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Abstract 11 

A two-equation non-local-equilibrium (NLE) continuum model of isothermal drying is 12 

assessed by comparison with pore network simulations considering a rigid capillary porous 13 

medium that is fully saturated initially. This continuum model consists of a transport equation 14 

for the liquid and of a transport equation for the vapor. The two main variables are the liquid 15 

saturation and the vapor partial pressure. The two equations are coupled by a phase-change 16 

term and mass transport at the medium surface is modeled by considering the individual 17 

boundary conditions for the two continuum model equations. The macroscopic parameters 18 

that appear in the NLE continuum model include classical parameters such as the effective 19 

liquid and vapor diffusivities, as well as non-classical and new parameters such as the specific 20 

interfacial area and the fraction of dry surface pores. These parameters are determined for the 21 

porous microstructure corresponding to the cubic network used to perform the pore network 22 

simulations. The results obtained by the two-equation NLE continuum model are compared 23 

with pore network simulation data. Comparisons reveal that the two-equation NLE continuum 24 

model can capture with a reasonable degree of accuracy the NLE effect as well as the phase 25 

distributions and drying kinetics of the pore network model drying simulations.  26 
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Nomenclature 1 

A fractional cross-sectional area m2 

a specific interfacial area m-1 

D diffusion coefficient m2 s-1 

H network height m 

J mass flow rate kg s-1 

j mass flux kg s-1 m-2 

k mass exchange coefficient m/s 

L length m 

��  molar mass kg kmol-1 

��  specific evaporation rate kg m-3 s-1 

� unit vector - 

P pressure  Pa 

�� universal gas constant J kmol-1 K-1 

r radius m 

S saturation - 

T temperature K 

t time s 

U macroscopic liquid velocity ms-1 

Greek symbols 2 

� absolute permeability m2 

	 boundary layer thickness m 


 density kg m-3 

� liquid phase viscosity Pa s 

ε porosity - 



3 
 

�� relative permeability - 

Superscripts and subscripts 1 

a air 

∞ ambient 

c capillary 

dry dry 

eff effective 

g gas 

irr irreducible 

l liquid 

loc local 

net network 

r relative 

ref reference 

res residual 

sat saturation 

sur, surf surface 

t throat 

v vapor 

wet wet 

  

 2 

 3 

 4 
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1. Introduction 1 

The drying of porous materials is one of the most active research areas spanning several 2 

fields of science and technology (e.g. [1,2]). Despite the tremendous effort invested in 3 

drying investigations and the overwhelming amount of resulting data published every year, 4 

the main aspect is that the existing theories of drying are not sufficiently predictive, not even 5 

for rigid capillary porous media. Rigid means that the spatial morphology of the solid matrix 6 

remains unchanged during the drying process. Capillary porous means that the maximum 7 

amount of water that the interior surface can adsorb is negligible compared to the available 8 

pore space volume in the medium. The water in a capillary porous medium is thus spatially 9 

allocated by capillarity as a result of direct contact between liquid water and the medium. 10 

Capillary porous media are a very important class of porous media, which are encountered 11 

in many natural situations and engineering applications. Examples include porous stones 12 

(sandstones), sandy soils, building materials (fire bricks, tiles, plaster), fibrous materials 13 

(such as the ones used for insulation or in the gas diffusion layer of proton exchange 14 

membrane fuel cells), porous wicks of many devices (capillary evaporators, vaporizers for 15 

volatile perfume or insect repellent liquids in a room, etc.), various processed foods 16 

(especially those with instant properties), and many pharmaceutical dosage forms. The study 17 

of transport phenomena in rigid capillary porous media is also of paramount importance 18 

because of its relative simplicity. Our view is that we must first be able to develop 19 

satisfactory theories for drying of this important class of porous media before hoping to 20 

develop satisfactory theories for more complex porous media involving nano-scale pores 21 

and/or mechanical deformations or fracturing, for example. 22 

Drying theories traditionally result in continuum models, i.e. they are based on the 23 

assumption that drying porous media can be represented by a fictious continuum, in which 24 

the underlying transport phenomena can be described (e.g., [3]). In the first works on 25 

continuum drying models (e.g. [4,5]), the coupled heat, mass and momentum transfer 26 

equations used to describe the drying process were obtained purely from phenomenological 27 

or formal formulations. Later (e.g., [6,7]), these equations were derived more rigorously 28 

using up-scaling (homogenization) techniques, such as the volume averaging method [7]. 29 

The corresponding equations have been widely used to predict the evolution of the moisture, 30 

liquid pressure, gas pressure, and temperature fields. These equations are presented and 31 

discussed in many references, e.g., see [7–9] and references therein. They are based on 32 

classical concepts (such as a generalization of Darcy’s law and the associated concepts of 33 
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relative permeabilities and moisture retention curve) and the assumption of local equilibrium 1 

(LE). This assumption essentially means that the liquid-gas distribution at the scale of a 2 

representative elementary volume (REV) is controlled by capillarity only. Put differently, 3 

the liquid and vapor phases coexisting in an REV are in equilibrium under this assumption. 4 

On this basis, the mass transfer problem is simplified to a single transport equation.  5 

Consideration of the LE assumption for hygroscopic porous materials has been 6 

questioned  [10–12], but not rigorously tested for capillary porous materials (non-7 

hygroscopic materials) until recently. The results of pore network model simulations 8 

evidenced the presence of non-equilibrium between the liquid and gas phase at the REV 9 

scale [13]. While the liquid and vapor can be considered in equilibrium at the scale of 10 

individual menisci, this is not the case anymore at the REV scale where the water vapor 11 

partial pressure is averaged over several pores. It was emphasized in Ref. [13] that the next 12 

step in improving the continuum model is to include the non-local equilibrium (NLE) effect 13 

which was found to be specially significant at the evaporative surface [14]. Based on the 14 

findings in Ref. [13], a continuum model was developed and presented in our previous 15 

work [15] for a transport regime in which the NLE effect was expected to be more 16 

pronounced. In this transport regime, the mass transfer inside the porous medium is purely 17 

through vapor diffusion in the gas phase because the liquid phase is distributed into isolated 18 

clusters. The results indicated that the NLE mass exchange between the liquid and vapor 19 

phase was captured well by the introduction of a source/sink term that couples the liquid and 20 

vapor phase transport equations.  21 

In this paper, we advance the model presented in Ref. [15] by considering a capillary porous 22 

medium fully saturated initially, whereby the mass transport within the porous medium is 23 

through liquid capillary pumping, vapor diffusion and the local evaporation through the 24 

