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Abstract

INTRODUCTION: To support clinical trial designs focused on early interventions, our

study determined reliable early amyloid-β (Aβ) accumulation based on Centiloids (CL)

in pre-dementia populations.

METHODS: A total of 1032 participants from the Amyloid Imaging to Prevent

Alzheimer’s Disease–Prognostic and Natural History Study (AMYPAD-PNHS) and

Insight46 who underwent [18F]flutemetamol, [18F]florbetaben or [18F]florbetapir

amyloid-PET were included. A normative strategy was used to define reliable accu-

mulation by estimating the 95th percentile of longitudinal measurements in sub-

populations (NPNHS=101/750,NInsight46=35/382) expected to remain stable over time.

The baseline CL threshold that optimally predicts future accumulation was investi-

gated using precision-recall analyses. Accumulation rates were examined using linear

mixed-effect models.

RESULTS: Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year.

Baseline CL of 16 [12,19] best predicted future Aβ-accumulators. Rates of amy-

loid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for

subjects with higher levels of education.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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DISCUSSION: Our results support a 12–20 CL window for inclusion into early

secondary prevention studies. Reliable accumulation definition warrants further

investigations.
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1 BACKGROUND

Accumulation of cerebral amyloid beta (Aβ) plaques is a key early

marker of Alzheimer’s disease (AD) pathophysiology, starting decades

before the first symptoms appear.1 Sharp reductions of Aβ were

observed in recent lecanemab and donanemab trials in patients

with early cognitive impairment who were selected to be amyloid

positive.2–4 However, it is unknown how these anti-Aβ therapies will
affect individuals before symptom onset. This long preclinical phase is

the focus of recent secondary prevention trials with anti-Aβ therapy

such as the A4 and AHEAD 3-45 studies,5,6 which aim to remove incip-

ient aggregates or limit future accumulation.7,8 Longitudinal positron

emission tomography (PET) studies enable the detection and quantifi-

cationof small changes inAβover time,which is an important outcomes

of these trials.9 This is supported by recent studies that showed that

the rate of Aβ accumulation, rather than baseline burden, improved

prediction of cognitive decline in preclinical populations.10–12 Identify-

ing early subjects that will accumulate Aβ in the near future can help

select those most likely to reach amyloid positivity and benefit from

treatment now that successful therapies are becoming available.13

While rates of change in Aβ deposition are commonly measured

using annualized rates of change in standard uptake value ratio (SUVr),

the Centiloid scale (CL) is increasingly being used to minimize differ-

ences arising from multiple centers and tracers, including in the latest

phase III trials of aducanumab,14 lecanemab2 and donanemab.3,4,15

The CL approach was introduced in 2015 as a means of calibrating

measures of Aβ deposits to a tracer-independent unbounded scale,

where 0 (value characteristic of young healthy controls) and 100 (typi-

cal AD subjects) act as anchor points.16 Longitudinal trajectories of Aβ
accumulation have been previously described,1,17,18 with more recent

studies using the CL scale to characterize the pathophysiological rates

of Aβ increase.19–25 Although visual reading is currently the approved
method for image interpretation in clinical practice (requiring a binary

classification of normal/abnormal), the importance of quantifying PET

measurement and its uncertainty has been highlighted in the latest

Radiological Society of North America Quantitative Imaging Biomark-

ers Alliance (QIBA) profile.26 Quantitative information generated by

CE-marked software can also now be used as an adjunct to visual

interpretation.27–29 Hence, there is a need for estimates of longitu-

dinal PET changes in CL units that account for measurement uncer-

tainty and intrinsic variability to determine reliable Aβ accumulation

trajectories.

Quantification of amyloid burden in “absolute” units can be lever-

aged into the definition of threshold differentiating stages of amyloid

pathology that are comparable across centers and tracers. So far, using

mostly cross-sectional data, various CL thresholds and windows have

been established based on histopathology,30–32 visual read,19,33–37

agreement with other amyloid biomarkers,38 and disease stage.30,39

These thresholds have been established to reflect the earliest signs of

thepresenceofAβ compared topost-mortemstudies (∼10–12CL), and

compared to visual reads (∼16–26CL) (summary in Pemberton et al.9).

