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Abstract

Recent progresses in intravital imaging have enabled highly-resolved measurements of

periarteriolar oxygen gradients (POGs) within the brain parenchyma. POGs are increasingly

used as proxies to estimate the local baseline oxygen consumption, which is a hallmark of

cell activity. However, the oxygen profile around a given arteriole arises from an interplay

between oxygen consumption and delivery, not only by this arteriole but also by distant

capillaries. Integrating such interactions across scales while accounting for the complex

architecture of the microvascular network remains a challenge from a modelling perspec-

tive. This limits our ability to interpret the experimental oxygen maps and constitutes a key

bottleneck toward the inverse determination of metabolic rates of oxygen.

We revisit the problem of parenchymal oxygen transport and metabolism and introduce a

simple, conservative, accurate and scalable direct numerical method going beyond canoni-

cal Krogh-type models and their associated geometrical simplifications. We focus on a two-

dimensional formulation, and introduce the concepts needed to combine an operator-split-

ting and a Green’s function approach. Oxygen concentration is decomposed into a slowly-

varying contribution, discretized by Finite Volumes over a coarse cartesian grid, and a rap-

idly-varying contribution, approximated analytically in grid-cells surrounding each vessel.

Starting with simple test cases, we thoroughly analyze the resulting errors by comparison

with highly-resolved simulations of the original transport problem, showing considerable

improvement of the computational-cost/accuracy balance compared to previous work. We

then demonstrate the model ability to flexibly generate synthetic data reproducing the spatial

dynamics of oxygen in the brain parenchyma, with sub-grid resolution. Based on these syn-

thetic data, we show that capillaries distant from the arteriole cannot be overlooked when

interpreting POGs, thus reconciling recent measurements of POGs across cortical layers

with the fundamental idea that variations of vascular density within the depth of the cortex

may reveal underlying differences in neuronal organization and metabolic load.
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Author summary

The cerebral microvascular network is the logistics system that provides energy to brain

cells at the right time and place. Blood flow and oxygen can now be observed dynamically

in living rodents, which transformed our knowledge of the system and its role in ageing

and disease. However, oxygen concentration at a given location is the result of a subtle bal-

ance between local cellular consumption, supply by neighboring vessels and their inter-

connections to distant ones. Thus, measurements are difficult to interpret without

integrating this multi-scale component, which requires advanced computational models.

This hinders our ability to bridge the gap between experiments in rodents and clinical

applications in humans.

In this work, we focus on oxygen transport between vessels, leveraging recent advances

in multi-scale modelling and their mathematical foundations. By this way, we formulate

for the first time a simple, conservative, accurate and scalable computational model for

cerebral oxygen across scales, that is able to integrate the spatially heterogenous distribu-

tion of vessels. We illustrate how this model, combined to imaging, will pave the way

towards better estimates of oxygen consumption, a hallmark of neural activity that cannot

be directly measured.

1 Introduction

Due to its highly specialized function, the brain is one of the organs with the highest basal

energy demand. With essentially no substantial energy reserves, it is thus extremely vulnerable

to sudden interruptions in oxygen and nutrients delivery by the blood, which can induce neu-

ronal death within minutes with devastating consequences, e.g., for stroke victims [1]. It is also

highly sensitive to chronic cerebral hypoperfusion, which can lead to progressive neurodegen-

eration and cognitive decline, not only in hypoperfusion dementia [2] but also, as increasingly

accepted, in Alzheimer’s disease [3–6]. However, despite its critical role in the transition

between health and disease, many aspects of oxygen transport and metabolism in the brain

remain poorly understood.

This motivated the development of high-resolution brain imaging techniques [7]. Together

with the increased sophistication of experimental protocols, which enabled the brain of living

rodents to be studied in various conditions including sleep, resting and awake states, these pro-

vide an unprecedented window on microvascular dynamics (e.g. diameters, red blood cell

velocities, blood and tissue oxygenation, neural activity) [7–10]. However, due to the intrinsi-

cally heterogeneous and non-local nature of network flows [11–13], the results obtained in dif-

ferent conditions have been difficult to interpret. As we shall see next, this contributed to

casting doubt on previously accepted ideas, including the fundamental idea that both structure

and function of the brain microcirculation are subservient to cerebral metabolic demand.

With regard to brain function, the physiological role of neurovascular coupling, i.e. local

surges in blood flow driven by increased neuronal activity (also referred to as functional hyper-

amia), has been questioned. On the one hand, even the baseline level of blood flow is indeed

globally sufficient to supply oxygen to neurons with elevated levels of activity [12]. On the

other hand, in the words of Drew [12], “low-flow regions are an inescapable consequence of the
architecture of the cerebral vasculature” and “cannot be removed by functional hyperemia”. In

fact, “increases in blood flow—whether local or global—will serve only to move the location of the
low-blood-flow regions, not eliminate them [13]”.
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With regard to structure, the local variations of vascular density have been believed for

decades to reveal underlying differences in neuronal organization and metabolic load [14–16],

as a result of cerebral angiogenesis being driven by their oxygen requirements [17–19]. Recent

breakthroughs in brain-wide vascular network imaging and reconstruction in rodents, associ-

ated to scaling analyses, support this vision at the scale of the whole brain [20]. However,

detailed measurements of periarteriolar oxygen profiles across cortical layers in awake mice,

associated with estimates of the corresponding cerebral metabolic rate of oxygen, recently sug-

gested that baseline oxygen consumption may decrease with cortical depth, from Layer I to

Layer IV [10], in contrast to the known increase of capillary density [20, 21].

Solving these apparent contradictions requires the development of models integrating the

non-local nature of microvascular blood flow [11, 13, 22], which account for the complex

architecture of brain microvascular networks but simplify or neglect transport and metabolism

within the tissue, with models of oxygen dynamics going beyond the geometrical oversimplifi-

cations associated to Krogh-type analytical descriptions [10, 23–28].

However, the computational cost of simulating oxygen transport and consumption in the

brain parenchyma by standard numerical methods, such as finite volume or finite element

methods, is prohibitive. In fact, they imply to finely mesh the extravascular tissue so as to

resolve the strong oxygen concentration gradients building up in the vicinity of each vessel

(e.g. [29]), not to mention the technical challenge of automatically meshing its complex three-

dimensional volume. A popular alternative, specifically designed to solve oxygen transport in

the microcirculation, formulates the problem using Green’s functions [30–34]. The non-local

nature of this formulation allows the description of concentration gradients around microves-

sels while circumventing the need for meshing the intricate geometry of the extravascular

space. However, it generally relies on the infinite domain form of the Green’s function, making

difficult the application of boundary conditions at the limits of the tissue domain (e.g. periodic

boundary conditions). Additionally, oxygen metabolism exhibits non-linear behavior [23, 35],

which is challenging to describe using Green’s function and generally requires additional

meshing [30, 36]. This, coupled with the non-local formulation at the core of the approach,

requires the creation of large and dense matrices that are computationally costly to invert.

Therefore, solving oxygen transport whether using standard methods or the Green’s function

approach limits the size of the regions that can be considered and hinders the potential of such

methods to be used in inverse problems, where measured spatial oxygen dynamics are used to

deduce local metabolic rate constants or permeability coefficients, which requires to run the

direct problem many times. In the latter case, the spatial resolution of the solver is much higher

than that of the measurements, which requires averaging of the numerical results, deviating

from an optimal allocation of computational resources.

Such challenges have been bypassed by introducing dual mesh techniques, where the extra-

vascular domain is coarsely meshed independently of microvessel locations [37], or by simpli-

fying the mesh structure, e.g. based on cartesian grids, to approximate the extravascular

domain [38]. These approaches decrease the computational cost, but do not leverage recent

progresses in other fields, where analytical solutions to similar problems (analogous form of

equations with same underlying mathematical structure) could be used to capture the smallest

features of the extravascular oxygen field (perivascular gradients). This would circumvent the

need of mesh refinement around the sources. In geosciences (well or fractured reservoir

modelling), for example, coupling models are often used where analytical functions help pro-

vide a relationship between the highly conductive slender structures (commonly modeled as

1D sources) and the 3D simulation domain [39–45]. In particular, in operator-splitting

approaches [46–48], the scalar field (concentration, pressure, heat, etc.) is decomposed into a

slowly varying contribution and a rapidly varying contribution. The former can be solved
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numerically over a coarse cartesian mesh, while the later can be approximated analytically,

thus enabling a precise estimation of exchanges at the vessel-tissue interface as well as an a pos-
teriori highly-resolved reconstruction of the concentration field in each mesh cell.

