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Abstract 
Alzheimer’s disease is strongly linked to metabolic abnormalities. We aimed to distinguish amyloid-positive people who progressed to cognitive 
decline from those who remained cognitively intact. We performed untargeted metabolomics of blood samples from amyloid-positive individ-
uals, before any sign of cognitive decline, to distinguish individuals who progressed to cognitive decline from those who remained cognitively 
intact. A plasma-derived metabolite signature was developed from Supercritical Fluid chromatography coupled with high-resolution mass spec-
trometry (SFC-HRMS) and nuclear magnetic resonance (NMR) metabolomics. The 2 metabolomics data sets were analyzed by Data Integration 
Analysis for Biomarker discovery using Latent approaches for Omics studies (DIABLO), to identify a minimum set of metabolites that could 
describe cognitive decline status. NMR or SFC-HRMS data alone cannot predict cognitive decline. However, among the 320 metabolites iden-
tified, a statistical method that integrated the 2 data sets enabled the identification of a minimal signature of 9 metabolites (3-hydroxybutyrate, 
citrate, succinate, acetone, methionine, glucose, serine, sphingomyelin d18:1/C26:0 and triglyceride C48:3) with a statistically significant ability 
to predict cognitive decline more than 3 years before decline. This metabolic fingerprint obtained during this exploratory study may help to 
predict amyloid-positive individuals who will develop cognitive decline. Due to the high prevalence of brain amyloid-positivity in older adults, 
identifying adults who will have cognitive decline will enable the development of personalized and early interventions.
Keywords: Alzheimer’s disease, Bimodal metabolomics, Cognitive decline, Early prediction, Metabolite signature, Multiomics integrative method

Alzheimer’s disease (AD) affects over 35 million people world-
wide and is anticipated to affect 115 million people by 2050 
(1). To date, no treatment can reverse the clinical progression 
of the disease, especially in its later stages. Early detection 
is crucial from a clinical and societal point of view, poten-
tially enabling the use of preventive strategies to fight against 
memory loss, cognitive decline, and functional impairment. 
Amyloid-beta (Aβ) peptide accumulation is thought to be an 

early trigger and marker of AD pathophysiology, and total 
amyloid load increases the risk of cognitive decline onset (2). 
However, only some individuals with amyloid accumulation 
experience cognitive decline. The identification of patients 
with an increased risk of cognitive decline is a major chal-
lenge to better determine those who might best benefit from 
innovative therapies (3) and will require additional metrics 
beyond amyloid load for better prediction.
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AD is strongly linked to aging, which is accompanied by 
cognitive decline, memory loss, metabolic dysregulation, 
bioenergetic abnormalities, and inflammation. Studies have 
linked metabolomic profiles to aging (4), disease onset (5,6), 
and mortality (7), demonstrating that the human blood 
metabolome directly reflects physiological status. However, 
although perturbations in metabolism are widely recog-
nized to be related to aging, few links have been established 
between systemic abnormalities in metabolism and cognitive 
decline (8). The healthy brain is the key organ that controls an 
individual’s homeostasis, and its energy metabolism is fueled 
exclusively by metabolites such as glucose and ketone bodies. 
Furthermore, the lipid rheostat is essential for proper brain 
function. Therefore, the global monitoring of both lipid and 
polar metabolites is essential to assess as early as possible the 
decline of brain health, which is usually manifested by cog-
nitive decline. In this context, metabolomics has become a 
powerful phenotyping tool, in which measurements of metab-
olites at scale enable a molecular understanding of (patho)
physiology and identification of biomarkers of metabolic 
deviations (9–11). Compared to clinical assessments based 
on single metabolites, metabolic signatures provide a direct 
input and readout of aging processes, which can reveal subtle 
key metabolic changes and ultimately stratify health trajec-
tories (12). Several metabolomics studies using proton (1H) 
nuclear magnetic resonance (NMR) or mass spectrometry 
(MS) on blood samples have identified many altered metab-
olites in patients with dementia compared with healthy con-
trols (13,14). Nevertheless, these studies were cross-sectional, 
capturing single time points. Longitudinal studies considering 
the development of cognitive decline that occurs over a long 
period of time could connect metabolic changes to clinical 
phenotypes.

In this exploratory study, we aimed to identify a panel 
of metabolic biomarkers that could be used to predict cog-
nitive decline at the early stages of amyloid accumulation 
before clinical symptoms manifest. To fulfill this objective, 
amyloid-positive subjects from the MAPT study, categorized 
as cognitive decliners or non-decliners over up to a 4-year 
follow-up, were selected and plasma samples at inclusion 
were analyzed by determining the plasma-derived metabolite 
signature of each individual.