Finally using longitudinal data from cognitively unimpaired individuals

at baseline, the optimal baseline threshold for predicting an abnormal

increase in Aβ using PiB was found to be 17.5 CL in the Harvard Aging

Brain Study (HABS), 15.0 CL in the Australian Imaging, Biomarker &

Lifestyle Flagship Study of Ageing (AIBL),25 and 19 ± 7 CL in theMayo

Clinic Study of Aging (MCSA).24 A [18F]florbetapir (FBP) threshold of

16.7 CLwas also defined using data from theAlzheimer’s DiseaseNeu-

roimaging Initiative (ADNI).25 However, the definition and robustness

of such a threshold for [18F]flutemetamol (FMM) and [18F]florbetaben

(FBB) remains to be explored.

To further support clinical trial designs that are focused on early

intervention, the present study aimed to characterize early Aβ accu-

mulation based on CL units for FMM and FBB in a pre-dementia

population, by (1) estimating the variability of longitudinal CL mea-

surements in a population expected to remain stable over time in

order to define reliable accumulation beyond measurement error, (2)

establishing the baseline CL threshold that optimally predicts future

accumulation, and (3) describing the rates of Aβ accumulation across

the whole population and investigating their relation to visual read

status over time.

2 METHODS

2.1 Cohorts

2.1.1 AMYPAD-PNHS

The present work uses clinical and imaging data from the European

Amyloid Imaging to Prevent Alzheimer’s Disease (AMYPAD, https://

amypad.eu/) Prognostic and Natural History Study (PNHS),40 down-

loaded from theAlzheimer’s disease data initiativeworkbench (version

v202306, https://doi.org/10.5281/zenodo.8017084). The AMYPAD

consortium was initiated in 2016 as part of the Innovative Medicine

Initiative-Alzheimer’s disease platform.41 The AMYPAD-PNHS is a

prospective, multi-center, pan-European study, focused on using amy-

loid PET to further our understanding of AD in its pre-dementia phase.

https://amypad.eu/
https://amypad.eu/
https://doi.org/10.5281/zenodo.8017084
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RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional sources, focusing on dementia-related

research studies involving longitudinal amyloid positron

emission tomography (PET), specifically the ones using

the Centiloid (CL) scale. While many studies report the

change in amyloiddepositionover time, the rateof change

that can reliably be considered an increase in amyloid

remains unclear.

2. Interpretation: Our findings suggest that a rate of change

of 3 CL/year or more can be considered reliable accu-

mulation. They also support a CL window of 12–20 for

inclusion into early secondary prevention studies.

3. Futuredirections:Our results shouldbe further validated

in datasets representing the whole AD continuum. The

notion of reliable accumulation should be investigated

according to the tracer, and should consider potential

changes in scanner or tracer.

Clinical and imaging data were collected from 11 parent cohorts with

similar characteristics (EudraCT 2018-002277-22). Inclusion criteria

were as follows: the participant (1) should be non-demented (i.e., Clin-

ical Dementia Rating global score (CDR) ≤ 0.5), (2) older than 50 years

of age, (3) able to undergo MRI and PET-acquisition, and (4) active or

previously enrolled in a Sponsor-approved parent cohort.

The current analysis included participants who underwent longi-

tudinal PET imaging (N = 750 with one PET follow-up, time interval:

3.4 ± 1.9 years; N = 96 with two PET follow-ups, time interval at

follow-up 2: 5.2± 0.7 years).

2.1.2 Insight46

In order to validate estimates of reliable accumulation in a separate

cohort, 282 subjects from Insight46, a prospective neuroscience sub-

study of the MRC National Survey of Health and Development,42

with baseline and follow-up dynamic PET-MR scans (follow-up time:

2.4± 0.2 years) acquired with [18F]florbetapir were included. All study

members were born in the same week of 1946 and the majority were

cognitively normal.

2.2 PET acquisition

2.2.1 AMYPAD PNHS

PET data were acquired using either FMM (N = 481, 64%) or FBB

(N= 269, 36%). In accordance with the tracers’ image acquisition guid-

ance, four frames of 5 minutes were acquired starting at 90 minutes

post-injection of 185 MBq ± 10% of FMM28 or 300 MBq ± 10% of

FBB.27 An image harmonization protocol was implemented to ensure

that quantitative metrics were comparable across centers,43 resulting

in a final effective image resolution of 8mmacross scanners. No partial

volume correction was applied.

2.2.2 Insight46

Images were acquired on the same Biograph mMR 3T PET/MRI scan-

ner (SiemensHealthcare, Erlangen). The full studyprotocol is described

elsewhere.42 In short, 370 MBq of FBP was injected intravenously,

after which PET data were acquired continuously for ∼60 min. Only

static analysis was used in this study and relied on the last ∼10 min-

utes of scanning (from 50 to 60 minutes). Attenuation correction

was performed using a pseudo-CT generated from the MR.44 Images

were smoothed with a 4 mm Gaussian kernel and no partial volume

correction was applied.