NLE mass exchange between the two phases. Insights into the coupling of the internal mass 25 

transfer and the external transport in the boundary layer are obtained from the findings 26 

presented in Ref. [14]. The formulation of the NLE phase change term is the same as 27 

presented in Ref. [15]. As in Ref. [15], a slow drying situation where temperature variations 28 

can be neglected is considered. Also, as in several previous works, see for example [14,15] 29 

and references therein, the archetypical drying situation where the drying process is 30 

macroscopically 1D with the evaporative surface at the top is considered.  31 

The paper is organized as follows: In Sec. 2, the formulation of the two-equation NLE 32 

continuum model for a saturated porous medium is described. The fundamentals of the pore 33 
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network model algorithm are explained in Sec. 3. The formulations considered for the 1 

macroscopic effective parameters needed for the solution of continuum model are explained 2 

in Sec. 4. In Sec. 5, the solution of the new continuum model is compared with the reference 3 

synthetic data, i.e. the pore network simulations presented in Ref. [13]. The findings 4 

obtained in the paper are then discussed in Sec. 6. Finally, in Sec. 7, the key highlights of the 5 

present work along with pathways for related future work are outlined. 6 

2. Continuum model formulation 7 

The NLE continuum model is based on a mass conservation equation for the liquid phase 8 

and a mass conservation equation for the vapor phase. Considering the gas phase as a binary 9 

mixture of water vapor and air, these equations read, respectively, 10 

�
�
��
�� + �. �
���� = −�� , (1) 

and 11 

�. ���1 − ����  
��!
��" �#!$ + �� = 0, (2) 

where � is the porosity of the porous medium, 
� the liquid mass density, S the liquid 12 

saturation, �� the liquid filtration velocity, ��   the effective vapor diffusion coefficient, ��! 13 

the molar mass of vapor, �� the universal gas constant, T temperature, #!  the vapor partial 14 

pressure, ��  the evaporation rate and t the time. As can be seen from Eq. 2, we have used the 15 

conventional quasi-steady-state assumption regarding the vapor transport  [15,16]. We can 16 

also see that the vapor transport is through diffusion in the gas phase i.e. the convective 17 

transport is neglected due to drying at isothermal ambient conditions. The liquid filtration 18 

velocity is expressed using the generalized Darcy’s law as 19 

�� =  − ����� �#� , (3) 

where � is the permeability, �� is the liquid phase relative permeability, �� is the liquid 20 

dynamic viscosity and #� is the liquid pressure. Introducing the capillary pressure curve 21 

#'��� and noting that the total pressure in the gas phase is considered as constant, Eqs. 1 and 22 

3 are combined to obtain 23 

�
�
��
�� = ∇. �
����S�∇�� − �� , (4) 
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where the liquid diffusivity is defined as  1 

���S� = − �����
*#'*� . (5) 

The internal volumetric evaporation rate ��  is expressed as 2 

�� = +�,- ��!
��" �#!,./0 − #!�, (6) 

where +�, is the interfacial area between the gas phase and the liquid phase per unit volume 3 

of porous medium inside the REV (representative elementary volume), k is the mass 4 

exchange coefficient which controls the local equilibrium kinetics between the liquid and 5 

the vapor phases, and #!,./0 is the saturation vapor pressure. For details on the formulation 6 

and upscaling of �� , one can refer to [15]. Combining Eqs. 1-6, the two-equation NLE 7 

continuum model for drying is deduced, where the equation for the liquid phase reads 8 

�
�
��
�� = ∇. �
����S�∇�� − +�,- ��!

��" �#!,./0 − #!�, (7) 

And the equation for the gas phase follows 9 

∇. ���1 − ����  
��!
��" ∇#!$ ++�,- ��!

��" 1#!,./0 − #!2 = 0. (8) 

The boundary condition at the solid limiting surface is a no flux condition which reads 10 

−
����S�∇�. � = 0, (9) 

and 11 

−��1 − ����  
��!
��" ∇#!. � = 0. (10) 

In Eqs. 9 and 10  � is a unit vector normal to the considered surface. The boundary 12 

condition at the open surface where the porous medium is in contact with the external gas 13 

(air typically) is much less obvious and actually still one major issue in the modeling of the 14 

drying process. In the case of the two-equation model, two boundary conditions must be 15 

imposed, one for the liquid transport equation (Eq. 7) and one for the vapor transport 16 

equation (Eq. 8). Consider the situation starting right after the very beginning of drying 17 

when a fraction of the network has been dried and the liquid and gas phases coexist in the 18 

porous medium at the surface. Physically, one then expects that a fraction of the vapor flux 19 

at the surface is from the dry surface pores, whereas the complementary fraction corresponds 20 
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to the evaporation from the liquid pores at the surface. Based on a classical boundary layer 1 

type expression for the vapor flux at the surface, this is expressed as 2 

−
����S�∇�. � = �1 − 3.4� ,5�6� �!/ 7�8
9�:

