸

)

(8)

with the Eulerian length scale 𝐿𝐸 = 𝐶𝐿𝜏𝑡𝑓𝜎𝑓 and the model constant 𝐶𝐿
set to 3. Sommerfeld et al. (1993) proposed 𝜏𝑡𝑓 = 𝐶𝑇 𝜎2𝑓∕𝜖 where 𝐶𝑇 =
0.24 is a fitted parameter. As described in Huilier (2021), the single step
or the M.S. (Martin Sommerfeld) Langevin model (Sommerfeld et al.,
1993) is written in this form

𝑢′𝑓@𝑝,𝑖(𝑡+𝛥𝑡) = 𝑢′𝑓@𝑝,𝑖(𝑡)𝑅𝐸𝐿,𝑖𝑖(𝛥𝑡,∆𝐬)+
𝜎𝑓
√

𝛥𝑡

√

1 − 𝑅2
𝐸𝐿,𝑖𝑖(𝛥𝑡,∆𝐬)𝛥𝑊𝑖 (9)

where the Einstein convention of summing up over repeated indices
is not adopted. To use Eq. (9), it is necessary for the matrix 𝐑𝐸𝐿
to be diagonal. According to (6), this happens when 𝛥𝑠𝑖𝛥𝑠𝑗 = 0 for
𝑖 ≠ 𝑗 which correspond to ∆𝐬 aligned along any axis of the reference
system. In particular, this is verified when the drift induced by gravity
is dominant, described by ⟨‖𝐮𝑝 − 𝐮𝑓@𝑝‖⟩𝑝 = 𝜏𝑝𝑔, and when one axis of
the reference system is aligned with gravity. To be used in any reference
frame, we propose to use a tensorial form to generalize the formulation,
so that

𝐮′𝑓@𝑝(𝑡 + 𝛥𝑡) = 𝐮′𝑓@𝑝(𝑡)𝐑𝐸𝐿(𝛥𝑡,∆𝐬) + 𝐀𝑓@𝑝𝛥𝐖 (10)

where 𝐀𝑓@𝑝 is a tensor, equal to a positive symmetric matrix given by

𝐀𝑓@𝑝 =
𝜎𝑓
√

𝛥𝑡

√

𝐈 − 𝐑2
𝐸𝐿(𝛥𝑡,∆𝐬) (11)

and here 𝐈 is the 3 × 3 identity matrix. It must be noticed that according
to (6), (7) and (8) the eigenvalues of 𝐈 − 𝐑2

𝐸𝐿 are always positives
allowing the computation of the square root.

The M.S. Langevin model, chosen for simplicity, presents some
limitations, in particular in inhomogeneous turbulence and is limited
to statistically stationary turbulence. In this paper, a specific work
is conducted to enhance its predictions in turbulent channel flows.
Other sophisticated Langevin models (Arcen and Tanière, 2009; Minier
et al., 2014) can also be used but are not covered here. In addition,
these dispersion models can also be coupled with the stochastic wall
deposition model presented in this paper.

3. Dispersion in Homogeneous Isotropic Stationary Turbulence
(HIST)

To assess particle dispersion models, it is common to use HIST and
compare particle statistics with theoretical or numerical simulations ob-
tained from DNS. Other test cases depending on the application can be
used also such as round jets, mixing shear layers and vertical/horizontal
channel flows. In this section, the different dispersion models will be
investigated using HIST with and without gravity.
3

Fig. 1. View of a collection of 150 μm particles within the studied domain. The particles
are colored by their velocities. Their sizes are not on scale. Periodic boundary conditions
are applied on each face for the particles. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Several monodispersed spherical particles are initially released with
Stokes number 𝑆𝑡 roughly varying from 10−4 to 2. This correspond to
diameters 𝑑𝑝 ranging from 2 to 150 μm, a fixed density 𝜌𝑝 = 2800 kg∕m3,
a turbulent kinetic energy 𝑘 = 0.07 m2∕s2 and a timescale 𝜏𝑡𝑓 =
0.06 s. Here the fluid is air under standard condition (i.e. density
𝜌𝑓 = 1.2 kg∕m3 and kinematic viscosity 𝜈𝑓 = 1.568 × 10−5 m2∕s). These
parameters have been selected to realistically represent the scenario
of soiling, focusing on dust particles depositing on solar panels. The
numerical simulation is done in a three-dimensional domain where
periodic boundary conditions are applied for particles. A total of 10,000
particles are initially released uniformly in the domain (𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 =
1 m) illustrated in Fig. 1.

3.1. Particle tracking

From a numerical point of view, particles are considered, under the
point-particle approximation, as dimensionless points of concentrated
mass 𝑚𝑝 = 𝜌𝑝𝜋𝑑3𝑝∕6 that corresponds to the mass of a sphere of diameter
𝑑𝑝 and density 𝜌𝑝. We consider a dilute regime (one-way coupling)
where particles do not influence the fluid motion. We also neglect
particle–particle collisions. Each particle is tracked individually using
the following equation:
𝑑𝐮𝑝
𝑑𝑡

= −
𝐮𝑝 − 𝐮𝑓@𝑝

𝜏𝑝
+
(𝜌𝑝 − 𝜌𝑓

𝜌𝑝

)

𝐠 (12)

where the fluid velocity ‘‘seen’’ by the particle is expressed as

𝐮𝑓@𝑝 = 𝐔𝑓 (𝐱𝑝) + 𝐮′𝑓@𝑝 . (13)

In (13), 𝐔𝑓 (𝐱𝑝) is mean fluid velocity interpolated linearly at the
particle position 𝐱𝑝 and 𝐮′𝑓@𝑝 is the turbulent fluctuation modeled by
a Lagrangian stochastic contribution given by a dispersion model. The
non-Stokesian particle relaxation time (non-linear drag force) reads

𝜏𝑝 =
𝜌𝑝𝑑2𝑝

18𝜌𝑓 𝜈𝑓
1

1 + 1∕6𝑅𝑒2∕3𝑝

(14)

where the particle Reynolds number is defined as 𝑅𝑒𝑝 = 𝑑𝑝‖𝐮𝑓@𝑝 − 𝐮𝑝‖
∕𝜈𝑓 . The particle equation of motion in (12) is solved using an Euler
implicit scheme implemented in OpenFOAM®. Each particle trajectory
is obtained by advancing particle position:

𝑑𝐱 = 𝐮 𝑑𝑡. (15)
𝑝 𝑝
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Fig. 2. PDF of the fluctuating fluid velocity components normalized by 𝜎𝑓 =
√

2𝑘∕3 for 2 μm particles (left) and the normalized fluid kinetic energy ‘‘seen’’ 𝑞2𝑓@𝑝 as a function of
particle inertia (right) where the expected value should be equal to one. The solid black line on the left panel represents a Gaussian function with zero mean and a variance of
2𝑘∕3. Statistics obtained using the OpenFOAM® EIM model without gravity.
Fig. 3. PDF of the fluctuating fluid velocity components normalized by 𝜎𝑓 =
√

