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 170 
Abstract: Horses revolutionized human history with fast mobility1. However, the timeline between their 171 
domestication and widespread integration as a means of transportation remains contentious2–4. Here we 172 
assemble a large collection of 475 ancient horse genomes to assess the period when these animals were first 173 
reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage 174 
emerged ~2,200 BCE (Before Common Era), through close kin mating and shortened generation times. 175 
Reproductive control emerged following a severe domestication bottleneck starting no earlier than ~2,700 176 
BCE, and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of 177 
nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in 178 
human history, which refutes the commonly-held narrative of large horse herds accompanying the massive 179 
migration of steppe peoples across Europe ~3,000 BCE and earlier3,5. Finally, we detect significantly 180 
shortened generation times at Botai ~3,500 BCE, a settlement from Central Asia associated with corrals 181 
and a subsistence economy centered on horses6,7. This supports local horse husbandry before the rise of 182 
modern domestic bloodlines. 183 
 184 
One-Sentence Summary: Accelerated production of horses promoted rapid and long-distance human 185 
mobility from ~2,200 BCE. 186 
 187 
Main Text: The genetic makeup of modern domestic horses (hereafter, DOM2) emerged in the Western 188 
Eurasian steppes during the third millennium BCE2. The spread of DOM2 horses, alongside the 189 
development of Sintashta spoke-wheeled chariots in Asia (~2,200-1,800 BCE), and the apparently limited 190 
DOM2 genetic influence in Europe before that time, have indicated that long-distance horse-based mobility 191 
developed no earlier than the late third millennium BCE. This chronology implies that the spread of steppe-192 
related ancestry that reshaped the human genetic landscape of nearly all regions of central and western 193 
Europe over the course of the 3rd millennium BCE8,9 was not driven by DOM2 horseback riding.  194 

     However, recent population models have claimed significant DOM2 genetic ancestry into 195 
European horses affiliated to the Corded Ware Complex (CWC), a culture that developed from ~3,000 196 
BCE against the backdrop of the Yamnaya steppe migration4. Bone pathologies potentially resulting from 197 
regular horseback riding also occur in ~5% of the human skeletons from the Carpathian Basin, mainly in 198 
steppe-related8 Yamnaya individuals, but also in pre-Yamnaya, up to the fifth millennium BCE5. Moreover, 199 
horse-related terminology commonly shared across Indo-European (IE) languages is often considered 200 
indicative of established equestrianism in the steppes, amongst Yamnaya-related proto-IE speakers3. These 201 
findings have revived theories associating horseback riding with the Yamnaya expansion3, and possibly with 202 
earlier human steppe migrations into the Carpathian basin after ~4,500 BCE10. 203 

Also controversial is whether rapid mobility was the only incentive for horse domestication. Equine 204 
milk peptides were reported in Yamnaya human dental calculus ~3,300-2,600 BCE11, but further work has 205 
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revealed that western steppe pastoral practices shifted from sheep and cattle dairying to horse milking no 206 
earlier than ~1,000 BCE12. Archaeological evidence for pre-Yamnaya horse milking and harnessing6,7 exists 207 
further east in Central Asia, within the 5,500 year-old Botai culture, which developed a subsistence economy 208 
almost entirely focused on horses13. At this site, evidence for horse milk consumption is supported by 209 
residue analysis of fatty acids absorbed into pottery sherds (N=5), but this is not corroborated by the 210 
palaeoproteomic analysis of human dental calculus (N=2)6,11,14.  211 

Furthermore, the unusual pattern of dental attrition on the Botai horse teeth initially identified as 212 
bit wear15 has been challenged16. Unchanged sex-ratios in pre-Botai and Botai bone assemblages have also 213 
advocated against the emergence of new horse management practices at Botai17,18. Considering that DOM2 214 
and Botai horses originate from two genetically distinct lineages7, new lines of evidence are needed to assess 215 
the exact role played by horses in the Botai society, and more generally, how domestic horses contributed 216 
to the steppe migrations and the possibly concurrent spread of IE languages (although see19). 217 
 218 
Datasets and experimental design 219 
To address the context into which horse husbandry developed in the fourth and third millennia BCE, we 220 
analysed a total of 475 ancient horse genomes (Fig. 1a), combined with 77 publicly available modern horse 221 
genomes, including 40 worldwide domestic breeds and six endangered Przewalski’s horses (Table S1; 222 
Extended Data Figs. 1 and 2). The 124 newly generated genomes show a median coverage of 1.40-fold (min 223 
= 0.29; max = 10.92) and span Eurasian archaeological contexts dating over ~50,000 years ago, including 224 
in the Carpathian basin, where bioanthropological evidence for horseback riding was reported5,20. Together 225 
with 401 radiocarbon dates, 140 of which are new, our dataset provides an unprecedented genome time-226 
series spanning the whole domestication process. 227 

In this study, we investigate three possible markers of horse husbandry. First, we examine changes 228 
in the genomic makeup of horses across Central and Eastern Europe to test whether they accompanied the 229 
humans that moved from the steppe. Second, we reconstruct horse demographic trajectories to evaluate the 230 
existence, timing and severity of domestication bottlenecks. This reveals when horses were bred in 231 
significant numbers to sustain large-scale mobility. Third, we track evidence for controlled reproduction of 232 
horses, in the form of close kin mating and accelerated generation times. 233 
 234 
Spread of DOM2 horses across Europe 235 
Assuming that steppe humans and horses moved together implies parallel shifts of genetic ancestry in both 236 
species. Such concurrent shifts were supported by the population graphs presented by Maier and colleagues4, 237 
who identified horses excavated from a CWC context in Germany with ~20% DOM2 ancestry, somehow 238 
mirroring the ~70% Yamnaya-related steppe ancestry observed in humans8. However, Locator21 analyses 239 
predict that the geographic origins of CWC horses is exclusively within Central Europe (Extended Data Fig. 240 