�;8,<=>?;8,@�
A  (11) 

for the liquid phase equation and  3 

−��1 − ����  7�8
9�: ∇#!. � = 3.4� ,5�6 �!/ 7�8

9�:
�;8,<BCD?;8,@�

A  (12) 

for the vapor phase equation. Here, � is the unit normal vector directed from the porous 4 

medium surface toward the external gas boundary layer, �!/ is the molecular diffusion 5 

coefficient, 	 is the external boundary layer thickness and #!,E is the vapor partial pressure in 6 

the external gas away from the porous medium surface. In Eqs. 11 and 12, 3.4� ,5�6 7 

represents the fractional contribution of the dry pores to the total evaporation rate, whereas the 8 

relative contribution of the wet pores to the total evaporation rate is expressed by (1 −9 

3.4� ,5�6�. An obvious first choice is to simplify the problem and specify 3.4� ,5�6 according 10 

to 3.4� ,5�6 = 1 − S.4� , where S.4�  is the saturation at the considered surface. Physically, it 11 

is expected that S.4�  gradually decreases along the drying process. 3.4� ,5�6 will be 12 

computed from pore network simulations (Sec. 4) and a study based on the impact of 13 

considering linear and non-linear relationship between �.4�  and 3.4� ,5�6 will be presented 14 

herein (Sec. 6). 15 

The one-dimensional two-equation continuum model is solved in MATLAB by discretizing 16 

the computational domain using the finite volume method. A fixed domain approach is 17 

considered. When the saturation becomes locally lower than a given residual value, denoted 18 

by Sres, then the saturation is assigned as S = Sres. In the simulations presented later herein, 19 

Sres was taken equal to 10-6.  20 

3. Pore network model algorithm 21 

The pore network considered here consists of a three-dimensional (3D) cubical grid of 22 

cylindrical throats connected through pores with zero volume (see Fig. 1). The size of a throat 23 

is characterized by the length and radius, where the length is uniform for all throats but the 24 

radius follows a normal distribution based on a mean throat radius and standard deviation (all 25 

parameters are defined in Sec. 5). Initially, all throats are saturated with liquid water. The 26 

computational domain is such that the sides are laterally connected to each other (periodic 27 



9 
 

boundary condition) and only the top is exposed to a discretized boundary layer through 1 

which the water vapor escapes the network.  2 

Initially, the liquid phase consists of one liquid cluster that is hydraulically connected and 3 

exposed to evaporation through the surface throats. As drying goes on, the continuity of the 4 

liquid phase gets affected as the gas phase invades liquid throats. The drying process is 5 

discretized into time steps, the length of which is based on the time necessary for the removal 6 

of liquid from a throat. The volume-less pores act as nodes for the computation of liquid 7 

pressure and vapor partial pressure. The mass transfer inside the network depends on the 8 

liquid and vapor pressure fields which are computed at pores and do not change during a time 9 

step. The longitudinal viscous flow of liquid in a throat k (between nodes i and j) is calculated 10 

by Poiseuille’s law as  11 

F�,G =  HI0J
� 8��L0 �#�,M − #�,N�, (13) 

whereas Fick’s law describes the one-dimensional diffusive transport of water vapor 12 

F!,G =  HI0O��! 
�� " L0

�!/1#!,M − #!,N2, (14) 

where rt represents the throat radius and Lt denotes the throat length. Based on Eqs. 13 and 14, 13 

the liquid and vapor partial pressure fields are computed by applying a mass balance at each 14 

pore and solving numerically the resulting linearized system of equations. In addition to the 15 

pores in the network, the computation of vapor partial pressure field is also performed for the 16 

pores in the boundary layer. The presence of viscous and capillary forces implies that we have 17 

a dynamic pore network model, whereby after each time step, the stationary and moving 18 

menisci are determined based on an iterative method. The moving menisci are generally 19 

evaporating (liquid is removed from them), however, there can also be re-filling of liquid in 20 

these throats.   21 

As drying goes on, the liquid phase gets increasingly fragmented into clusters of varying 22 

sizes. These clusters need to be individually tracked as they influence the calculations of the 23 

liquid and vapor transport. For this purpose, a modified Hoshen-Kopelman algorithm is 24 

employed [17]. After each time step, the cluster labeling algorithm determines the new 25 

configuration of the liquid phase by using the previous information as a benchmark, until 26 

there are no more liquid clusters in the network. In this pore network model, the drying 27 

process is considered as isothermal (slow drying at ambient conditions). Therefore, we 28 
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neglect the viscous resistance to transport in the gas phase and assume constant total pressure 1 

at every pore. The considered porous medium is assumed to be non-hygroscopic (liquid exists 2 

as free water) and the network saturation reaches zero as the drying process terminates. 3 

Additionally, we do not consider the film effect in throats (all liquid exists in bulk). For a 4 

more detailed exposition on the pore network model drying algorithm, see for 5 

example [18,19]. 6 

Fig. 1: An illustration of the porous medium (middle) with evaporative surface on top. A 7 

comparison of the PNM (left) and CM (right) computational domains is shown. The size of 8 

the respective local averaging volume (REV) is denoted by ∆z.  9 

4. Macroscopic transport parameters 10 

For the solution of the liquid and vapor phase continuum model equations (Eqs. 7 and 8), the 11 

values of macroscopic transport parameters are required. Traditionally, these parameters have 12 

been determined from laboratory experiments. However, as an alternate to the tedious 13 

laboratory experiments, numerical pore network model simulations have also been used to 14 

determine these parameters. In the laboratory experiments, the measured transient saturation 15 

profiles (e.g. [20–23]) are used to compute the moisture transport coefficient. This moisture 16 

transport coefficient is in fact the combined transport coefficient for the liquid and vapor 17 

phases. On the other hand, the use of dedicated numerical pore network simulations 18 

traditionally aims at computing the capillary pressure curve and absolute and the relative 19 

permeabilities based on the process of drainage [24–27]. For the case of drying, however, the 20 

use of pore network simulations is similar to the experimental approach, i.e. it is based on the 21 

determination of saturation profiles [13,28] and also on vapor pressure profiles [15] obtained 22 

by the volume averaging method [7]. This approach consists of discretizing the pore network 23 

into slices or local averaging volumes, where the parameters are computed and averaged over 24 

the individual slices. Based on the locally averaged saturation and vapor pressure profiles, the 25 

macroscopic liquid and vapor phase diffusivities are computed. Figure 1 illustrates how the 26 

