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Modern vs. classical structures of opposition:
A discussion

Didier Dubois, Henri Prade and Agnès Rico

Abstract. The aim of this work is to revisit the proposal made by Dag West-
erståhl a decade ago when he provided a modern reading of the traditional square
of opposition and of related structures. We propose a formalization of this mod-
ern view and contrast it with the classical one. We discuss what may be a modern
hexagon of opposition and a modern cube, and show their interest in particular
for relating quantitative expressions.

Mathematics Subject Classification (2010). Primary 68T30; Secondary 03A05,
03B05, 68T37.
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1. Introduction
The traditional square of opposition [32] is a basic diagram that exhibits the logical
interaction between four related statements. This structure can be encountered in
many knowledge representation settings [11]. Its underlying logical structure is well
understood [5] ; it involves negations, implications and mutual exclusions.

A decade ago, Westerståhl [40], a philosopher and a logician interested in
linguistic quantifiers has identified a slightly different structure on a number of ex-
amples, where implications and mutual exclusions are replaced by simple duality
relations. He called such a structure a “modern square”.

The goal of this paper is to formalize the concept of modern square, to provide
generic examples, and to discuss its differences with traditional squares. In particu-
lar, we look for modern squares that are not traditional ones, and we show that some
of them are “reversible” traditional squares, i.e., depending on the value of a param-
eter, the modern square is a traditional square, or a traditional square upside down.
We investigate the modern counterparts of other structures of opposition related to
the square, such as hexagons and cubes. We also show the interest of modern struc-
tures for relating quantitative expressions, which cannot be considered as true or
false but are a matter of degree.
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This paper develops a discussion originated in [18]. It complements and deep-
ens an investigation started in [17] and illustrated there on a family of aggregation
operators (Sugeno integrals).

2. Squares of opposition
This section starts with a reminder of the classical square of opposition. The second
subsection presents the modern square of opposition and its links with the classical
one. The last section is devoted to examples, such as for instance, parameterized
squares.

2.1. The classical square
The traditional square of opposition [32] is built with universally and existentially
quantified statements in the following way. Consider a statement (A) of the form
“all x’s are B’s”, which is negated by the statement (O) “at least one x is not a
B”, together with the statement (E) “no x is a B”, which is clearly in even stronger
opposition (than O) to the first statement (A). These three statements, together with
the negation of the last statement, namely (I) “at least one x is aB” can be displayed
on a square whose vertices are traditionally denoted by the letters A, I (AffIrmative
half: from Latin “AffIrmo”) and E, O (nEgative half: from Latin “nEgO”), as pic-
tured in Figure 1 (where B stands for “not B”).

contrary
A all x’s are B’s E all x’s are B’s

subaltern

subcontrary
I at least one x is a B O at least one x is a B

su
ba

lte
rn contradictorycontra

dictory

FIGURE 1. Traditional square of opposition

We shall refer to this square as the classical square of opposition. As can be
checked, noticeable relations hold in the square:
- (i) A and O (resp. E and I) are the negation of each other;
- (ii) A entails I, and E entails O (it is assumed that there is at least one x ∈ B and
one x′ 6∈ B thus avoiding existential import problems);
- (iii) A and E cannot be true together, but both may be false;
- (iv) I and O cannot be false together, but both may be true.

Using the above relations, there are three equivalent options for defining a
formal square of opposition with independent conditions, thus laying bare the log-
ical structure of the square of opposition [5]. We choose one of the options for the
following definition, and give the other equivalent options right after.
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Definition 1. AEOI is a square of opposition if the two following conditions hold:
(i) A and O are contradictories: A ≡ ¬O, E ≡ ¬I (diagonal link A− O).
(iii) A and E are mutually exclusive (i.e., contraries): ¬A ∨ ¬E holds.

Equivalent definitions are obtained when replacing condition (iii) by one of
the following:

(ii) Both implication relations A→ I and E→ O hold (vertical arrows).
(iv) I and O are subcontraries (cover all situations): I ∨O holds.

2.2. The modern square
D. Westerståhl [40] has proposed a so-called “modern” reading of the square of
opposition AEOI (see also [27]). This reading is quite different from the classical
one where logical constraints are supposed to hold between the vertices of the square
(see Def. 1). In the modern reading, A and E, as well as I and O, exchange through
an involutive internal negation, and A and I (resp. E and O) are dual to each other,
where duality is obtained by composing the internal negation with the (involutive)
external negation that is assumed to hold between diagonally opposite vertices.

So, in a modern square we keep property (i) expressing the effect of the ex-
ternal negation and we add the use of an involutive inner negation between A and
E. The vertices of the square are associated with statements that are supposed to be
true or false. Such statements are supposed to be of the form S(B) whereB denotes
another statement of particular interest. Thus B may refer to a variable in a logical
proposition, to a subset of items, to a number in a comparative statement, such as,
for instance, respectively B = q in S(q) = ‘p ∧ q’, S(B) = ‘all x’s are B’s’, or
S(B) = ‘θ > α’ (then B is a number θ in [0, 1], for instance). We denote by n(B)
the internal negation of B, with n(n(B)) = B (involution); for instance, if B = θ,
then n(B) = 1 − θ. Since S(B) is a Boolean statement, we denote by ¬S(B) the
external negation of this statement. Obviously ¬¬S(B) = S(B).

Hence a modern square, as pictured in Figure 2, is defined as follows:

Definition 2. A modern square AEOI, where A is associated with S(B), is such
that
• A and O, as well as E and I, exchange via an involutive external negation ¬.
• A and E exchange via an involutive internal negation n, namely E is associated
with S(n(B)).

internal negationA: S(B) E: S(n(B))

duality

internal negationI: ¬S(n(B)) O: ¬S(B)

du
al

i ty

external negationextern
al

negatio
n

FIGURE 2. A modern square of opposition
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Note that I and O also exchange via the internal negation. Besides, a duality
between A and I and between E and O is obtained by composing the internal and
external negations. In the remainder of this paper, the word ‘duality’ is restricted to
this precise use. Namely, the simple interplay between two expressions by means of
one negation will be identified as such and not called ‘duality’.

It is worth noticing that if we add the condition that A and E cannot be true to-
gether to Definition 2 of the modern square, we retrieve the definition of the classical
square.

It is also possible to define a modern structure without insisting on the “inter-
nal” nature of n, just considering that we have two involutive “negations”, ¬ and
n, that apply to a statement S, as in Figure 3. But in this case, we should add the
requirement ¬n(S) = n(¬S) in order to ensure that relations between A and E and
between I and O are the same.