Materials and Methods
Clinical Assessment
MAPT study
Plasmas samples were obtained from the Multi-
domain Alzheimer Preventive Trial (MAPT, ClinicalTri-
als.gov [NCT00672685]), a randomized, multicenter, 
placebo-controlled trial conducted with community-dwelling 
older adults in France and Monaco. Participants were allo-
cated into 4 groups, either receiving ω-3 polyunsaturated 
fatty acid (PUFA) supplementation, a multidomain interven-
tion (based on cognitive training, nutritional counseling, and 
physical activity advice), both, or placebo. The intervention 
lasted for 3 years and was followed by an additional 2-year 
observational phase. Recruitment of participants started in 
May 2008 and ended in February 2011. Follow-up ended in 
April 2016 (15). A detailed description of the MAPT study 
can be found elsewhere (15). In summary, eligibility crite-
ria comprised: age 70 years or older; not presenting major 

neurocognitive disorders, Mini-Mental State Examination 
[MMSE] score ≥24; presenting at least 1 of the following: 
spontaneous memory concern, inability to perform 1 instru-
mental activity of daily living (IADL), or slow usual-pace 
walking speed (<0.8 minutes/seconds). The present study 
followed the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) guideline (16).

Ethical aspects
The study was approved by the French Ethics Committee 
located in Toulouse (CPP SOOM II) and authorized by the 
French Health Authority. Written consent was obtained from 
all participants. The protocol is registered on the clinical trials 
database (www.clinicaltrials.gov-NCT00672685).

Definition of subgroups analysis
Twenty-four sex-matched participants, half decliners, and 
half non-decliners provided blood samples for this explor-
atory study, but only 20 participants had usable metabolo-
mics data. Decliners/non-decliners were classified according 
to overtime decrease in the MMSE across the follow-up: 
those with ≥2 points decrease were considered decliners; the 
others were considered non-decliners. The positive status of 
amyloid in plasma was measured as described previously 
(17).

Characteristics of the participants
Outcomes were assessed at the visit. Blood samples were 
collected at the initial visit and then annually for 5 years. 
Overall cognitive performance was assessed using: a com-
posite cognitive score (CCS) (18) based on 4 tests (the 10 
orientation items of the MMSE, the Digit Symbol Substitu-
tion Test, free and total recall of the Free and Cued Selective 
Reminding Test, and the Category Naming Test); and the 
MMSE score (19). CCS was computed as the mean z-score 
of the 4 domains, calculated using the baseline mean and 
SD values of the corresponding test. The physical capacities 
were evaluated by the usual pace gait speed (GS) test, the 
Short Physical Performance Battery, the 5-repetition sit-to-
stand test (5-STS) (20), and the maximal handgrip strength 
(HS) (measured in kg by a handled dynamometer [Jamar, 
Bolingbrook, IL]).

Measurement of cognitive decline
The MMSE score is a global cognitive scale used worldwide. 
It is widely used in the literature to describe cognitive decline 
(21). The cognitive composite score referenced in this article 
is tailored to the MAPT study and lacks a defined thresh-
old for categorizing our population into 2 groups based on 
this score. Consequently, in this study, the composite score 
is exclusively employed to characterize the baseline study 
population (22). The cognitive composite score serves solely 
for characterizing the baseline sample and is not utilized for 
delineating the “no decline” and “decline” subgroups. For this 
purpose, we used the difference in the MMSE global score 
assessed longitudinally.

Metabolomic profiling
Extraction of plasma samples
A total of 100 µl of plasma samples were homogenized in 
1 ml of methanol. The homogenates were transferred to glass 
tubes with 900 µl of methanol and 2 ml of dichloromethane 
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was added. The samples were vortexed and centrifuged 
(1 500g, 5 minutes, 4°C). Supernatants were collected and 
600 µl of 0.9% NaCl solution was added. Samples were vor-
texed, and centrifuged (1 500g, 5 minutes, 4°C), and aqueous 
and organic phases were collected into 2 test tubes.

Sample preparation of aqueous extracts for NMR analyses
Aqueous phases were dried using the SpeedVac facility. Dried 
extracts were reconstituted in 200 µl of phosphate buffer 
(0.2M, pH 7.0) prepared in deuterium oxide (D2O) and con-
taining 1 mM of sodium trimethylsilylpropionate (TSP), cen-
trifuged (15 minutes, 2 870g, 4°C) and transferred into 3 mm 
NMR tubes.