PNM and CM domains correspond to each other. For more details on the method of 27 

discretization of 3D pore network into 1D macroscopic domain and the method of 28 

computation of macroscopic parameters from pore network simulations, one can refer 29 

to [13,15,29].  30 

Since the solution of the drying continuum model will be compared with pore network 31 

simulations, it is important to mention the size of the pore network and the local averaging 32 
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volume over which the parameters are averaged. Due to the computational bottleneck 1 

associated with pore network simulations, the size of the pore network is 25×25×51, i.e. 51 2 

nodes in the direction of the boundary layer. For details on the influence of network size on 3 

the computational time associated with the PNM algorithm employed in this manuscript, 4 

see [30]. The size of the local averaging volume is equal to the size of one lattice spacing (the 5 

distance between two successive nodes) in the vertical direction and to the size of the network 6 

in the lateral dimensions. Due to this small network size, we cannot claim that the 7 

macroscopic parameters computed from pore network simulations are in fact local. The size 8 

of local averaging volume for our pore network simulations should be rather 25 pores in each 9 

direction in order to be representative of the porous medium [13]. This means that our local 10 

averaging volume and network size are much too small to fulfil the traditional length scale 11 

separation criterion [7].  12 

The fulfillment of length scale separation criterion ensures that the transport parameters are 13 

local, i.e. they only depend on the local saturation that is the saturation over an REV. As a 14 

result, the macroscopic parameters determined over a too thin system, which do not fulfil the 15 

length scale separation criterion, may be influenced by the size of the system. As in other 16 

systems affected by finite size effects, e.g. [31], the consideration of a small network leads to 17 

a significant data scatter in the macroscopic parameters computed from pore network 18 

simulations (see Sec. 4). In Ref. [13], this led to consider that the macroscopic parameters 19 

were dependent on both the local saturation, i.e. the slice averaged saturation, and the global 20 

saturation, i.e. the whole network saturation.  Although interesting for the modeling of drying 21 

in thin systems, this latter approach is not relevant for the modeling of the frequently 22 

encountered systems for which the length scale separation criterion is fulfilled. For this 23 

reason, we consider in what follows macroscopic parameters that only depend on the local 24 

saturation, as traditionally considered in the classical theory of two-phase flow in porous 25 

media under the local capillary equilibrium assumption [32]. Nevertheless, even though our 26 

continuum model is preferentially developed for systems with well separated length scales, 27 

comparisons will be performed with the results of the pore network simulations. In other 28 

words, it will be shown that insightful comparisons between the continuum model and the 29 

pore network simulations can be developed despite the network small size. 30 

In the sections that follow, we present the profiles of the macroscopic parameters which are 31 

used to obtain the continuum model solution presented in Sec. 5, with the corresponding 32 

macroscopic parameters computed from pore network simulations for comparison. The 33 
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influence of the macroscopic parameters on the continuum model solution will be discussed 1 

later in Sec. 6. 2 

4.1 Macroscopic liquid phase diffusivity 3 

The liquid phase diffusivity directly controls the evolution of the liquid phase over time 4 

within the network. The liquid diffusivity Dl is obtained from pore network simulation results 5 

as  6 

�� = − Q�
� ∇� , (15) 

where jl is local liquid flux crossing the considered averaging slice, whereas ∇� is the 7 

saturation difference between the two averaging slices adjacent to the considered plane 8 

divided by the distance between the two slices, i.e. the lattice spacing. As the other 9 

macroscopic parameters, �� is computed considering 15 realizations of the networks and 10 

saturation intervals of 0.01. For each realization of the throat size distribution, a given 11 

saturation interval can thus be obtained at various locations in the network. This means that 12 

several values of �� are assigned to each considered saturation interval from the consideration 13 

of the various slices over time and the 15 realizations. As a result, owing to the small network 14 

size and averaging slice thickness, the liquid phase diffusivity obtained from pore network 15 

simulations shows a large scatter in the Dl values for each local saturation value. The idea is 16 

to specify Dl as sufficiently representative of the pore network microstructure in spite of the 17 

scattering.  18 

It can be first noticed that Fig. 2 shows that the liquid phase diffusivity computed from pore 19 

network simulations is significantly larger when the local saturation is larger than the 20 

irreducible saturation Sirr, that is, the value of local saturation at which the continuity of the 21 

liquid phase is disrupted (the liquid phase gets fragmented into disconnected clusters). As 22 

reported in Ref. [13], for our pore network Sirr is computed to approximately 0.68. The large 23 

variation observed in the data points is due to the fluctuations of the liquid pressure in the 24 

networks. Moreover, for Sloc >Sirr, the scatter in the Dl values (shown by the error bars in Fig. 25 

2) is larger than that for Sloc <Sirr. As shown in Ref. [13], this is owed to the fluctuations of the 26 

liquid pressure in the network as for Sloc >Sirr the local mass transfer is primarily through 27 

liquid phase. This is because the vapor pressure gradient is not yet developed (can be seen in 28 

Fig. 8) and therefore not sufficient pathways for vapor transport are available. 29 
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Due to the small vertical size of our local averaging volume (one lattice spacing), isolated 1 

liquid clusters span over more than one averaging volume and thus we obtain Dl values for S 2 

< Sirr in the range of 10-14 – 10-12 m2/s (as illustrated in Fig. 2). In order to reproduce 3 

saturation profiles that are close to those obtained from pore network simulation results 4 