2.3 Image processing

2.3.1 AMYPAD PNHS

First, the quality of the scans was manually assessed. Scans that were

deemed to be of sufficient quality were then processed using IXICO’s

in-house fully automatedMR-based PETworkflow. Briefly, PET frames

were co-registered to create an average image that was aligned to

the subject’s T1 weighted (T1w) image. Global cortical average and

whole cerebellum uptakes were computed from the correspond-

ing GAAIN masks (http://www.gaain.org/centiloid-project) from

which SUVr values were derived. Following the reference pipeline,16

SUVr values were converted into appropriate tracer-specific CL

metrics.45

2.3.2 Insight46

The Centiloid pipeline used in Insight46 also followed the reference

pipeline by Klunk et al.16 Details of the implementation can be found

in Coath et al.46

2.4 Visual reads

PNHS images were classified as either positive (VR+: binding in one

or more cortical brain regions unilaterally, as well as striatum for

FMM) or negative (VR−: predominantly white matter uptake) by cer-

tified nuclear physicians or radiologists according to criteria defined

by the manufacturers (Life Molecular Imaging for NeuraCeq and GE

HealthCare for Vizamyl). Based on VR status over time, subjects were

categorized as Stable VR− (VR− at baseline and follow-up), Convert-

ers (VR− at baseline and VR+ at the first or the second follow-up), or

http://www.gaain.org/centiloid-project
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Stable VR+ (VR+ at baseline and follow-up). Twelve participants had a

VR+ at baseline and VR− during follow-ups.

2.5 Statistical analyses

R version 4.3.0 (R Program for Statistical Computing) was used for all

statistical analyses.

2.5.1 Definition of reliable accumulation

To assess longitudinal CL uncertainty, a subset of the overall study

population was identified to form a reference group, with individuals

expected not to accumulate Aβ over time.

For the PNHS, inclusion criteria for the reference groupwere as fol-

lows: baseline CL negative (<12), baseline and follow-up VR negative,

CSF Aβ42/40, or Aβ42 negative (measures and thresholds were either

cohort-specific or based on assay specifications), and CSF p-tau neg-

ative, resulting in the selection of 101 individuals. All CSF measures

were taken within 1 year of the baseline PET acquisition or during

follow-ups.

This approach was replicated in Insight46 by subjects according

to the following criteria: at follow-up, CSF Aβ42/40 value in the top

quartile or normality and normal CSF ptau181 (≤57 pg/mL using

cut-off from the manufacturer and further validated47), no mild cog-

nitive impairment or major brain disorder at baseline (based clinical

consensus criteria48), yielding 16 individuals.

The definition of reliable accumulation and therefore the classifica-

tion of individuals as Aβ-accumulators or non-accumulators was based

on an individual annualized rate of change (ARC) being greater than the

95th percentile of the mean ARC in the reference population. Alter-

natively, we also investigated the use of Gaussian mixture modeling

(GMM, k = 2 Gaussian distributions) to define reliable accumulation

and Aβ-accumulators as individuals with an ARC greater than the 99th

percentile of the first component (corresponding to the mode with the

lowest ARC).

2.5.2 Precision-recall analysis

The baseline CL threshold that best predicts future Aβ accumulation

and VR conversion was established through precision-recall analysis,

maximizing the F1-score (i.e., the harmonic mean of the precision and

recall). In order to inform secondary prevention trials, a similar analy-

sis excluding individuals with a positive VR at baseline was performed.

Bootstrap resampling was used both to optimize the threshold (500

repetitions) and derive its 95% confidence interval (CI; validation using

out-of-sample predictions from 1000 repetitions). Three additional

scenarios were investigated by setting a minimum precision and recall

of 0.7 and a minimum specificity of 0.9. A precision-recall analysis was

preferred to a receiver operating characteristic analysis as it is better

suited for data with imbalanced classes.49

2.5.3 Characterizing longitudinal trajectories

Longitudinal trajectories of Aβ accumulation weremodeled by fitting a

linear mixed effect model (LME) to the whole cohort (lmer 1.1.33 pack-

age in R) with CL as the outcome measure. The first model included

the effect of time, group (i.e., PNHS reference/study group) and the

interaction between the two, allowing for group-specific random

effects (with an unstructured covariance matrix). For the study group,

fitting included random intercepts and slopes, while for the reference

group we allowed random intercepts only in order not to overfit the

model.