NMR analyses
1H NMR spectra were obtained at 300 K on a Bruker 
Avance III HD 600 MHz NMR spectrometer (Bruker Bio-
spin, Rheinstetten, Germany), operating at 600.13 MHz for 
1H resonance frequency using an inverse detection 5 mm 
1H-13C-15N-31P cryoprobe. “Tuning” and “matching” of the 
probe, lock, shims tuning, pulse (90°), and gain computa-
tion are automatically performed on each sample. The 1H 
NMR spectra were acquired using the 1D NOESY exper-
iment with presaturation for water removal (noesypr1d), 
with a mixing time of 100 ms. A total of 128 transients were 
collected into 64 000 data points using a spectral width of 
12 ppm, a relaxation delay of 15 seconds, and an acquisi-
tion time of 4.55 seconds. Prior to the Fourier transform, an 
exponential line broadening function of 0.3 Hz was applied 
to the free induction decays. All NMR spectra were phase- 
and baseline-corrected and referenced to the chemical shift 
of TSP (0 ppm) using Topspin (V3.2, Bruker, Biospin, Ger-
many). The 1H NMR spectra were then divided into vari-
able size buckets between 8.5 and 0.7 ppm using the AMIX 
software (v3.9.15, Bruker, Rheinstetten, Germany), and the 
area under the curve was calculated for each bucket (integra-
tion). Variable-sized bucketing means that each bucket may 
have an individual size. Buckets were defined graphically as 
a spectral pattern (excluding solvent signals, and noise), and 
this pattern was used for bucketing. A total of 102 buckets 
or variables (several variables can correspond to the same 
metabolite) were defined with this method. Integrations were 
normalized according to the total intensity. Preprocessed 
data were then exported into an Excel file. Spectral assign-
ment was based on matching one-dimensional (1D) data 
to reference spectra in a home-made database, as well as 
with other databases (https://bmrb.io/; https://www.hmdb.
ca; https://peakforest.org/). Assignments were confirmed by 
2D NMR experiments: 1H-13C HSQC (Heteronuclear Single 
Quantum Correlation); 1H-1H COSY (Correlation Spectros-
copy; 1H-1H TOCSY [Total Correlation Spectroscopy]) and 
1H-13C HMBC (Heteronuclear Multiple Bond Correlation). 
Validation of identification was based on the nomenclature 
of the metabolomics standards initiative (23). A total of 30 
compounds were identified (Level 1), with the same proton 
and carbon-13 chemical shifts of reference compounds ana-
lyzed in the same conditions.

Sample preparation for lipidomic analyses
A total of 20% of the organic phase were dried off in the 
presence of a mixture of internal standards (11:0 LPC 
(2.5mg/ml), 13:0 LPE (2mg/ml), 12:0 PG (2mg/ml), 13:0 
PC((5mg/ml), 12:0 PE (5.5mg/ml), d18:1/12:0 Cer (2mg/ml), 

d18:1/12:0 lacCer (6mg/ml), d18:1/12:0 GalCer (2.5mg/ml), 
d18:0/12:0 SM (5mg/ml), TG 17:1:17:0/17:0 d((2.5mg/ml), 
FA 17:0 (5mg/ml), CE 17:0 (1mg/ml), DG 12:0-12:0 (5mg/
ml), PI 15:0-18:1-d7 (1.5mg/ml), PS 12:0-12:0 (3mg/ml)) 
and dissolved in 100 µl of MeOH:Isoprpanol:H2O (v/v/; 
65:35:5).

Untargeted lipidomic profiling by Supercritical Fluid 
chromatography coupled with high-resolution mass 
spectrometry (SFC-HRMS)
The lipid extract was profiled using supercritical fluid chro-
matography. One µL of the extract was injected on the 
Ultra-Performance Convergence Chromatography (UPC2) 
system coupled online to an Xevo G2-XS time of flight (Qtof; 
Waters, Milford, MA) equipped with electrospray ionization 
(ESI). The analysis was performed in both ionization modes 
(positive and negative) in 2 separate runs on an ACQUITY 
UPC2 Torus diethylamine column (100 × 3.0 mm inner diam-
eter (i.d.), particle size: sub-1.7µm, Waters) at 40°C. Mobile 
phases with a flow rate of 1.2 mL/min were constituted by 
SCCO2 for the A phase and MeOH:H2O (98:2; v/v) with 
20 mM of ammonium acetate for the B phase (modifier). The 
gradient program was as follows: initial conditions were 1% 
of B solvent; from 0.5 to 6 minutes it was increased to 40% 
then from 6 to 6.10 minutes to 65%. The solvent B was main-
tained to 65% during 3 minutes then the gradient went back 
to initial conditions in 3 minutes with an active back pres-
sure regulator (ABPR), 1 500 pounds per square inch (psi). 
From 6 to 9 minutes, the flow rate was decreased to 1.1 mL/
minutes. The make-up solvent was MeOH:H2O (95:5; v/v) 
at 0.1 mL/minutes during all run. The source parameters of 
the mass detector were set as follows: for positive and neg-
ative analysis source temperature was 150°C, capillary volt-
age was at −2.6 kV in negative mode and 3 kV in positive 
mode, desolvation gas flow rate was 1 000 L/hour, cone gas 
flow rate was set at 50 L/hour, and the desolvation tempera-
ture was 550°C. The analyses were performed in MS full 
scan in centroid mode from 50 to 1 500 Da with dynamic 
range extended (DRE) activated. MS/MS experiments were 
performed in positive and negative ion modes on the same 
instrument, using a ramp of collision energy ranging from 10 
to 50 eV. The isolation width was set at m/z 5. MS/MS mass 
spectra were inspected manually to confirm annotations. The 
method allows the separation and profiling of 18 subfamilies 
of lipids: sterol and sterol ester, diacylglycerid, triacylglycerid, 
ceramides, phosphatidylcholine (PC), phosphatidylserine, 
phosphatidylethanolamine (PE), phosphatidylinositol, phos-
phatidylglycerol, LysoPC, LysoPE, cardiolipin, sphingomy-
elin, monohexosylceramide, dihexosylceramides, free fatty 
acids and acyl-carnitine. The lipidomics data were processed 
with a suspect screening approach, through the interrogation 
of an in-house database, using MS-DIAL (24) which allows 
the relative quantification of each species of subclasses fam-
ilies using internal standards (one standard per sub-class of 
lipids) (25).