A: S E: n(S)

O: ¬SI: ¬n(S)

contradictorycontra
dicto

ry

FIGURE 3. Abstracting the core of the square of opposition

2.3. Some examples of classical squares and modern squares
Let us first notice that the traditional square in Figure 1 may have a modern reading
if we forget the distinction between “contrary” and “sub-contrary” and if we forget
the “subaltern” relations. Indeed for going from A to E and from I to O we apply a
negation n by taking the complement of B, so that “all” and “at least one” are dual
of each other.

Indeed some modern squares are classical, as in the two examples below.

Example 1. We consider two setsB andC included in a universeX . A is associated
with the statement S(B) = ‘C ⊆ B’ and n(B) = B. The square AEOI such that
A : C ⊆ B E: C ⊆ B
I : C ∩B 6= ∅ O : C ∩B 6= ∅
is classical and modern, as can be easily checked.

Example 2. We consider a partition Ci i ∈ {1, · · · , N} on an ordered, finite uni-
verse X . The internal negation is the antonym, denoted by ant, and defined, for all
i ∈ {1, · · · , N}, by ant(Ci) = CN−i+1 and for any subset C ⊆ {C1, · · · , CN} we
have ant(C) = {ant(Ci) : Ci ∈ C}. The external negation is the set complement
notC = {Ci 6∈ C}. Hence the modern square AEOI

A : x is Ci E : x is ant(Ci)
I : x is not ant(Ci) O : x is not Ci

is classical. Indeed, Ci 6∈ ant(Ci) which entails an implication relation between A
and I.
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For instance, we may consider the set Y of young people, the setM of middle-
aged people and the set S of senior people. This yields the following square (where
Y = ant(S), M = ant(M), so that M or S = ant(Y or M)).

A : x is Y E : x is S
I : x is Y or M O : x is M or S.
Another instance is with X = {black,grey,white}, then if A is “x is

black” then I is “x is black or grey”, E is “x is white”, and O is “x is
grey or white”, where white or grey= ant(grey or black).

But some modern squares are not classical. We first consider an example
where the square may become classical after the addition of particular constraints.

Example 3. On a universe X , suppose two strict and non-empty subsets B and C
of X . The external negation of a set B is its complement B. The internal negation
of B (resp. C) is defined as the complement of C (resp. B). See Figure 4.

We assume neither B ⊆ C nor C ⊆ B (so there is no implication from A to I,
nor from I to A). So the square AEOI is modern but not classical.

However, if we add the condition B ∩ C = ∅ (or B ∪ C = X ), the modern
square becomes a classical one by rotating it 90 clockwise since if C ∩B = ∅ then
C ⊆ B, or turning it 90 counter-clockwise (in the case of the second condition).

Besides, note that in case we allow for B ⊆ C or C ⊆ B, the square AEOI
or the square IOEA becomes classical.

internal negationA: B E: C

duality

internal negationI: C O: B

du
a l

i ty

external negationext
ern

al
negation

FIGURE 4. A modern square of opposition induced by two sub-
sets non-included in each other

This situation of subsets non-included in each other is encountered for in-
stance in the case of {0, 1}-valued capacities. Let µ be a Boolean capacity (see,
e.g., [8]) on a finite set [N ] = {1, · · · , N}. µ : 2[N ] → {0, 1} is an increasing set
function such that µ(∅) = 0 and µ({1, · · · , N}) = 1. Capacities are characterised
by their focal sets, defined as follows.

First, the Möbius transform of the capacity µ is a mapping µ# : 2[N ] → {0, 1}
such that
i) µ#(A) = µ(A) if for all B ⊂ A we have µ(B) < µ(A), and
ii) µ#(A) = 0 otherwise.
A focal set of µ is a set A such that µ#(A) > 0. It is clear that two focal sets B and
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C are such that B 6⊆ C and C 6⊆ B. So, these two focal sets of a Boolean capacity
can be put on a modern square as in Figure 4 where neither B ⊆ C nor C ⊆ B
hold.

We now provide another example of modern square that is non classical, using
comparative relations.

Example 4. We take S(θ) = ‘θ < α’ where θ and α are numbers in [0, 1]. α is taken
as a reference in the comparison. The external negation is the standard negation and
n is the complement to 1.
A : θ < α E : 1− θ < α
I : 1− θ ≥ α O : θ ≥ α.
This square is modern but there are no implication relations between A and I. We
have neither A → I, nor I → A in general. However if α ≤ 0.5, then A implies I;
if α > 0.5 the converse holds. In these two cases AEOI and IOEA are respectively
classical.

The latter example suggests the notion of parameterized square, where de-
pending on the value of the parameter, different readings of the original modern
square may lead to different classical squares.

2.4. A subclass of modern squares: parameterized squares
We now consider squares induced by statements of the form S(B) = ‘g(B) ≥ α’,
where g(B) and α are numbers, and B is a subset of items.1 So important examples
intended by the symbol g are set functions such as cardinality, probability and other
uncertainty measures such as belief or possibility functions.

Definition 3. A parameterized modern square of opposition AEIOα is a modern
square of opposition where each vertex is associated to a parameterized expression
depending on a parameter α.

Such a parameterized square is depicted in Figure 5. It is only a modern square
since in general, there no implication relation between A and I.

A: g(B) ≥ α E: g(n(B)) ≥ α

I: g(n(B)) < α O: g(B) < α

FIGURE 5. A parameterized modern square

1We do not consider other forms of parameterization in this article.
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Note that if in Figure 5, we consider set-valued expressions such as {B | g(B) ≥
α} in place of the corresponding inequality, we still have a modern square, since sets
inherit from the logical relations between the conditions that define them (and the
external negation is now the set complementation). This square may become clas-
sical, e.g., if some additional conditions are assumed such as g(B) ≥ α implies
g(n(B)) < α; for instance n is the set complementation and g is a probability
measure.

We now discuss different instances of parameterized squares.

Example 5. Let us consider a probability measure P and a level α ∈ [0, 1]. In this
case B is a set, the negation n is the set complement, and S(B) = P (B) ≥ α.

A: P (B) ≥ α E: P (B) ≥ α

I: P (B) > 1− α O: P (B) > 1− α

FIGURE 6. A modern square induced by a probability bound

We get the square on Figure 6. It is reversible in the following sense

• if α > 0.5 then the square AEOI is classical.
• if α ≤ 0.5 then IOEA is classical.

The previous square straightforwardly generalizes to conditional probabilities
starting with A associated with P (B|A) ≥ α. This conditional probability square
extends previous examples by Westerståhl [40] who uses relative cardinalities and
proportional quantifiers. Pfeifer and Sanfilippo [30] have also discussed this proba-
bilistic square of opposition.

Another reversible square example can be observed for the square “at least k”
also considered by Westerståhl [40], and presented in the next example.