2𝑘∕3 for 2 μm particles (left) and the normalized fluid kinetic energy ‘‘seen’’ 𝑞2𝑓@𝑝 as a function of
particle inertia (right). The solid black line on the left panel represents a Gaussian function with zero mean and a variance of 2𝑘∕3. Statistics obtained using the M.S. Langevin
model given by (9) without gravity.
The OpenFOAM® solver used for the particle tracking is the IcoUnCou-
pledKinemtaticParcelFoam solution already implemented. In
OpenFOAM®, a Face-to-Face algorithm is used to move the particles
from initial position to final position in a time step 𝛥𝑡 based on a
Lagrangian maximum Courant number 𝐶𝑜𝑚𝑎𝑥 and a tracking time 𝜏𝑡𝑟𝑎𝑐𝑘
given by the user. These two parameters will set a maximum integration
time step 𝛥𝑡𝑚𝑎𝑥 = 𝐶𝑜𝑚𝑎𝑥𝜏𝑡𝑟𝑎𝑐𝑘. This way of obtaining the integration
time step 𝛥𝑡 differs from what is usually done in the literature where
it is updated in an efficient manner locally based on characteristic
timescales. In OpenFOAM®, the maximum time step 𝛥𝑡𝑚𝑎𝑥 is chosen
before running the simulations and in this paper we choose a value
smaller than one tenth of the particle relaxation time in the Stokes
regime 𝜏𝑆𝑡𝑝 (namely given by (14) with 𝑅𝑒𝑝 = 0) and the minimum
value of 𝜏𝑡𝑓 in the domain.

3.2. Particle statistics

The average particle relaxation time, 𝜏𝐹𝑓𝑝, is defined as

1
𝜏𝐹𝑓𝑝

=
⟨

1
𝜏𝑝

⟩

𝑝
. (16)

In (16), ⟨⋅⟩ is the arithmetic average over an ensemble of 𝑁 particles
4

𝑝 𝑝
⟨ ⋅ ⟩𝑝 =
1
𝑁𝑝

𝑁𝑝
∑

𝑛=1
( ⋅ )(𝑛) . (17)

Here 𝑁𝑝 is defined as the cumulative number of particles whose
center is in a control volume 𝑉 at different times instants. In the
present analysis the fluid–particle Stokes number 𝑆𝑡 = 𝜏𝐹𝑓𝑝∕𝜏

𝑡
𝑓 is used

to evaluate particle inertia. The fluid kinetic energy ‘‘seen’’ by the
particles, i.e. 𝑞2𝑓@𝑝 = ⟨𝑢′2𝑓@𝑝,𝑖⟩𝑝∕2, by assumption should be equal to the
prescribed turbulent kinetic energy 𝑘. To evaluate particle dispersion,
we verify the Tchen–Hinze theory (Hinze, 1975) where the particles
are expected to be in-equilibrium with stationary turbulence

⟨𝐮′2𝑝 ⟩𝑝 = 𝑓 (𝑆𝑡)⟨𝐮′2𝑓@𝑝⟩𝑝

where 𝑓 (𝑆𝑡) is a function of the Stokes number. Its derivation is based
on the form of the Lagrangian autocorrelation function 𝑅𝑓 . For an
exponentially decaying function corresponding to a Langevin model it
leads to

𝑓 (𝑆𝑡) = 1
1 + 𝑆𝑡

. (18)

This is also valid for an EIM where the eddy lifetime is sampled from an
exponential distribution with a mean value 𝜏𝑡 (Kallio and Reeks, 1989).
𝑓
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Fig. 4. Normalized fluid kinetic energy ‘‘seen’’ by the particle 𝑞2𝑓@𝑝 as a function of particle inertia using (9) left and (10) right.
3.3. Results

Fig. 2 shows the PDF of the fluctuating velocity components for
the OpenFOAM® dispersion model and a Gaussian function with zero
mean and a variance of 2𝑘∕3. The model fails to reproduce Gaussian
turbulence. This discrepancy comes from (2) where the modulus of
a Gaussian variable is multiplied by a vector uniformly distributed
in space leading to a non Gaussian distribution. The fluid kinetic
energy ‘‘seen’’ is also computed and compared with 𝑘 for all particle
classes. The OpenFOAM® model is not able to simulate the correct fluid
agitation and underestimate it by 70%. Taking the absolute value of a
random number sorted from a centered Gaussian distribution changes
the variance to 1 − 2∕𝜋 ≈ 0.36.

For the M.S. Langevin model, the Gaussian shape is found (see
Fig. 3). The fluid kinetic energy ‘‘seen’’ 𝑞2𝑓@𝑝 is computed using both
formulations of the model, namely (9) and (10), with and without
gravity. The results are shown on Fig. 4. We can clearly see the inability
of the model (9) to retrieve the correct fluid kinetic energy ‘‘seen’’ when
the Stokes number increase without gravity. In fact, in this scenario,
the instantaneous fluid–particle relative velocity 𝐮𝑟 = 𝐮𝑓@𝑝 − 𝐮𝑝 and
hence ∆𝐬 can be in any direction: 𝐑𝐸𝐿 is not diagonal. When gravity
is added in the y axis, the error is reduced as ∆𝐬 tends to be aligned
with the y-direction. On the other hand, the generalized formulation
(10) behaves well in both cases as it uses the complete 𝐑𝐸𝐿 tensor and
will be adopted in this paper.

Fig. 5 illustrates the particle–fluid variance ratio and its comparison
with the Tchen–Hinze theory extension with gravity. Overall, the model
matches the theory, particles are in equilibrium with turbulence. The
decrease in particle agitation is well captured. It is important that the
Stokes number 𝜏𝐹𝑓𝑝∕𝜏

𝑡
𝑓 here is modified to 𝜏𝐹𝑓𝑝∕𝜏

𝑡
𝑓@𝑝. Following Csanady

(1963), in case where a mean drift induced by gravity is present and
aligned with the y-axis

𝜏𝑡𝑓@𝑝,𝑥 = 𝜏𝑡𝑓@𝑝,𝑧 =
𝜏𝑡𝑓

√

1 + 4𝛽2𝑐

(

𝜏𝑝𝑔
𝜎𝑓

)2
(19)

in the transversal directions and

𝜏𝑡𝑓@𝑝,𝑦 =
𝜏𝑡𝑓

√

1 + 𝛽2𝑐

(

𝜏𝑝𝑔
)2

(20)
5

𝜎𝑓
Fig. 5. Comparison of the particle–particle kinetic stress diagonal components with
Tchen–Hinze theory given by (18). Results are obtained using the M.S. Langevin
model with gravity acting in the y-direction. The stokes number is computed with
the timescale given by (19) and (20).

in the longitudinal direction where 𝛽𝑐 = 1∕𝐶𝐿 is a constant. These
quantities are computed in each direction in the case where gravity
is acting in the 𝑦-direction and used to normalize 𝜏𝐹𝑓𝑝. The discrep-
ancy in the intermediate region (0.1 < 𝜏𝐹𝑓𝑝∕𝜏

𝑡
𝑓@𝑝 < 1) is due to the

crossing trajectory effect modeled through 𝐑𝐸𝐿 which is based on the
instantaneous relative velocity rather than using a Csanady (1963) form
in terms of the mean relative velocity (Simonin et al., 1993; Huilier,
2021).

4. Fluid elements dispersion in turbulent channel flow

In this section, we investigate fluid elements statistics within a
two-dimensional turbulent channel flow. It is a common test case to
evaluate the capability of a dispersion model to retrieve the correct
fluid agitation when turbulence is inhomogeneous in the tracer limit
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Table 1
Properties of the fluid and of the examined channel flow.