The goal of the present paper is to revisit the problem of oxygen transport and metabolism

in the brain parenchyma to introduce a simple, scalable and accurate numerical method for its

direct resolution. By simplicity, we mean the ability to use cartesian mesh cells independent of

vessel locations, thus avoiding meshing the extravascular space, as well as the ability to impose

various boundary conditions at the outer limits of the computational domain. By scalability,

we refer to a mathematical formulation of the problem at the core of which is a low-bandwidth

linear system of equations, so that the numerical resolution can be fully and efficiently paralle-

lized. By accuracy, we mean the ability to control the numerical errors even in the case of a

coarse mesh. Here, we present the associated concepts in two dimensions (Section 2), so as to

increase the readability of the mathematical developments. This also permits to exploit current

commercial finite element solvers, which enable to obtain reference solutions of the initial

boundary value problem. This enables to carefully study how the underlying simplifications

translate into numerical errors in idealized test cases that sequentially challenge these assump-

tions (Section 3). We then show how this model helps understanding the recent counter-intui-

tive experimental results on cortical oxygenation and metabolism [10, 24, 26] (Section 4).

Finally, we discuss how this novel approach compares to previous work and how it will provide

the groundwork for computationally affordable oxygen transport and metabolic simulations,

fully coupled with intravascular transport in large microvascular networks.

2 Model and methods

We first focus on the diffusive transport of oxygen in the brain parenchyma, i.e. the brain tis-

sue except for blood vessels, denoted Oσ in Fig 1A, for which we present the general three-

dimensional formulation in Section 2.1. We then restrict ourselves to a 2D configuration,

where vessels are reduced to a collection of circular sources, as schematized in Fig 1B. This

enables to maintain the readability of the mathematical developments, introduced from Sec-

tion 2.2 onwards, without significant loss of generality. We finally consider oxygen consump-

tion in Section 2.4.

Fig 1. Terminology and notations for parenchyma and vessel spaces. Panel A represents a 3D regionO of the brain tissue, which includes the parenchymaOσ and

the vessel spaceOβ. The external boundary is denoted by @O, the vessel walls by @Oβ, the vessels center-lines by Λ, the curvilinear coordinate system for the vessels by

(s, r, θ) and the outer normal to the vessel walls by n. Panel B illustrates a 2D geometry, as used in the present paper to establish the modeling framework in Section 2,

with two sources. The source walls are denoted by @Oβ,1 and @Oβ,2. Panel C displays one example of a tesselation of spaceOσ into 4 sub-spaces Vk for k = {1, 2, 3, 4}.

Here, only two sub-spaces contain sources, i.e., E(V1) = E(V4) =⌀, E(V2) = {2}, and E(V3) = {1}.

https://doi.org/10.1371/journal.pcbi.1011973.g001
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2.1 Diffusive transport in the brain parenchyma

Following [22, 29, 49, 50], oxygen transport in the brain parenchyma is modeled through the

following boundary-value problem (BVP):

∇2� ¼ 0 in Os ð1aÞ

� n � ðD∇�Þ ¼ KmðCvjRj;y
� �jRj;y

Þ on @Ob;j8j 2 EðOÞ ð1bÞ

� ¼ �D on @O ð1cÞ

8
>><

>>:

where spatial domains O, @O and @Oβ,j and outer normal n are defined in Fig 1 and

ϕ [mol �m−3] and D [m2 � s−1] are the molar concentration field and the diffusion coefficient

in the parenchyma, Cv [mol �m−3] is the intravascular molar concentration, Km [m � s−1] is the

diffusive permeability of the vessel wall and Rj [m] the radius of vessel j 2 E(O). E(O) is the set

of all vessels located in the domain, so that the total number of sources (S) is equal to the num-

ber of vessels, i.e., to the cardinality of E(O) (S = Card(E(O))). In the example displayed in Fig

1A, E(O) = {1, 2} and S = 2. To keep the developments as simple as possible, we present the

model with Dirichlet boundary conditions (BCs) (Eq 1c), but our approach is readily available

using Neumann and Periodic BCs as shown in the Results Section. Moreover, we follow [29,

36] and formulate the problem in terms of molar concentration, while most authors in the

field use oxygen partial pressures [30, 37, 51, 52]. Partial pressures are indeed only strictly

defined for a gas in a mixture of gases. The concept of partial pressure of oxygen in blood

implicitly refers to gas-liquid equilibrium and can be manipulated in the case of a system at

constant temperature and total pressure. Thus, we prefer to adopt in this paper a more general

description of a multicomponent liquid mixture based on concentrations, as illustrated for

instance in [53]. This can be accurately applied to any thermodynamic conditions, and offers a

more versatile description of gas-liquid equilibrium, avoiding problems when, for instance in

free-diving or high altitude, Henry’s law coefficient is pressure dependent.

Due to the large aspect ratio of vessels and their low density in the tissue space, we neglect

the azimuthal variations of the concentration field around the vessel walls so that Eq 1b simpli-

fies to:

� n � ðD∇�Þ ¼
qjðsÞ
2pRj

on @Ob;j ð2Þ

where qj(s) [mol �m−1�s−1] is the integral molecular flux per unit length through the vessel wall

at curvilinear abscissa s, defined as [22]:

qjðsÞ ¼ Keff ðhCvðsÞij � �jðsÞÞ ð3Þ

Here, hCv(s)i is the cross-section averaged intravascular concentration:

hCvðsÞij ¼
1

pR2
j

ZZ

Ob;j

Cvðs; r; yÞdS ð4Þ

�j is the perimeter-averaged extravascular concentration:

� jðsÞ ¼
1

2pRj

Z

@Ob;j

�ðs;Rj; yÞdl ð5Þ

Finally, Keff [m2 � s−1] can be deduced from the adimensional effective reaction rate that

accounts for the impact of intravascular concentration gradients on the overall flux at the
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vessel wall: Keff ¼ 8p
Db

1þ
4Db

KmRj

, where Dβ is the diffusion coefficient in blood and Km [m � s−1] is

the diffusive permeability of the vessel wall, as established for weak vessel-tissue couplings in

[22]. This enables the use of the cross-section average intravascular concentration in Eq 3.

Thus, the previous BVP simplifies into:

∇2� ¼ 0 in Os ð6aÞ

� n � ðD∇�Þ ¼
qjðsÞ
2pRj

on @Ob ð6bÞ

� ¼ �D on @O ð6cÞ

8
>>>><

>>>>:

together with Eqs 3–5 which are needed to estimate qj(s) in Eq 6b. Of course, a transport

model in the intravascular network [22] is also needed to define Cv(s), hence qj, so that the

developments in the present work focus on transport in the parenchyma and its coupling with

the embedded intravascular network.

From now on, we restrict ourselves to a 2D configuration so that we can eliminate s from

Eqs 3–5 and 6b. As we shall see in Section 5, the 2D problem allows us to focus on radial trans-

port, which provides the high perivascular concentration gradients and therefore poses the

greatest challenge for the development of numerical approaches.

2.2 Operator-splitting

Getting inspiration from a large body of literature about mixed-dimensional problems, from

well or fractured reservoir modelling in geosciences [39, 41, 54, 55] to multi-scale finite volume

or operator-splitting methods in applied mathematics [45, 48, 56–58], we rewrite the previous

BVP (Eq 6) by decomposing the concentration field into a slowly varying contribution s and a

rapidly varying contribution r:

�ðxÞ ¼ sðxÞ þ rðxÞ ð7Þ

so that r will account for the large near-source concentration gradients while s will account

for the slower contributions of the domain boundary and the sources located further away.

We further introduce a tesselationF of space Oσ into F sub-spaces Vk, so that

Os≔
S

k2FVk as schematized Fig 1C. The rationale for this will be apparent in Section 2.3.2,

where we present the specific analytical expression chosen for the rapid term, with a localiza-

tion strategy that maintains conformity with the finite volume (FV) mesh introduced to discre-

tize the equations in Section 2.3.

For now, let us decompose r and s as sums of functions which must be continuous-by-part

on tesselationF :

rðxÞ ¼
X

k2F

rkðxÞ with rkðxÞ ¼ 0 8x =2 Vk ð8aÞ

sðxÞ ¼
X

k2F

skðxÞ with skðxÞ ¼ 0 8x =2 Vk ð8bÞ

8
>><

>>:

and let us define rk as any function that satisfies:

∇2rk ¼ 0 in Vk ð9aÞ

� n � ðD∇rkÞ ¼
qj

2pRj
on @Ob;j 8j 2 EðVkÞ ð9bÞ

8
><

>:

where E(Vk) is the set of sources located inside Vk. This general definition ensures that rk
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accounts a minima for the rapid contribution of all sources within Vk. This, in turn, ensures

the regularity of sk within Vk.