Example 6. Let B and C two subsets of a universe X . Since C \ B = C ∩ B,
it is easy to see that the square AEOI in Figure 7 is a modern square. We have
|C ∩B|+ |C ∩B| = |C| so it can be checked that
• If |C| > 2k then |C \B| ≤ k implies |C ∩B| ≥ k + 1.
• If |C| ≤ 2k then |C ∩B| ≥ k + 1 implies |C \B| ≤ k.
So, the square “at least k” AEOI is a classical square if and only if |C| > 2k is
assumed. Otherwise, if |C| ≤ 2k, the square IOEA is classical.

We conclude this subsection with an example of parameterized square where
reversibility is lost.
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internal negationA: |C \B| ≤ k E: |C ∩B| ≤ k

duality

internal negationI: |C ∩B| ≥ k + 1 O: |C \B| ≥ k + 1

du
al

ity

external negationext
ern

al
negation

FIGURE 7. Westerståhl’s square “at least k”

Example 7. We consider a universe X and a mass function defined on it, namely
m : 2X → [0, 1] withm(∅) = 0, such that

∑
B⊆X m(B) = 1. The associated belief

function [37] is bel(B) =
∑
C|C⊆Bm(C) and the plausibility function is pl(B) =∑

C|C∩B 6=∅m(C). We have bel(B) ≤ pl(B) for all B’s. These set functions are
conjugate: pl(B) = 1− bel(B); thus bel(B) < α is equivalent to pl(B) > 1− α.

Considering α ∈ [0, 1] we have the following modern square:
A : bel(B) ≥ α, E : bel(B) ≥ α
I : pl(B) > 1− α O : pl(B) > 1− α.
There are two cases:

• If α > 0.5 this modern square becomes classical. Indeed, it implies 1−α < α,
and then we have 1− α < α ≤ bel(B) ≤ pl(B), which means that A implies
I and E implies O.

• If α ≤ 1 − α, i.e., α ≤ 0.5, nothing can be said regarding pl(B) beyond
α ≤ bel(B) ≤ pl(B), and we can prove neither that A implies I nor that I
implies A. So the square is not reversible.

This situation is related to the fact that we are no longer working with additive
set functions (indeed bel(B) + bel(B) ≤ 1).

2.5. Graded square
Another square of opposition has been already introduced for belief functions [11].
However it was done in the extended setting of graded squares, where vertices are
associated with expressions whose value is a matter of degree between 0 and 1. This
means that, e.g., for vertex A we have just bel(B) instead of bel(B) ≥ α. This gives
birth to the following square.

Example 8.
A : bel(B) E : bel(B)

I : pl(B) O : pl(B).

In this graded square [11, 16], contradictions between A and O (resp. E and
I) is expressed by bel(B) = 1 − pl(B) (resp. pl(B) = 1 − bel(B)), contrariety
between A and E is expressed by bel(B) + bel(B) ≤ 1, sub-contrariety between I
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and O by pl(B) + pl(B) ≥ 1, and vertical implications from A to I and from E to
O by bel(B) ≤ pl(B) and bel(B) ≤ pl(B) respectively.2

Examples 7 and 8 show that (i) building squares from Boolean statements
comparing a numerical quantity to a threshold, or (ii) building graded squares di-
rectly using the numerical quantities, may not lead to equivalent structures of oppo-
sition.

The situation of Example 8 can be generalized to a general monotonically
increasing set function (i.e., a capacity) µ in place of bel in the above square. We
shall obtain a modern square in the general case.

Example 9. Let [N ] = {1, · · · , N} be a finite set and let µ be a qualitative capacity
[8] defined on its power set, i.e., a (non decreasing) mapping from 2[N ] to a totally
ordered set L equipped with an involutive order reversing map denoted by 1 − (·)
(e.g., L = [0, 1]). We define the conjugate capacity µc(B) = 1 − µ(B). We obtain
the square in Figure 8.

internal negationA: µ(B) E: µ(B)

duality

internal negationI: µc(B) O: 1− µ(B)

du
al

i ty

external negationext
ern

al
negation

FIGURE 8. A modern square of opposition for capacities

We get a graded modern square in the general case, since the implication
relation µ(B) ≤ µc(B) = 1 − µ(B) may not hold. We obtain a classical square if
µ(B) ≤ µc(B). If µ(B) ≥ 1− µ(B), it is a reversed graded classical square.

We end this subsection with the examples of (graded) modern squares induced
by a qualitative integral defined from a capacity.

Example 10. We consider L a finite totally ordered scale equipped with an involu-
tive order reversing map, denoted by n when used as an internal negation and by ¬
when used as an external negation. C is a finite set and µ a capacity on the power set

2If we call α, ε, o, ι, the numbers in [0, 1] that are the values of the expressions associated with vertices
A, E, O, I respectively, then contradictions is ensured by the relations o = 1 − α and ι = 1 − ε,
contrariety by α + ε ≤ 1, sub-contrariety by ι + o ≥ 1, and implications by α ≤ ι and ε ≤ o.
This extends the logical relations in the classical square of opposition if we choose the connectives of
Łukasiewicz logic. Namely, o = ¬α = 1 − α, ι = ¬ε = 1 − ε, α ∧ ε = max(0, α + ε − 1) = 0,
ι ∨ o = min(1, ι+ o) = 1, α→ ι = min(1, 1− α+ ι) = 1 and ε→ o = min(1, 1− ε+ o) = 1
[5].
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2C . Let x : C → L be a mapping; typically x = (x1, · · · , xi, · · · , xN ) is an evalua-
tion in the sense of a set of criteria C = {1, · · · , N}. Define xinf , xsup : 2C → L as
follows:

xinf(T ) = min
i∈T

xi and xsup(T ) = max
i∈T

xi.

Given a qualitative capacity µ that provides a weighting system on the eval-
uation criteria accounting for their importance and mutual synergies, we consider
the qualitative integral3

S(µ, x) = min
T∈2X

max(µ(T ), xsup(T ))

It induces the square of opposition of Figure 9 [17]. Note that I is nothing but
S(µc, x) where µc is the conjugate capacity 4. This is clearly a modern square of
opposition. This is not a classical square since, in general, there is no inequality
between S(µ, x) and S(µc, x).

internal negation
A: S(µ, x) E: S(µ, n(x))

duality

internal negation
I: ¬S(µ, n(x)) O:¬S(µ, x)

d u
a l

ity

external negationexternal
negation

FIGURE 9. Modern square with qualitative integrals

We can obtain another modern square by applying negation n, the order re-
versing map of L, to the capacity µ. n(µ) is an anticapacity and this gives birth to
so-called desintegrals [12, 17].