Parameters Symbol Value Units

Simulation track time 𝜏𝑡𝑟𝑎𝑐𝑘 10−4 s
Lagrangian maximum Courant number 𝐶𝑜𝑚𝑎𝑥 0.1 –

Fluid kinematic viscosity 𝜈𝑓 1.568 × 10−5 m2 s−1
Fluid density 𝜌𝑓 1.2 kg m−3

Fluid bulk velocity 𝑈∞ 6 m s−1
Fluid shear velocity 𝑢𝜏 0.27 m s−1
Friction Reynolds number 𝑅𝑒𝜏 1530 –
Channel Reynolds number 𝑅𝑒 30 612 –

Channel length 𝐿 5 m
Channel width 𝑤 0.08 m
Cell size 𝛥𝑥 = 𝛥𝑦 = 𝑦ℎ 0.005 m
Wall cell height in dimensionless units 𝑦+ℎ 100 –

(𝜏𝑝 → 0) (MacInnes and Bracco, 1992). The well-mixed criterion is
also investigated: very low-inertia particles which are uniformly mixed
in the domain should remain well mixed as time evolves. Minier
et al. (2014) set the well-mixed condition as a fundamental criterion
for dispersion models. In OpenFOAM®, fluid elements tracking can
be performed by prescribing directly the fluid velocity ‘‘seen’’ to the
particles (i.e. 𝐮𝑝 = 𝐮𝑓@𝑝), (12) is not solved in this case.

4.1. Fluid flow field

The fluid flow is obtained from converged RANS 𝑘 − 𝜖 turbulence
model where periodic boundary conditions are applied to obtain a
fully developed flow. The OpenFOAM® incompressible steady state
solver simpleFOAM was used. Uniform hexahedral meshes are em-
ployed. The desired wall cell dimensionless height 𝑦+ℎ is calculated
using the Fanning coefficient:

𝑦+ℎ =
𝑦ℎ𝑢𝜏
𝜈𝑓

𝑢𝜏 = 𝑈𝑓,𝑥

√

𝛬
8

𝛬 = 0.3164𝑅𝑒−1∕4

𝑅𝑒 =
𝑤𝑈𝑓,𝑥

𝜈𝑓
.

(21)

The wall-cell height can be obtained from a given value of 𝑦+ℎ . Table 1
shows the fluid properties and the examined channel flow for 𝑦+ℎ = 100.
The cell size is uniform in both directions 𝛥𝑥 = 𝛥𝑦 and has been set
to 5 × 10−3 m. It leads to 15 cells in the 𝑦-direction (wall-normal). In
𝑥-direction the domain length is 5 m. As explained in Section 6.1 the
accurate measurement of the particle deposition requires a very long
channel for the low Stokes number. Consequently, in 𝑥-direction the
mesh has 1000 cells. Dimensionless fluid streamwise velocity, 𝑈+ =
𝑈𝑓,𝑥∕𝑢𝜏 , is shown by Fig. 6 and dimensionless turbulent kinetic energy,
𝑘+ = 𝑘∕𝑢2𝜏 , and dissipation rate, 𝜖+ = 𝜖𝜈𝑓∕𝑢4𝜏 , by Fig. 7.

4.2. Particle statistics

Fluid particles (𝑁𝑝 = 10,000) are initially released uniformly within
the channel where periodic boundary condition is applied. Elastic
rebound of particles is also applied at the walls. For averaging, the
channel is binned in the y-direction where each bin height is equal to
𝑦ℎ. The particle number density 𝑛𝑝 (number of particles present in the
bin divided by its volume) is computed in each bin and normalized
by the channel number density 𝑛𝑝,0. The fluid element wall-normal
agitation ⟨𝑢′2𝑝,𝑦⟩𝑝 is also computed in each bin and compared with the
prescribed one (i.e. 𝜎2𝑓 = 2𝑘∕3).

4.3. Results

As shown by Fig. 8, the fluid particle concentration is found to
be not uniform across the channel. Fluid particles tend to accumulate
in the channel center where turbulence levels are the lowest. This
6

Fig. 6. Streamwise fluid velocity 𝑈+ profile as a function of the channel width 𝑤.
Each data point is taken from the cell-centroids.

‘‘spurious drift’’ is an unwanted effect that needs to be corrected by the
dispersion models in the tracer limit. In addition, the particle agitation
is not fully retrieved. An increase is seen at the center of the channel
where turbulence is almost homogeneous (see Fig. 7). This problem was
in fact identified by MacInnes and Bracco (1992): when turbulence is
inhomogeneous, dispersion models may produce an artificial transfer
of fluid turbulence from the region of high intensity to low intensity.
This is the case here, turbulence levels are at the lowest in the center
of the channel.

It is possible to account for the anisotropy of the fluid phase by
using LRR closure (Innocenti et al., 2019) or by using a normalized
dispersion model as proposed by Dehbi (2008). The normalized version
of the M.S. Langevin can be written following Dehbi (2008) and Minier
et al. (2014) as

𝛿

(𝐮′𝑓@𝑝

𝜎𝑓

)

= −

(𝐮′𝑓@𝑝

𝜎𝑓

)

𝛿𝑡
𝜏𝑡𝑓

+
√

2
𝜏𝑡𝑓

𝛿𝐖 (22)

and the discretized form following (10)

𝐮′𝑓@𝑝(𝑡 + 𝛥𝑡) =
𝜎𝑓 (𝐱𝑝(𝑡 + 𝛥𝑡))

𝜎𝑓 (𝐱𝑝(𝑡))
𝐮′𝑓@𝑝(𝑡)𝐑𝐸𝐿(𝛥𝑡,∆𝐬) + 𝐀𝑓@𝑝𝛥𝐖. (23)

Fig. 8 shows the comparison between the two versions of the dispersion
model. The agitation is fully retrieved and no increase in the center of
the channel is seen. In addition, when adopting the normalized version,
a slight improvement is seen for the particle concentration. The non-
uniformity of the particle concentration is in fact attributed to the
absence of a drift term in (22). Dehbi (2008) added a drift term to
overcome the ‘‘spurious drift’’ effect

𝛿

(𝐮′𝑓@𝑝

𝜎𝑓

)

= −

(𝐮′𝑓@𝑝

𝜎𝑓

)

𝛿𝑡
𝜏𝑡𝑓

+
√

2
𝜏𝑡𝑓

𝛿𝐖 + 1
3𝜎𝑓

⋅
𝜕𝑘
𝜕𝐱

⋅
𝛿𝑡

1 + 𝑆𝑡
(24)

and the discretized form

𝐮′𝑓@𝑝(𝑡 + 𝛥𝑡) =
𝜎𝑓 (𝐱𝑝(𝑡 + 𝛥𝑡))

𝜎𝑓 (𝐱𝑝(𝑡))
𝐮′𝑓@𝑝(𝑡)𝐑𝐸𝐿(𝛥𝑡,∆𝐬) + 𝐀𝑓@𝑝𝛥𝐖

+
𝜎𝑓 (𝐱𝑝(𝑡 + 𝛥𝑡))
3𝜎𝑓 (𝐱𝑝(𝑡))

⋅
𝜕𝑘
𝜕𝐱

⋅
𝛥𝑡

1 + 𝑆𝑡
(25)

where 𝐀𝑓@𝑝 is given by (11) with the fluid velocity RMS velocity
𝜎𝑓 (𝐱𝑝(𝑡 + 𝛥𝑡)). Fig. 9 shows the results when adding the drift term. It
is clearly seen that fluid elements exhibit now a uniform concentration
profile. In addition, the wall-normal agitation is unchanged. This nor-
malized form of the M.S. Langevin with a drift term will be used in
paper.
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Fig. 7. Profiles of turbulent kinetic energy 𝑘+ profile (left) and dissipation rate 𝜖+ (right) as a function of the channel width 𝑤. Each data point is taken from the cell-centroids.