3cd). We also identify population graphs fitting published data significantly better than those previously 241 
proposed2,4 (p-value<10-5; Extended Data Fig. 3b), and refining our understanding of the connectivity 242 
between the steppes and the rest of Europe by including four additional population groups (Extended Data 243 
Fig. 4). No such graphs support DOM2 genetic contribution into CWC horses (Extended Data Figs. 3ab 244 
and 4), with the most comprehensive placing CWC horses close to pre-Yamnaya populations from Central 245 
Europe (ENEOCZE, ~3,364-3,102 BCE, and NEOPOL, ~5,210-5,006 BCE). That a Central European 246 
horse lineage remained isolated from the steppe is also supported by adjacent positioning in Multiple 247 
Dimension Scaling analysis (Extended Data Fig. 5), distinctive ancestry profiles sharing the major genetic 248 
component of CWC horses (Fig. 1bc, Extended Data Fig. 6), and qpAdm modeling (Table S2). qpAdm 249 
models including two population sources indeed depict CWC horses as a mixture between ENEOCZE 250 
(32.4%) and Northern European horses (FBPWC, ~3,050-2,950 BCE; 67.6%), while allowing for a third 251 
source only returns negligible steppe contribution (≤1.7%). Combined, these analyses uncover a distinct 252 
cline of genetic ancestry peaking in CWC horses and declining both westwards (LPNFR, ~13,969-12,090 253 
BCE), and eastwards across Central Europe (ENEOCZE and NEOPOL), the Carpathian and 254 
Transylvanian Basins (HUNG, ~3,364-1,971 BCE, and; ENEOROM, ~4,494-3,658 BCE), and Anatolia 255 
(NEOANA, ~6,396-4,456 BCE) (Fig. 1bc). 256 
 The CWC-related ancestry survives within wild European horses called “tarpans” (~45.1%) until 257 
~1868 CE in our dataset (and possibly later in the last surviving captive or free-ranging tarpans22), but is at 258 
best residual in the genetic makeup of modern domestic horses (Fig. 1b). In fact, it vanishes with the 259 
expansion of the typical DOM2 ancestry profile outside of the steppe (Fig. 1c). Our extended time-stamped 260 
panel of ancient genomes from the Carpathian Basin provided increased temporal resolution regarding the 261 
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arrival of DOM2 horses and the replacement of the local lineage found there (HUNG). This is pivotal for 262 
clarifying the role of horses in the human migrations from the steppe. The date for the first typical DOM2 263 
horse in the Carpathian Basin is ~1,822 BCE (1,895-1,749 BCE), while that for the last horse with a typical 264 
local HUNG genetic profile is ~2,033 BCE (2,120-1,945 BCE). Considering individual archaeological sites, 265 
rather than the whole region, indicates similar chronologies (at Budapest-Királyok Útja: ~1,822 BCE (1,895-266 
1,749 BCE) vs ~2,211 BCE (2,284-2,138 BCE), and; Százhalombatta-Földvár: ~1,822 BCE (1,893-1,751 267 
BCE) vs ~2,033 BCE (2,120-,1945 BCE)) (Table S1). Combined, these findings narrow down the time for 268 
the genomic turnover accompanying the arrival of DOM2 horses in the Carpathian basin to ~2,033-1,945 269 
BCE. This timeline is consistent with the first evidence of DOM2 horses outside of the steppe reported by 270 
Librado and colleagues (2021)2 in Moldavia ~2,063 BCE (2,140-1,985 BCE), Anatolia ~2,125 BCE (2,205-271 
2,044 BCE), and Czechia ~2,037 BCE (2,137-1,936 BCE), post-dating the arrival of human steppe-related 272 
ancestry in the respective regions by at least 600 years10,23. Yamnaya-related steppe migrations and the spread 273 
of DOM2 horses are, thus, chronologically incompatible. 274 

However, humans may have migrated from the steppe using horses other than DOM2. To 275 
investigate this, we mapped the genetic ancestry identified by Struct-f424 as characteristic of horse 276 
populations living across the steppe before the expansion of DOM2 (C-PONT, TURG, and NEONCAS; 277 
~5,616-2,636 BCE; Fig. 1b). Around ~17.2% of this ancestry was present in the Carpathian Basin during 278 
the fourth and third millennia BCE (~3,364-1,971 BCE). However, we find it also in Austria ~3,300 BCE 279 
(28.9%, KT46), and in the Transylvanian Basin ~4,200 BCE (54.5%, ENEOROM), at the Pietrele site where 280 
the genomic makeup of human populations suggests no steppe contact10. In fact, the steppe-related genetic 281 
ancestry is found in even earlier horse populations spanning a broad geographic range, including Poland 282 
(NEOPOL, ~5,210-5,006 BCE), Anatolia (NEOANA, ~6,396-4,456 BCE), Iberia (IBE, ~5,299-1,900 283 
BCE), and as far back in time as in the Upper Paleolithic of France (LPNFR, ~13,969-12,090 BCE, and; 284 
LPSFR, ~21,909-14,646 BCE). This is consistent with the best-fitting population graph showing 285 
ENEOROM horses receiving steppe genetic material from an ancestor that also contributed to LPSFR 286 
populations (Extended Data Fig. 4). Therefore, the spread of steppe-related horse genetic ancestry into 287 
Europe must predate ~14,646 BCE, which is considerably earlier than any claimed evidence for horse 288 
husbandry3 and, thus, occurred through natural contacts between wild populations, most likely dispersing 289 
in the aftermath of the Last Glacial Maximum (~24,000-17,500 BCE)25. Combined, the genomic makeup 290 
of ancient European horses does not endorse widespread horse-driven mobility before the end of the third 291 
millennium BCE. It, thus, dismisses any significant involvement of horses in the Yamnaya-related or earlier 292 
human migrations from the steppe. 293 
 294 
DOM2 demographic history 295 
To time precisely the rise of widespread horse-based mobility, we next estimated the period when DOM2 296 
horses were bred in sufficiently large numbers to sustain their global spread. Specifically, we tracked changes 297 
in the DOM2 effective population size (Ne) during the 200 generations preceding ~1,864 BCE, which is the 298 
average date of the earliest 24 DOM2 horses in our dataset with sufficient sequence data (Fig. 2a). Crucially, 299 
LD-based demographic reconstructions26 indicate a sharp demographic burst of ~13.7-fold increase within 300 
the 30 generations preceding that period. Matching those 30 generations with the Yamnaya-related steppe 301 
expansion, which had already reached Central Europe by ~2,750 BCE at the latest8, would require unrealistic 302 
average generation times of ~27 years, largely exceeding horse life expectancy under modern intensive 303 
veterinarian care27,28. Assuming instead the commonly accepted generation time of 8 (12-7) years29–32 304 
provides ~2,190 (2,310-2,160) BCE for the rise of widespread horse-based mobility. Restricting analyses to 305 