A: S(µ, x) E: S(n(µ), x);
I: ¬S(n(µ), x) O:¬S(µ, x).

In the next section, we investigate the idea of modern hexagons, and then show
the interest of graded hexagons for quantitative expressions, in the spirit of Example
9 (and Figure 8).

3. Hexagons
In order to propose a modern counterpart to the classical hexagon of opposition,
we first need to present a modern square based on statements S(A,B) involving
two identified arguments. Then we shall provide a brief reminder on the classical
hexagon, before introducing the modern one.

3This is one of the possible expressions of a L-valued Sugeno integral, which is an important family of
aggregation functions [39, 21, 19].
4Indeed the integral can be equivalently written S(µ, x) = maxT∈2X min(µ(T ), xinf(T )).
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3.1. Preliminaries
Now we consider that S depends on two arguments A and B. Then internal nega-
tions may take the forms S(n1(A), B), S(A,n2(B)), or S(n1(A), n2(B)), where
n1 and n2 are involutive internal negations respectively for the first and the sec-
ond argument. These internal negations lead to three possible modern squares of
opposition. One is displayed in Fig. 10 (the internal negation is on the second
predicate). Strictly speaking, the change from S(A,B) into ¬S(A,n2(B)) (or into
¬S(n1(A), B) is a semi-duality (following the terminology used in [12]), even if
shall continue to simply speak of duality.

internal negationA: S(A,B) E: S(A,n2(B))

duality

internal negationI: ¬S(A,n2(B)) O: ¬S(A,B)

du
al

i ty

external negationextern
al

negatio
n

FIGURE 10. A modern square of opposition

Note that the case with internal negation of S(A,B) defined as S(n1(A), n2(B))
with n1 = n2 = ¬ corresponds to a Klein group of four logical transformations of
a given logical statement φ = f(p, q) : (i) the identity I(φ) = φ, (ii) the nega-
tion N(φ) = ¬φ, (iii) the reciprocation R(φ) = f(¬p,¬q), (iv) the correlation
C(φ) = ¬f(¬p,¬q), identified by Piaget [31]; see also Gottschalk [20].

Example 11. Blanché [4] has provided an example of a classical square of opposi-
tion that exhibits inequalities between numbers, and which is at the basis of one of
his most famous examples of hexagon. See Figure 11. Note that an internal negation
of the form S(n1(A), n2(B)) (where A and B are two numbers in the unit inter-
val [0, 1] with n1(C) = n2(C) = 1 − C) is at work in Figure 11. Indeed, since
A < B ⇔ 1 − A > 1 − B and A ≤ B ⇔ 1 − A ≥ 1 − B, A and B are thus
exchanged when we go from left hand side vertices to right hand side vertices. Thus,
this square is also a modern one.

A > B A < B

A ≥ B A ≤ B
FIGURE 11. Modern square induced by two internal negations
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Note that the square of opposition in Figure 11 remains a classical square for
any real numbers A and B ([0, 1] is now replaced by the whole real line). Assuming
that the internal negation is now taken as n(S(A,B)) = S(B,A), it is also a
modern square.

3.2. The classical hexagon of opposition
This subsection is a reminder about the hexagon of opposition proposed by Blanché
[4]. This structure is anticipated in the works of three forerunners: Nelson5 [29, 1],
Jacoby [22], and Sesmat [36]. Blanché noticed that adding two vertices U and Y
respectively defined as the disjunction of A and E, and the conjunction of I and O,
respectively, one obtains an hexagon AUEOYI which contains 3 classical squares
of opposition, AEOI, YAUO, YEUI.

Such a hexagon is obtained each time a tripartition of mutually exclusive situ-
ations such as A, E and Y that play the same role is considered [9]. The tripartition
underlying the hexagon is already mentioned by Sauriol [34]. Figure 12 shows the
well-known example based on comparators of such a hexagon. Note that the square
AEOI is the square of Figure 11.

A : A > B

U : A 6= B

E : A < B

O : A ≤ B

Y : A = B

I : A ≥ B

FIGURE 12. Hexagon induced by a complete pre-order.
In any classical hexagon, the following relations hold
• the diagonals linking two vertices express contradictions between the state-

ments associated to these vertices;
• vertices A, E, Y are linked by contrariety links;
• vertices U, O, I are linked by sub-contrariety links;
• links between two successive vertices are implication links: A implies U, E

implies U, Y implies O, Y implies I, A implies I, E implies O.
This is exemplified by the example of Figure 12.

Another example of hexagon is presented in [22] in terms of hypothesis tests,
where the semantics of the vertices are probabilistic thresholded expressions. By in-
troducing two ordered thresholds, the authors are led to propose nested hexagons of
opposition. The vertices of the outside hexagon and of the inside hexagon are related

5Nelson, a post Kantian philosopher, indeed in his 1921 lectures [29], seems to be the first to use hexag-
onal diagrams for discussing opposition between abstract notions, in some places. In his hexagons, the
opposite vertices appear to be contradictories. In the introduction of his translation of Nelson lectures,
Leal has offered an abstract rendering of the diagrams, which appear to be topologically equivalent to
Blanché’s hexagon [2]. Yet, in Leal version of the diagram, it does not seem that the vertices correspond-
ing to A and E should be contraries.



Modern vs. classical structures of opposition: A discussion 13

by implications. Such an idea of a nested structure can be implemented already in
squares, for instance in Examples 5 or 7, with thresholded expressions.

3.3. Modern hexagon
The modern hexagon of opposition, which, as we shall see, still contains 3 (modern)
squares, is not obtained from the modern square in the same way as the classical
hexagon can be derived from the classical square. Namely, the additional vertices
are not obtained as logical combinations of other vertices.

Rather, considering a two place relation S(A,B), on the vertex U6, with two
identified arguments A and B, we define a hexagon as follows. We generate two
modern squares:
• one considering the internal negation n1 acting on the first argument A,
• one considering the internal negation n2 acting on the second argument B.

These two modern squares UOYA and UIYE have two common vertices bear-
ing S(A,B) and ¬S(A,B). This is pictured in Figure 13 which exhibits a mod-
ern hexagon (this display is called type 1.A). As can be checked, while these two
modern squares are respectively defined from a n1-based internal negation and a
n2-based internal negation, there is a third (horizontal) square in the hexagon where
both internal negations n1, n2 are at work. This is a modern square based on the
internal negation defined by the double application of n1 and n2. Diagonals in the
hexagon still link contradictory terms. The edges of the hexagon exhibit, alterna-
tively, 3 forms of relations between expressions involving internal negations n1
alone, or n2 alone, or both n1 and n2 together with the external negation ¬ (lead-
ing to a duality). The two triangles IUO and AYE inside the hexagon respectively
put together the positive vertices bearing S(A,B), S(n1(A), B), S(A,n2(B)) on
the one hand, and those bearing their negation on the other hand, as in Figure 13.
Their six sides correspond to the applications of n1-, n2- and n1, n2-based internal
negations respectively in each of the 3 modern squaresAUOY , UEYI andAEOI.