The effect of known risk factors and tracer on both baseline

and changes in CL over time were then investigated in the fol-

lowing order: baseline age, APOE-ε4 carriership, PET tracer,

sex, and education (as categorical variable: compulsory/upper-

secondary/post-secondary education). These factors and their

interactionwith timewere kept in subsequentmodels if they improved

the fit of the model, assessed using the corrected Akaike infor-

mation criterion, and if their effect on CL burden was statistically

significant.

We then investigated whether CL load at baseline and the annu-

alized CL accumulation differed across VR status over time (i.e.,

Stable VR−/Converters/Stable VR+) and cognitive state (i.e., Cog:

cognitively unimpaired (CDR = 0)/cognitive impaired (CDR ≥

0.5)). For this analysis, only Converters from VR− to VR+ were

included.

Bootstrap resampling from 1000 samples was used to derive 95%

confidence intervals of model estimates.

2.6 Data and code availability

Data used in the preparation of this article were obtained from the

AMYPAD PNHS dataset, (version v202306, https://doi.org/10.5281/

zenodo.8017084). The R code use for the analysis can be found on

Zenodo (https://doi.org/10.5281/zenodo.10808658).

3 RESULTS

3.1 Demographics

Demographic characteristics for the whole cohort are summarized in

Table 1. The PNHS dataset comprised 750 pre-dementia subjects with

longitudinal amyloid-PET imaging. Participants had a median age of 65

years (range = 49 to 96 years), 57% were females, 41% were APOE-

ε4 carriers, and 18% had baseline VR+ scan. Individuals with FMM

acquisitions had a lower baseline age compared to those with FBB

acquisitions (65.3 ± 8.0 vs. 66.4 ± 6.9 years, p < 0.001), as well as

a higher proportion of APOE-ε4 carriers (FMM = 46%, FBB = 33%,

χ2 = 24.52, p< 0.001).

The whole cohort was then split into a reference subset with indi-

viduals unlikely to accumulate amyloid over the duration of the study

https://doi.org/10.5281/zenodo.8017084
https://doi.org/10.5281/zenodo.8017084
https://doi.org/10.5281/zenodo.10808658
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TABLE 1 Demographic characteristics of the PNHS data, split by tracer.

Variable Overall,N= 750a Florbetaben,N= 269a Flutemetamol,N= 481a p-value

Age, years 65.7 (7.6) 66.4 (6.9) 65.3 (8.0) <0.001b

Gender 0.2c

Male 324/750 (43%) 107/269 (40%) 217/481 (45%)

Female 426/750 (57%) 162/269 (60%) 264/481 (55%)

APOE ε4 alleles (% carriers) 0.002c

0 429/735 (58%) 173/259 (67%) 256/476 (54%)

1 270/735 (37%) 73/259 (28%) 197/476 (41%)

2 36/735 (5%) 13/259 (5%) 23/476 (5%)

(Missing) 15 10 5

VR category 0.12d

Stable VR− 562/750 (75%) 211/269 (78%) 351/481 (73%)

Converters+ (VR−>VR+) 56/750 (7%) 17/269 (6%) 39/481 (8%)

Converters− (VR+>VR−) 12/750 (2%) 1/269 (0%) 11/481 (2%)

Stable VR+ 120/750 (16%) 40/269 (15%) 80/481 (17%)

Education, years 0.003c

Compulsory 133/750 (18%) 54/269 (20%) 79/481 (16%)

Upper-secondary 218/750 (29%) 58/269 (22%) 160/481 (33%)

Post-secondary 399/750 (53%) 157/269 (58%) 242/481 (50%)

CDR 0.007c

0 –Normal 701/747 (94%) 242/267 (91%) 459/480 (96%)

0.5 – Verymild 46/747 (6%) 25/267 (9%) 21/480 (4%)

(Missing) 3 2 1

MMSE 29.2 (1.0) 29.2 (1.0) 29.2 (1.0) 0.6b

(Missing) 59 20 39

N timepoints <0.001c

2 654/750 (87%) 173/269 (64%) 481/481 (100%)

3 96/750 (13%) 96/269 (36%) 0/481 (0%)

Time interval follow-up 1, years 3.00 (2.10, 4.00) 2.20 (2.00, 2.90) 3.40 (2.60, 4.20)