Substituting Eqs 7–9 in Eq 6 yields a BVP for each sk:

∇2
sk ¼ 0 in Vk ð10aÞ

n � ∇sk ¼ 0 on @Ob ð10bÞ

sk ¼ �D � rk on @O ð10cÞ

8
><

>:

These BVPs will be at the basis for the numerical finite-volume resolution of s on a coarse

mesh in the next Section. For that purpose, we also need to close the problem 10 by imposing

continuity of concentrations ϕ and fluxes at the interfaces between any contiguous sub-spaces

Vk and Vm ofF :

n � ð∇�Þj
@Vk;m
¼ n � ð∇�Þj

@Vm;k
ð1aaÞ

�j
@Vk;m
¼ �j

@Vm;k
ð1abÞ

(

where @Vk,m = @Vm,k is the interface between these contiguous sub-spaces.

Using Eqs 7 and 8 to substitute for ϕ, and reorganizing, we obtain:

n � ð∇sk � ∇smÞj@Vk;m
¼ n � ð∇rm � ∇rkÞj@Vk;m

ð12aÞ

ðsk � smÞj@Vk;m
¼ ðrm � rkÞj@Vk;m

ð12bÞ

(

Therefore, the final BVP for each sk is:

∇2
sk ¼ 0 in Vk ð13aÞ

n � ∇sk ¼ 0 on @Ob ð13bÞ

sk ¼ �D � rk on @O ð13cÞ

n � ∇sk ¼ 0 on @Ob ð13dÞ

n � ð∇sk � ∇smÞj@Vk;m
¼ n � ð∇rm � ∇rkÞj@Vk;m

ð13eÞ

ðsk � smÞj@Vk;m
¼ ðrm � rkÞj@Vk;m

ð13fÞ

8
>>>>>>>>>>><

>>>>>>>>>>>:

where rk will be given as analytic functions of variables qj in Section 2.3.2 and sk will be

obtained numerically. Such a set of BVPs could typically be further discretized and solved by

domain decomposition methods [56]. Here however, the strong perivascular gradients are

accounted for by the rapid term. To minimize the number of unknowns, we introduce in the

next Section a FV discretization where a single grid-cell is associated to each sub-space Vk of

tessellationF .

2.3 Assembly of a system of discrete algebraic equations

For that purpose, we set tessellationF to match a cartesian grid of cell side-length h = |@Vk,m|,

where m is a direct neighbour of k (i.e m 2 N k
) with:

N k ≔ fn; s; e;wg ð14Þ

as defined in Fig 2.

From this point forward, we use symbol * to represent the discrete average values of a field

on each FV cell k. Noteworthy, for harmonic functions such as sðxÞ, from Gauss’s harmonic
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function theorem [59], if we neglect the small volume occupied by the vasculature (�3% [60]),

this average value can be approximated at second-order by the value at the cell’s center.

Therefore, the unknowns of the system are the values of the slow term at the center of each

FV cell ~sk, and the vessel-tissue flux for each source qj. These are represented by two vectors of

discrete variables s ¼ f~s1; ~s2; ~s3; :::; ~sFg and q = {q1, q2, q3, . . ., qS}, respectively.

2.3.1 FV discretization for the slow term. The gradient of the slow term is approximated

by the Two Point Flux Approximation (TPFA):

ðD∇skðxÞ � nÞ
�
�
�
�
@Vk;m

� D
~sk;m � ~sk

h=2
ð15Þ

where h is the size of the FV cell face h = |@Vk,m| and ~sk;m are dummy variables, to be elimi-

nated by substitution from the final system, which represent the values of the slow term on

interfaces @Vk,m.

Additionally, we use the classic FV formulation by integrating Eq 13a over each FV cell k
(see Section A in S1 Methods for more detail). This yields:

� 4~sk þ
X

m2N k

~sk;m ¼ 0
ð16Þ

Fig 2. Terminology and notations for the FV discretization (A) and sub-grid interpolation (B). Panel A displays the current cell k of the cartesian mesh in green

and its direct neighbours N k
¼ fn; s; e;wg in blue. ~sk is the value of the slow term at the center of cell k. The dummy variables ~sk;e and ~se;k represent the values of the

slow term on both sides of the interface @Vk,e. Generally, ~sk;e 6¼ ~se;k due to the jump introduced by Eq 12. Panel B displays the dual mesh used for sub-scale

interpolation in red. This dual mesh is constructed by joining the centers of the FV grid. Its cells are denoted by numbers (0, 1, 2 and 3).

https://doi.org/10.1371/journal.pcbi.1011973.g002
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The discrete versions of boundary conditions 13e and 13f are:

D
~sk;m � ~sk

h=2
� D

~sm � ~sm;k

h=2
¼

1

h

Z

@Vk;m

n � ðD∇rmðxÞ � D∇rkðxÞÞdl ð17aÞ

~sk;m � ~sm;k ¼
1

h

Z

@Vk;m

ðrm � rkÞdl ð17bÞ

8
>>>><

>>>>:

From the above equations, we can express the dummy variables ~sk;m as follows:

~sk;m ¼
~sk þ ~sm

2
þ

Jk;m

2
ð18Þ

with:

Jk;m ¼
1

2

Z

@Vk;m

n � ð∇rm � ∇rkÞdlþ
1

h

Z

@Vk;m

ðrm � rkÞdl ð19Þ

where Jk,m is a function of the sources q as we shall see in Section 2.3.2, and it accounts for the

discontinuities of the rapid term across the interfaces of the FV. We can express Eq 16 as a

function of the unknowns of the system:

� 4~sk þ
X

m2N k

ð~sm þ Jk;mÞ ¼ 0
ð20Þ

where ~sk and ~sm are found under the vector s.

Moreover, if the current mesh cell k belongs to a boundary, the boundary condition 10c is

used instead of 17, yielding:

~sk;@O ¼ �D � rk;@O if @Vk;@O 2 @O ð21Þ

Therefore, the discretized version of BVP 13 can be assembled from Eqs 20 and 21 into an

algebraic system with as many equations as grid-cells:

A � sþ J ¼ b@O ð22Þ

where matrix A contains the classic diffusion stencil, and the vector J contains the values of J
given by Eq 19. Therefore, for each row k, A contains one diagonal value and 4 off-diagonal

values associated to its neighbours, while the vector b@O contains the entries relevant to enforce

the BCs 21.

We have constructed a system of algebraic equations that enforces mass balance of the con-

centration field in each FV cell through Eq 20. To go further, we must specify the choice of the

rapid term that will allow the the entries of J to be deduced from Eq 19. We note r could be

obtained numerically as in [56, 57], or approximated analytically based on the Green’s func-

tion formulation, as detailed in the next Section.

2.3.2 Potential-based localized formulation for the rapid term r. We first recall that, as

written in Section 2.2, rk must be harmonic functions that satisfy Eq 9 for all k, ensuring to

consider, a minima, the rapid contribution of all sources within Vk.

Straightforward analytical approximations for rk in 2D are therefore:

rk ¼
X

j2EðVbkÞ

Pj ð23Þ
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where bV k represents any extension of Vk, i.e. any region of space containing Vk, and Pj is the

single-source potential associated to source j.
According to potential theory [61–63], Pj can be written as (see Section B in S1 Methods):

Pj ¼

�j þ
qj

2pD
ln

Rj

jjx � xjjj

 !

if jjx � xjjj > Rj

�j if jjx � xjjj � Rj

8
>>><

>>>:

ð24Þ

With this explicit definition of the potentials, the expression of the rapid term (Eq 23) only

depends on the vessel-tissue exchanges (q) and on the position ||x−xj||, so that rk ¼ rkðq; xÞ.
From this expression of the rapid term, now we have an explicit definition of J from Eq 22 as a

function of the vessel-tissue exchanges q. We can thus assemble the discrete system of equa-

tions with s and q as follows:

A � sþ B � q ¼ b@O ð25Þ

Noteworthy, rk strictly fulfills the constraints corresponding to Eq 9 if and only if there is a

single source i in bV k, for which xi 2 Vk. Any additional source j in bV k induces a perturbation

εq
i;j:

εq
i;j ¼ � n � ðD∇PjÞj@Ob;i ð26Þ

of the normal flux around source i (see Section C in S1 Methods), which is not accounted for

in the model. However, the integral contribution of these errors is null so the model remains

conservative (Section C in S1 Methods). The impact of this perturbation will be examined in

the Results Section 3.3.

Inspired by our previous work in [64], we set bV k to correspond to a finite number n2 of

cells in the finite-volume mesh, with n� 3 to avoid a special treatment for sources lying on the

interface between two mesh cells.

By this way, n sets up the characteristic size of the region in which we account for the con-

tribution of nearby sources to rk, while the contribution of sources outside bV k is only implic-

itly treated through sk, as illustrated in Fig 3. Thus, increasing n leads to a better

approximation of the concentration field (see Section 2.3.4), but at the same time increases the

density of matrix B in Eq 25. In the limit case where bV k ¼ O, we would obtain an element-

wise non-zero B, leading to a non-sparse system similar to [30, 51, 65] where the boundary

integrals of the classic Green’s function formulation are estimated by s. Since the goal here is

to obtain a sparse linear system, bV (bV � O) is chosen to be small in comparison to the domain

of computation, but large enough to include the near source gradients.