1-duality

A:¬S(n1(A), B)

2-duality

U :S(A,B)

1-2-duality

E :¬S(A,n2(B))

1-duality

O:S(n1(A), B)

2-duality

Y:¬S(A,B)

1-
2 -

du
al

i ty

I:S(A,n2(B))

FIGURE 13. Modern hexagon - Type 1.A
6For modern hexagons, we continue to use the same names for the vertices, but we use calligraphic
letters instead of standard capitals, since we are no longer expecting the same logical relations between
the vertices as in the classical hexagon. In fact, as we shall see these letters are now just a matter of
convenience for naming the vertices.
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Along the perimeter of hexagon 1.A, the n1, n2-duality is between the n2-
duality and the n1-duality. In the hexagon 1.B of Figure 14 a similar ordering can
be observed exchanging n1 and n2. Moreover the horizontal square is now based on
n2-duality. Hexagons 1.A and 1.B are clearly isomorphic.

1-duality

A:¬S(A,B)

1,2-duality

U :S(n1(A), B)

2-duality
E :¬S(A,n2(B))

1-duality

O:S(A,B)

1,2
-duality

Y:¬S(n1(A), B)

2-
d u

a l
i t y

I:S(A,n2(B))

FIGURE 14. Modern hexagon - Type 1.B
There are clearly other isomorphic variants of hexagons 1.A and 1.B, preserv-

ing the alternation of positive and negative expressions, such as, e.g., hexagons with
the square induced by n1 negations horizontal, but these hexagons can be obtained
from 1.A or hexagon 1.B, by rotations and/or renaming of expressions (e.g. letting
S′(A,B) = S(n1(A), B), and thus S′(n1(A), B) = S(A,B) and so on).

In Figures 13 and 14, positive and negative vertices alternate. A slightly dif-
ferent display of the hexagon can be obtained by putting all the negative vertices on
“the same side”, as in Figure 15 (type 2 modern hexagon). In this case, the n1- and
n2-based transformations on the perimeter of the hexagon are simple internal nega-
tions and no longer involve the external negation. In Figure 15 note that n1-duality
and n2-duality are at work along the non horizontal sides of the two triangles IUO
and AYE , and the n1, n2-based negation along their horizontal sides.

1-negation

A:S(n1(A), B)

2-negation

U :S(A,B)

1-2-duality

E :S(A,n2(B))

1-negation

O:¬S(n1(A), B)

2-negation

Y:¬S(A,B)

1-
2-

du
al

i ty

I:¬S(A,n2(B))

FIGURE 15. Modern hexagon - Type 2

In the same way as we move from type 1 hexagons to type 2 hexagons by
putting all the negative vertices on “the same side”, we can get a fourth modern
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hexagon from the hexagon of Figure 14 (type 1.B). The result is pictured in Fig-
ure 16. Here, n1-negation, n1, n2-negation, and n2-duality are along the perimeter,
while n2-negation, n1-duality, n1, n2-duality are at work along the sides of the two
inside triangles.

1-negation

A:S(A,B)

1,2-negation

U :S(n1(A), B)

2-duality

E :S(A,n2(B))

1-negation

O:¬S(A,B)

1,2
-negation

Y:¬S(n1(A), B)

2-
d u

al
ity

I:¬S(A,n2(B))

FIGURE 16. Modern hexagon - Type 3
Clearly, there are also hexagons where n2-negation, n1, n2-negation, n1-duality

are at work along the perimeter (thus exchanging the roles of n1 and n2 with respect
to the hexagon of Figure 16).

Note that it is impossible that the n1-negation, the n2-negation, and the n1, n2-
negation be all at work along the perimeter of the hexagon, because we need to gen-
erate negative expressions. It is also impossible to have two dualities and one nega-
tion at work along the perimeter since their successive applications would make it
impossible to have contradictory expressions at the extremities of diagonals. Thus
we have reviewed all the possibilities, namely only the 3 dualities along the perime-
ters as in types 1.A and 1.B hexagons, or 1 duality and 2 negations (as in types 2
and 3 hexagons).

All these hexagons are isomorphic in the sense that they exhibit, two times, the
effect of n1-negation, n2-negation, n1, n2-negation, and of n1-duality, n2-duality,
n1, n2-duality, either along the 6 edges of the hexagon, or along the 3 sides of each
of 2 triangles. In fact, speaking of hexagons here is just a matter of display. What
we really have is a complete graph with 6 vertices where each vertex is connected
to the 5 other ones through the edges and diagonals of the hexagon and the sides of
the two inner triangles.

Moreover, it is worth noticing that, in such a graph, the combination of trans-
formations along a path yields the same result as the direct transformation exchang-
ing the two expressions at the extremities of the path. Indeed the composition of two
dualities yields a negation (e.g. the composition of the n1-duality with the n2-duality
yields the n1, n2-negation), the composition of a negation and a duality yields a du-
ality (e.g., the n1, n2-negation with the n2-duality gives the n1-duality), the com-
position of n1-duality, n2-duality and n1, n2-duality or the composition of 1 duality
with the 2 complementary negations yields the external negation (e.g., the composi-
tion of n2-duality with the n1-negation and the n1, n2-negation), the composition of
the external negation with an internal negation yields a duality, and the composition
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of the external negation with a duality gives an internal negation. In other words, the
compositions involving the three internal negations, the external negation, plus the
three dualities, and the identity transformation, seem to form an algebraic structure
(a group of transformations) that captures the essence of the various displays of the
modern hexagon of opposition. It can be viewed as an extension of Piaget group of
transformations from 4 to 8 elements.

Remark. Pfeifer and Sanfilippo [30] have also proposed a probabilistic hexagon
of opposition starting with statements S(A,B) of the form P (B|A) ≥ α. Their
(classical) hexagon is obtained in the usual way by logical combination of vertices.
For instance, vertex U is associated with the statement P (B|A) ≥ α∨P (B|A) ≥ α.
It is clear that such a statement cannot be obtained in a modern hexagon of any type,
where statements of the form P (B|A) ≥ α would rather appear. Still, it would hor-
izontally include the classical square of Figure 6 (for probabilities conditioned by
A), corresponding to the n2-based duality acting on B.

In the following we rather consider quantitative expressions for providing an
example of modern hexagon.