(presented in Sec. 5), we adopt Dl to the averaged PNM data. By doing so, we observed that 5 

for producing saturation profiles similar to that produced by pore network model, the Dl 6 

values should be significantly higher for S > Sirr as compared to S < Sirr. We observed, 7 

moreover, that profiles of Dl that decrease exponentially as the local saturation approaches 8 

zero gives better results. Based on these observations, a piece-wise profile was found to be the 9 

most adequate function for Dl, namely 10 

�� = +RSTU�VR��W''X�  (16) 

for Sloc < Sirr and 11 

�� = +O��W' + VO  (17) 

for Sloc > Sirr. Equation 16 is based on an exponential function where the values of coefficients 12 

a1, b1 and c1 are 1.92×10-12, 2 and 0.5, respectively. On the other hand, Eq. 17 is a linear 13 

function where a2, b2 are equal to 2.16×10-9 and -1.46×10-9, respectively. In Fig. 2, we present 14 

the comparison of Dl calculated using Eqs. 16 and 17 and the discrete data points of Dl 15 

obtained from the pore network simulation results which are computed from the local liquid 16 

flux jl using Eq. 15. Note that the ordinate on the y-axis in Fig. 2 is logarithmic, which causes 17 

the linear profile of Dl for S > Sirr to appear as non-linear.  18 

Fig. 2: Macroscopic liquid phase diffusivity Dl as a function of local saturation Sloc obtained 19 

from pore network simulations over 15 realizations. The black dashed line represents the Dl 20 

values obtained from Eqs. 16 and 17. The pore network simulation data is averaged over local 21 

saturation intervals of 0.01.   22 

4.2 Macroscopic vapor phase diffusivity 23 

The formulation of the vapor diffusivity can be performed in a simpler manner as compared to 24 

the liquid phase diffusivity. This is because unlike the liquid phase diffusivity, which in fact is 25 

a lumped parameter describing the liquid viscous-capillary transport, macroscopic vapor 26 

diffusivity has a similar physical meaning and formulation (vapor pressure gradient as the 27 

driving force) as that of the pore scale vapor diffusion coefficient. Based on the upscaling 28 

procedure, similar to our related previous work [15], we do not consider any enhancement 29 



14 
 

effect (see, e.g.,  [33]) caused by the water evaporation in the vapor diffusion formulation. A 1 

logical first step here is to consider the situation of vapor transport through completely dry 2 

region, i.e. for region where the local saturation is zero. We refer to it as ��  ∗ , i.e. 3 

��  ���W' = 0�. For our pore network, ��  ∗ can be approximated from a relation based on the 4 

pore-scale vapor diffusion coefficient �!/, the average throat radius and throat length,  which 5 

can be represented as  6 

���  ∗  
�!/  ≈   H I0,[�/\O

L0O
.  (18) 

Using  Eq. (18), ��  ∗  can be expressed in terms of pore network structural characteristics and 7 

can directly be computed without performing any drying pore network simulations. Equation 8 

(18) is similar to the formulation for ��  ∗  presented in Ref. [34], where the effective vapor 9 

diffusivity for drying PNM is presented based on a simple drying model with the assumption 10 

of local equilibrium at the macroscopic scale between the liquid and vapor phase. However, 11 

as opposed to the formulation of vapor diffusion presented in this work, in Ref. [32] the 12 

porosity is implicit in the effective vapor diffusivity term. This is why we consider the term 13 

���  ∗  in Eq. (18). Note that this is an empirical formulation specific to our considered PNM. 14 

For our pore network geometry (parameters given in Sec. 5), the value of ��  ∗  is around 15 

8.6×10-6 m2/s. Figure 3 shows the values of ��   as a function of local saturation which are 16 

are calculated by 17 

��  = − �� " 
��!

Q!��1 − �� ∇#!,  (19) 

where Q! is the total vapor flux between two local averaging volumes driven by the 18 

macroscopic vapor pressure gradient among them. In order to calculate the term �1 − �� in 19 

Eq. 19, we considered the average value of the saturation of the two averaging volumes 20 

among which the vapor flow is considered. As expected, the value of ��   is smaller where 21 

the resistance to vapor flow is larger. When compared with ��   computed from pore network 22 

simulations based on Eq. 19, the average value of ��  ∗  is the same as that computed by Eq. 23 

18. Also, the corresponding spread in data around ��W' = 0 is insignificant. Similar to the 24 

liquid phase diffusivity, the effective vapor diffusivity obtained from pore network 25 

simulations also consists of large scatter in the data, owing to the small size of the local 26 

averaging volume. This scatter is relatively lower for intermediate range of local saturation 27 

i.e., between approximately 0.4 and 0.6. Also, in this range of local saturation, there is no 28 
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significant variation in the average values of ��  . Note that this is also the range in which the 1 

peak of the local specific interfacial area lies (see Fig. 4). The specific interfacial area is 2 

important in this context as it is a measure of the tortuosity of gas phase. The peak in specific 3 

interfacial area is spread out in this range i.e. the values of specific interfacial area do not vary 4 

significantly in this range.  5 

While considering the upscaling of the vapor diffusivity, the ratio between the effective vapor 6 

diffusivity and the pore-scale vapor diffusion coefficient is based on the tortuosity coefficient 7 

(which depends on the porous medium geometry and the gas phase saturation). For example, 8 

for granular porous medium, it is represented as ��  /�!/ = ���1 − ���R^ _⁄ �O⁄  [12,35,36]. 9 