Fig. 8. Profiles of fluid particle number density (left) and the wall-normal agitation (right) for the two versions of the M.S. Langevin model. The black empty symbols are given
by (10) and the filled symbols by (23).

Fig. 9. Profiles of fluid particle number density (left) and the wall-normal agitation (right) for the M.S. Langevin model. The black filled symbols are given by (23) and the half
filled symbols by (25).
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5. Particle deposition in horizontal and vertical channel

In this section the prediction of particle deposition in horizontal and
vertical turbulent channel flows is analyzed. The deposition velocity 𝑣𝑑
can be measured for each class of particles with a relaxation time 𝜏𝑝.
These quantities are made dimensionless using the shear velocity 𝑢𝜏 and
the kinematic viscosity of the fluid 𝜈𝑓 .

𝑣+𝑑 =
𝑣𝑑
𝑢𝜏

= 𝐽
𝐶0𝑢𝜏

𝜏+𝑝 =
𝜏𝑆𝑡𝑝 𝑢2𝜏
𝜈𝑓

𝜏𝑆𝑡𝑝 =
𝜌𝑝𝑑2𝑝

18𝜌𝑓 𝜈𝑓

𝑢𝜏 =
√

𝜏𝑤
𝜌𝑓

.

Here, 𝐽 is the deposition rate, 𝐶0 is the bulk concentration of particles,
𝜏𝑤 the wall shear stress and 𝜏𝑆𝑡𝑝 is the particle Stokes response time.
Deposition of particles on vertical channels (gravity acting in the
direction of the flow) has been studied experimentally and numeri-
cally (Sippola and Nazaroff, 2002). Three regimes depending on 𝜏+𝑝
have been identified (Papavergos and Hedley, 1984):

• Diffusion regime (𝜏+𝑝 ≪ 1): Particles with low-inertia respond to
the turbulent boundary layer. Their deposition is controlled by
Brownian motion.

• Inertial regime (𝜏+𝑝 ≫ 40): Particles are very inertial and do not
interact with the turbulent boundary layer.

• Diffusion–impaction regime (1 < 𝜏+𝑝 < 40): Transitional regime
which corresponds to a partial interaction of particles with the
turbulent boundary layer.

Nerisson et al. (2011) derived the following analytical model for 𝑣+𝑑 at
a given dimensionless distance 𝑦+ℎ of the wall

𝑣+𝑑 = 𝐽
𝑢𝜏𝐶(𝑦+ℎ )

=

[

𝑆𝑐𝑓𝑡
𝜅

ln(𝑦+ℎ ) +
𝜔
𝜏+𝑝 2

]−1

(26)

where 𝑆𝑐𝑓𝑡 is the Schmidt turbulent number, 𝜅 the Von Karman con-
stant, 𝑦+ℎ wall computational cell height and 𝜔 a constant. Fig. 10
illustrates the deposition velocity 𝑣+𝑑 from the experiments of Liu and
Agarwal (1974) and model in (26) for 𝑆𝑐𝑓𝑡 = 1 and 𝜔 = 2.2 × 103 with
𝑦+ℎ = 100 and 𝑦+ℎ = 30. The model shows an overall good agreement
with the experiments. Here, only the diffusion–impaction and inertial
regimes are considered.

In horizontal channels, the direction of fluid flow is perpendicular
to the direction of gravitational forces. As a result, gravity assists in
deposition within the channel. An analysis of the deposition velocity
𝑣+𝑑 in a horizontal channel indicates the existence of three distinct
regimes (Gao et al., 2012). The relative widths of these regimes differ
from their counterparts in a vertical channel, with the diffusion regime
being narrowed (𝜏+𝑝 < 10−3), and the diffusion–impaction regime being
broadened due to gravity (10−3 < 𝜏+𝑝 < 20). In the inertial regime
(𝜏+𝑝 > 20), the deposition velocity of particles increases as a function of
particle size. In addition, in horizontal channels deposition becomes a
function of an additional number 𝐠+ = 𝜏𝑆𝑡𝑝 𝐠∕𝑢𝜏 that is a Froude number.
With this parameter, Wood (1981) proposed the following empirical
equation

𝑣+𝑑 = 4.5 × 10−4𝜏+𝑝
2 + ‖𝐠+‖ . (27)

Later, Nerisson et al. (2011) derived a generalized formula for any wall
orientation:

𝑣+𝑑 = −𝐠+ ⋅ 𝐧
[

1 − exp

(

𝐠+ ⋅ 𝐧𝑆𝑐𝑓𝑡
𝜅

ln(𝑦+ℎ ) + 𝐠+ ⋅ 𝐧 𝜔
𝜏+𝑝 2

)]−1

(28)

where 𝐧 is the wall normal unit vector. Fig. 11 compares these two
models with experiments (Montgomery and Corn, 1970; Sehmel, 1973;
Kvasnak et al., 1993) where the friction velocity is imposed (𝑢𝜏 ≈
0.3 m∕s) and 𝜏𝑆𝑡 varies. Both models show an overall good agreement
8

𝑝

Fig. 10. Dimensionless deposition velocity 𝑣+𝑑 as a function of particle inertia 𝜏+𝑝 for
the vertical channel. The symbols are the experimental data (▴) from Liu and Agarwal
(1974) and the solid line ( ) the prediction given by (26) from Nerisson et al.
(2011).

Fig. 11. Dimensionless deposition velocity 𝑣+𝑑 as a function of particle inertia 𝜏+𝑝 for the
horizontal channel. Experiments (▴), Nerisson et al. (2011) model ( ) and Wood
(1981) model ( ). The dotted line ( ) here represents the particle settling
velocity. In this case with gravity, the predictions of Nerisson et al. (2011) model
and the settling velocity are superimposed.

with the experiments. For larger values of 𝜏+𝑝 , a deviation is seen, Wood
(1981) model gives higher values of 𝑣+𝑑 . Furthermore, if we draw the
gravity settling velocity for these particles represented by the dotted
line, we see a clear match with data and both models. This indicates
that for this experiment, gravity is the dominant deposition mechanism.
Other experiments with larger 𝑢𝜏 or lower 𝜏𝑆𝑡𝑝 values may reveal the
contribution of turbulence in deposition.