Statistical Analysis
Clinical data
Descriptive statistics were provided using mean (SD) and 
absolute values and percentages, as appropriate. The Mann–
Whitney U test and Fisher’s exact test were performed as 
appropriate to examine the differences between decliners in 
cognitive function and nondecliners.
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Statistical metabolomic analysis
Multivariate analyses were used to separate patients accord-
ing to decline status from metabolome or lipidome profiles. 
First, Principal Components Analysis (PCA) was performed 
to reveal intrinsic clusters (eg, Sex) and detect eventual out-
liers. Covariates that differed between cognitive decliners 
and non-decliners at p < .05 were assessed using PCA. Par-
tial least squares–discriminant analysis (PLS-DA) was then 
used to model the relationship between decline status and 
spectral data. Data were Pareto-scaled. The R2Y parameter 
represents the explained variance. Sevenfold cross-validation 
was used to determine the number of latent variables to 
include in the PLS-DA model and to estimate the predic-
tive ability (or predicted variance, Q2 parameter) of the fit-
ted model. PLS-DA models with a Q2 value higher than 
0.4 were considered valid (26). SIMCA-P software (V14, 
Umetrics AB, Umea, Sweden) was used to perform the mul-
tivariate analyses, and R (https://www.r-project.org/) for 
univariate testing. The 2 analytical methods used to profile 
plasma metabolites provide complementary information, 
since 1H NMR is used to profile polar metabolites in aque-
ous extracts while SFC-HRMS allows to profiling of lipids 
in organic extracts. Statistical integration of both data sets, 
that is, simultaneous analysis of NMR and MS data sets, can 
be very beneficial to increase information about the decline 
status and so to get more predictive models of decline. We 
used DIABLO (27) for this purpose. This supervised mul-
tivariate method generalizes sparse Canonical Correlation 
Analysis (CCA) to classification. CCA is used to assess the 
correlation between block variables, that is, the NMR and 
MS blocks in this study. The sparse version of CCA per-
forms variable selection. This selection allows the discard-
ing of noisy variables and redundancy within and between 
the data sets: only predictive variables of the decline status 
are selected in the final model. DIABLO works in 2 steps: 
in the first step, the optimal number of latent components 
is chosen. Then, the optimal number of variables to select 
in each data set is fixed. These optimal numbers are cho-
sen to minimize the balanced error rate (BER) defined as 
the average of the errors made on each class (Decliners 
classified as non-Decliners and non-Decliners classified as 
Decliners). BER was computed using 4-fold cross-validation. 
We applied a bootstrap resampling strategy to assess the 
stability of the optimal numbers of latent components and 
variables to select. For each bootstrap sample, the optimal 
number of latent components to include in the model was 
first fixed (models with 1–5 components were tested). Once 
the number of latent components was fixed, the number of 
variables to select in each data set was optimized using a 
grid of values including 1–9 (step = 1), 10–100 (step = 5) 
variables for the metabolomic data set and 1–9 (step = 1), 
10–290 (step = 5) variables for the lipidomic data set.

The final model (on the entire sample) was fitted based 
on the bootstrap results. Model performance was evaluated 
using Aurea under Curve (AUC) values. The mixOmics R 
package was used for the DIABLO method (28).

Results
Characterization of the Samples From MAPT Study 
Participants
Twenty participants (n = 8 decliners in cognitive function; 
n = 12 nondecliners) were included in the placebo group of 

the MAPT study (Table 1). Decliners and non-decliners did 
not have statistically significant baseline differences in socio-
demographic factors, clinical measures, such as comorbidi-
ties, and functional measures that included GS, SPPB (Short 
Physical Performance Battery), mood, or cognitive function. 
As shown in Table 1, the mean follow-up duration was 4.7 
years for nondecliners and 3.6 years for decliners. How-
ever, this difference did not reach statistical significance (p 
value = .094), leading us to exclude follow-up length as a 
covariate in our model.