However, for the solution of the CM presented in Sec. 5, we do not consider the effective 10 

diffusivity computed from PNM simulations as illustrated in Fig. 3. Instead, we neglect the 11 

influence of local saturation on the effective vapor diffusivity and test a simpler approach by 12 

considering the effective vapor diffusivity to be equal to ��  ∗  i.e., independent of local 13 

saturation. This means that the main impact of the saturation on the macroscopic vapor 14 

diffusive transport is via the gas volume fraction ��1 − ��. Note that this simplification is 15 

specific to the situation considered in this work and would need to be reconsidered depending 16 

on the porous medium. 17 

Note that for the solution of the continuum model presented in Sec. 5, we do not consider the 18 

effective diffusivity computed from pore network simulations as illustrated in Fig. 3. Instead, 19 

we consider the effective vapor diffusivity to be equal to ��  ∗ . This means that the main 20 

impact of the saturation on the macroscopic vapor diffusive transport is via the gas volume 21 

fraction ��1 − ��.  22 

Fig. 3: Effective water vapor diffusivity ��   as a function of local saturation Sloc computed 23 

from pore network simulation results over 15 realizations. The pore network simulation data 24 

is averaged for local saturation intervals of 0.01.   25 

4.3 Specific interfacial area 26 

Figure 4 shows the comparison of specific interfacial area alg (computed by dividing the total 27 

interfacial area of all interfacial throats within a local averaging volume with the local 28 

macroscopic volume) obtained from pore network simulation results and the profile used for 29 

the continuum model solution. Initially, i.e., at Sloc = 1, the value of alg of each local slice is 30 

zero (except for the surface slice as the surface throats are exposed to the boundary layer in 31 

the beginning of the drying process). As Sloc deviates from unity, alg increases owing to the 32 
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formation of meniscus throats. This leads to a consistent increase in alg with decrease in local 1 

saturation until a peak value is reached. Upon further drying, alg decreases consistently with 2 

local saturation as the rate of removal of liquid overcomes the rate of local production of alg. 3 

Fig. 4: Specific interfacial area alg as a function of local saturation Sloc with an interval of 4 

0.01. The pore network simulation results are averaged over 15 realizations. Black dashed line 5 

represents the continuum model profile based on Eq. 20. 6 

For Sloc < Sirr the specific interfacial area profile computed from pore network simulations 7 

shows scattered clouds of data similar to that of the other macroscopic transport parameters 8 

computed from pore network simulations as discussed in Secs. 4.1 and 4.2. For local 9 

saturation values larger than roughly the irreducible saturation Sirr, the specific interfacial area 10 

computed from pore network simulations does not show any scatter. As will be shown later, 11 

this is also the range of local saturation in which the deviation of vapor pressure from 12 

saturation vapor pressure is negligible. This implies that the alg profile for Sloc > Sirr does not 13 

influence the continuum model solution. For details on the experimental measurement of 14 

specific interfacial area in drainage or imbibition situations using techniques such as X-ray 15 

tomography and nuclear magnetic resonance, one can refer to Refs. [37–39]. Considering this, 16 

alg profile used for continuum model solution complies roughly with pore network model. The 17 

profile used for continuum model solution is expressed as 18 

+�, =  +_STU a− bcdef?gh
'h iOj + *_ , 

 (20) 

where values of the coefficients +_, V_, k_ and *_ are 600, 0.5, 0.3, and -37.30591 m2/m3, 19 

respectively.  20 

4.4 Interfacial area at the surface 21 

In the surface slice, the dynamics of interfacial area with respect to local saturation is different 22 

from that of the rest of the network. This is owed primarily to the fact that the surface slice 23 

consists only of vertical surface throats as the surface pores do not have any horizontal throats 24 

connected to them (slices in the rest of the network consists of vertical and horizontal throats 25 

connected to the upper pore-node of the slice). Hence, there is no increase in the total number 26 

of interfacial throats in the surface slice with decrease in saturation. From pore network 27 

simulations, 3.4� ,5�6 is obtained by subtracting from unity the ratio of sum of interfacial area 28 

of saturated surface throats and the sum of interfacial area of all surface throats. As illustrated 29 

in Fig. 5, 3.4� ,5�6 computed from pore network simulations is a slightly non-linear function 30 
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of surface saturation. However, for the continuum model solution a non-linear relationship 1 

defined as 2 

3.4� ,5�6 = 11 − �.4� 2O,  (21) 

where �.4�  is the saturation of the surface slice, leads to more satisfactory results (see Sec. 3 

5). The impact of 3.4� ,5�6 on the continuum model solution is further studied in Sec. 6, 4 

where we also present solution based on linear relationship between 3.4� ,5�6 and �.4� , i.e. 5 

3.4� ,5�6 = 1 − �.4� . For details on influence of pore network geometry and topology of the 6 

liquid phase on the surface pore occupancy ratio for a 3D PNM, refer to Ref. [14]. 7 

Fig. 5: Comparison between pore network model (PNM) and continuum model (CM) profiles 8 

for the surface occupancy ratio of liquid phase as a function of surface saturation �.4� . The 9 

CM profiles are based on Eq. 21 and  3.4� ,l�0 = 1 − 3.4� ,5�6. 10 

5. Continuum model solution compared with pore network simulations 11 

As mentioned in Sec. 1, we aim to compare the solution of the two-equation NLE continuum 12 

model with the pore network simulations that have been presented in Ref. [13]. For the sake 13 

of completeness, we describe briefly the physical and structural parameters used for the pore 14 

network simulations in Ref. [13]. In order to minimize the influence of randomness in throat 15 

size distribution, the pore network simulation results were averaged over 15 simulations each 16 

with different realization of throat size distribution. The structural and physical parameters for 17 

these simulations are presented in Table 1. The wetting angle between the liquid and solid 18 

phase is assumed to be zero. Due to the small size of the network, an unrealistically high 19 

value of liquid viscosity was chosen such that the viscous dissipation characteristic length 20 

(see, e.g., [26]) is smaller than the total height of the network. This means that the thickness 21 

of two-phase zone is restricted over sufficiently long period of drying leading to a viscous-22 

capillary drying regime with an initial capillary number of 0.014 (based on the definition in 23 

Ref. [41]).  24 

Table 1: Structural and physical parameters for pore network simulations. 25 

The liquid phase diffusivity Dl, the effective vapor diffusivity ��  , the specific interfacial 26 

area alg, and the fraction of dry surface pores 3.4� ,5�6 as presented respectively in Figs. 2, 3, 27 