horses from Sintashta contexts, which are associated with the spread of spoke-wheeled chariots in Asia, 306 
returns similar demographic profiles and time estimates (~2,100 BCE; 2,200-2,075 BCE); Extended Data 307 
Fig. 7a). These timelines not only coincide with the radiocarbon dating of the earliest DOM2 horses outside 308 
of the steppe, but also with the earliest horse images in Akkadian art33,34, and with major evidence of 309 
conflicts, crises and political disruption, from the Balkans to Egypt and the Indus valley35,36.  310 

Our demographic reconstructions also provide the first evidence for a strong domestication 311 
bottleneck in horses during the 75 generations preceding the DOM2 expansion (Fig. 2a). The interval 312 
associated with minimal effective sizes (Ne~500 diploid individuals) starts ~2,664 (3,064-2,564) BCE. 313 
Therefore, the time when steppe people migrated did not coincide with expanding but plummeting 314 
availability of DOM2 reproductive horses, which aligns with horses not driving Yamnaya-related steppe 315 
migrations. Interestingly, the first evidence for horses carrying long runs of homozygosity only (≥15 cM), 316 
which is indicative of close kin mating, is found in some of the earliest DOM2 sequenced (Fig. 2c), including 317 
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in the steppes of Central Asia and Anatolia. This indicates that the reproductive control underlying early 318 
DOM2 spread involved some levels of inbreeding, which is avoided in the wild but represents a common 319 
practice for breeding animals with desirable traits37. 320 
 321 
DOM2 generation time contracted 2200 BCE 322 
In addition to the practice of close kin mating, early DOM2 breeders may have aimed to produce more 323 
animals every year to meet the explosive demand for horses in the late third millennium BCE. To test 324 
whether breeders used younger animals for reproduction, we developed two complementary proxies 325 
measuring generation times from single pseudo-haploid time-stamped genomes. The first quantifies the 326 
number of generations required for a genome to accumulate an observed number of mutations post 327 
divergence from outgroup(s) (mutation clock; Supplementary Methods; Extended Data Fig. 8a). The second 328 
leverages recombination patterns to estimate the number of generations elapsed since the most recent 329 
common ancestor of the sampled specimens (recombination clock; Supplementary Methods; Extended 330 
Data Fig. 9ab). We validate the performance of our methodology through coalescent simulations across 331 
various inbreeding levels and demographic trajectories (Extended Data Fig. 10), and apply it to all of our 332 
radiocarbon dated horse genomes to estimate ~7.4 years as the average time between two consecutive 333 
generations in the last 15,000 years (Fig. 3b; Supplementary Information). 334 

Our analyses also reveal that horse generation times did not remain constant, but accelerated ~1.8-335 
fold (~4.1 years) during the last ~200 years, as could be expected given the development of modern breeding 336 
practices, optimized for animal production (Fig. 3a). Racing Quarter Horses and Thoroughbreds exemplify 337 
breeds with the least accelerated generation time, possibly due to the extended reproductive lifespan 338 
imposed on sport champions (Fig. 3a). No equivalent changes were detected backwards in time until 339 
~2,200-2,100 BCE, which coincides with a ~2.1-fold acceleration of the generation time, relative to the 340 
~7.4 average (~3.5 years; Fig. 3b). This acceleration did not affect any of the DOM2 relatives, including 341 
those with individuals affiliated to Yamnaya, Turganik and Steppe-Maykop contexts (CPONT and TURG; 342 
Fig. 3 and Extended Data Fig. 7c), and the older horses living in the steppe (NEONCAS), or in the 343 
Carpathian and Transylvanian Basins (HUNG and ENEOROM; Extended Data Fig. 7c). This reveals that 344 
new practices of DOM2 reproductive control, aimed at faster productivity, emerged by the late third 345 
millennium BCE, and were a prerequisite to early DOM2 breeding and adoption of widespread horse-based 346 
mobility. 347 
 348 
New evidence of horse husbandry at Botai 349 
Earlier research established minimal connectivity between horse populations during the fourth millennium 350 
BCE2. As this encompasses the timeline of the Botai settlement (~3,500 BCE), where controversial evidence 351 
for horse domestication was found, the incentive for domestication at Botai, if any, could not be long-352 
distance horseback riding. In the 36 horses from the Botai site analysed, we found no evidence for close kin 353 
mating, but shortened generation times, an acceleration comparable in magnitude to that accompanying 354 
DOM2 breeding (Fig. 3). This trend is specific to Botai and a group directly descending from Botai (Borly4, 355 
~3,000 BCE; Fig. 3 and Extended Data Fig. 7d)7, and remains unprecedented in scale throughout the Ice 356 
Age to the Eneolithic. Importantly, the Botai horse population experienced a 2.4-fold demographic 357 
expansion starting ~80 generations before settlement (Fig. 2b), i.e. ~4,140 (4,460-4,060) BCE assuming 358 
average generation times of 8 (12-7) years. This largely concurs with paleoclimatic data suggesting more 359 
humid conditions, and pollen records indicating no forest encroachment on the steppes38. These favorable 360 
conditions for horses may have encouraged humans to settle and develop a subsistence economy almost 361 
entirely focused on horses39, hypothesized as primarily obtained through hunting40. However, our 362 
demographic reconstructions indicate that this once thriving resource progressively declined during the last 363 
20 generations of Botai (i.e. within 140-240 years; Fig. 2b). In response to declining food resources, Botai 364 
peoples may, thus, have exercised husbandry practices involving corralling and horse reproductive control 365 
through shortened generation times, in line with the prey domestication pathway6,41. 366 
 367 
Discussion 368 
This study tackles crucial debates regarding horse domestication with major implications for both horse and 369 
human history. It reveals that the horse genomic makeup remained entirely local in Central Europe as well 370 
as the Carpathian and Transylvanian Basins until the end of the third millennium BCE. This timeline 371 
postdates the period of steppe contact in the Carpathian and Transylvanian Basins starting ~4,500 BCE10, 372 