3.4. Graded modern hexagon
In [14, 15], we have considered a graded hexagon of opposition for ordered weighted
min and max aggregation operations. Under some conditions, it turns to be a classi-
cal hexagon. As we shall see, without any additional condition, it is also a modern
hexagon. Let us first recall this graded hexagon.

Example 12. Ordered weighted min and max aggregation operations (abbreviated
in OWmin and OWmax, see, e.g., [7]) are weighted versions of min and max
operations that can express quantifiers such as at least k. For instance, theOWmin
takes the minimum of the k largest values to be aggregated.

Let {1, · · · , N} be a set of attributes, and x ∈ [0, 1]N be a vector of eval-
uations of some object according to these N attributes. Let σ be the permutation
of attributes such that xσ(1) ≥ · · · ≥ xσ(N). Define µk : {1, · · · , N} → [0, 1] by
µk(i)=1 if 1≤ i≤k and 0 otherwise. Then, we have:

OWminµk
(x) =

N
min
i=1

max(1− µk(i), xσ(i))

and by De Morgan duality we define OWmax

OWmaxµk
(x) = 1−OWminµk

(1− x) =
N

max
i=1

min(µk(i), xσ(i))

where σ is now such that xσ(1)≤· · ·≤xσ(N).
We can then build the following hexagon pictured in Figure 17. As we are

going to see, this is both a graded hexagon7 (provided that a condition holds, as
explained below), and a modern square.

7The contradictory, contrariety, sub-contrariety, and implication relations between the graded expres-
sions associated to the vertices of the hexagon are defined with the same multiple-valued logic connec-
tives as the ones used for the graded square, recalled in footnote 2.
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A : OWminµk (x)

U : max(OWminµk (1− x), OWminµk (x))

E : OWminµk (1− x)

O : OWmaxµk (1− x)

Y : min(OWmaxµk (x), OWmaxµk (1− x))

I : OWmaxµk (x)

FIGURE 17. OWmin-OWmax hexagon

Proposition 1. The hexagon AUEOYI of Figure 17, induced by the ordered weighted
min operation over N numbers in [0, 1] with weights encoding the quantifier ‘at
least k’, is a graded hexagon of opposition provided that the condition 2k ≥ N + 1
holds.

Proof. First, De Morgan duality ensures that diagonals relate contradictories through
the external negation 1 − (·); there are some straightforward implication links due
to obvious inequalities: A implies U, E implies U, Y implies O, and Y implies I.

Unfortunately, A implies I and E implies O may not hold, since the inequality
OWminµk

(x) ≤ OWmaxµk
(x) does not always hold. Indeed, assume k is small,

then OWminµk
(x) is the minimum of a small number of xσ(i) among the largest

ones, while OWmaxµk
(x) is the maximum of a small number of xσ(i) among the

smallest ones. So there is no guarantee that this maximum is larger than the previous
minimum. In contrast, if k is large enough, the minimum and the maximum are
taken over most of the xσ(i)’s and the above inequality may hold. More precisely,
as can be checked, the inequality OWminµk

≤ OWmaxµk
holds only when 2k ≥

N + 1, and then it holds that A implies I and E implies O. When 2k ≤ N + 1,
implications are reversed: I implies A and O implies E. In other words, AEOI is
a reversible square. This may be viewed as a graded counterpart of Westerståhl’s
square in Figure 7.

Under condition 2k ≥ N +1, vertices A, E, Y are related by contrariety links:
indeedOWminµk

(x)+OWminµk
(1−x)(= OWminµk

(x)+1−OWmaxµk
(x))

is less than 1 if 2k ≥ N+1. For the link between A and Y, we haveOWminµk
(x)+

min(OWmaxµk
(x), OWmaxµk

(1 − x)) ≤ OWminµk
(x) + OWmaxµk

(1 −
x) = OWminµk

(x) + 1 − OWminµk
(x) = 1. For the link between E and Y the

computation is similar,
Under condition 2k ≥ N + 1, vertices I, U, O are related by sub-contrariety

links:OWmaxµk
(x)+OWmaxµk

(1−x) = OWmaxµk
(x)+1−OWminµk

(x) ≥
1. For the link between I and U, we have max(OWminµk

(1−x), OWminµk
(x))+

OWmaxµk
(x) ≥ OWminµk

(1− x) +OWmaxµk
(x) = 1. For the link between

U and O the computation is similar.
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Thus UEYI andAUOY are graded squares of opposition, while AEOI is a re-
versible square. The graded square AEOI and the hexagon of opposition AUEOYI
is obtained when condition 2k ≥ N + 1 holds �

Proposition 2. The hexagon AUEOYI in Figure 17, induced by the ordered weighted
min operation over N numbers in [0, 1] with weights encoding the quantifier ‘at
least k’, is a modern hexagon of opposition of type 2 (in the sense of Figure 15).

Proof. Let the expression at vertex U of the OWmin-OWmax hexagon be read as
S(A,B), where S(·, ·) = max(OWminµk

(·), OWminµk
(·)) andA = 1−x,B =

x, letting n1(x) = n2(x) = 1 − x,¬S = 1 − S. To check we do have a type 2
modern hexagon, we need to check the other vertices:

• Vertex A: S(n1(A), B) = OWminµk
(x) (thanks to the idempotency of min).

• Vertex I:¬S(A,n2(B)) = 1−max(OWminµk
(1−x), OWminµk

(1−x)) =
OWmaxµk

(x).
• Vertex Y: ¬S(A,B) = 1 − max(OWminµk

(1 − x), OWminµk
(x)) =

min(OWmaxµk
(x), OWmaxµk

(1− x)).
• Vertices E, O: Same as vertices A, I, replacing n1 by n2.

Thus, the hexagon AUEOYI of Figure 17 is also a modern hexagon of type 2 in the
sense of Figure 15. �

A similar construction as in the previous Example 17 enables us to build a
hexagon for capacities from the square of Figure 8 in Example 9.

Example 13. The square AEOI in Figure 8 is a classical square of opposition as
soon as ∀A,µ(A) ≤ µc(A). Such an inequality defines the so-called pessimistic
capacities [10]. In case the inequality is reversed, i.e., ∀A,µ(A) ≥ µc(A), the ca-
pacity µ is said to be optimistic and the square of opposition is reversed. Thus,
the hexagon AUEOYI is a gradual hexagon of opposition if µ is a pessimistic ca-
pacity. Indeed U and Y relate contradictories since the associated expressions are
exchanged through the application of 1−(·) taken as an external negation; it is easy
to check that µ(B) + min(µc(B), µ(B)) ≤ 1 and so on. The hexagon AUEOYI is
also a modern square of opposition (of type 2) whatever the capacity µ. The proof
is similar to the one of Proposition 2, writing the expression associated with U as
S(A,B) with S(·, ·) = max(µ(̄·), µ(·)), where n1 = n2 is the set complement, and
¬ is 1 − ·. Then A and I as well as E and O are exchanged by n1, n2 duality, i.e.,
applying the internal negations n1 and n2 and taking the (external) negation of the
result, as in the case of hexagon of Figure 17.