4 and 5 are used to solve the two-equation NLE continuum model (Eqs. 7 and 8). Apart from 28 

these, the mass exchange coefficient k, which is used as a fitting coefficient, is also needed. 29 
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The mass exchange coefficient k is a function of network geometry, the value of diffusion 1 

coefficient in the gas phase and possibly some other factors [42]. For example, for our case, 2 

the mass exchange coefficient can be estimated roughly by taking the ratio of pore-scale 3 

binary diffusion coefficient and the characteristic length of the local averaging volume. This 4 

comes out to be roughly of the order of 2.5×10-2 m/s. For the results presented in this section, 5 

the value of k is 5×10-2 m/s, which is the same as that used in Ref. [15] for the case of drying 6 

of a partially saturated medium with NLE effects. The solution of two-equation continuum 7 

model is gauged on the basis of kinetics, phase distribution profiles and NLE effect. Initially, 8 

the saturation of the whole continuum model domain is unity and the respective initial vapor 9 

pressure corresponds to the saturation vapor pressure. The computational domain for the 10 

continuum model solution is discretized into 500 finite volume elements and it is found that 11 

the continuum model solution does not vary upon further refinement in the discretization. 12 

Figure 6 shows the variation of network saturation and normalized evaporation rate with 13 

drying time obtained from continuum model solution compared with that computed from pore 14 

network simulations. The results indicate that the solution of continuum model reproduces 15 

reasonably the drying kinetics. Apart from these, we also analyze the reproducibility of phase 16 

distribution by the continuum model solution through saturation and vapor pressure profiles. 17 

Figure 7 shows that the continuum model solution reproduces the saturation profiles and 18 

vapor pressure profiles satisfactorily throughout the drying process. 19 

Fig. 6: Variation of global network saturation Snet with drying time (left) and normalized 20 

evaporation rate with respect to drying time (right). The black dashed line represents the 21 

solution of CM, whereas the blue solid line represents the profile obtained from PNM 22 

simulation results. 23 

Fig. 7: Saturation profiles (left) and normalized vapor pressure profiles (right) obtained from 24 

two-equation CM solution and PNM simulations. The results are plotted for times that 25 

correspond to Snet of 0.90, 0.80, 0.60, 0.40, 0.20 and 0.10 for PNM simulation results. The 26 

outer surface lies at z/H = 1, where H is the network height.  27 

Apart from analyzing the kinetics and phase distribution profiles, we also compare the ability 28 

of continuum model to reproduce the NLE effect. This is presented in Fig. 8 for the whole 29 

network as well as specifically for the evaporative surface. For ease of comparison, the NLE 30 

effect for the whole network is compared with respect to different ranges of network 31 
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saturation values. The results presented in Fig. 8 show that the continuum model solution 1 

reproduces satisfactorily the NLE at the surface as well as inside the whole network. 2 

The evolution of network saturation, normalized evaporation rate, saturation profiles, vapor 3 

pressure profiles and the NLE effect (Figs. 6, 7 and 8, respectively) show that the two-4 

equation continuum model reproduces the pore network simulation results reasonably well. 5 

Fig. 8: Left: NLE effect obtained from PNM drying simulations and solution of two-equation 6 

NLE CM for varying ranges of Snet. The lines and grey symbols represent CM solution and 7 

PNM data, respectively. Right: NLE function at the surface obtained from PNM drying 8 

simulations and that predicted by two-equation CM.  9 

6. Further discussion 10 

6.1 On the mass exchange coefficient 11 

The mass exchange coefficient k allows control over the local equilibrium kinetics. An 12 

increase in the value of k implies that we approach the situation of local equilibrium where the 13 

variation in the local partial vapor pressure becomes negligible, whereas a decrease in the 14 

value of k implies that we approach the local non-equilibrium situation where the variations in 15 

the local partial vapor pressure become significant. In terms of the liquid saturation profiles, 16 

this means that as the value of k increases the drying front becomes sharper (thinner), whereas 17 

as the value of k decreases, the drying front becomes smoother. A smoother and more 18 

continuous drying front allows for a better numerical convergence and as k becomes larger, 19 

the numerical convergence becomes more difficult due to the sharper drying front, which 20 

leads to larger computational times for the continuum model solution. Based on tests, we 21 

found that for our given set of parameters, the continuum model becomes unstable, i.e. the 22 

numerical convergence problems arise for values approximately outside the range [10?_ −23 

10] m/s. We present in Fig. 9 the influence of value of k on the evolution of network 24 

saturation and local saturation profiles with drying time.  25 

Fig. 9: Comparison of evolution of network saturation and saturation profiles with drying time 26 

for different values of mass exchange coefficient k, i.e. for 5 and 0.005 m/s. The legend on the 27 

figure on the left is valid for both figures. The saturation profiles on the right are plotted for 28 

six different intervals in time. 29 

We observe that for - = 5 m/s, the drying front is sharper, i.e. the saturation profiles are more 30 

discontinuous, whereas they are smoother and more continuous for k = 0.005 m/s. This is 31 
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because of the fact that for - = 5 m/s we approach the situation of local equilibrium and thus 1 

the NLE effect is reduced significantly (e.g. the NLE effect at the surface where the vapor 2 

partial pressure stays close to the saturation vapor pressure, see Fig. 10) and therefore, the 3 

drying rate is higher for - = 5 m/s as compared to - = 0.005 m/s. Interestingly, the 4 

saturation profiles give the impression that the drying rate would be higher for situations 5 

where the drying front position is closer to the boundary layer. However, the extent of NLE 6 

effect is such that it overcomes the advantage provided by the less advanced position of the 7 

drying front. This comparison is analogous to comparisons between the so called traveling 8 

front model (or local equilibrium (LE) continuum model) and NLE continuum model 9 

solutions where the drying front position reproduced by the LE continuum model recedes 10 

faster as compared to the NLE continuum model (see, e.g., [15]). The sharp and irregular 11 

decrease in the surface NLE function for - = 0.005 m/s illustrated in Fig. 10 is due to 12 

numerical convergence issues which become more significant for k values smaller than 13 