as well as the migrations potentially spreading proto-IE languages into Europe with the Yamnaya 373 
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phenomenon ~3,000 BCE. The dramatic spread of DOM2 horses immediately followed the foundation of 374 
this new bloodline, and marked a new era of widespread horse-based mobility from ~2,200 BCE, ushering 375 
in a monumental increase in connectivity and trade. It mirrors the archaeological record, which witnesses a 376 
massive spread of horses in the Near East and Asia during the transition between the third and second 377 
millennium BCE2,42,43. Intensified herding practices12, growing aridity (the so-called “4.2 ka BP aridification 378 
event”44), and/or increased exploitation of the steppe may have heightened the demand for expanding 379 
grazing areas, potentially facilitated by horse-mediated mobility. Domestic horses and spoke-wheeled 380 
chariots3,42 may also have aided the conquest and defense of larger geographic areas in the face of uprising 381 
violence and social conflicts35,36. 382 
 Our work does not reject the possibility of equestrianism developing in the Pontic steppe or the 383 
Carpathian Basin before ~2,200 BCE. However, in such a scenario, the associated breeding practices would 384 
not have involved close kin mating or accelerated generation times. The phenomenon would also have 385 
remained confined in scale, both demographically and geographically, excluding long-distance fast mobility 386 
as the primary domestication incentive. Our research strengthens the case for recognizing Botai as one such 387 
location in the Central Asian steppe where horse husbandry developed before large-scale horse-based 388 
mobility. There, the domestication process did not aim at global production but remained regional. It is 389 
aligned with the expectations of the prey pathway41, in which a settled group of humans developed 390 
husbandry through corralling and reproductive control, in the form of shortened generation times, but not 391 
close kin mating, to ensure access to an otherwise depleting meat resource13. 392 

Manipulating the animal life cycle by forcing earlier reproduction offers breeders enhanced 393 
productivity, especially for species with long gestational periods and/or small litter sizes. Our research 394 
demonstrates that this practice was integral to the array of breeding techniques developed to sustain the 395 
massive global demand for horses from the Early Bronze Age. The pressure for accelerated production 396 
relaxed quickly after ~1,000 BCE, as a large-enough horse breeding pool became available across extensive 397 
geographic areas. However, the development of modern breeds required the fast production of specific 398 
bloodlines from limited foundational stocks, which shortened again the horse generation time over the last 399 
few centuries. Apparently, this process affected Asian breeds more than racehorses (Fig. 3a), especially 400 
Thoroughbreds, for which artificial insemination is forbidden. These findings align with studbook pedigrees 401 
recording increasingly faster generation times during the last three centuries, especially in coldblood horses45. 402 

Our methodological framework for measuring generation times expands the bioarchaeological 403 
toolkit to detect molecular evidence of reproductive control. Together with close kin mating, it may prove 404 
instrumental in clarifying the timing and context(s) into which past human groups first developed animal 405 
husbandry, not only in horses, especially as early domestication processes may not always leave obvious 406 
skeletal modifications and marked foundational bottlenecks. Beyond domestic animals, our approach could 407 
be applied to measure the long-term generation times of ancient hominin groups, including Neanderthals 408 
and Denisovans, and their potential shifts in the face of major lifestyle transitions, such as following the 409 
Out-of-Africa dispersal, during the Ice Age46 as well as during the Neolithic revolution47,48. For now, our 410 
analyses suggest that the last Ice Age may have impacted horse generation times, though to a lesser extent 411 
than domestication (Fig. 3). Our work, thus, opens for a new line of research investigating the possible 412 
consequences of past and present environmental and epidemiological crises on the reproduction of both 413 
human groups and other species. 414 
 415 
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Figure Legends 512 
Figure 1. Geographic distribution and genetic profiles of the 475 ancient horse genomes analysed 513 
in this study. a) Geographic location of the archaeological sites. The size of each location is proportional 514 
to the number of horse genomes sequenced. The black dot points to the location of E. ovodovi outgroups. 515 
b) Struct-f4 genetic ancestry profiles considering K=9 components. The top panel provides the color legend 516 
for panel a). c) and d) Genetic ancestry profiles (K=9) across Central Europe, the Carpathian and 517 
Transylvanian Basins before c) and after d) 2,150 BCE. The midpoint of the radiocarbon dating range 518 
obtained for each site is indicated between parentheses.  519 
 520 
Figure 2. Horse demographic trajectory and inbreeding profiles. a) GONE26 demographic 521 
reconstruction based on 24 early DOM2 horse genomes, where the thicker line depicts the most likely 522 
effective population size up to 200 generations preceding ~1,864 BCE, and the thinner lines are 500 523 
bootstrap pseudo-replicates. Conversions to calendar years BCE assume either average generation times of 524 
8 (7-12) years, or our refined estimate for the time periods considered. b) Same as a) but for a set of 28 525 
Botai horse genomes. c) Total fraction of the genome encompassing Runs-of-Homozygosity (ROH) of 526 
various sizes, in which each dot represents a horse genome. For example, the category [1-2Mb) indicates 527 
the fraction of a genome within ROH) that are longer than or equal to 1Mb, but shorter than 2Mb.  528 
 529 
Figure 3. Horse generation times. a) Number of generations evolved since the Most Recent Common 530 
Ancestor (MRCA) of all samples, as estimated from the recombination clock (y-axis) for each radiocarbon-531 
dated horse specimen (x-axis, age of the specimen; n=483). Samples are color-coded according to Fig. 1a. 532 
The top inner panel breaks down the number of generations evolved for modern breeds. Each boxplot 533 
summarizes the estimates per breed (Table S1), including its corresponding centre (median), box boundaries 534 