Time interval follow-up 2, years 5.30 (5.20, 5.40) 5.30 (5.20, 5.40) –

Baseline CL 14.1 (24.6) 12.6 (25.3) 15.1 (24.1) 0.002b

ARC, CL/years 1.5 (3.3) 1.8 (3.7) 1.4 (3.0) 0.4b

Abbreviations: APOE, apolipoprotein E; ARC, annualized rate of change, computed as (CLmax(follow-up) – CLbaseline)/dt.; CL, Centiloid; CDR, Clinical Dementia

Rating Global Score, MMSE,Mini-Mental State Examination; VR, visual read.
aMean (SD); n/N (%).
bWilcoxon rank sum test.
cPearson’s chi-squared test.
dFisher’s exact test.

(N = 101; including NFMM= 86 and NFBB= 15; mean follow-up time

3.2 years, SD = 0.9, range = 1.4 to 5.2 years) and an exploratory set

(N= 649; includingNFMM= 395 andNFBB= 254).

In the reference group, themeanbaseline amyloid loadwas2.4±5.7

CL, compared to 14.1 ± 23.3 CL in the exploratory group, with no

significant difference between tracers (p = 0.2). No difference in age,

sex, APOE-ε4 carriership, or years of education was observed across

tracers in this reference group.

3.2 Defining reliable Aβ accumulation

Reliable Aβ accumulation in the PNHS was defined as an ARC greater

than 3.0 CL/year, corresponding to the upper bound of the 95% CI of

the ARC in the reference group (Figure 1A). Within the exploratory

cohort, individuals were then categorized as Aβ-accumulators and

non-accumulators based on whether they surpassed the threshold of

reliable accumulation. According to this definition, 27.9%of individuals
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F IGURE 1 Definition of reliable accumulation using two approaches. (A) Reliable accumulation based on the 95th percentile of the annualized
CL rate of change in a reference group (i.e.,>3.0 CL/year), represented by the orange dotted lines. The plot displays longitudinal CL trajectories
within the PNHS exploratory subset, for Aβ-accumulators (individuals that showed reliable accumulation, in purple) and non-accumulators (in
gray). (B) Reliable accumulation based on gaussianmixturemodeling (k= 2) using the whole PNHS cohort. The orange vertical line represents the
99th percentile of the first Gaussian distribution and corresponds to 2.2 CL/year. ARC, annualized rates of change; CL, Centiloid; PNHS, Prognostic
and Natural History Study.

F IGURE 2 Number of subjects in each category within the
exploratory cohort. Aβ-Accumulators based on the 95th percentile of
the annualized CL rate of change in a reference group (i.e.,>3.0
CL/year). Aβ, amyloid-β; CL, Centiloid; VR, visual reads.

in the exploratory cohort were Aβ-accumulators. As expected, this

number was significantly higher in the Converters and Stable VR+

groups (44/68 = 64.7% and 81/120 = 67.5%, respectively, see count

per category in Figure 2). In the Stable VR− group, still 12.1% (56/461)

were classified as Aβ-accumulators despite having a shorter follow-up

time compared to non-accumulators (p = 0.006). Aβ-accumulators

were on average 3 years older than non-accumulators (67.8 ± 7.8 vs.

64.8 ± 7.7 years, p = 0.001) and tended to have a higher baseline CL

load (8.3 ± 14.1 CL vs. 3.0 ± 8.7 CL, p = 0.016). No difference in sex or

APOE-ε4 carriership was observed.

Using GMM as an alternative method to define reliable accumula-

tion, the reliable Aβ accumulation threshold corresponded to an ARC

greater than 2.2 CL/year (Figure 1B).

In Insight46, the reliable accumulation estimate was 3.7 CL/year

using the 95th percentile of the ARC in the reference group and

3.2 CL/year using the GMM approach. The Aβ-accumulators had

a higher percentage of APOE-ε4 carriers (Aβ-accumulators = 50%,

non-accumulators = 21%, χ2 = 39.01, p < 0.001) and females (Aβ-
accumulators= 45%, non-accumulators= 56%, χ2 = 4.64, p= 0.04).

3.3 Optimal threshold to predict future
Aβ-accumulators

To determine the optimal threshold to predict future Aβ accumula-

tion, a Precision-Recall analysis was used to classify individuals as

Aβ-accumulators or non-accumulators (ARC > 3.0 CL/year) based

on their baseline CL load. The resulting threshold and 95% CI were

15.7 [12.4, 19.4] (Figure 3). Importantly, in individuals with a baseline

VR−, the threshold is lower (12.9 [8.8, 16.6] CL). FMM threshold was

17.4 [13.7, 21.4], higher thanFBB13.0 [8.5, 18.6], albeit overlappingCI.