Aqueous Metabolomics or Lipidomic Profiling 
Alone Cannot Predict Future Cognitive Decline
We used dual technology for the same blood sample, which 
allows us to cover a very large number of metabolites and 
assess the different lipid species. 1H-NMR provides rela-
tive quantification of metabolites based on the intensity of 
the spectral peaks while SFC-HRMS offers large metabolite 
coverage, sensitivity, and selectivity. So, to provide comple-
mentary information about aqueous and lipid metabolites 
and to broaden metabolite coverage, we performed unbiased 
plasma metabolomic profiling of aqueous and lipid metabo-
lites, which allowed the identification of 30 polar metabolites 
and 290 lipid species. No covariate exhibits a significant dif-
ference between groups at p < .05; hence, none of the covari-
ates was taken into consideration. Individual PCA was first 
performed on each data set to describe the global variability 
and information on the decline status contained in the pro-
files. The 2D score plots showed that participants could not 
be separated according to cognitive decline status, indicating 
that the main variability is independent of cognitive status 
(Supplementary Figure 1). The supervised PLS-DA method 
was used to model the relationship between the decline status 
and spectral profiles. No significant model PLS-DA could fit 
data, meaning that neither the aqueous nor the lipidomic data 
set contained any predictive signature of the decline status.

Integration of the Metabolomic Data sets Allows 
Prediction of Future Cognitive Decline
The 2 omics data sets contained complementary informa-
tion and can provide a more comprehensive and detailed 
understanding of the metabolome, therefore we next tested 
whether a predictive signature of the decline status could be 
defined by statistically integrating both data sets. We applied 
the multi-omics integrative Data Integration Analysis for Bio-
marker discovery using the Latent cOmponents (DIABLO) 
method on Pareto-scaled data. This method seeks common 
information across different data types through the selec-
tion of a subset of molecular features, while discriminating 
between multiple phenotypic groups (27). The bootstrap 
resampling method was used to assess the robustness of the 
number of latent components and the number of variables 
to select per block. These optimal numbers were chosen to 
minimize the 4-fold cross-validation-based BER. Models with 
1 latent component including 1–20 NMR variables and 1–2 
MS variables (Supplementary Figure 2) were tested to select 
the optimal number of variables to select in the NMR and in 
the MS data sets. We observed that for most of the bootstrap 
samples, less than 20 variables in NMR block (53%) were 
selected and 2 variables in the lipidomic block (40%). Sphin-
gomyelin d18.1_C26.0 and triglyceride 48.3 were the most 
frequently selected in the models adjusted on bootstrap sam-
ples (60%, Supplementary Figure 3). This means that these 
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Table 1. Baseline Characteristics of Decliners (n = 8) and Non-decliners (n = 12)

N Overall
(N = 20)

Evolution of MMSE

No decline
(N = 12)

Decline
(N = 8)

p Value

Age (y), mean (SD) 20 77.0 (5.4) 78.3 (5.3) 74.9 (5.0) .153

Female, n (%) 20 10 (50%) 6 (50%) 4 (50%) 1.000

Education, n (%)

 � No diploma or primary certificate 19 5 (26%) 3 (27%) 2 (25%) .921

 � Secondary education 6 (32%) 4 (36%) 2 (25%)

 � High school diploma 3 (16%) 1 (9%) 2 (25%)

 � University level 5 (26%) 3 (27%) 2 (25%)

Comorbidities, n (%)

 � Asthma/COPD 20 1 (5%) 0 (0) 1 (13%) .400

 � Diabetes 3 (15%) 2 (17%) 1 (13%) 1.000

 � Hypertension 10 (50%) 5 (42%) 5 (63%) .650

 � Hypercholesterolemia 10 (50%) 5 (42%) 5 (63%) .650

 � Ischemic heart disease 3 (15%) 1 (8%) 2 (25%) .537

 � Stroke 1 (5%) 0 (0) 1 (13%) .400

 � Heart failure 0 (0) 0 (0) 0 (0) —

 � Active cancer 0 (0) 0 (0) 0 (0) —

BMI (kg/m2), mean (SD) 20 25.7 (2.6) 26.1 (2.7) 25.1 (2.5) .375

GDS score (0–15), mean (SD) 20 3.1 (2.3) 3.3 (2.9) 2.9 (1.2) .938

MMSE score (0–30), mean (SD) 20 27.0 (1.6) 26.9 (1.5) 27.1 (1.8) .665

FCSRT score, mean (SD)

 � Free recall (0–48) 20 26.8 (6.4) 28.1 (4.6) 24.9 (8.4) .438

 � Total recall (0–48) 20 45.8 (3.9) 46.8 (1.2) 44.1 (5.9) .219

 � Delayed free recall (0–16) 20 9.8 (2.6) 10.3 (2.0) 9.1 (3.3) .350

 � Delayed total recall (0–16) 20 15.6 (1.1) 15.8 (0.4) 15.1 (1.7) .284

TMT Part A, mean (SD) 20 48.7 (12.4) 47.0 (13.4) 51.3 (11.2) .462

TMT Part B, mean (SD) 20 122.5 (36.4) 121.3 (33.3) 124.3 (43.1) .908

WAIS-R, mean (SD) 20 33.1 (5.7) 33.2 (6.4) 32.9 (4.9) .938

COWAT score, mean (SD) 20 18.7 (5.3) 18.5 (6.5) 19.0 (3.3) .816

CNT score, mean (SD) 20 24.5 (6.5) 26.1 (6.6) 22.1 (5.8) .245

CDR score, n (%)