Lagrangian stochastic simulations of particle deposition in verti-
cal turbulent channel flows with 𝑦+ℎ ≫ 1 have been studied previ-
ously. Parker et al. (2008) used the Reynolds-Stress Model and 𝑦+ℎ =
120 while Aguinaga et al. (2009) used the 𝑘 − 𝜖 model and 𝑦+ℎ = 30
and 60. Both simulations were conducted using the dispersion model
of Fluent (2006). Fig. 12 shows the numerical predictions of deposition
for different particle inertia. In both simulations, the tendency of an
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Fig. 12. Dimensionless deposition velocity 𝑣+𝑑 as a function of particle inertia 𝜏+𝑝 for
the vertical channel. Experiments (▴) from Liu and Agarwal (1974) and numerical
simulations from Aguinaga et al. (2009) and Parker et al. (2008).

horizontal straight line is visible. Higher values of 𝜏+𝑝 seem to give
good agreement with experiments. However, for low-inertia particles
a deviation is seen. In fact, this is due to the coarse description of the
boundary layer as particles do not see the correct fluid agitation in
the near-wall region 𝑦+ < 5. There is a need to overcome this issue
in applications where the mesh size cannot be refined to fully resolve
the boundary layer.

A Lagrangian stochastic wall deposition model was proposed by
Aguinaga et al. (2009) and consists of treating particles entering the
computational wall cell. The model has already been implemented
and assessed for vertical channels in Fluent (2006) coupled with an
EIM (Aguinaga et al., 2009). The model assigns a deposition probability
for any incoming particle based on its intrinsic properties and flow
characteristics. This probability 𝑟 = 𝐽∕𝐽− is calculated theoretically
from the particle flux ratio between the incoming (𝐽−) and the de-
posited flux (𝐽 ) as shown by Fig. 13. The latest can be either obtained
from DNS or experiments. The model uses the particle deposited flux
obtained from Nerisson et al. (2011) for any wall configuration:

𝐽 = 𝐶(𝑦ℎ)𝑢𝜏𝑣+𝑑 . (29)

In (29), 𝐶(𝑦ℎ) is the particle concentration at the height of wall com-
putational cell. The incoming particle flux 𝐽− is obtained by assuming
a Gaussian PDF of wall-normal particle velocities where its statistical
moments are defined below:

𝐽− = −
𝐶(𝑦ℎ)
2

⎡

⎢

⎢

⎢

⎣

√

2
𝜋
⟨𝑢′2𝑝,𝑦⟩𝑝 exp

(

−
𝑈2
𝑝,𝑦

2⟨𝑢′2𝑝,𝑦⟩𝑝

)

− 𝑈𝑝,𝑦

⎛

⎜

⎜

⎜

⎝

1 − erf

⎛

⎜

⎜

⎜

⎝

𝑈𝑝,𝑦
√

2⟨𝑢′2𝑝,𝑦⟩𝑝

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

.

The mean wall-normal particle velocity for any wall orientation is given
by

𝑈𝑝,𝑦 =
𝐽

𝐶(𝑦ℎ)
= 𝑢𝜏𝑣

+
𝑑 .

The wall-normal particle velocity variance is obtained from the Tchen–
Hinze theory, particles agitation is in equilibrium with the fluid turbu-
lence. In the case of particle dispersion modeled by a Langevin type
9

Fig. 13. Sketch of the incident (𝐽−), reflected (𝐽+) and deposited (𝐽 ) particle fluxes
at the wall computational cell.

approach

⟨𝑢′2𝑝,𝑦⟩𝑝 =
1

1 + 𝑆𝑡
⟨𝑢′2𝑓@𝑝,𝑦⟩𝑝 .

Assuming a homogeneous isotropic turbulence at 𝑦ℎ, the wall-normal
fluid velocity ‘‘seen’’ variance is given to be 2𝑘∕3. The model requires 𝑘
and 𝜖 values given by the RANS simulation at 𝑦ℎ and the dimensionless
intrinsic parameters of the particle, namely 𝜏+𝑝 and 𝐠+ ⋅𝐧. A Lagrangian
stochastic deposition model is employed where a uniform random
variable 0 < 𝜔𝑟 < 1 is sorted and its comparison with 𝑟 will determine
the fate of each particles entering the wall cell and have a velocity
vector pointing towards the wall, i.e. 𝐮𝑝 ⋅ 𝐧 < 0:

• 𝑟 < 𝜔𝑟: Particle is ejected back to the bulk flow modeled by an
elastic rebound;

• 𝑟 > 𝜔𝑟: Particle is deposited (see Fig. 14).

In this study, the deposition model is applied at an arbitrary critical
height 𝑦+𝑐 instead of the wall cell height 𝑦+ℎ . This approach reduces the
dependency of particle treatments on the mesh resolution and type. The
potential outcomes for particles are visually represented in Fig. 14. The
algorithmic process is depicted in the flowchart presented by Fig. 15.
During the integration of particle trajectories at any given time 𝑡, the
particle’s distance to the nearest wall and its corresponding 𝑦+𝑝 value
are calculated. If the particle is located within the near wall region,
namely 𝑦+𝑝 < 𝑦+𝑐 and 𝐮𝑝 ⋅𝐧 < 0, the deposition probability 𝑟 is determined
using Eulerian fields at the particle’s location. The fate of the particle
is determined by the random variable 𝜔𝑟. In this study, we added an
elastic rebound for the fluid velocity ‘‘seen’’. By doing this, the particle
fluid covariance ⟨𝐮𝑝𝐮𝑓@𝑝⟩𝑝 is left unchanged.

6. RANS simulation of particle deposition in horizontal and verti-
cal channel

6.1. Particle injection and deposition measurement

Monodispersed particles are injected uniformly at the inlet (see
Fig. 16). The deposition velocity 𝑣𝑑 can be measured for each class
of particles with a relaxation time 𝜏𝑝. These quantities are made di-
mensionless using the friction velocity 𝑢∗ estimated from the value the
turbulent kinetic energy at the first cell point 𝑘𝑝 and the kinematic
viscosity of the fluid 𝜈𝑓 . In fact, the shear/friction velocity 𝑢𝜏 can
be approximated by 𝑢∗ obtained from the log-region assumption. In a
channel flow both quantities are close, but in more complex flows 𝑢∗ is
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Fig. 14. Illustration of the potential scenarios when a particle crosses 𝑦+𝑐 during its trajectory. 𝐮−𝑝 represents the particle velocity prior to the application of the deposition model,
while 𝐮+𝑝 denotes the particle velocity after the treatment.
more relevant of the turbulence in the near wall region. For example
at a reattachment point 𝑢𝜏 → 0, not 𝑢∗

𝑣+𝑑 =
𝑣𝑑
𝑢∗

= 𝐽
𝐶0𝑢∗

𝜏+𝑝 =
𝜏𝑆𝑡𝑝 𝑢∗2

𝜈𝑓
𝑢∗ =

√

𝑘𝑝
√

𝐶𝜇 . (30)

Here 𝐽 is the deposition rate and 𝐶0 is a reference concentration of
particles. Two standard channel cases will be used in this study, one
vertical and the other horizontal where gravity is assisting deposition.
The deposition velocity 𝑣+𝑑 can also be calculated in a fully developed
turbulent channel flow for each particle class (Kallio and Reeks, 1989;
Matida et al., 2000) with

𝑣+𝑑 = 1
𝑁𝑠

𝑁𝑠
∑

𝑖=1

1
𝑢∗

𝑆𝑎𝑈∞
𝑆𝑑

ln
(

𝑀𝑖+1
𝑀𝑖

)