(interquantile range), and whiskers (1.5 times the interquantile range). b) Time periods associated with 535 

significant changes in horse generation times. The graph represents the slope (time) of a General Additive 536 
Model (GAM) regressing radiocarbon dates and number of generations evolved since MRCA, while 537 
controlling for sequencing depth and population structure. This slope is, thus, proportional to the generation 538 
time at a particular time period. The double-sided arrow reports the average generation time in the last 539 
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15,000 years (Supplementary Information). The error band represents the 95% confidence interval for the 540 
GAM regressions. c) Same as b), but excluding BOTAI and BORL population groups.  541 
 542 
Methods 543 
Archeological samples and radiocarbon dating  544 
We have gathered an extensive collection of 475 ancient horse remains spread across 230 sites in 41 545 
countries. Sampling of archaeological horse remains was undertaken in collaboration with co-authors 546 
responsible for the curation and description of underlying contexts, and with the approval of the relevant 547 
institutions responsible for the archaeological remains, as detailed in the Reporting Summary. A total of 105 548 
out of the 124 newly sequenced specimens originate from archaeological sites for which no ancient horse 549 
genomes were characterized previously. Their underlying archaeological contexts are described in the 550 
Supplementary Information. A total of 140 new radiocarbon dates were obtained in this study, all of which 551 
at the Keck Carbon Cycle AMS Laboratory, UC Irvine (Table S1). Collagen was extracted and ultra-filtered 552 
following mechanical cleaning of ~200 mg of cortical bone. Radiocarbon dates were calibrated using 553 
OxCalOnline49 and the IntCal20 calibration curve50. Samples were named with reference to their original 554 
internal label, followed by a 3-letter country code and their associated age in calendar years (Before) 555 
Common Era ((B)CE), all separated by underscore signs and appending the age with the ‘m’ prefix if BCE 556 
(e.g. KT46_Aus_m3240 refers to sample KT46, originating from the Kittsee site from Austria, which 557 
showed a midpoint radiocarbon date of 3240 BCE). 558 
 559 
Genome sequencing 560 
Osseous samples were processed for DNA extraction, library construction and shallow sequencing in the 561 
ancient DNA facilities of the Centre for Anthropobiology and Genomics of Toulouse (CNRS and 562 
University Paul Sabatier), France. The overall methodology followed the work from Librado and colleagues 563 
(2021)2, including: (1) powdering with the Mixel Mill MM200 (Retsch) Micro-dismembrator; (2) DNA 564 
extraction according to the procedure Y2 from Gamba and colleagues (2016)51; (3) USER (NEB) enzymatic 565 
treatment30; (4) DNA library construction from double-stranded DNA templates DNA libraries in which 566 
two internal indexes are added during adapter ligation and one external index is added during PCR 567 
amplification; and (5) PCR amplification, purification and quantification on the TapeStation 4200 (D1000 568 
HS) instrument before pooling for Illumina DNA sequencing on MiniSeq, NovaSeq and/or HiSeq4000 569 
instruments (paired-end mode). Sequencing pools were prepared to represent each of the three individual 570 
indexes only once. 571 

FASTQ sequencing reads demultiplexing, trimming and collapsing was carried out using 572 
AdapterRemoval2 (version 2.3.052) disregarding reads shorter than 25 bp. The resulting collapsed and 573 
uncollapsed read pairs were processed through the Paleomix bam_pipeline (version 1.2.13.2)53 for Bowtie254 574 
alignment against the nuclear and mitochondrial horse reference genomes55,56, appended with the 751 Y-575 
chromosome contigs from Felkel et al. (2019)45, using the parameters recommended by Poullet and Orlando 576 
(2020)57, and removing PCR duplicates and requiring minimal mapping quality scores of 25. The presence 577 
of DNA fragmentation and nucleotide misincorporation patterns indicative of post-mortem DNA damage 578 
was assessed on the basis of 100,000 random mapped reads using mapDamage2 (version 2.0.858). Overall, 579 
we obtained sequence data from 390 DNA libraries for a total of 124 ancient horse specimens, resulting in 580 
genome characterization at an average depth-of-coverage of 0.288-10.925-fold (median 1.40-fold; Table S1), 581 
as estimated using Paleomix coverage (--ignore-readgroups). The sequence data from a total of 352 ancient 582 
and 81 modern genomes were processed following the same procedures to provide a comparative genome 583 
panel including four donkeys59, two E. ovodovi60 and two Late Pleistocene North American horses61 that 584 
were used as outgroups, plus 550 horses representing all lineages previously characterized at the genome 585 
level (Table S1). 586 
 587 
Genome rescaling and trimming, error rates and SNP variation 588 
Sequencing errors and nucleotide mis-incorporations resulting from post-mortem DNA damage were 589 
reduced subjecting alignments to a five-step procedure, including: (1) PMDtools (version 0.6062) 590 
identification and separation of those reads affected (--threshold 1; DAM) or not (--upperthreshold 1; 591 
NODAM) by post-mortem DNA damage; (2) 5-bp end-trimming of NODAM-aligned reads; (3) rescaling 592 
of DAM read alignments using mapDamage2 with default parameters (version 2.0.858); (4) 10-bp trimming 593 
of rescaled read alignments, and; (5) merging of processed NODAM and DAM categories to obtain final 594 
BAM sequence alignments. Error rates were estimated following Librado and colleagues (2021)2 as the 595 
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excess of private mutations, relative to a high-quality modern genome considered as error-free 596 
(P5782_Ice_Modern; Table S1). Single Nucleotide Polymorphisms were identified following the procedures 597 
from Librado and colleagues (2021)2, entailing data pseudo-haploidization with ANGSD (v0.91763) for 598 
those sites covered by two reads or more (base quality scores ≥ 30), and disregarding sites uncovered in 599 
30% or more of the samples. An additional filter included the random selection of one transversion SNP 600 
only, in cases where two successive transversion occurred in adjacent genomic positions. Overall, our final 601 
data set retained a total of 9,099,487 high-quality nucleotide transversions spread across the 31 horse 602 
autosomes. Alleles were polarized considering the allele common to the three outgroup lineages as ancestral. 603 