The estimation of the single source potential based on the Green’s integral formulation has

a natural extension to 3D. The circular sources that appear in the 2D model provide a simple

formulation to the potential since the double layer potential is null (see Section B in S1 Meth-

ods). In contrast, an open cylinder provides a non-null value for the double layer integral

resulting in a second potential in Eq 24 [51] which accounts for the axial variations. The rest of

the developments presented in Section 2.3, including FV discretization and localization of the

slow term, can be simply extrapolated to 3D.

2.3.3 Sub-grid reconstruction to estimate vessel-tissue exchanges (q). The vessel-tissue

exchanges are governed by Eq 3, which in 2D translates into:

qj ¼ Keff ðhCvij � �jÞ ð27Þ
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for each source j 2 E(O). In 3D, this equation should be coupled to an intravascular transport

problem that introduces a discrete 1D description of average intravascular concentrations

along vessel centerlines [22] as additional unknowns (see e.g. [45, 66]). In our 2D case, how-

ever, sources are disconnected, so that the values of hCvij are provided as boundary conditions.

The average wall concentration is given by:

�j ¼
1

2pRj

I

@Ob;j

�ðxÞdl ð28Þ

However, the numerical model only provides an approximation of the concentration field

at the grid-cell centers xk:

~�k ¼ ~sk þ rkðq; xkÞ ð29Þ

and, from Eq 21, at the boundary nodes.

Fig 3. Localization strategy illustrated for two sources with neighbourhood bVk of size 3x3 grid-cells (i.e., n = 3). Panel A: Cells where the rapid term

accounts for source 1 and source 2 are displayed in blue and green respectively, with superposition in cells h and k, so that rw ¼ P1 8w 2 {a, b, c, d, e, f,
m}, rw ¼ P2 8w 2 {g, p, q, r, t, u, v} and rw ¼ P1 þ P2 8w 2 {h, k}; cells lying further from sources 1 and 2 are displayed in white. In these cells, rw ¼ 0;

Panel B: Flux balance for all cells highlighted in dark blue in panel A. Green arrows represent the contributions of slow terms while grey arrows those of

rapid terms. The latter may exhibit jumps, e.g. at interfaces Vkm and Vnm due to the localization-induced discontinuities in the rapid term. Panel C:

Concentration field decomposition (Eq 7) along the x-axis crossing the center of source 2 (dashed axis in Panel A). We show in red the fine-grid

reconstructed solution through Eq 30, in green the coarse-grid slow term and in grey the rapid term.

https://doi.org/10.1371/journal.pcbi.1011973.g003
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To estimate �j from Eq 28, we must reconstruct the concentration field everywhere inOσ.

For that purpose, we interpolate the slow term from its values at xk and xk,@O using a classical

set of linear shape functions γi associated to these points, as defined in Section D in S1 Meth-

ods. We also introduce a extended rapid term rc
i bridging the discontinuities across the inter-

faces of the FV cells @Vk;m8k 2 F & m 2 N k
, as detailed in Section D in S1 Methods. The

resulting interpolation functionI � reads:

I �ðs; q; xÞ ¼
X

i2T

giðxÞð~s i þ rc
i ðq; xÞÞ ð30Þ

whereT represents the set of FV grid-cell centers xk and of boundary nodes xk,@O.

Since both sk and rk are harmonic functions in Vk, the average needed to estimate � j in Eq

28 can be deduced from Gauss’s harmonic function theorem, yielding � j ¼ I �ðs; q; xjÞ so

that Eq 27 becomes:

qj ¼ Keff ðhCvij � I �ðs; q; xjÞÞ ð31Þ

We can now assemble Eq 31 into a discrete linear system of S equations with s and q as vec-

tors of unknowns:

C � sþ D � q ¼ b@Ob ð32Þ

Noteworthy, the interpolation functionI � uses the nearby sources as well as the four near-

est FV unknowns of the mesh grid (see Section D in S1 Methods). Therefore, matrix C is

sparse, with 4 non-zero entries per line, while the density of matrix D depends on the size of

bV . Additionally, vector b@Ob contains the values of intravascular concentrations (hCvij) treated

here as boundary conditions.

2.3.4 Full discrete system and error induced by localization. The full discrete system is

therefore:

A � sþ B � q ¼ b@O

C � sþ D � q ¼ b@Ob

8
<

:
ð33Þ

with a total of F + S unknowns, F ¼ CardðFÞ being the total number of FV grid-cells and S
the number of sources. This general form is independent of the specific choice made for the

size of extensions bV k used to define rk as linear combinations of potentials based on the

Green’s formulation. This size, however, strongly influences the densities of matrices B and D.

Nevertheless, matrices A and C always remain sparse since A is the classic FV diffusion matrix

with only 5 non-zero terms per line and C only depends on the interpolation functionI �,

resulting in 4 non-zero elements per line.

Of course, the global error resulting from approximating BVP 13 by the above system

depends on the size of bV k. This global error εbV induced by the localization strategy can be esti-

mated by considering the neglected contribution of sources outside of bV k to the concentration

field (
P

j=2EðbV kÞ
Pj).

The error associated to FV methods is commonly given by [44]:

εFV < C0h2 ð34Þ

where C0 is bounded by the norm of the second derivative of the estimated field. Using Eq 24
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and considering that the minimal distance between a source in Vk and one outside bV k is of

order (n−1)h/2, we get an upper-bound of εbV :

εbV �
X

j=2V̂ k

4qj

2pDðn � 1Þ
2h2

Oðh2Þ ð35Þ

Simplifying, we obtain:

εbV <
X

j=2V̂ k

4qj

2pDðn � 1Þ
2
Oð1Þ ð36Þ

Therefore the localization error εV̂ is expected to decrease with n2, i.e., εV̂ /
1

ðn � 1Þ
2
.

2.4 Metabolism

Now that we have introduced the concepts and formulation for the non-reactive problem

(BVP 6), we introduce tissue consumption, that we model by a Michaelis-Menten reaction

kinetic [67]. In the resulting reactive problem, Eq 6a is thus substituted by the following non-

linear PDE:

D∇2� ¼ M
�

�þ K
in Os ð37Þ

where M [mol �m−3 � s−1] is the maximal cerebral metabolic rate of oxygen, often denoted

CMRO2,max, and K [mol �m−3] represents the concentration where consumption is half of its

maximum, often denoted EC50 for O2 activating oxidative phosphorylation [68]. The boundary

conditions on @Vk given in Eqs 13c–13f remain unchanged. We consider D and M homoge-

neous to rewrite the PDE 13a

D∇2
sk � M 1 �

K
K þ �

� �

¼ 0 for x 2 Vk ð38Þ

The new discrete system is:

A � sþ B � qþ Smetab ¼ b@O
C � sþ D � q ¼ b@Ob

(

ð39Þ

where Smetab is a vector containing the integral contributions of the metabolism per FV cell:

Smetab ¼ �

M 1 �
R

V1

K
K þ ~s1 þ r1ðxÞ

� �

dV
� �

M 1 �
R

V2

K
K þ ~s2 þ r2ðxÞ

� �

dV
� �

M 1 �
R

V3

K
K þ ~s3 þ r3ðxÞ

� �

dV
� �

..

.

M 1 �
R

VF

K
K þ ~sF þ rFðxÞ

� �

dV
� �

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

ð40Þ
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2.5 Numerical implementation

The problem is assembled and solved using an in house code written in Python. Due to the

large reduction in size allowed by the multiscale model presented, the libraries scipy and

numpy for solving linear problems are adequate for the 2D simulations and test cases. An

extension to 3D is possible under careful consideration and optimization of the code.

The integrals in Eqs 19 and 40 are evaluated using the second order accurate Simpson’s rule

of integration [59]. Furthermore, the non-linear system assembled in Eq 39 is classically solved

through an iterative Newton-Raphson method (see Section E in S1 Methods).

2.6 Summary of model assumptions

Before examining the robustness, consistency and limitations of the above model in Section 3,

we recall the two main assumptions introduced in the developments:

• Assumption 1: We considered that the concentration field could be split into a rapid and a

slow component (r and s, respectively). In practice, we thus considered the scale of varia-

tions of s to be much larger than the size of the coarse grid h, so that the slow field could be

accurately evaluated using Eq 20. Recalling that the slow term accounts for the contribution

of the domain boundaries and of the sources located outside of bV (Section 2.2), this assump-

tion should break down in the following cases:

• Case 1.1: when h is not sufficiently small compared to the scale of variation driven by the

boundary conditions, i.e., in simple cases, the size of the computational domain;

• Case 1.2: when a source lies near the domain outer boundaries @O;

• Case 1.3: when the neighbourhood bV is too small to accommodate accurately for the

potentials arising from nearby sources.