Using the GMM-based definition of Aβ-accumulators yields a similar

but slightly lower threshold of 12.8 [9.1, 16.5] CL.

Three additional scenarios were investigated by setting a minimum

precision, recall and specificity of 0.7 (Figure 4A). While adding a

constraint on precision and specificity produces comparable results,

increasing recall at the expense of other metrics greatly lowered the

threshold to 4.2 [−1.2, 8.7] CL.

Furthermore, the predictive value of baseline CL is higher in APOE-

ε4 carriers individuals (precision = 0.72; recall = 0.70, threshold: 12.4
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F IGURE 3 (A) Precision-Recall curve using baseline CL load as predictor to identify Aβ-Accumulators. In blue, themaximum F1 score
corresponds to a baseline amyloid load of 15.7 [12.4, 19.4] CL; Bootstrap resampling was used both to optimize the threshold (500 repetitions) and
derive its 95% confidence interval (CI; validation using out-of-sample predictions from 1000 repetitions). (B) ARC versus baseline CL load. The
blue line represents a baseline threshold of 15.7 CL. The shaded blue area defines the boundaries of the 95%CI around the threshold. The orange
line represents the limit above which subjects are considered Aβ-Accumulators (ARC> 3.0 CL/year). The purple curve represents the data fitted
with a quadratic polynomial. Aβ, amyloid-β; ARC, annualized rate of change; CI, confidence interval; CL, Centiloid; VR, visual read.

[6.4, 15.9]) (Figure 4B) and for participants scans with FMM (preci-

sion=0.63; recall=0.63, threshold: 14.3 [10.5, 17.8]) compared toFBB

(precision=0.53) (Figure 4C). Finally, the sensitivity decreased and the

specificity increased with higher levels of education (Figure 4D), which

also resulted in higher baseline CL thresholds to predict future accu-

mulation (threshold compulsory: 14.0 [6.1, 21.1]; threshold upper-secondary:

15.5 [12.4, 19.6] threshold post- secondary: 18.8 [12.8, 23.7]).

3.4 Longitudinal Aβ-PET trajectories

Longitudinal trajectories of amyloid accumulation were characterized

using LME. The first model highlighted the differences between

exploratory and reference groups, with a higher baseline CL in the

former (baseline CLexploratory = 14.0 [12.1, 15.8], baseline

CLreference = 2.3 [1.0, 3.5], t = −10.1, p < 0.001), and by defini-

tion a higher average ARC (ARCexploratory= 1.5 [1.3, 1.8] CL/year,

ARCreference =−0.2 [−0.5, 0.2], t=−8.4, p< 0.001).

In a second step, we tested the predictive value of baseline age,

APOE-ε4carriership, PET tracer, sex, education (in this order), and their
interaction with time as covariates.

First, baseline age and APOE-ε4 carriership had a significant

impact on baseline CL (baseline age: p < 0.001; APOE-ε4 carrier-

ship: t= 4.15, p < 0.001); however, only the interaction of APOE-ε4
carriership with time was also predictive of CL accumulation over

time (APOE-ε4 carriership*time: t= 4.21, p = < 0.001; baseline

age*time: t= 1.70, p = 0.09). Regarding the tracer, FMM base-

line CL estimates were on average approximately five CL higher

than the ones for FBB (t= 3.98, p < 0.001). The interaction

between tracer and time was not significant (t= −1.67, p = 0.09)

(Figure 5).

We also found no evidence of sex differences on CL load and

CL over time. At this stage, the model included the following risks

factors as predictors: baseline age, and APOE-ε4 carriership and its

interaction with time. Adding the level of education, however, was pre-

dictive of baseline CL load, with an amyloid burden on average 3.6 CL

lower for post-secondary education compared to compulsory level of

education (post-secondary vs. compulsory t = −2.31, p = 0.02). Our

results also suggest that higher levels of education (upper- or post-

secondary) were indicative of slower ARC, on average −0.55 CL/year,

compared to compulsory level of education (upper-secondary vs. com-

pulsory t = −2.02, p = 0.04; post-secondary vs. compulsory t = −2.15,

p= 0.032).

Based on these results, we included baseline age, PET tracer, APOE-

ε4 carriership and its interactionwith time and the level of education as

covariates for subsequent analyses (the interactionbetweeneducation

and timewas removed from themodel).