A second data set of 7,092,366 variants was generated to mitigate for possible bias introduced by uneven 604 
sequencing depths by repeating the procedure described above, but following the down-sampling of BAM 605 
alignment files to the median value of the average depth-of-coverage values found across all specimens (i.e. 606 
2.02-fold). Subsequent analyses were replicated on both variant data sets. 607 
 608 
Population graph modelling and population structure 609 
Population graph modeling was carried out using the MCMC framework implemented in AdmixtureBayes64, 610 
and in Admixtools24, considering a pre-selection of 14 and 10 genetically-homogeneous population groups, 611 
respectively, all represented by a minimum of two specimens. This was key for Admixtools2 analyses4, to 612 
avoid biasing f3-statistics4 in the presence of population groups comprised of a single pseudohaploid 613 
genome. AdmixtureBayes analyses involved three independent runs, each containing 163 MCMC chains 614 
recording 200 million iterations. The final space of population graphs was obtained using a burnin of 90% 615 
and thinning one every 40 iterations. The genomic makeup of CWC horses was further investigated through 616 
the qpAdm rotating scheme65 (Table S2), and using a threshold of 0.01 for statistical significance. The 617 
geographic origins of CWC horses were also predicted using the Locator methodological framework based 618 
on deep neural networks21. To achieve this, we considered genomic window sizes of 10 Mb and the panel 619 
of 148 ancient horses pre-dating the radiocarbon date of CWC horses. Genetic ancestries decomposition 620 
and multi-dimensional scaling were carried out using the Struct-f4 package24, grouping together 272 ancient 621 
and modern DOM2 horses to decrease computational costs. The first analytical step (assuming no 622 
admixture) consisted of 100 million MCMC iterations, while the second one (assuming admixture) involved 623 
500 million iterations, until strict convergence. Default parameters were used otherwise, and the analyses 624 
were repeated assuming K=8 to K=10 admixture edges. 625 
 626 
Inbreeding 627 
Per genome inbreeding levels were estimated applying the methodology from Todd and colleagues (2022)59 628 
to individual BAM alignment files. This methodology does not require prior knowledge of population allele 629 
frequencies; it involves instead the random sampling of two reads per nucleotide transversion position and 630 
considering the density of sites within 1cM-long genomic windows where the same allele was sampled twice 631 
(pseudo-homozygosity), versus two different alleles (pseudo-heterozygosity). Physical distances were 632 
converted into genetic distances using the recombination map from Beeson and colleagues (2020)66, 633 
interpolating recombination rates linearly between two successive positions on the map. Windows showing 634 
pseudo-heterozygosity rates lower than 0.005 were considered to represent Runs of Homozygosity (ROHs), 635 
with their cumulative span providing an inbreeding proxy. Close-kin mating was assessed through the total 636 
genome span encompassing long ROHs (i.e. ≥15 Mb).  637 
 638 
Demographic trajectories 639 
A total of 28 genomes from unrelated Botai horses were pseudo-haploidized for transversion sites, all with 640 
a maximum missingness of 10%. The demographic dynamics was reconstructed using GONE26 and 641 
patterns of linkage disequilibrium along all autosomes, excepting chromosomes 7, 11, 12 and 20. The 642 
parameter PHASE was turned to 0 to account for pseudo-haploid data, and default parameters were applied 643 
otherwise. Confidence intervals for effective size variation were estimated from 500 bootstrap pseudo-644 
replicates. The same procedure was repeated considering a selection of 24 ancient horse genomes dating 645 
back to an average of ~1,850 years BCE, which represents the earliest high-quality set of DOM2 genomes 646 
characterized. 647 
 648 
Generation times 649 
Generation times and their potential variation were measured from the temporal accumulation of mutations 650 
present in a given genome relative to an ancestral sequence (reconstructed based on three outgroup species; 651 
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i.e. mutation clock) as well as from the linkage disequilibrium between pairs of derived mutations (i.e. 652 
recombination clock). The proportion of derived mutations present in a given genome provided a direct 653 
proxy for the distance separating the sample considered from the ancestral sequence. This proportion was 654 
converted into an estimate of number of generations, assuming the mutation rate from Orlando and 655 
colleagues (2013)29, rescaled for transversions, which provided our mutation clock estimate of generations 656 
elapsed from the ancestral sequence.  657 

Our ‘recombination clock’ estimate is based on the average probability to find in a given genome a 658 
pair of SNPs separated by m Morgans, and both carrying a derived allele. This probability was normalized 659 
by the proportion of derived mutations detected in the genome considered to mitigate potential bias 660 
resulting from depth-of-coverage and/or error rates variation across individuals, providing a direct 661 
measurement of the number of generations from the Most Recent Common Ancestor (MRCA) to all 662 
Eurasian horses present in our data set. While the ‘mutation clock’- based estimate was derived from all 31 663 
autosomes, chromosomes 7, 11, 12 and 20 were masked to obtain the ‘recombination clock’ estimate, due 664 
to limitations in the recombination map currently available for horses in relation to unaccounted structural 665 
variation, local mis-assemblies and the presence of neo-centromeres. The ‘recombination clock’ estimate 666 
depends on three unknown parameters that were optimised through least square optimization (T: the total 667 
genealogical length in the whole sample set averaged across loci; ti: the genealogical length from the MRCA 668 
to horse specimen i averaged across its loci, and a constant pi capturing sample-specific variation in 669 
demography and haplotype sizes). 670 

Our methodology was validated using the serial coalescent simulation framework provided by 671 
fastsimcoal v2.70267 and considering 10 demographic scenarios, consisting of constant population sizes, 672 
population contractions and population expansion of various magnitude and times, followed or not by 673 
population recovery (Extended Data Fig. 10). Individual genomes were simulated as 31 autosomes of 75 674 