• Assumption 2: We neglected the azimuthal variations of concentration around each source

(�j@Oj
� � j). As a result of Eq 6b, we thus neglected the azimuthal variations of flux around

the source’s walls. This assumption is crucial to write the potential for a single source based

on Eq 24. Noteworthy, in contrast to Krogh-type models [10], these azimuthal variations are

neglected only locally on the source walls. We expect this assumption to break down in the

following cases:

• Case 2.1: when two or more sources are lying close together, that is, when the density of

sources becomes locally too large;

• Case 2.2: when a source lies near @O.

In the next Section, we use idealized test cases of increasing complexity that help decouple

the impact of these different sources of errors and clarify the associated size constraints.

3 Results: Error estimation

In this Section, we first consider test cases involving a single source (Section 3.1) and a single

dipole, i.e., the combination of a single source and a single sink (Section 3.2). Then, in Section

3.3, we turn to multiple sources and sinks. Noteworthy, we generically designate by “source”

any vessel j whose concentration is greater than the local tissue concentration, i.e., for which

the resulting flux qj will be positive. In the same way, we use “sink” for any vessel j whose con-

centration is lower than the local tissue concentration, i.e., for which the resulting flux qj will
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be negative. This enables “diffusional shunts” in the parenchyma, which have been evidenced

experimentally between arterioles and venules [69], to be considered.

Thus, for all simulations we assign hCvij = ϕmax to all sources and hCvij = 0 to all sinks,

where ϕmax represents the oxygen concentration in penetrating arterioles at the inlet of the

brain cortex. We also use a diffusion coefficient D = 2 × 10−5cm2 � s−1 [25, 30, 70], an effective

permeability for the capillaries of Keff = 2 × 10−5cm2 � s−1 [29, 30] and a maximum metabolic

consumption of M = 2.4μmol � cm−3 �min−1 which falls within physiological range (see

Table 1).

Moreover, for all test cases considered in this Section, we purposely put ourselves in Case
1.1 above by considering relatively small domains of side L = 240μm, i.e., only 50 times larger

than the source/sink radii (R = 4.8μm). In doing so, we aim at providing reasonable estimates

for the upper bounds of the numerical errors.

Errors are estimated by comparison with a fine mesh finite element (FE) solution of the

original BVP (Eq 1 for the linear problem or Eq 37 for the non-linear problem) without any

additional modeling assumptions, in the same spirit as [29]. This reference FE solution, ϕref,

was obtained with COMSOL Multiphysics using a triangular mesh fine enough to accommo-

date the contours of the circular sources, to handle the azimuthal variations of the concentra-

tion field around the sources and to ensure convergence in the estimation of qref, obtained by

integrating the normal derivative of ϕref along the vessel wall.

We define the following metrics to compare our multiscale model with this reference solu-

tion. The local errors on the vessel-tissue exchanges for each source (qj) are given by:

εj
q ¼
jqj � qj;ref j

qj;ref
ð41Þ

and the local errors on the concentration field at the center of each grid-cell are given by:

εk
�
¼
j~�k � �k;ref j

�k;ref

ð42Þ

Table 1. Parameter values. Radii R: see Fig 7; ϕmax: oxygen concentration in penetrating arterioles at the inlet of the brain cortex; D: diffusion coefficient in the paren-

chyma; Keff: effective diffusive permeability of the capillary walls; α: oxygen solubility in water at atmospheric pressure; M: maximum metabolic rate of oxygen; K: concen-

tration where consumption is half of its maximum.

Variable Value Units References

Microvascular parameters

RPA 20 μm [10]

Rcap 4.8 μm [10]

Rcyl 100 μm [10]

Capillary length density [0.8, 1.2] m �mm−3 [20]

ϕmax 137 nmol � cm−3 from [9, 34, 71]

Tissue transport and consumption

D 2 × 10−5 cm2 � s−1 [25, 30, 70]

Keff 2 × 10−5 cm2 � s−1 [29, 30]

α 1.39 × 10−3 mol �m−3 �mmHg−1 [24, 28]

K *ϕmax/10 from [23, 30]

M [0, 2.4] μmol � cm−3 �min−1 [10, 23, 29]

https://doi.org/10.1371/journal.pcbi.1011973.t001
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where ~�k is given by Eq 29. We then define the global errors as the average of the local errors:

εg
� ¼

1

F

X

k2½1;F�

εk
� ð43Þ

and:

εg
q ¼

1

S

X

j2½1;S�

εj
q ð44Þ

where where F is the number of discrete grid-cells in the cartesian mesh and S is the total num-

ber of sources, i.e., S = Card(E(O)).

We consider the error on vessel-tissue exchanges (εg
q) as the main metric to assess the mod-

el’s accuracy, since proper estimation of qj’s relies on an accurate evaluation of the microscale

dynamics and provides crucial information on oxygen exchanged between blood and tissue.

The error on the concentration field serves as a secondary metric, offering valuable insights

into the interactions between sources.

We compare these errors with the errors resulting from a coarse-grid FV approach without

multiscale coupling, in the same spirit as [37]. Such an approach solves the simplified BVP

(Eq 6 for the linear problem or Eq 37 for the non-linear problem) by approximating the aver-

age concentration on the vessel wall (�j) by the value of the concentration field in the nearest

FV cell k (� j ¼
~�k forOβ,j 2 Vk). As a result, the exchange term is given by

qj ¼ Keff ðhCvij �
~�kÞ ð45Þ

where k is the grid-cell containing source j. This coupling condition is not a multiscale cou-

pling condition, as it doesn’t integrate any description of the near source concentration gradi-

ents that could compensate for the scale gap with the coarse-grid for the estimation of qj. At its

core, it assumes a well-mixed concentration within each mesh cell, i.e., it neglects the effect of

concentration gradients near sources when using a coarse grid, generating significant errors in

the estimation of qj (see Figs 4–6). On the one hand, increasing mesh discretizations can solve

this issue and allow to (asymptotically) recover the influence of such gradients [38], with the

significant trade-off of increased computational cost. On the other hand, including a multi-

scale component by reconstructing analytically the local concentration near sources as done in

Section 2, allows to capture the influence of the gradients whilst allowing to use a coarse-grid

discretization of the tissue space. The FV solution with resolution matching that of the coarse-

grid is thus useful to illustrate the interest of the multiscale coupling at the core of the develop-

ments presented in Section 2.

For the sake of comparison, the following conventions are used in all figure legends in this

Section:

• Blue lines are used for the present multiscale method while red ones are used for the coarse-

grid FV model.

• Continuous lines are used for the linear, non-reactive model (Eq 33) while discontinuous

ones are used when metabolism is considered, i.e. reactive model (Eq 39).

• Square markers are used to display the global errors on the vessel-tissue exchanges while tri-

angular ones are used to display errors on the concentration field.
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3.1 Single source

In this Section, we focus on single source configurations, where we first assess the depen-

dence of numerical errors on mesh size, in the case of coarse meshes (Case 1.1). We thus con-

sider grid-cell sizes (h) varying from 20μm to 80μm, i.e. larger than the source radius and not

so small compared to the domain side. In this case, we don’t need to consider potentials aris-

ing from other sources (Eq 26), thus drawing emphasis away from the size n of the neighbor-

hood bV since its purpose is to control the cross influence among sources. We therefore opt

for an approximately constant size of bV relative to the radius of the source R, fixed to 30R.

This corresponds to n = 3 in a 5x5 grid, as displayed in Fig 4A. The exact size of bV may

slightly vary according to the discretization size h used, as bV consists of a discrete number of

grid-cells.