Finally, longitudinal CL trajectories across cognitive groups (i.e., cog-

nitively unimpaired/cognitively impaired) and VR over time (i.e., Stable

VR−/Converters/Stable VR+) were explored. The cognitive status of

individuals basedon theCDRwasnot predictive ofCLburden. Baseline

CL values and ARC were higher in Stable VR+ and Converters com-

pared to Stable VR− (focusing on differences between Stable VR− and

Converters, baseline CL: t= 5.34, p< 0.001; ARC: t= 14.62, p< 0.001),

but no significant difference in ARC was found between Converters

and Stable VR+ (t=−1.58, p= 0.12) (Figure 5).

4 DISCUSSION

The present study characterized Aβ accumulation, as expressed in CL

units based on FMMand FBB amyloid-PET in the AMYPADPNHS pre-
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F IGURE 4 Summary of Precision-Recall Analysis using baseline CL to predict reliable accumulation. The optimal baseline CL threshold is
determined bymaximizing the F1-score. (A) Three additional scenarios were investigated by adding a constraint on precision, recall or specificity
(minimum value= 0.7 for precision and recall, 0.9 for specificity). Bootstrap resampling was used both to optimize the threshold (500 repetitions)
and derive its 95% confidence interval (CI; validation using out-of-sample predictions from 1000 repetitions). (B, C, D) Precision-Recall curves
according to APOE ε4 carriership, tracer, and level of education respectively. APOE, apolipoprotein E; AUC, area under the curve; CL, Centiloid.

dementia population. We first estimated the variability of longitudinal

CL measurements in a reference sub-population expected to remain

stable over time and defined reliable accumulation as an ARC greater

than 3.0 CL/year. In a separate dataset from the Insight46 study, this

was estimated at 3.7 CL/year. This notion should be further evaluated

using several independent cohorts.We then established that a baseline

CL threshold of 16 [12,19] could help identify future Aβ-accumulators

(Figure 6). Furthermore, in the PNHS, APOE-ε4 carriers, and thosewith
a lower educational background exhibited faster rates of Aβ accumu-

lation. Notably, among participants with an initial negative VR, those

who later had a VR positive scan displayed a higher amyloid burden

at baseline (∼11 CL) and an increased ARC (∼4.4 CL/year) in contrast

to participants who consistently tested VR negative throughout their

follow-up period.

Several strategies have been previously developed to distinguish

Aβ-accumulators fromnon-accumulators, based on the SUVr and using

the inflexion in between peaks of bimodal distribution of the ARC,50

or based on the amyloid load and using of k-means clustering and the

mean change + 2SD in an Aβ negative group.51 Whereas these strate-

gies tend to maximize the difference between Aβ-accumulators and

non-accumulators, our normative approach to define Aβ-accumulators

might be helpful in identifying earlier individuals at greater risk of

becoming amyloid positive.

Our study’s approach to use a stable reference group for esti-

mating longitudinal variability aligns with the recent QIBA profile26

and has been used in several studies.19,51–53 However, our reference

group selection criteria were stricter and included CSF amyloid and

tau measurements. This could explain why in AIBL for instance, the
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F IGURE 5 Longitudinal trajectories of amyloid accumulation (A) by tracer and (B) based on VR over time. CL, Centiloid scale; VR, visual reads.

F IGURE 6 Overview of CL thresholds with a focus in the “gray zone,” between 10 and 30 CL. CL, Centiloid; VR, visual reads.

95th percentile absolute change in an amyloid negative group (defined

as CL < 20) was 6.56 CL/year (Bourgeat et al.19) whereas the 95th

percentile estimate in our study was 3.0 CL/year. Further investiga-

tions are crucial to evaluate the notion of reliable accumulation on

which is base the classification of individuals as Aβ-accumulators or

non-accumulators, considering factors such as the tracer used, the

reference region, changes in scanner in between timepoints, and reg-

istration methods. Additionally, taking into account the population’s

diversity and the type of dataset is crucial. Indeed, reliable accumula-

tion in curated research datasets might be lower than more hetero-

geneous clinical datasets. This underscores the need for robustness

testing and cautious interpretation in estimating reliable accumulation

in future studies.

As longitudinal PET studies using CL become increasingly

widespread, establishing a standardized strategy to determine

reliable accumulation and Aβ-accumulators can help better track

subthreshold amyloid accumulation and can potentially help assess

potential re-accumulation of amyloid after successful treatment.