Another, modern, hexagon can be built from the square of opposition for ca-
pacities in Figure 8 of Example 9.

Example 14. Not all capacities are pessimistic (or optimistic). But, given a ca-
pacity µ, one can consider its pessimistic part min(µ, µc) and its optimistic part
max(µ, µc) [10]. This gives birth to the hexagon AUEOYI of Figure 19 where di-
agonals link contradictories in the sense of 1 − (·). Note that we have inverted the
respective place of µc(B) and µ(B) in the horizontal square with respect to Figure
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A : µ(B)

U : max(µ(B), µ(B))

E : µ(B)

O : µc(B)

Y : min(µc(B), µc(B))

I : µc(B)

FIGURE 18. A possibly classical hexagon and a type 2 modern
hexagon for capacities

8. It is not a classical square since there cannot exist any general inequality between
µ(B) and µ(B).

AUEOYI is however a modern hexagon, as we are going to see. Before ex-
plaining it, a warning is necessary. In all the examples of this paper the internal
negations used are “true negations” (i.e., based on set complements, or on 1− (·)).
In the current example it would not be the case. Indeed, strictly speaking, in a mod-
ern square, in a modern hexagon, the only requirement for an “internal negation”
is to be involutive. The transformation n(µ) = µc is involutive. In the following,
we take n1(µ) = n2(µ) = µc. We shall speak of n1-involution and n2-involution
(rather than of n1- and n2-negations) since mathematically speaking, µ and µc are
dual of each other.

Consider the expression at vertex U . It is of the form S(·, ·) = max(µ(·), µc(·)).
On Figure 19, one may qualify the edges of the hexagon as follows,

• from U toA: it is an n2-involution : max(µ(B), µc(B)) is changed into µ(B)
(changing µc into µ);

• fromA to I: it is an n1, n2-duality. Indeed max(µ(B), µ(B)) is changed into
1−max(µc(B), µc(B)) = min(1−µc(B), 1−µc(B)) = min(µ(B), µ(B)) =
µ(B);
• from I to Y: it is an n1-involution;
• from U to E: it is an n1-involution;
• from E to O: it is an n1, n2-duality (same as from A to I);
• from O to Y: it is an n2-involution.

So this is a type 2 modern hexagon.

Other modern hexagons could be built starting from modern squares in a way
similar to hexagons 17, 18 and 19. The modern structure is quite versatile, as shown
by the case of capacities where two modern hexagons are built, while one classical
hexagon has been obtained under specific conditions relating the capacity and its
conjugate. Also notice the key-role of idempotency of the connectives that create
formal expressions on vertices U ,Y from those on the horizontal square vertices:
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A :µ(B)

U : max(µ(B), µc(B))

E : µc(B)

O: µc(B)

Y : min(µc(B), µ(B))

I: µ(B)

FIGURE 19. Another type 2 modern hexagon for capacities

changing min and max into product and its dual a + b − ab in Figures 18 and 19,
for instance, would not work.

4. Modern cubes of opposition
Let us briefly examine modern counterparts of cubes of opposition. As can be seen
in the previous section, the 6 vertices of the hexagons do not exhaust all the possi-
ble expressions induced from S(A,B) by application of the two internal negations
and the external one. For instance, expressions of the form S(n1(A), n2(B)) and
¬S(n1(A), n2(B)) are missing from Types 1, 2, 3 displays. Integrating the 8 pos-
sible expressions in a single structure requires a cube! In this section we investigate
this type of structure putting it in a “modern” perspective. We first recall the two
main types of cube of opposition which have emerged in the literature.

4.1. Existing cubes
Moretti [25, 26] has proposed a cube of opposition8 that is arguably the extension to
a quadri-partition of the situation encountered with the classical hexagon induced by
a tripartition. An example of this cube is exhibited in Figure 20 with the 4 mutually
exclusive comparison relations: A is preferred to B (A > B), B is preferred to A
(A < B), A is equivalent to B (A = B), A and B are not comparable (A >−< B)
and their respective negations: A 6> B, A 6< B, A 6= B, A >6 −< B. In this cube,
diagonals relate contradictories, and all edges are implications. Thick lines mean
mutual exclusiveness, double lines mean ‘may be true together’.

Another type of cube of opposition, called JK-cube9, is obtained by associat-
ing two classical squares of opposition, which are the front and back facets of the
cube. The cube involves expressions with two arguments, say A and B. The front
facet involves negation of the relation linking A and B and / or a negation applied
to B; the back facet contains similar expressions, except that they now all involve

8However, an isomorphic cube already appeared in the middle of last century in a discussion of syllo-
gisms [33], see [16] for details.
9What we call here “JK cube” was in fact presented as an octagon by Johnson [23] and Keynes [24]. It
has been rediscovered several times, e.g., [9], [40].
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a: A = B

I: A 6< B e: A >−< B

O: A 6> B

i: A >6 −< B

A: A > B o: A 6= B

E: A < B

FIGURE 20. Moretti’s cube of opposition

the negation of A. This is exemplified in Figure 21 where the cube is induced by
set inclusion (A, B and their complements are assumed to be non empty sets). Note
that the square of the back facet is upside down, that the edges of the side facets are
implications, and that contradictories are related by the diagonals in the front and
back facets.10

The JK cube is different from Moretti’s cube. The latter displays 12 implica-
tions (on all the edges of the cube), instead of only 8 for the JK cube (on the edges
of its side facets). The reader is referred to [16] for more details on the logical char-
acterization of each of the two cubes (and other related cubes), their comparison,
and their gradual versions.

a:A ⊆ B

I : A 6⊆ B O : A 6⊆ B

e:A ⊆ B

i:A 6⊆ B

A : A ⊆ B E : A ⊆ B

o:A 6⊆ B

FIGURE 21. JK cube of opposition induced by inclusion

10This latter point is a matter of convenience and readibility, and not a distinctive feature with respect
to Moretti’s cube. Indeed we may choose to use the front and back facets of the JK cube as the diagonal
plans of a cube, just leading to a new isomorphic cube the diagonals of which relate contradictories.
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4.2. Modern cube
Is there a “modern” reading of the two previous cubes? Let us first consider Moretti’s
cube. This cube is characterized by 4 mutually exclusive expressions that lead to
implications on all edges, while contradictories are linked by diagonals. Following
the examples of moving from the classical hexagon to the modern one, we have
to interpret the edges as supporting dualities or internal negation transformations,
while the diagonals continue to link contradictories. Let us see an example.