Fig 4. Error estimation for a single source: Impact of discretization and boundary effects. A: schematics of the configuration under study, highlighting the detail of

the boundary conditions. The domain size is L = 240μm, the source radius is R = 4.8μm, and the neighbourhood size is (30R)2, i.e., n = 3 for a 5x5 grid (h/L=0.2); B:

evolution of global errors as a function of grid size for the linear and non-linear problems, and for both the multiscale and the coarse-grid FV model (see legend); C:

schematics of the boundary test, for which we use a mesh size h/L = 0.2, i.e., a 5x5 grid; D: evolution of global errors as a function of d, from d = 0 where the source is in

contact with the no-flux boundary, to d = 1.2h where the source lies in the contiguous grid-cell. The dashed vertical line illustrates the limit of the boundary cell.

https://doi.org/10.1371/journal.pcbi.1011973.g004
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Fig 4B illustrates the error evolution with respect to grid-cell size h for a single source,

located at the center of the computational domain, and for a combination of boundary

conditions (Dirichlet, Neuman, Periodic), as displayed in Fig 4A. Our multiscale model

demonstrates remarkable accuracy, achieving global errors below 1% for both flux (q) and

concentration (ϕ) estimates even with the coarser grids. Furthermore, these errors are

about one order of magnitude smaller than those of the coarse-grid FV approach, since the

later lacks a coupling scheme to bridge the scale gap between the source and the coarse-

grid. Moreover, the multiscale model errors decrease monotonously with decreasing grid

size. In contrast, the coarse-grid FV approach displays a minimum for grid-cells sizes of

about 5R, as expected from the Peaceman well model [39]. This model bridges the scale

gap between the source and the coarse-grid scale as commonly done in geosciences, by

relating the value of the scalar field inside the source to the grid via the following flux

Fig 5. Error estimation for a single dipole: Interplay between source/sink separation distance and neighborhood

size. A: evolution of the local errors on vessel-tissue exchanges for the source (filled symbols) and for the sink (empty

symbols) as a function of distance d between source and sink; B: schematics of the smaller-neighborhood configuration

(n = 3); C: schematics of the large-neighborhood configuration (n = 5); D: reconstruction of the sub-grid

concentration field for the case n = 3 and d = 60 � R. The value of the concentration (ϕ) is non-dimensionalized by the

value of the intravascular concentration in the source. The dashed vertical line in Panel A illustrates the transition

between a situation where, for n = 3, the intersection of the source and sink neighborhoods contains both of them to a

situation where the source and sink lie outside each other’s neighborhood.

https://doi.org/10.1371/journal.pcbi.1011973.g005
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relationship:

q ¼
Keff ðCv �

~�kÞ

1þ
Keff

2pD
lnð

R
0:2h
Þ

When the radius of the source is a fifth of the side length of the grid-cell, the denominator

in the above equation is equal to one, and the FV solution (Eq 45) provides the same solution

as the Peaceman well model. This occurs at the local minimum observed in Fig 4B, i.e. at

approximately h/L = 0.1. The coarse-grid FV approach still exhibits errors between 10−2 and

10−1 for the smallest grid size considered in this study (h* 4R).

In contrast, a good balance between mesh-size and accuracy is achieved by the multiscale

approach for the 5x5 grid (h/L = 0.2) with n = 3 (see Fig 4A), with errors on fluxes below 1%
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Fig 6. Error estimations for a realistic source distribution. A: synthetic capillary bed generated by the method of [60] with cutting plane highlighted in blue; B:

intersections of each capillary vessel in A with the cutting plane (red dots) and coarse cartesian grid (dashed lines); C: coarse-grid solution for the concentration field ~�

with metabolic consumption; D: sub-grid reconstruction of ϕ usingI � from Section 2.3.3. E: global errors on vessel-tissue exchanges estimations for a grid size h = L/

16, therefore 256 FV cells in total. The curve k

ðn� 1Þ2
with κ = 0.1 is represented by the dashed black line; F: evolution of the errors in the estimation of the vessel-tissue

exchanges and the concentration field with decreasing mesh cell size and with n chosen so that the size of bV is approximately 3L/5 = 30R.

https://doi.org/10.1371/journal.pcbi.1011973.g006
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for both the linear and non-linear models (see Fig 4B). These parameters will thus be used

next except as stated otherwise.

Because the source is located at the center of grid-cell Vk, the discrete value of the slow term

in this grid cell ~sk approximates well the local value of the slow term at source center sðxkÞ, so

that the concentration ~�k ¼ rðxkÞ þ ~sk directly enables the vessel-tissue exchanges to be eval-

uated using Eq 27. However, this introduces inaccuracies when the source moves away from a

grid-cell center, as illustrated in Fig A in S1 Figures, with errors εg
q up to 2.1% when the source

is lying on a grid-cell corner. The interpolation scheme introduced in Section 2.3.3 reduces

this errors to under 0.3% (Fig A in S1 Figures).

We now worsen the deviation from Assumption 1 by reducing the distance d between the

source and the no-flux boundary (Cases 1.2 and 2.2), as illustrated in Fig 4C. Errors reach up

to�10% when the source is in contact with the zero-flux boundary condition (d = 0), see Fig

4D. They decrease rapidly with increasing d, with εq < 2% as soon as there is half a grid-cell

distance to the boundary. In contrast, the FV solution errors stay consistently around 10%

even when the source belongs to a non-boundary grid-cell (d/h> 1), except for a minimum

for d/h * 0.7. Similar to the Peaceman well model [39], the local minimum is likely obtained

when the logarithmic decrease of the source potential is close to the discrete approximation of

its gradient from values at the FV cell’s center.

Overall, the single source test-cases highlight how coupling the analytical rapid term to the

coarse-grid FV discretization of the slow term improves the numerical resolution of oxygen

transport and metabolism within the tissue space. Importantly, these test-cases have been

designed to push the limits of the corresponding underlying assumptions, by choosing small

computational domains. Given the results shown in Fig 4, we expect to rarely find ourselves in

conditions where ε� 1%.

3.2 Single dipole

We now test the performance of the multiscale model for a single dipole, i.e., a single source

(hCv i2/ϕmax = 1) and sink (hCv i 1 = 0). When these are placed close together in the same FV

cell, we find ourselves in Case 2.1, and Assumption 2 in Section 2.6 breaks down. In this case,

models that don’t integrate an analytical description of interactions among sources [37, 72] fail

to capture the source to sink interactions. With increasing separation distance d between the

source and sink, Assumption 2 is recovered but, depending on the size of bV , the deviation

from Assumption 1 may increase (Case 1.3). Thus, the dipole situation focuses on the interplay

between source separation distance d and neighborhood size n and enables to compare the

behavior of the model when the source and sink respective neighbourhoods overlap.

The local errors (Eqs 41 and 42) on the vessel-tissue exchanges are shown on Fig 5A as a

function of the separation distance d, for the two neighborhood sizes presented in Panel B

(n=3) and C (n = 5). In Panel D, we also show the reconstruction of the concentration field for

n = 3 and d = 60R using the interpolation functionI �. This reconstruction closely approaches

the FE reference solution obtained for a dense mesh of over 2, 000 grid cells (Fig B in S1

Figures), i.e, about 100 times the number of cells (5x5) needed to solve for the coarse-grid

solution.

When the source and sink both lie in the same grid-cell, i.e., when d/R is below 40, the

behavior of these local errors becomes similar whatever the neighbourhood size, since the

cross-influence between their potentials is then calculated analytically by the rapid term.

When there is no overlap between the two neighbourhoods (e.g. in Fig 5B and for d/R above

40 in the small neighborhood case, dark blue lines in Fig 5A), the errors increase significantly,

reaching the upper-bound estimate of errors induced by localized formulation of the rapid
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term (Section 2.3.2), as evaluated by Eq 36. In contrast, for a larger neighborhood size (light

blue lines in Fig 5A and 5C), the errors quickly reach a plateau for an increasing separation dis-

tance d, consistent with the error obtained for a single source with similar discretization (h/

L = 0.2 in Fig 4B). This underpins the residual error as the result of the coarse-grid resolution

of the slow term and not of potential localization.

3.3 Multiple sources

We have shown how errors primarily build up when a source lies in the vicinity of a no-flux

boundary (Fig 4B), and in lesser extent when two sources lie close to each other (Fig 5A),

respectively. Both situations may arise frequently within the cortex, e.g., close to vessel bifurca-

tions, where three vessel are connected in a single point.

Here, we thus consider a more realistic distribution of sources, obtained using a synthetic

network that reproduces the structural and functional properties of cortical capillary beds, fol-

lowing [60] (Fig 6A). Briefly, we take a cross-section of such a network and map its intersec-

tions with each vessel (Fig 6A). We thus obtain a realistic map of source distribution, for

which S = 17 (Fig 6B). We randomly assign one third of vessels to be sources and two third of

vessels to be sinks, with periodic boundary conditions.

In Fig 6C and 6D, we show the coarse-grid concentration field and its reconstruction,

respectively, for a 8x8 grid (h/L=0.125 and h/Rcap = 6.25) and n = 5. These clearly show that the

model formulation enables enforcing the periodic boundary conditions for the reconstructed,

highly-resolved, concentration field, as efficiently as the reference FE approach (Fig B in S1

Figures), even if periodicity at the boundaries doesn’t propagate to the scale of the coarse-grid.

Furthermore, the evolution of errors with neighbourhood size n (Fig 6E), follows the 1/n2 scal-

ing predicted by Eq 36, up to n = 5. For larger values of n, a plateau is reached, the value of

which (*1%) corresponds to the residual error associated to deviations from Assumption 2, as

shown in Sections 3.1 and 3.2. As a result, neither considering finer grid-cells nor increasing

the neighborhood size n further reduce this residual errors (see Fig 6E and 6F, respectively).

Furthermore, we note that the numerical errors are only marginally affected when oxygen

consumption is taken into consideration (dashed lines in Fig 6E and 6F), showing the robust-

ness of our approach.