 � Score 0 20 8 (40%) 4 (33%) 4 (50%) .648

 � Score 0.5 12 (60%) 8 (67%) 4 (50%)

SPPB score (0–12), mean (SD) 19 10.2 (1.6) 9.7 (1.8) 10.8 (1.0) .234

Gait speed (m/s), mean (SD) 19 1.0 (0.3) 1.0 (0.3) 1.0 (0.3) .772

Chair stand time (sec), mean (SD) 19 10.9 (3.4) 11.8 (3.6) 9.8 (3.0) .173

Balance test (0–4), mean (SD) 20 3.4 (0.9) 3.3 (1.1) 3.6 (0.7) .440

Handgrip strength (kg), mean (SD) 18 28.8 (11.6) 29.4 (10.1) 27.5 (15.2) .606

Fried frailty phenotype, n (%)

 � Robust (0/5) 17 8 (47%) 6 (55%) 2 (33%) .620

 � Pre-frail (1–2/5) 9 (53%) 5 (45%) 4 (67%)

 � Frail (≥3/5) 0 (0) 0 (0) 0 (0)

APOE status

 � ε2 17 0 (0) 0 (0) 0 (0) .762

 � ε2/ε3 1 (6%) 1 (10%) 0 (0)

 � ε2/ε4 0 (0) 0 (0) 0 (0)

 � ε3 11 (65%) 7 (70%) 4 (57%)

 � ε3/ε4 5 (29%) 2 (20%) 3 (43%)

 � ε4 0 (0) 0 (0) 0 (0)

APOE ε4 carrier (ε2/ε4, ε3/ε4, ε4), n (%) 17 5 (29%) 2 (20%) 3 (43%) .593

Cortical SUVR, mean (SD) 12 1.34 (0.16) 1.27 (0.17) 1.41 (0.14) .298
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2 lipids (sphingomyelin d18.1_C26.0 and triglyceride 48.3) 
are the most predictive of the decline status. Ultimately, 12 
variables, including 10 from the NMR data set and 2 from the 
MS data set, together represented the best possible combina-
tion to predict decline (Figure 1A) and enabled discrimination 
of patients according to the decline status (Figure 1B). These 
variables corresponded to 7 aqueous metabolites and 2 lipids 
from 320 initial molecules (Table 2). Among the discriminat-
ing variables, 4 different buckets/variables were obtained for 
3 hydroxybutyrate. These 9 metabolites were the most fre-
quently selected in the models adjusted on bootstrap samples 
(≥60%, Supplementary Figure 3).

The Prediction Model Performs Well in 
Discriminating No Decline Versus Decline Groups
We then used receiver operating characteristic (ROC) curves 
to evaluate the performance of the prediction model. The 
results showed very good predictive ability with an AUC of 
0.9167 with a p value = .002028 for NMR (Figure 2A) and 
an AUC = 0.8021 with a p value = .02526 for the lipidomic 
data sets (Figure 2B). We used a clustered image map to dis-
criminate between the No Decline and Decline groups and 
to obtain the metabolic signature of each sample. Figure 2C 
shows discrimination between the 2 groups. These results 
indicate that concentrations of 3-hydroxybutyrate, citrate, 
succinate, acetone, and methionine are lower in the Decline 
group whereas those of glucose, serine, sphingomyelin d18.1_
C26.0, and triglyceride 48.3 are higher.

Discussion
This exploratory study identifies a plasma molecular sig-
nature that predicts cognitive decline in amyloid-positive 
individuals. Using untargeted metabolomics with the combi-
nation of 2 complementary NMR and SFC-HRMS methods 
and a mixOmics framework for the integration of multiple 
data sets (DIABLO), we could clearly identify a minimal 
signature of 9 metabolites out of 320 that distinguished 
people who declined at least 2 points in the MMSE over 
4 years from those who did not. One of the reasons why 
the integration of the 2 data sets and the use of DIABLO 
are possibly more effective may stem from the fact that, 
through the integration of the 2 data sets, we enhance 
the coverage of the metabolome, thereby acquiring more 
information about the decline effect. Additionally, variable 
selection is implemented in the DIABLO method, enabling 
the exclusion of noisy and “confounded” variables (those 

unaffected by cognitive decline and therefore not predictive 
of decline). This differs from classical multivariate methods 
like PCA and PLS-DA, where such variable exclusion is not 
explicitly carried out. To prevent the occurrence of over-
fitting resulting from our relatively small sample size, we 
implemented a combination of bootstrap resampling and 
cross-validation in our study. This approach was employed 

N Overall
(N = 20)

Evolution of MMSE

No decline
(N = 12)

Decline
(N = 8)

p Value

SUVR positive (≥1.17), n (%) 12 10 (83%) 4 (67%) 6 (100%) .455

Plasma amyloid-beta, mean (SD) 20 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) .557

Follow-up length (y) 20 4.3 (1.3) 4.7 (0.8) 3.6 (1.6) .094

Notes: APOE = Apolipoprotein E; BMI = body mass index; CDR = Clinical Dementia Rating scale; CNT = Category Naming Test; COPD = chronic 
obstructive pulmonary disease; COWAT = Controlled Oral Word Association Test; FCSRT = Free and Cued Selective Reminding Test; GDS = Geriatric 
Depression Scale; MAPT = Multidomain Alzheimer Preventive Trial; MMSE = Mini Mental State Examination; SD = standard deviation; SPPB = Short 
Physical Performance Battery; SUVR = standard uptake value ratio; TMT = Trail Making Test; WAIS-R = Wechsler Adult Intelligence Scale-Revised.
p Values determined using Fisher’s exact test for categorical variables or using Mann–Whitney U test for continuous variables.