Mb each, using 10-8 recombination events and 2.3×10-8 mutation events per bp and generation, respectively. 675 
A total of 20 simulated chromosomes were sampled along the genealogy every 100 generations, starting 900 676 
generations ago, to cover the entire temporal range of horse domestication. The 20 simulated chromosomes 677 
sampled in each time bin, except the most recent, were then randomly paired to simulate diploid data under 678 
random mating, and were further subjected to pseudo-haploidization to mimic the data processing carried 679 
out on real data. The simulated chromosomes sampled for the most recent time period were paired with 680 
themselves before pseudo-haploidization to account for the increased inbreeding levels found in modern 681 
horse populations68. 682 
 The real genome dataset was filtered to exclude the IBE, LPSFR, ELEN and Vert311 population 683 
groups, which contain significant ancestry affinities with Late Pleistocene specimens from North America 684 
(LPNAMR). This prevented biasing the generation time estimates due to DNA introgression from divergent 685 
population groups, related to lineages used to polarize alleles as ancestral or derived. Ancient specimens not 686 
associated with direct radiocarbon dating were also disregarded, except at Botai where the archaeological 687 
context is similar across all samples. This left a total of 483 specimens delivering both “mutation clock” and 688 
“recombination clock” estimates for the number of generations elapsed from the ancestral sequence and 689 
since the tMRCA of Eurasian horses, respectively. Temporal shifts in generation times were identified based 690 
on the downsampled dataset (Fig. 3), and using Generalized Additive regression Modeling (GAM), as 691 
implemented in the R mgvc package. Radiocarbon dates, the first five coordinates of the Struct-f4 692 
MultiDimensional Scaling (MDS) analysis to capture the underlying population structure, and a parameter, 693 
Pi, controlling for the depth-of-coverage of each individual genome, represented the model covariates. 694 
Standard errors for the dependent variable were calculated by jackknifing, leaving one chromosome out at 695 
a time, and the inverse of the resulting variances were used as regression weights. Regression models in 696 
which radiocarbon dates were linearly related to the number of generations received significantly lower 697 
support than those allowing relaxing linearity through cubic spline transformation of radiocarbon dates 698 
(adjusted R2 = 0.803 for the linear vs. 0.894 for the GAM regression; ANOVA P < 2.2e-16). Finally, we used 699 
the derivative function of the R gratia package and time bins of 1,000 years to measure temporal changes in 700 
generation times. 701 
 702 
Data availability 703 
All collapsed and paired-end sequence data for samples sequenced in this study are available in compressed 704 
FASTQ format through the European Nucleotide Archive under accession number PRJEB71445, together 705 
with rescaled and trimmed bam sequence alignments against the nuclear horse reference genomes. 706 
Previously published ancient data used in this study are available under accession numbers PRJEB7537, 707 
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PRJEB10098, PRJEB10854, PRJEB22390, PRJEB31613, and PRJEB44430, and detailed in Supplementary 708 
Table 1. The genomes of 78 modern horses, publicly available, were also accessed as indicated in their 709 
corresponding original publications, and in Supplementary Table 1. 710 
 711 
The maps presented in Figure 1 were generated using QGIS 3.36 software (available at 712 
https://www.qgis.org/en/site/) and utilized free raster images obtained from Natural Earth 713 
(https://www.naturalearthdata.com/). The maps in Extended Data Figure 3cd were automatically 714 
generated through the R scripts embedded within the Locator software package (https://github.com/kr-715 
colab/locator). 716 
 717 
Code availability 718 
The software to calculate generation time changes based on the recombination clock is available without 719 
restriction on Bitbucket (https://bitbucket.org/plibradosanz/generationtime/src/master/) and Zenodo 720 
(10.5281/zenodo.10842666; https://zenodo.org/records/10842666). 721 
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Extended Data Figures 831 
Extended Data Fig. 1. QC filtering. a) Histogram showing the distance between adjacent nucleotide 832 
transversions, if separated by less than 1Kbp. This revealed an excess of mutations at contiguous genomic 833 
positions (ie. 1bp away). Although these could correspond to true single nucleotide polymorphism (SNPs) 834 
or multiple nucleotide variants (MNVs), they could also be enriched for spurious variants resulting from 835 
mis-mapping around small DNA insertions and deletions. b) Proportion of mutations within pre-defined 836 
MAF bins (Minor Allele Frequency), as a function of missingness across the specimens. Pre-defined MAF 837 
bins range from low- (pink) to high-frequency variants (green). The dashed line delimits the positions 838 
included (left) or excluded (right) from the analyses. The identifiability of low-frequency variants decreases 839 
with greater missingness, as expected. c) Same as panel a), for the ~7.1M nucleotide transversions of the 840 
downsampled data set. d) Same as panel b), for the ~7.1M nucleotide transversions of the downsampled 841 
data set. 842 
 843 
Extended Data Fig. 2. Relative error rates. Missing mutations per site in a test genome (y-axis), relative 844 
to a modern Icelandic horse (P5782_Ice_Modern) used as high-quality reference. a) for the full data set and 845 
SNP_pval 0. b) for the downsampled data set and SNP_val 0. 846 
 847 
Extended Data Fig. 3. On the origins of CWC horses. a) Consensus admixture graph generated from 848 
the posterior distribution of AdmixtureBayes64, when applied to the same horse populations considered in 849 
Extended Data Fig. 4. The values between brackets summarize the proportion of graphs sampled from the 850 
posterior distribution that support a split or admixture node. Admixture from unsampled (ghosts) 851 
populations is not represented, in contrast to Extended Data Fig. 4. b) Best Admixtools24 population model 852 
assuming 8 migration edges. The drift and admixture estimates are based on our extended dataset. c) 853 
Reference panel used for modeling pre-CWC clines of genetic diversity. d) Geospatial projection of the six 854 
CWC horse genomes analyzed in this study, in 10Mb-long windows. 855 
 856 