In contrast, errors corresponding to the coarse-grid FV model lie consistently one order of

magnitude above than the one resulting from the multiscale approach.

4 Results: Periarteriolar oxygen concentration gradients

Now that we have shown the ability of our model to efficiently solve for the oxygen concentra-

tion field, including around vessels where gradients are the strongest, we turn to its exploita-

tion in the context of brain metabolism. We specifically ask if variations of the radial peri-

arteriolar concentration profiles that were recently measured across cortical layers in awake

mice [10] could result from the layer-specific (laminar) increase of capillary density with corti-

cal depth rather than from variations of baseline oxygen consumption.

For that purpose, we consider the typical case of a single penetrating arteriole (PA) and its

surrounding tissue, as illustrated in Fig 7A. To account for the capillary-free space that encir-

cles the PA, we include a cylindrical tissue region devoid of capillaries, with typical radius of

100 μm [10, 24]. Further away, we generate a random spatial distribution of sources with den-

sities approximately matching the capillary density in cortical layer II (Table 2). We deduce

the equivalent 2D source density (E2DSD) by using synthetic capillary networks similar to Sec-

tion 3.3. We then create a randomized but statistically homogeneous distribution of sources

following [60, 73]. We assign concentrations at the outer walls of the PA and capillaries, by
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using an asymptotically large value of Keff and following experimental measurements in layer

II [8]. For the capillaries, we assign a random distribution of normalized concentrations at cap-

illary walls @Oβ,j, drawn from a Gaussian distribution with mean ϕcap = 0.45ϕPA and standard

deviation σ = 0.1ϕPA, approximately corresponding to experimental measurements in layer II

Fig 7. Effect of capillary density and intravascular concentration on radial periarteriolar concentration profiles. A: sketch of simulated configuration, with a random

and homogeneous capillary bed for r> Rcyl and a capillary-free region around the central PA. The cartesian grid of size 20x20 matches that of experimental sampling used

in [10]. B: corresponding coarse-grid partial pressure deduced by linear transformation from the concentration field using the solubility of oxygen in brain tissue [10, 30,

37]. Capillary density and concentration correspond to layer II (Table 2) and M = 2.4μmol � cm−3 �min−1. Note that all simulations (panels B, D, E, F) use the same value of

M and n = 10; C: example of an experimentally sampled oxygen partial pressure field around a PA at 100μm under cortical surface, i.e. at the interface between layer I and

II; D: estimated metabolic consumption deduced from Panel B; E: radial concentration profiles predicted in layers I to IV, each obtained by averaging the results of 30

simulations; Inset: result obtained when only variations of the capillary density are considered; F: resulting spatial average of the tissue concentration for r> Rcyl, as a

function of capillary density for four values of the average capillary intravascular concentration (ϕcap/ϕPA from 0.4 to 0.55) corresponding to the four layers in Table 2; the

black dots represent the resulting spatial average of the tissue concentration for r> Rcyl for the four different layers, i.e., varying both capillary density and concentration.

The black dashed line represents the associated linear fit (h �
�PA
jr>Rcyl
i ¼ 1:12 � 10� 3 � CLD � 0:118).

https://doi.org/10.1371/journal.pcbi.1011973.g007

Table 2. Layer-specific (laminar) variations of capillary density and average intravascular capillary PO2. The capillary length density (CLD) and depth of the corre-

sponding layers are approximated from data in [20]. The equivalent two-dimensional source density (E2DSD) is deduced using synthetic capillary networks from [60] (Fig

6A). The ratio between arteriole and capillary concentration is approximated from data in [9].

Layer CLD [m mm−3] E2DSD [mm−2] Depth [μm] PO2,PA [mmHg] PO2,cap [mmHg] ϕcap/ϕPA

I 0.8 250 [0–100] 99 (= ϕmax/α) 39 0.4

II 0.94 325 [100–200] 92 42 0.45

III 1.08 400 [200–300] 87 44 0.5

IV 1.2 475 [300–400] 85 47 0.55

https://doi.org/10.1371/journal.pcbi.1011973.t002
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(Table 2). We also impose periodic boundary conditions on the limit of the domain to mimic

the larger cortical space. Finally, the maximum metabolic rate of oxygen is chosen to be

M = 2.4μmol � cm−3 �min−1 (Table 1), an intermediate value within the physiological range.

Other transport parameters used to solve the non-linear problem (Eq 39 and 40) are deduced

from reference values in the literature (Table 1).

A typical realization of the resulting coarse-grid concentration field, converted to partial

pressure (PO2) using the solubility of oxygen in brain tissue [10, 30, 37], is displayed in Fig 7B

for a 20x20 grid (h* 20μm). This matches the experimental sampling used in [10] and results

in a very good qualitative agreement with the field measured in a 100μm-deep plane perpen-

dicular to a PA (see Fig 7C, data acquired following [10]). This field can be used to deduce the

sub-grid concentration dynamics by interpolation (Eq 30, see e.g. Figs C and D in S1 Figures),

as well as the local cerebral metabolic rate of oxygen (CMRO2, see Eq 40 and Fig 7D). Interest-

ingly, the cerebral metabolic rate of oxygen exhibits *±10% variations in the outer region

(around capillaries) and up to *±20% in the periarteriolar region, in contrast to the common

assumption of a spatial homogeneity [10, 23, 24, 74].

Moreover, the above results can be post-processed to deduce the azimuthal average of the

normalized concentration around the PA, as displayed in Fig 7E as a function of the radial dis-

tance r to the PA center. In this figure, the plain orange line corresponds to the mean over 30

realizations of source distributions for layer II, while the faint orange areas shows the associ-

ated standard deviation. This radial concentration dynamics exhibits three regimes (Fig 7E): 1/

a constant value for r� RPA, i.e. within the PA, consistent with the source potential (Eq 24); 2/

a fast decrease for RPA� r�*0.8Rcyl corresponding to the inner part of the region devoid of

capillaries around the PA (see Fig 7A) and 3/ a re-increase followed by a slowly-varying region

for larger values of r. The presence of a local minima, which can also be observed in the mea-

surements (Fig 7C and Fig E in S1 Figures, dashed lines) suggests that the outer region of the

capillary-free cylinder is both fed by the PA and the capillary bed.

Next, as the capillary density approximately increases linearly with depth in the cortex from

layer I to layer IV [20], we increased the source density from 250 to 475 mm−2 (Table 2). This

results in an increase in size of regions with high oxygen concentration around capillaries (see

panel B vs. A in Fig C in S1 Figures) and therefore 1/ in a slight decrease of the steepness of

radial periarteriolar PO2 gradients averaged over 30 realizations and 2/ in a slight increase of

the partial pressure in the plateau region (r� Rcyl), see inset in Fig 7E. This increase can be

quantified by plotting the spatial average hPO2=PO2;Artir�rCyl
(see isocolor variations in Fig 7F).

Increases of the average intravascular PO2 within the capillary bed (Table 2), which can be

speculated based on depth-resolved experimental measurements of vascular oxygen within the

cortex [9], result in a higher increase in size of regions with high oxygen concentration around

capillaries (see panel C vs. A in Fig C in S1 Figures) and thus to higher increase of

hPO2=PO2;Artir�RCyl
(i.e. black dashed line vs. colored dashed lines in Fig 7F).

Combined together, the increase in capillary density and intravascular PO2 that has been

reported experimentally from layer I to layer IV in the cortex of living rodents leads to an even

faster decrease of the perivascular concentration gradient (Fig 7E). This results in a faster

increase of h�=�2;PAir�RCyl
from layer I to layer IV, see black dots in Fig 7F. For a constant value

of M, this yields an increasing metabolic rate of oxygen from layer I to layer IV (panel D vs. A

in Fig C in S1 Figures), consistent with the increased density of mitochondrial cytochrome oxi-

dase through these layers [10, 75, 76].

Noteworthy, similar results have been obtained for different values of the maximal meta-

bolic rate of oxygen M within the physiological range (Table 1), as illustrated in Fig D in S1

Figures. The only notable difference is that the amplitude of the dip in the radial concentration

PLOS COMPUTATIONAL BIOLOGY Modeling oxygen transport in the brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011973 May 23, 2024 23 / 31

https://doi.org/10.1371/journal.pcbi.1011973


profile decreases with decreasing values of M (Fig E in S1 Figures). For the set of parameters

representative of layers I and II, this leads to a monotonous decrease of the average radial con-

centration followed by a region with nearly constant oxygen concentration, similar to experi-

mental measurements reported in [10, 24], as soon as M� 1.2μmol � cm−3 �min−1 (Fig E in S1

Figures). As a result, the oxygen dynamics in the close vicinity of the arteriole (r< Rcyl/2) may

be highly similar in different cortical layers for different values of M (e.g. M = 2.4μmol � cm−3 �

min−1 in layer IV, see red line in Fig 7E vs. M = 1.6μmol � cm−3 �min−1 in layer I, see blue

dashed-dotted line in Fig E in S1 Figures).