Figure 1. A totsl of 9 metabolites across the NMR and SFC-HRMS 
data sets together predict cognitive decline. (A) Variable importance 
plots for the cognitive decline metabolome and lipidome biomarker 
panel. The most important variables (according to the absolute value of 
their coefficients) are ordered. Absolute loading plot for the 1H-NMR 
(top) and SFC-MS (bottom) variables selected by multiblock sPLS-DA 
(DIABLO) performed on the MAPT study (non-decliner and decliner 
patients). The most important variables (according to the absolute value 
of their coefficients) are ordered from bottom to top. (B) Score plot from 
multiblock sPLS-DA. Samples are represented based on the specified 
component (here 1 latent component). Samples are colored by decline 
status. 3OHbut: 3-hydroxybutyrate; TG: Triglyceride; SM: Sphingomyelin.

Table 1. Continued

http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glae077#supplementary-data
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to finely tune the hyperparameters of the DIABLO model, 
which involved determining the number of canonical com-
ponents and selecting the 1H-NMR buckets and MS lip-
ids to be incorporated into these components. The final 
model’s performance (AUC) was evaluated using a 2-fold 
cross-validation, repeated 10 times. This strategy allowed 
us to develop a model with a slightly biased predictive 

performance, indicated by Bias(AUC1H-NMR) = −0.004 
and Bias(AUCSFC-MS) = −0.04.

Cognitive function is affected by both hereditary and envi-
ronmental parameters (29,30). Given the diversity of pheno-
types associated with cognitive decline, no single biomarker 
can fully reflect this complex pathophysiological process in 
amyloid-positive participants subjects. Mild cognitive impair-
ment (MCI) and AD are both associated with changes in 
metabolic biomarkers. The metabolome reflects interactions 
between genetics, epigenetics, and the environment, and 
understanding the relationship between metabolic profiles 
and cognitive decline can lead to improved biomarkers for 
cognitive decline or AD before the onset of overt clinical signs.

A key result of this study is the use of an untargeted metab-
olomics approach to predict future decline. To date, targeted 
metabolomics approaches have been used to describe cog-
nitive decline, however, unbiased metabolomic approaches 
are less frequently applied. Several targeted metabolic stud-
ies have identified plasma metabolic biomarkers associated 
with current MCI or Alzheimer’s disease status (13,31–34). 
Previous work has also identified a set of 10 lipids that pre-
dicted MCI, however, these results could not be subsequently 
replicated (35–37). An elegant recent study by Buergel T. et 
al. used NMR to analyze blood samples from individuals in 
the UK biobank cohort over a 12-year period. They identi-
fied metabolites and lipids that can predict the trajectory of 
individuals toward dementia (6), including dysregulation of 
major lipid families such as sphingomyelins and triglycerides. 
However, the addition of global lipidomics in our study 
enabled us to precisely identify which type of sphingomyelin 
and triglycerides were associated with the prediction of cog-
nitive decline.

Our integrative multimodal metabolomic approach 
enabled us to precisely identify sphingomyelin d18:1/C26:0 
and triglyceride C48:3. Likewise, methionine was 1 of the top 
10 selected variables (approximately 70%, Supplementary 
Figure 3) in the NMR bootstrapped samples by the DIABLO 
method. For the individual statistical analysis of each data 
block, no valid PLS-DA model could be fit, meaning that the 
information contained in the NMR or MS data alone was not 

Table 2. Modulation of endogenous metabolites quantified in (A) NMR spectra and (B) endogenous lipids quantified by SFC-HRMS profiling of plasma 
samples and selected by multiblock sPLS-DA. Fold change (FC) corresponds to the ratio of the mean NMR areas or MS intensities (Decline/No decline). 
SM = Sphingomyelin; TG = Triglycerides