Numerous CL thresholds have been established to correlate the

scale with varying levels of amyloid pathology. Based on post-mortem

studies30 and CSF studies, a CL below 10 units would reliably exclude

the presence of amyloid, and a CL load above 30 units would be strong

evidence of the presence of amyloid.38 The window between 10 and

30 CL units can be regarded as a “gray zone,” indicative of an evolv-

ing pathology trending toward positivity. Indeed, in previous studies,

VR-based thresholds typically fell within this gray zone, ranging from

17 CL for expert readers33,37 to 26 CL in several studies.30,33,54 Our

findings suggest that the lower end of the gray zone (∼12–20CL) could

represent the optimal window to predict short-term Aβ accumulation

as reflected by a reliable CL increase. These results are in accordance

with the work of Farrell et al. who reported an optimal threshold to

predict future accumulation varying from 15 to 17.5 CL across AIBL,

HABS and ADNI cohorts,25 as well as the reliable worsening estimate

of 19 CL determined by Jack et al.24 (Figure 5). In the future, in a clini-

cal setting focused on secondary prevention, a follow-up scan could be

considered after 2 years for individuals with a CL above 15 but below

30 units.

Furthermore, we established three scenarios to help inform subject

selection strategies. In our precision-recall analysis, by setting a mini-

mum precision and recall of 0.7 andminimum specificity of 0.9, the aim



3438 BOLLACK ET AL.

was to help minimize false positives, help minimize false negatives, or

increase our ability to correctly predict non-accumulators. Increasing

precision and specificity results in baseline CL thresholds higher than

our reference estimate (albeit overlapping confidence intervals) and,

therefore, closer toVR-basedpositivity thresholds.As canbeexpected,

increasing recall markedly decreased baseline CL threshold. Indeed, as

the CL burden reflects the cumulative effect of amyloid accumulation

over time, a few subjects with a low baseline amyloid burden are also

Aβ-accumulators.

Finally, in assessing the longitudinal CL trajectories over time, two

primary factors emerged as influential on the ARC: APOE-ε4 carrier-

ship and level of education. Although we found a significant impact

of APOE-ε4 carriership on the ARC, this might not be generalizable

to cohorts with higher amyloid burden or mostly cognitively impaired

individuals.23,55,56 Indeed, compared to non-carriers, APOE-ε4 carriers
aremore likely to accumulateAβpathology and tend todevelop thedis-
ease earlier.57,58 In addition, the level of education is sometimes used

as a proxy for conceptualizing resistance to amyloid deposition59,60;

however, further studies with more specific markers are warranted

to elucidate the potential protective factors against amyloid accumu-

lation. Importantly, our results showed no differences in longitudinal

trajectories across tracers, confirming that the CL scale is well-suited

for multi-tracer, longitudinal PET studies. Finally, no difference was

observed between cognitive groups, which probably reflects that the

PNHS (like Insight46) is a preclinical cohort with only 5% of individuals

having (verymild) cognitive impairment.

The current study also presents some limitations. First, VR were

performed by local readers, so some disagreement is to be expected.

Second, the CL is derived from the SUVr, which is a semi-quantitative

measure that could be affected by some treatment strategies (e.g.,

blood flow fluctuations, reference kinetics, tracer clearance). Modifi-

cations in these factors will lead to changes in SUVr, independent of

any shifts in amyloid levels. Therefore, future trials should reassess the

validity of SUVr for each new drug using dynamic PET to perform a full

kinetic analysis. Third, the definition of reliable accumulation is linked

to the methodology employed to calculate the ARC. If the ARC was

determined based on LME estimates, we would expect lower values.

Last, our reference subset demonstrated a bias toward FMM, incor-

porating only 15 FBB scans. Similarly, the Insight46 reference subset

consisted of 35 individuals only. To refine our understanding of reliable

accumulation, future evaluations should be conducted per tracer and

encompass datasets with larger sample sizes.

The present study characterized Aβ accumulation expressed in

CL units using three United States Food and Drug Administra-

tion and European Medicines Agency approved fluorinated amyloid

tracers in a mainly pre-clinical population. We first presented a

normative strategy to define reliable amyloid accumulation by estimat-

ing the variability of longitudinal CL measurements (3 CL/year in the

PNHS) in a sub-population expected to remain stable over time. We

then established a baseline CL of 16 [12,19] to help predict future Aβ-
accumulators. Our results support a CL window of 12–20 for inclusion

of subjects into early secondary prevention studies.
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