Altogether, the present model suggests that laminar variations of the capillary density may

be sufficient to explain the differences in periarteriolar radial oxygen profiles measured at dif-

ferent depths within the cortex [10], without any variation of the maximal cerebral metabolic

rate of oxygen M. If laminar variations of intravascular capillary PO2 are also considered, the

predicted differences are even larger than the experimental ones. This demonstrates the inter-

play between metabolic consumption, capillary density and intravascular availability of oxygen

in the capillary bed to determine the radial oxygen gradient in the vicinity of PAs. This makes

it difficult to consider the steepness of the radial periarteriolar oxygen profile as a surrogate for

the baseline oxygen consumption, with the potential to reconcile recent experimental mea-

surements with the idea that laminar variations of capillary density could reveal underlying

differences in metabolic load.

5 Discussion

In this paper, we revisited the problem of oxygen transport and metabolism in the brain paren-

chyma, with the goal to introduce a simple, scalable and accurate numerical method for its

direct resolution. Getting inspiration from previous work on blood flow and oxygen transport

in the brain [22, 30, 45, 64] and on mixed-dimensional problems in applied mathematics for

geosciences [39, 56, 57] and biology [48], we applied the notion of operator-splitting, which

allowed us to describe the oxygen concentration field in the parenchyma as the sum of a slow

and a fast varying contributions. The slow contribution was treated using a classic finite vol-

ume approach on a coarse grid, while the fast contribution was described using Green’s func-

tions that allowed to analytically capture the sub-grid perivascular concentration gradients.

This made it possible to locally bridge the scale gap between sources and the coarse-grid with

higher flexibility than [39, 41] regarding the position of the sources within the coarse grid-

cells, including multiple sources within a single grid-cell, the proximity of the boundaries, and

the control of the matrix sparsity thanks to the the size of the neighbourhood (bV ). Similarly to

singularity removal approaches [45, 48, 57], this also made it possible to mix the dimensional-

ity reduction of the Green’s functions approaches [30, 32, 51] with the versatility of FV meth-

ods [56, 57, 72]. Moreover, solving for a slowly varying background concentration field,

thanks to a change of variable, offers a huge advantage with respect to the Green’s functions

resolution since it allows for a localization of the source potentials, thereby providing a much

sparser system. In addition, this enable the use of a much coarser mesh that reduces consider-

ably the size of the system compared to FV or FE methods, but without loss of precision thanks

to the sub-grid reconstruction of the concentration field (Figs 5D and 6D). This, in turn allows

the addition of non linear volume terms (metabolism) without significant loss of accuracy

(Figs 4B, 4D and 6E).

To provide rigorous but still intelligible mathematical developments, we focused on a two-

dimensional version of the problem (Section 2). In this way, we were able to introduce the

localization scheme enabling us to control the bandwidth of the associated linear system of

equations, by manipulating the size of the region over which the interactions with nearby
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vessels are accounted for analytically (scalability). We demonstrated the existence of an opti-

mal size for this region, above which the errors induced by localization are smaller than those

induced by deviations from local azimuthal symmetry of the concentration field around each

vessel (see Fig 6E). This emphasizes the importance of comparing the results of any simplified

model for oxygen transport in the brain parenchyma with a reference solution that is able to

fully resolve these deviations. This is neither the case if only single vessels with Krogh-type

configurations are considered for validation, as in [10, 23, 27, 37], or if the discrete version of

the problem is compared to the corresponding continuous version (i.e., comparing the solu-

tion of Eq 33 to the solution of Eq 6 instead of Eq 1), as in [58, 66, 72, 77]. To our knowledge,

such comparisons had never been performed before in this context. Crucially, they enabled to

provide careful estimates of the numerical errors associated to the use of coarse meshes, dem-

onstrating the unprecedented balance between reduction of problem size and minimization of

errors associated to our method, compared to previous strategies in the literature (accuracy).

With this regard, it is worth insisting that we designed test cases that enabled the origins of

errors to be understood by purposefully choosing configurations with deviations from the

model underlying assumptions (Section 3). Thus, all errors provide upper-bounds of the errors

expected when considering larger, physiological-like problems. Moreover, the mathematical

groundwork provided by the Green’s function framework (Section B in S1 Methods) permit-

ted to trace back the source of errors to specific modeling assumptions, which in turn offers a

rationale for choosing the model parameters, including discretization and neighborhood size.

Finally, the method makes use of a cartesian mesh independent of vessel locations, thereby

belonging to the class of mesh-less approaches [38]. In contrast with the widespread semi-ana-

lytical methods [30, 32, 34, 51, 65] that require computationally intensive Fourier transforms

to enforce conventional boundary conditions such as Neumann and Dirichlet [30], it also

shows remarkable versatility with regard to the boundary conditions that can be handled

(simplicity).

Of course, the two-dimensional version of the problem we considered doesn’t enable cou-

pling oxygen transport in the parenchyma with oxygen transport in blood vessels, because

intersecting the vascular network with a plane yields disconnected vascular sources, as schema-

tized in Fig 1. Thus, in the present work, intravascular concentrations have been treated as

inputs, while in a three-dimensional version they should be treated as unknowns, with addi-

tional blocks in the final system accounting for intravascular transport, as highlighted in [45,

52, 66]. Together with previous work by our group that focused on revisiting intravascular

transport [22], these will provide the foundations for an extension to three dimensions. The

fact that the integrated potential arising from a circular source can be written analytically (Eq

24 and Section B in S1 Methods) is a peculiar characteristic of the 2D model. In 3D, additional

errors may arise due to the approximations needed to estimate the potential of a small cylindri-

cal element used to discretize the vascular networks, that will require careful evaluation in the

spirit of [78, 79].

However, considering two-dimensional situations already offers the opportunity to investi-

gate important physiological questions, as illustrated in Section 4. Thanks to the computational

efficiency of our method, we were able to easily generate the large number of synthetic data

(600 simulations per layer and 30 measurements per simulation) needed to incorporate statis-

tical information about the capillary bed available in the literature [9, 20]. By this way, we shed

new light on the interpretation of experimentally measured variations of periarteriolar oxygen

profiles [10] in the context of laminar variations of capillary density and their relationships

with baseline cerebral metabolic load. Due to the non-local nature of blood flow, understand-

ing the measured variations of average intravascular concentration with depth will require a

fully coupled three-dimensional analysis of oxygen exchange in the brain. In this regard, it is
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worth noting that the matrix assembly process only depends on the location of vessels in the

considered domain and of the size of grid-cells and neighbourhood bV , and requires to be per-

formed only once when the structure of the vascular network is known. Besides parametric

analyses, this will pave the way for the inverse modelling of brain metabolism from three-

dimensional oxygen measurements. Inverse modelling indeed requires fast and precise for-

ward model resolutions, overcoming the geometric simplifications of the Krogh cylinder type,

which are at the basis of all current work that aims at measuring the cerebral metabolic rate of

oxygen [10, 24, 26].

6 Conclusion

We developed a multi-scale model describing the spatial dynamics of oxygen transport in the

brain that is simple, conservative, accurate and scalable. Our strategy was to consider that the

oxygen concentration in the parenchyma is the result of a balance between contributions at

local (cell metabolism, delivery by neighbouring arteriole) and larger (capillary bed) spatial

scales. This allowed us to split the oxygen concentration field into a slow and a fast varying

terms, underlying the separation of scales between local and distant contributions. Doing so

allowed us to combine a coarse-grid approach for the slow-varying term to a Green’s function

approach for the fast-varying terms. This resulted in a computationally efficient model that

was able to capture precisely gradients of concentration around microvessels and to describe

boundary condition with flexibility (Dirichlet, Neumann, and periodic) along with the non-

linear metabolic activity by the cells.

We then compared our model with reference solutions of the oxygen transport problem in

scenarios of increasing complexity. We showed that our model was able to maintain small

errors, even in scenario where the separation of scales was challenged or when azimuthal varia-

tions of flux were no longer negligible, demonstrating the robustness of the model.

While the present multi-scale model focused on two-dimensional problems, it has been

designed to be easily extended to three-dimensional problems by adapting the expression for

the source potential and by including an intravascular description of oxygen transport, both of

which being available in the literature (see e.g. [22, 30, 45]).

Despite this limitation, we showed that the model was already capable of generating syn-

thetic data reproducing the heterogeneous distribution of oxygen in the brain parenchyma.

Doing so, we showed that periarteriolar gradients were the result of the balance between local

cellular oxygen consumptionand supply by not only the neighbouring arteriole but also distant

capillaries, thus reconciling recent measurements of periarteriolar oxygen gradients across cor-

tical layers with the fundamental idea that variations of vascular density within the depth of

the cortex may reveal underlying differences in neuronal organization.
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