A

Metabolite Chemical shift (ppm) FC Superpathway Subpathway

3-Hydroxybutyrate 1.20 ; 2.32 ; 2.39 and 2.42 0.72 Lipids Ketone bodies

Citrate 2.51 0.81 Energy TCA cycle

Succinate 2.41 0.79 Energy Succinate pathway

Acetone 2.24 0.85 Ketone bodies

Methionine 2.66 0.92 Amino acid Methionin pathway

Glucose 3.75 1.09 Carbohydrate Glycolysis, gluconeogenesis, metabolism

Serine 4.01 1.11 Amino acid Methionin pathway

B

Lipids FC Superpathway Subpathway

SM (d18:1/C26:0) 1.535 Lipids Sphingolipid metabolism

TG (C48:3) 1.536 Lipids

Figure 2. The sPLS-DA model accurately predicts groups without decline 
from groups with decline. Performance of the multiblock sPLS-DA model 
and Clustered Image Map (CIM) of metabo-clinical signatures. (A) ROC 
based on multiblock sPLS-DA model for the NMR data set (AUC = 0.9167; 
p value = .002028). (B) ROC based on multiblock sPLS-DA model for the 
Lipidomic data set (AUC = 0.8021; p value = . 02526). (C) Clustered Image 
Map for the variables selected by multiblock sPLS-DA on component 1. 
The CIM represents samples in rows (indicated by their Decline status on 
the left hand side of the plot) and selected features in columns (indicated 
by their data type at the top of the plot): 2.4237: 3-hydroxybutyrate; 
2.5126: Citrate; 2.3934: 3-hydroxybutyrate; 2.4067: Succinate; 2.2399: 
Acetone; 2.6590: Methionine; 2.3253: 3-hydroxybutyrate; 1.2039: 
3-hydroxybutyrate; 3.7474: Glucose; d18.1_C26.0: Sphingomyelin; 4.0095: 
Serine; 48.3: Triglyceride.

http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glae077#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glae077#supplementary-data
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sufficient to build a valid and robust model linking the decline 
and the spectral data. Combining metabolomic and lipidomic 
data sets with an innovative statistical integration method 
enabled us to increase information on decline status, and then 
the ability to predict Decline status. The combined polar and 
lipids panel made accurate predictions on average between 
3.3 and 4.8 years before the onset of cognitive decline. Thus, 
combining distinct types of untargeted metabolomics data 
with longitudinal clinical information has been an important 
step toward the major clinical challenge of understanding 
the metabolic changes that precede and can predict cognitive 
decline.

Some of the metabolites identified in the present study, 
including glucose, methionine, β-hydroxybutyrate, sphingo-
myelins, and triglycerides have already been reported to be 
dysregulated in patients showing impaired cognition and in 
AD (38–42). From a physiological and integrated perspec-
tive, the 9 metabolites identified in this work are involved 
in the maintenance of brain myelination, the epigenome, and 
redox homeostasis that regulate most of the body’s key bio-
logical processes (Figure 3). Indeed, lipids and particularly 
sphingolipids, including sphingomyelins, are crucial struc-
tural components of neural tissues and myelination and sig-
nificantly affect cognitive function (43). Moreover, numerous 
studies have shown that the brain epigenome contributes to 
age-related memory decline, a major risk factor for the devel-
opment of Alzheimer’s disease (44). Epigenetic mechanisms 
such as histone modifications, acetylation, and methylation, 
play a role in synaptic plasticity and memory formation (45). 
Finally, ketone bodies, such as β-hydroxybutyrate, which 
affects cognitive function as a signaling molecule are not only 
metabolic intermediates, as they regulate a wide range of 
physiological processes at the cellular and systemic levels. In 
particular, β-hydroxybutyrate functions as a stress response 
molecule and orchestrates an antioxidant defense program 
to maintain redox homeostasis in response to environmental 
and metabolic challenges. More precisely, β-hydroxybutyrate 
is a direct antioxidant for hydroxyl radicals and suppresses 
mitochondrial ROS in stressed neurons (46,47). Based on this 
metabolic signature, it may be possible to select innovative 
therapies for patients with AD at risk for cognitive decline. In 
the future, it will be of great interest to investigate a causative 
link between metabolism and cognitive decline.

Limitations
As our study was conducted on 20 individuals, our results 
must be interpreted with some limitations. Given the explor-
atory nature of this study, no formal sample size calculation 
was performed; future confirmatory investigations may take 
advantage of our results to calculate their study sample. 
This original metabolomics strategy on plasma will have to 
be reproduced in other cohorts with a larger population to 
validate the set of metabolites and the prediction models. 
Biomarker validation in different populations, such as in the 
INSPIRE cohort (48), is a major challenge. Understanding the 
underlying mechanisms of how these metabolites influence 
cognitive decline will require further investigation.

Conclusion
This longitudinal study uniquely provides robust predictive 
models of cognitive decline using untargeted metabolomics 
by combining both NMR and mass spectrometry and focus-
ing on amyloid-positive individuals. We identified a minimum 
signature of polar and lipids metabolite that could both pre-
dict cognitive decline and provide information on the putative 
mechanisms leading to AD pathophysiology. Furthermore, its 
longitudinal nature with a relatively long follow-up and sev-
eral time points of data collection allows us to learn about 
the trajectories of different outcome measures of cognitive 
function and clearly identify a specific metabolic signature as 
a novel and predictive biomarker of cognitive decline.

Supplementary Material
Supplementary data are available at The Journals of 
Gerontology, Series A: Biological Sciences and Medical 
Sciences online.
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