Extended Data Fig. 4. Most supported population graph64. This graph summarizes the evolutionary 857 
history of pre- and post-domestication horse lineages, with CWC horses not receiving any direct genetic 858 
contribution from the steppe. The model is split into 2 panels for clarity. The numbers reported within 859 
boxes reflect the admixture contributions from the nodes specified, while those adjacent to arrows indicate 860 
the amount of genetic drift leading to individual nodes. Population groups are detailed in Table S1 and 861 
colors are according to Fig. 1a. 862 
 863 
Extended Data Fig. 5. Visual embedding of Struct-f4 affinities24. a) The two first dimensions of a 864 
Metric MultiDimensional Scaling (MDS) analysis, summarizing the genomic affinities between horses, based 865 
on Struct-f4. To improve visualization, this excludes the five outgroup specimens. Samples are color-coded 866 
following Fig. 1a, and population groups are labelled accordingly. Horses projecting intermediate to large 867 
population groups reflect ancient clines of ancestry, stretching from the East (closer to Botai) to the West 868 
(closer to Europe). CPONT individuals, from the Central Steppe, are the closest to DOM2 horses. b) Same 869 
as a) for the downsampled dataset. c) First and third dimension of the same MDS analysis, which reveals 870 
CWC horses as the most distant European horses to DOM2 horses. d) Same for the downsampled dataset. 871 
 872 
Extended Data Fig. 6. Struct-f4 ancestry profiles. Ancestry proportions for the 558 individuals 873 
considered in this study, assuming from K=8 (left) to K=10 (right) components. A total of 272 horses 874 
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previously identified as DOM2 were merged into a single population (DOM2), including all modern breeds, 875 
to reduce computational costs. CWC horses show the typical ancestry profile of pre-domestication Europe. 876 
 877 
Extended Data Fig. 7. GONE demographic reconstruction26. Effective population size (Ne) estimated 878 
from the patterns of linkage disequilibrium (LD) present in a nearly contemporaneous population of 14 879 
horses affiliated to the Sintashta culture, up to 200 generations before their existence. b) Example of local 880 
ancestry for a TURG horse genome (LR18x15_Rus_m2763), modeled with Admixfrog as a mixture of Botai 881 
and early DOM2 horses. c) Raw generation time estimates for ancient horses from the steppe, the 882 
Carpathian and Transylvanian Basins, without correcting for population structure and uneven sequencing 883 
depths (Supplementary Information). TURG* represents the group of TURG horses, after masking their 884 
genomes for tracts introgressed from Botai horses. d) Same for Botai horses, which involved more 885 
generations than past and contemporaneous horses from the region, with the exception of BORL and 886 
Przewalski’s horses (PRZW), previously inferred to descend from Botai and saved from extinction through 887 
captive management. The dates reported correspond to rounded means of the different samples present in 888 
each group. 889 
 890 
Extended Data Fig. 8. Mutation clock estimates. a) Relationship of the ingroup Eurasian horses to the 891 
outgroups considered in this study, including non-caballine equids (E. ovodovi and the donkey) and ancient 892 
horses from North America (LP_NAMR). Leveraging this topology, we counted the number of mutations 893 
(represented as stars) that occurred in the branch leading to every single Eurasian horse. Following 894 
pseudohaploidization, positions that are truly heterozygous in Eurasian horses become ancestral or derived, 895 
and both outcomes are expected at equal probabilities. This approach is, thus, insensitive to the underlying 896 
heterozygosity of the sample, and, hence, to their demographic history. b) Estimates of the number of 897 
generations evolved from the outgroups, based on the full data set. c) Estimates based on the downsampled 898 
dataset. 899 
 900 
Extended Data Fig. 9. Recombination clock estimates. a) Schematic representation that illustrates the 901 
expectation that the variance along the genome is greater in an older specimen (left) as the result of more 902 
generations of evolution and, hence, more recombination events than in younger specimens with regards to 903 
the time to the most common recent ancestor (MRCA) of the whole sample set. It is thus expected that the 904 
distribution of mutations (stars) is less even in the younger specimen (right), which underwent fewer 905 
recombination events, and thus carry longer haplotype blocks, in which mutations are equally likely to have 906 
occurred or not. b) Schematic visualization of the ti (time to the MRCA) and T (total length of the genealogy) 907 
parameters constituting the recombination clock model, for an illustrative sample of four genomes. c) 908 
Number of generations evolved from the MRCA, as estimated by applying the recombination clock model 909 
to the full data set.  910 
 911 
Extended Data Fig. 10. Coalescent simulations to validate both methods. a) Illustration of the 10 912 
simulated scenarios (A-J), together with their underlying parameters. b) Each boxplot summarizes the 913 
estimates obtained from n=10 diploid samples, when using the method relying on the recombination clock 914 
(in generations of evolution from the MRCA). Boxplots are comprised of their corresponding centres 915 
(median), box boundaries (interquantile ranges), and whiskers (1.5 times the interquantile ranges). The 916 
estimated age of the samples perfectly correlates with the simulated age of sampling (Pearson correlation; r 917 
= 0.999; two-tailed p-value = 0). c) Same as b) for the mutation clock (Pearson correlation; r = 0.999; two-918 
tailed p-value = 0). 919 

 920 
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Extended Data Fig. 1
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Extended Data Fig. 2
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Extended Data Fig. 3
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Extended Data Fig. 4ACCELE
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Extended Data Fig. 5ACCELE
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Extended Data Fig. 6
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Extended Data Fig. 7ACCELE
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Extended Data Fig. 8ACCELE
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Extended Data Fig. 9
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Extended Data Fig. 10
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