Example 15. We consider an example from [16], displayed on Figure 22. Vertices
are associated with relative cardinalities that involve two subsets A and B of a
universe U . It is a gradual cube of opposition. Indeed diagonals relate relative car-
dinalities of two subsets that complementary, so the relative cardinality of one is
equal to 1 minus the complementary of the other. Since cardinality is a set increas-
ing function, each implication corresponds to an inequality as can be checked.

|A∩B|
|U |

|A∪B|
|U |

|A∩B|
|U |

|A∪B|
|U |

|A∪B|
|U |

|A∩B|
|U |

|A∪B|
|U |

|A∩B|
|U |

FIGURE 22. Moretti’s cube for relative cardinalities

The cube on Figure 22 and Example 15 may have a “modern” reading. Each
expression is of the form S(A⊥B) = k|A∗⊥B∗| with X∗ equal to X or to X , ⊥
standing for ∩ or ∪, k = 1/|U |). Let us denote by n1 (resp. n2) the set complemen-
tations on the first (resp. second) argument of A∗⊥B∗, and ¬ the set complementa-
tion applying to the whole expression A∗⊥B∗, which plays the role of the external
negation. Then the cube on Figure 22 can be represented by the cube on Figure 23.

In Figure 23, front and back facets exhibit n1, n2 duality and n2 duality, top
and bottom facets n1, n2 duality and n1 duality, side facets n1 duality and n2 duality.
n1 negation and n2 negation are “hidden” in the squares of diagonal plans.

Let us now consider JK-cubes. The cube on Figure 24 is the modern reading
of the cube on Figure 21 (with the same notation conventions as in the previous
cube, and where the general relation S replaces set inclusion). We can see that the
cube of opposition induced by set inclusion of Figure 21 is thus both a classical and
a “modern” cube.

In case we introduce a third internal negation, it would be possible to obtain a
modern double cube, or tesseract; see [17].
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S(n1(A)⊥n2(B))

S(¬(A⊥n2(B))) S(n1(A)⊥B)

S(¬(A⊥B))

S(¬(n1(A)⊥B))

S(A⊥B) S(¬(n1(A)⊥n2(B)))

S(A⊥n2(B))

FIGURE 23. Modern counterpart of Moretti’s cube in Figure 22

a:S(n1(A), n2(B))

I : ¬S(A,n2(B)) O : ¬S(A,B)

e: S(n1(A), B)

i:¬S(n1(A), B)

A : S(A,B) E : S(A,n2(B))

o:¬S(n1(A), n2(B))

FIGURE 24. Modern counterpart of the JK cube of opposition

We can see in Figure 24 that the n2 negation and the n2 duality are at work
in the front and back facets, while the n1 negation and the n2 negation are at work
in the top and bottom facets, while n1 duality and the n2 duality are at work in the
side facets.

We observe that the modern cubes obtained from Moretti’s cube and JK-cube
are quite similar. In fact they are isomorphic, taking the front and back facets of
the cube on Figure 24 as vertical diagonals of a cube. In other words, the modern
reading seems to erase the differences between the two cubes. This is not a surprise,
since this reading forgets logical relations such as implications.

We have provided two examples of “classical” cubes that also have a “modern”
reading. We end this section with an example of “modern” cube without “classical”
reading.

Example 16. This example is about Sugeno integrals which are qualitative integrals
already considered in the Example 10 of modern squares. We use the notations of
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this example, i.e., here S(A,B) = S(µ, x). We can build a cube with a JK dis-
play, where the front facet is the modern, non classical, square of Figure 9 (where
µc(T ) = 1−µ(T )). The back facet is the front facet upside down where the capacity
µ has been replaced by the anticapacity [12, 17] 1− µ. We thus obtain 8 quantities
in Figure 25, where the ones of the back facet are unfortunately equal to 0 (i and o)
or 1 (a and e), as can be checked. So this modern cube is artificial, since it relies on
syntactic transformations only. However it is possible to obtain a non trivial cube
for Sugeno integrals S(µ, x) where µ is a necessity measure (see Figure 11 in [17]).

a:S(1− µ, 1− x)

I : S(µc, x) O : S(µc, 1− x)

e: S(1− µ, x)

i:1− S(1− µ, x)

A : S(µ, x) E : S(µ, 1− x)

o:1− S(1− µ, 1− x)

FIGURE 25. A modern cube for qualitative integrals

In case we introduce a third internal negation, it would be possible to obtain a
modern double cube, or tesseract; see [17].

5. Concluding remarks
In this paper, we have proposed a formalization of “modern” squares, following an
idea first proposed by Westersthål, and we have extended this view to hexagons and
cubes. We have investigated the differences between classical and “modern” struc-
tures of opposition. Several general lessons can be drawn from this study. Classi-
cal structures focus on expressions that have a truth value (or a degree of truth in
the graded case) and the logical relations that hold true between these expressions.
“Modern” structures do not consider the relationships between these expressions
from such a perspective. They only examine transformations (involving internal
negation(s) and / or an external negation) at work when we go from an expres-
sion to another. This latter point of view makes no difference between {0, 1}-valued
expressions or graded expressions.

Besides, in the numerous examples of this paper, we have dealt with a variety
of types of expressions: true or false statements such as relational statements of
the form S(A,B) (between subsets or numbers), or quantitative expressions such
as µ(B) ≥ α involving a threshold, as well as graded expressions such as µ(B)
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or such as |A⊥B||U | (where ⊥ is a set operation). In each case, we have shown the
relevance of a modern reading.

We also have shown that classical squares of opposition may be reversed in the
case of threshold expressions (they may not hold for some value of the threshold,
while all cases are covered by the “modern” reading). Indeed in the “modern” view,
the ”subaltern” (implication) relation is replaced by a weaker duality relation, the
mutual exclusiveness (contrariety) relation and the sub-contrariety (negative mutual
exclusiveness) are weakened to a unique relation based on an internal (involutive)
negation. This explains why “modern” structures agree with their classical counter-
parts in some cases, but not always.

Lastly, a bitstring encoding [6, 35] of logical formulas, or of relations, or still
of subsets of criteria, has been shown successful for encoding structures of opposi-
tion. It is a convenient way for keeping track of the logical relations between ver-
tices. As we have explained, the “modern” view, at least in the way we have devel-
oped its formalization, insists on the group of transformations, à la Piaget, necessary
for moving from one vertex to another. How modern squares can also benefit from
the bitstring encoding, is an open question.
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