(31)

where 𝑆𝑎 the channel section area, 𝑆𝑑 the deposition surface area, 𝑈∞
the bulk fluid velocity, 𝑀𝑖 the particle mass flux at the 𝑖th section and
𝑁𝑠 the number of sections (see Fig. 16). Particles are injected with the
fluid mean velocity, the settling velocity 𝜏𝑝𝐠, a stochastic process that is
based on the dispersion model 𝐮′𝑓@𝑝 and a new stochastic process based
on the fluid–particle covariance. The initial particle velocity is given by

𝑢𝑝,𝑖 = 𝑈𝑓,𝑖 + 𝛼𝑢′𝑓@𝑝,𝑖 + 𝛽𝛾𝑖 + 𝜏𝑝𝑔𝑖 (32)

where 𝛾 is a vector of three independent Gaussian random numbers
with a mean value of zero and a standard deviation of unity. The two
model’s constant, 𝛼 and 𝛽, reads

𝛼 = 𝑓 (𝑆𝑡) 𝛽 =
√

𝑓 (𝑆𝑡)
[

⟨𝑢′2𝑓@𝑝,𝑖⟩𝑝 − ⟨𝑢′2𝑓@𝑝,𝑖⟩𝑝𝑓 (𝑆𝑡)
]

. (33)

The first mass flux measurement probe is located at 𝐿∕2 to ensure that
particles reach an equilibrium (i.e. 𝜕𝑛𝑝∕𝜕𝑥 = 0 and 𝜕⟨𝐮′2𝑝 ⟩𝑝∕𝜕𝑥 = 0).

6.2. Deposition results

6.2.1. Vertical channel
The experiment of Liu and Agarwal (1974) are done with gravity

acting in the flow direction. Some authors (Kallio and Reeks, 1989;
Parker et al., 2008; Dehbi, 2008; Guingo and Minier, 2008) do not
consider gravity in their simulations while others (Matida et al., 2000)
include gravity but neglect crossing-trajectory effects (not including the
transit time 𝜏𝑅) in their dispersion models. For the sake of clarity, the
two cases will be investigated. This will reveal the true behavior of such
dispersion models in predicting deposition. The particle properties and
dimensionless quantities are shown in Table 2. The deposition results
of the different dispersion models are shown by Fig. 17.

In the case where gravity is neglected, the M.S. Langevin is able
to match the experiments in the inertial regime. On the other hand,
the OpenFOAM® EIM model underestimate deposition. In fact, the
10
Table 2
Material properties of the particles in the vertical channel. The dimensionless particle
size is defined as 𝑑+

𝑝 = 𝑑𝑝𝑢𝜏∕𝜈𝑓 and is very small compared to the cell size 𝑦+ℎ .

Class 𝑑𝑝 [μm] 𝜏+𝑝 [−] 𝑑+
𝑝 [−]

1 2 0.158 0.034
2 3 0.355 0.052
3 4 0.631 0.069
4 5 0.987 0.086
5 8 2.526 0.138
6 10 3.947 0.172
7 12 5.683 0.207
8 20 15.79 0.344
9 30 35.52 0.517
10 40 63.14 0.689
11 50 98.66 0.861
12 60 142.08 1.033
13 90 319.67 1.55
14 150 887.98 2.583

underestimation of deposition is attributed to its inability to reproduce
the correct fluid agitation (underestimated by 70% in HIST simple
case).

In the case where gravity is acting in the flow direction which is
the actual experiment of Liu and Agarwal (1974), deposition is still
underpredicted by the OpenFOAM® EIM in the inertial regime whereas
the M.S. Langevin model gives better agreement. In the presence of
gravity or other body forces, the relative particle–fluid slip velocity
𝐮𝑟 becomes significant for large 𝜏+𝑝 particles. This effect decreases
the transit time 𝜏𝑅 for the EIMs, eddy-particle interactions are more
frequent which leads to less deposition.

Both models fail to reproduce the diffusion–impaction (low-inertia)
regime where 𝑣+𝑑 scales with 𝜏+2𝑝 . In fact, when using industrial scale
mesh size namely 𝑦+ℎ ≫ 1, particles see an inaccurate description of the
turbulent boundary layer. Therefore the complex interactions between
the particle and the fluid in the near wall region are not captured.
This is given to the values of 𝑘 and 𝜖 along the particle trajectory
between the first cell point and the wall which are not accurate enough.
OpenFOAM® does not interpolate the values of 𝑘 and 𝜖 at the particles
positions which make them see uniform values within a computational
cell (even the wall-cell). This will overpredict particle dispersion and
hence deposition.

6.2.2. Horizontal channel
The experiments of Montgomery and Corn (1970), Sehmel (1973)

and Kvasnak et al. (1993) (𝑢𝜏 ≈ 0.3 m∕s) are grouped and compared
by Fig. 18 with numerical results. The particle properties and dimen-
sionless quantities are shown in Table 3. As expected, deposition is
consistently overestimated in all dispersion models when dealing with
low-inertia particles (𝜏+𝑝 < 10), primarily due to the coarse represen-
tation of the boundary layer. However, in this experimental study,
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Fig. 15. Algorithm for the deposition model handling arbitrary 3D geometries.

Fig. 16. Schematic of the channel used in the numerical simulation. The vertical red lines are the mass flux probes for deposition velocity calculations.
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Fig. 17. Dimensionless deposition velocity 𝑣+𝑑 with respect to the particle inertia 𝜏+𝑝 . The black-filled symbols are the experiments from Liu and Agarwal (1974). The left panel
correspond to the case without gravity and the right-panel with gravity added in the flow direction. Results are obtained in the vertical channel configuration.
Table 3
Material properties of the particles in the horizontal channel. The dimensionless particle
size is defined as 𝑑+

𝑝 = 𝑑𝑝𝑢𝜏∕𝜈𝑓 and is very small compared to the cell size 𝑦+ℎ .

Class 𝑑𝑝 [μm] 𝜏+𝑝 [−] 𝑑+
𝑝 [−]

1 0.75 0.022 0.013
2 1 0.039 0.017
3 1.5 0.089 0.026
4 2 0.16 0.034
5 3 0.36 0.052
6 4 0.63 0.07
7 5 0.98 0.087
8 6 1.42 0.1
9 10 3.95 0.17
10 12 5.68 0.21
11 15 8.88 0.26
12 20 15.79 0.35
13 25 24.67 0.44
14 30 35.52 0.52

gravity dominates the deposition process, where particles settle with
a velocity determined by 𝜏𝑝𝑔. This phenomenon becomes evident when
the dispersion models are deactivated (i.e. no wall-normal particle
agitation), resulting in even more accurate outcomes.

6.3. Results with the stochastic wall deposition model

The stochastic wall deposition model is now applied at a critical
height 𝑦+𝑐 = 60. Two meshes are used to test the sensitivity of the model:
𝑦+ℎ = 50 and 𝑦+ℎ = 100, respectively 30 and 15 cells across the width of
the channel. The M.S. Langevin dispersion model is employed at the
bulk. Fig. 19 shows the results for both the vertical (𝑔𝑥 = 9.81 m∕s2) and
horizontal channels (𝑔𝑦 = 9.81 m∕s2) with and without the deposition
model. When the stochastic wall deposition model is used, we have a
better agreement with the experiments for both channel configurations
for the two mesh cases (𝑦+ℎ = 50 and 𝑦+ℎ = 100). The diffusion–impaction
regime (i.e. 1 < 𝜏+𝑝 < 40) is now well reproduced. These particles
have lower probability of deposition 𝑟 given by the stochastic wall
deposition model than inertial ones (𝜏+𝑝 > 40). When they cross the
critical height 𝑦+𝑐 , they are more likely to be ejected back into the bulk
flow. In addition, the results show also low dependencies on the mesh
size. Hence, the coupling between the M.S. Langevin model and the
deposition model gives accurate deposition results for wall-modeled
approaches. This stochastic wall deposition model can also be coupled
with other complete Langevin dispersion models (Minier et al., 2014).

Fig. 20 shows the impact on the deposition results when not em-
ploying the normalized version of the M.S. Langevin from (24). An
12
Fig. 18. Dimensionless deposition velocity 𝑣+𝑑 with respect to the particle inertia 𝜏+𝑝 .
The black-filled symbols are the experiments from Montgomery and Corn (1970),
Sehmel (1973) and Kvasnak et al. (1993). Results are obtained in the horizontal channel
configuration.

overall decrease in deposition is seen for all particle classes. In fact this
is attributed to the deficiency of the model for maintaining the correct
fluid agitation in inhomogeneous turbulence seen previously.

7. Conclusions

RANS dispersion models have been assessed in Homogeneous
Isotropic Stationary Turbulence (HIST) and for deposition in turbulent
channel flows using a wall-modeled approach (𝑦+ℎ ≫ 1). The investiga-
tion focused on dilute particulate flows and employed a combination
of steady-state RANS 𝑘 − 𝜖 turbulence modeling and Lagrangian par-
ticle tracking. The numerical simulations were conducted using the
open-source solver, OpenFOAM®.

The analysis of particle statistics in HIST reveals that the
OpenFOAM® EIM dispersion model, namely StochasticDispersionRAS,
fails to accurately predict the expected fluid kinetic energy ‘‘seen’’
by the particles, accounting for only 30% of the total kinetic energy.
This inadequacy can be attributed to the expression of 𝐮′ , which
𝑓@𝑝
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Fig. 19. Dimensionless deposition velocity 𝑣+𝑑 with respect to the particle inertia 𝜏+𝑝 . The black-filled symbols are the experiments and blue symbols are the results with the
stochastic wall deposition model. The simulations results using the normalized M.S. Langevin with a drift term (25) are shown for vertical (left) and horizontal (right) channels.
Fig. 20. Dimensionless deposition velocity 𝑣+𝑑 with respect to the particle inertia 𝜏+𝑝
for the vertical channel. The black-filled symbols are the experiments. The simulations
results using the M.S. Langevin in (9) are shown for vertical channel.

employs the absolute value of a random variable following a Gaussian
distribution. Furthermore, the observed PDF of sampled velocities
deviates from the expected Gaussian distribution, exhibiting more of an
exponential behavior. A generalized formulation of the M.S. Langevin
model was implemented and gave good agreement.

Investigations into fluid element trajectories within a turbulent
channel flow revealed significant limitations in the M.S. Langevin
model, particularly its inability to accurately retrieve the fluid kinetic
energy throughout the channel. Additionally, the model exhibited a
notable ‘spurious’ drift phenomenon, deviating from expected physical
behaviors. To address these deficiencies, a series of enhancements to
the model have been implemented.

In the context of a wall-modeled approach, the deposition of low-
inertia particles is consistently overestimated by the M.S. Langevin
model.

Consequently, in order to address the limitations arising from the
coarse description of the boundary layer, a Lagrangian stochastic wall
deposition model was revisited, developed, and implemented to handle
3D complex geometries. The evaluation of this model demonstrated
13
promising results, particularly when it was activated and coupled with
the M.S. Langevin model, showing favorable agreement between the
computed deposition velocity and experimental observations.

In contrast to the models proposed by Guingo and Minier (2008)
or Chibbaro and Minier (2008) whose simulate the particle trajectories
in the boundary layer by applying the Langevin modelling approach
(originally developed for high Reynolds number flows) in the transition
and viscous sublayers, the proposed method leads to apply Langevin
model only in the fully developed turbulent region where they are
legitimely applicable (𝑦+ℎ ≫ 1). The stochastic wall deposition model
presented here is suitable for boundary layers in equilibrium. However,
its validity may be questionable for impaction zones and regions with
reverse pressure gradients such as detached boundary layers.

These findings strongly advocate for the inclusion of such deposition
model in CFD codes, as they enable more accurate characterization
of deposition in various geometries. By incorporating the coupling
between the stochastic wall deposition model and other Langevin mod-
els (Arcen and Tanière, 2009; Minier et al., 2014), CFD simulations can
provide improved predictions and a better understanding of particle
behavior in turbulent flows, offering valuable insights across a wide
range of practical applications.

CRediT authorship contribution statement

Cheikhna Talebmoustaph: Writing – review & editing, Writing
– original draft, Validation, Methodology, Conceptualization. Pascal
Fede: Writing – review & editing, Validation, Supervision, Methodol-
ogy, Conceptualization. Olivier Simonin: Writing – review & editing,
Validation, Supervision, Methodology, Conceptualization.Maxime Pal-
lud: Funding acquisition. Priyank Maheshwari: Writing – review &
editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.



International Journal of Multiphase Flow 178 (2024) 104900C. Talebmoustaph et al.
Acknowledgments

Part of the financial support of this research project was provided
by ANRT (Association Nationale de la Recherche et de la Technologie,
Ministère de la Recherche) through the TotalEnergies/ CIFRE Contract
No. 2020/1277.

References

Aguinaga, S., Simonin, O., Borée, J., Herbert, V., 2009. A Lagrangian stochastic model
for droplet deposition simulations in connection with wall function approaches. In:
Fluids Engineering Division Summer Meeting. Vol. 43727, pp. 795–805.

Arcen, B., Tanière, A., 2009. Simulation of a particle-laden turbulent channel flow using
an improved stochastic Lagrangian model. Phys. Fluids 21 (4), 043303.

Arcen, B., Tanière, A., Oesterlé, B., 2005. Influence of the gravity field on the turbulence
seen by heavy discrete particles in an inhomogeneous flow. In: Engineering
Turbulence Modelling and Experiments 6. Elsevier, pp. 949–958.

Chibbaro, S., Minier, J.-P., 2008. Langevin PDF simulation of particle deposition in a
turbulent pipe flow. J. Aerosol Sci. 39 (7), 555–571.

Csanady, G., 1963. Turbulent diffusion of heavy particles in the atmosphere. J. Atmos.
Sci. 20 (3), 201–208.

Dehbi, A., 2008. A CFD model for particle dispersion in turbulent boundary layer flows.
J. Nucl. Eng. Des. 238, 707–715. http://dx.doi.org/10.1016/j.nucengdes.2007.02.
055.

Dreeben, T.D., Pope, S., 1997. Probability density function and Reynolds-stress
modeling of near-wall turbulent flows. J. Phys. Fluids 9, 154–163.

ESI Group, 2020. OpenFOAM version 2006. https://www.openfoam.com/releases/
openfoam-v2006/.

Fluent, 2006. FLUENT 6.3 User’s Guide. Fluent Inc., Lebanon, NH, USA.
Gao, N., Niu, J., He, Q., Zhu, T., Wu, J., 2012. Using RANS turbulence models and

Lagrangian approach to predict particle deposition in turbulent channel flows. J.
Build. Environ. 48, 206–214. http://dx.doi.org/10.1016/j.buildenv.2011.09.003.

Gosman, A., Ioannides, E., 1981. Aspects of computer simulation of liquid fuelled
combustors. In: AIAA 19th Aerospace Sci. Meeting Paper AIAA-81-0323. St. Louis,
MO.

Guingo, M., Minier, J.-P., 2008. A stochastic model of coherent structures for particle
deposition in turbulent flows. Phys. Fluids 20 (5), 053303.

Hinze, J., 1975. Turbulence, second ed. McGraw-Hill, New York.
Huilier, D.G., 2021. An overview of the Lagrangian dispersion modeling of heavy

particles in homogeneous isotropic turbulence and considerations on related LES
simulations. J. Fluids 6, 145. http://dx.doi.org/10.3390/fluids6040145.

Hutchinson, P., Hewitt, G., Dukler, A., 1971. Deposition of liquid or solid dispersions
from turbulent gas streams: a stochastic model. Chem. Eng. Sci. 26 (3), 419–439.
14
Innocenti, A., Fox, R.O., Salvetti, M.V., Chibbaro, S., 2019. A Lagrangian probability-
density-function model for collisional turbulent fluid–particle flows. J. Fluid Mech.
862, 449–489.

Kallio, G., Reeks, M., 1989. A numerical simulation of particle deposition in turbulent
boundary layers. Int. J. Multiph. Flow 15, 433–446.

Kvasnak, W., Ahmadi, G., Bayer, R., Gaynes, M., 1993. Experimental investigation of
dust particle deposition in a turbulent channel flow. J. Aerosol Sci. 24, 795–815.

Liu, B.Y.H., Agarwal, J.K., 1974. Experimental observation of aerosol deposition in
turbulent flow. J. Aerosol Sci. 5, 145–155.

MacInnes, J., Bracco, F., 1992. Stochastic particle dispersion modeling and the
tracer-particle limit. J. Phys. Fluids 4 (12), 2809–2824.

Matida, E.A., Nishino, K., Torii, K., 2000. Statistical simulation of particle deposition on
the wall from turbulent dispersed pipe flow. Int. J. Heat Fluid Flow 21, 389–402,
URL: www.elsevier.com/locate/ijh.

Minier, J.-P., 2015. On Lagrangian stochastic methods for turbulent polydisperse
two-phase reactive flows. Prog. Energy Combust. Sci. 50, 1–62.

Minier, J.-P., Chibbaro, S., Pope, S.B., 2014. Guidelines for the formulation of
Lagrangian stochastic models for particle simulations of single-phase and dispersed
two-phase turbulent flows. Phys. Fluids 26 (11).

Montgomery, T.L., Corn, M., 1970. Aerosol deposition in a pipe with turbulent airflow.
J. Aerosol Sci. I, 185–213.

Nerisson, P., Simonin, O., Ricciardi, L., Douce, A., Fazileabasse, J., 2011. Improved
CFD transport and boundary conditions models for low-inertia particles. Comput.
& Fluids 40 (1), 79–91.

Obukhov, A., 1959. Description of turbulence in terms of Lagrangian variables. Adv.
Geophys. 6, 113–116.

Papavergos, P., Hedley, A., 1984. Particle deposition behaviour from turbulent flows.
Chem. Eng. Res. Des. 62, 275–295.

Parker, S., Foat, T., Preston, S., 2008. Towards quantitative prediction of aerosol
deposition from turbulent flows. J. Aerosol Sci. 39, 99–112. http://dx.doi.org/10.
1016/j.jaerosci.2007.10.002.

Pope, S.B., 1994. Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech.
26 (1), 23–63.

Sehmel, G.A., 1973. Eddy diffusivities and deposition for isothermal flow and smooth
surfaces. J. Aerosol Sci. 4, 138.

Simonin, O., Deutsch, E., Minier, J., 1993. Eulerian prediction of the fluid/particle
correlated motion in turbulent two-phase flows. Appl. Sci. Res. 51, 275–283.

Sippola, M.R., Nazaroff, W.W., 2002. Particle deposition from turbulent flow: Review
of published research and its applicability to ventilation ducts in commercial
buildings.

Sommerfeld, M., Kohnen, G., Rueger, M., 1993. Some open questions and inconsisten-
cies of Lagrangian particle dispersion models. In: Proceedings of the 8th Symposium
on Turbulent Shear Flow. Kyoto, Japan.

Wood, N., 1981. A simple method for the calculation of turbulent deposition to smooth
and rough surfaces. J. Aerosol Sci. 12 (3), 275–290.

http://refhub.elsevier.com/S0301-9322(24)00177-0/sb1
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb1
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb1
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb1
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb1
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb2
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb2
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb2
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb3
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb3
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb3
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb3
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb3
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb4
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb4
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb4
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb5
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb5
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb5
http://dx.doi.org/10.1016/j.nucengdes.2007.02.055
http://dx.doi.org/10.1016/j.nucengdes.2007.02.055
http://dx.doi.org/10.1016/j.nucengdes.2007.02.055
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb7
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb7
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb7
https://www.openfoam.com/releases/openfoam-v2006/
https://www.openfoam.com/releases/openfoam-v2006/
https://www.openfoam.com/releases/openfoam-v2006/
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb9
http://dx.doi.org/10.1016/j.buildenv.2011.09.003
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb11
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb11
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb11
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb11
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb11
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb12
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb12
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb12
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb13
http://dx.doi.org/10.3390/fluids6040145
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb15
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb15
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb15
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb16
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb16
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb16
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb16
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb16
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb17
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb17
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb17
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb18
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb18
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb18
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb19
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb19
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb19
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb20
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb20
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb20
http://www.elsevier.com/locate/ijh
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb22
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb22
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb22
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb23
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb23
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb23
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb23
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb23
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb24
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb24
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb24
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb25
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb25
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb25
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb25
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb25
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb26
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb26
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb26
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb27
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb27
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb27
http://dx.doi.org/10.1016/j.jaerosci.2007.10.002
http://dx.doi.org/10.1016/j.jaerosci.2007.10.002
http://dx.doi.org/10.1016/j.jaerosci.2007.10.002
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb29
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb29
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb29
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb30
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb30
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb30
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb31
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb31
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb31
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb32
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb32
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb32
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb32
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb32
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb33
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb33
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb33
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb33
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb33
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb34
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb34
http://refhub.elsevier.com/S0301-9322(24)00177-0/sb34

	Stochastic Lagrangian wall deposition model for RANS prediction of deposition in turbulent gas–solid flows
	Introduction
	Dispersion models
	Eddy-Interaction Model (EIM)
	Langevin model

	Dispersion in Homogeneous Isotropic Stationary Turbulence (HIST)
	Particle tracking
	Particle statistics
	Results

	Fluid elements dispersion in turbulent channel flow
	Fluid flow field
	Particle statistics
	Results

	Particle deposition in horizontal and vertical channel
	RANS simulation of particle deposition in horizontal and vertical channel
	Particle injection and deposition measurement
	Deposition results
	Vertical channel
	Horizontal channel

	Results with the stochastic wall deposition model

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