1 × 10?_ m/s. 14 

Fig. 10: Comparison of NLE effect at the surface for k values of 5 m/s and 0.005 m/s. 15 

6.2 On the liquid phase diffusivity 16 

To analyze the influence of macroscopic liquid phase diffusivity on the drying behavior, we 17 

test two cases by varying the liquid diffusivity presented in Sec. 4.1, which we refer to as 18 

Dl,ref. The rest of the continuum model parameters are the same as those described in Sec. 4. 19 

In Fig. 11, we present the network saturation variation and saturation profiles based on Dl = 20 

0.5Dl,ref and Dl = 2Dl,ref. As expected, drying becomes faster when liquid phase diffusivity is 21 

larger (see the variation of network saturation with respect to time presented in Fig. 11). This 22 

is because the capillary transport from slices deep in the network towards the drying front is 23 

enhanced. As a result, the drying front recedes relatively slower. This can also be observed 24 

from the saturation profiles corresponding to Snet of approximately 0.9 in Fig. 11, where the 25 

drying front corresponding to Dl = 2Dl,ref lies closer to the boundary layer (around Z/H = 1) as 26 

compared to Dl = 0.5Dl,ref, even though the saturation of the slices deep in the network is 27 

lower for Dl = 2Dl,ref. 28 

Fig. 11: Influence of Dl on evolution of network saturation and local saturation profiles with 29 

respect to drying time for three distinct times based on 2Dl, ref and 0.5Dl,ref, where Dl,ref is 30 

based on Eqs. (16) and (17) shown in Sect. 4.1. The legend on the figure on the left applies to 31 

the figure on the right as well. The saturation profiles on the right are plotted for times that 32 
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correspond to Snet of 0.90, 0.40 and 0.10 for PNM simulation results. The evaporative surface 1 

lies at Z/H equal to 1. 2 

6.3 On the effective vapor phase diffusivity 3 

Similar to the study of influence of macroscopic liquid diffusivity on drying behavior, we 4 

investigate the influence of effective vapor diffusivity with the help of two test cases based on 5 

��  ∗ =  0.8��  ,�� ∗  and ��  ∗ =  1.2��  ,�� ∗ , while the rest of the parameters are the same as 6 

the continuum model parameters described in Sec. 4. ��  ,�� ∗  is the effective vapor diffusivity 7 

given in Sec. 4. 8 

Fig. 12: Comparison of influence of effective vapor diffusivity on evolution of network 9 

saturation and saturation profiles based on ��  ∗  corresponding to 0.8��  ,�� ∗  and 1.2��  ∗ . 10 

The legend on the figure on the left applies to the figure on the right as well. The saturation 11 

profiles on the right are plotted for times that correspond to Snet of 0.90, 0.40 and 0.10 for 12 

PNM simulation results. 13 

The continuum model is very sensitive to the value of ��  ∗ , therefore we vary it only by a 14 

fraction of 0.2 (Fig. 12). As expected, the saturation profile corresponding to network 15 

saturation of 0.9 does not show any impact to change in ��  ∗ . This is because as long as 16 

network surface is saturated there is no impact of ��  ∗  on the drying behavior. During this 17 

period the drying process is essentially dictated by the vapor transport in the gas-side 18 

boundary layer, and the effective vapor diffusivity caters for the vapor transport within the 19 

porous medium. As expected, ��  ∗  influences the drying kinetics and drying becomes faster 20 

for larger values of ��  ∗  because the resistance to vapor diffusion inside the porous medium 21 

decreases. 22 

6.4 On the specific interfacial area  23 

For the description of the drying process at the macroscopic scale, we not only need the local 24 

and network saturation but also the distribution of saturation inside the medium [28]. The 25 

specific interfacial area which is a macroscopic parameter in the source/sink term of our NLE 26 

continuum model formulation provides a measure of the distribution of liquid inside the 27 

network. Since alg is a multiple of mass exchange coefficient k in our continuum model 28 

formulation, we can estimate the influence of alg on the continuum model solution through the 29 

study of variation in k as presented in Sec. 6.1. This implies that, keeping all other factors 30 

constant, if the overall magnitude of alg increases, it would result in sharper drying front and a 31 
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smaller NLE effect. Similarly, an overall decrease in magnitude of alg would result in a 1 

smoother drying front with a more pronounced NLE effect. A higher local specific interfacial 2 

area implies a more uniform local liquid phase distribution, i.e., a more fragmented liquid 3 

phase. This is correlated with a smaller NLE effect due to increase in tortuosity resulting in 4 

increased resistance to the local vapor transport. Similarly, a lower specific interfacial area 5 

implies a lower tortuosity resulting in a more pronounced NLE effect. 6 

In Sec. 5, we presented continuum model solution based on a non-linear profile for 3.4� ,5�6, 7 

i.e. for 3.4� ,5�6 = 11 − �.4� 2O. Here, we discuss briefly the impact of linear relationship 8 

between 3.4� ,5�6 and �.4�  on the continuum model solution. As illustrated in Fig. 13, the 9 

vapor partial pressure at the surface for the linear profile of 3.4� ,5�6 shows a sharp drop 10 

initially as the drying begins. However, this drop does not affect the continuum model 11 

solution as it occurs for a relatively short period, after which the vapor partial pressure at the 12 

surface corresponds roughly to that reproduced by the non-linear relationship between 13 

3.4� ,5�6 and �.4� . The selection of non-linear function for 3.4� ,5�6 results in a better 14 

reciprocation of the NLE effect at the surface. The phase distribution and drying kinetics for 15 

linear and non-linear profiles for 3.4� ,5�6 are essentially the same (not shown here as the 16 

difference in them is not visible). The change in selection of the profile for 3.4� ,5�6 on the 17 

continuum model solution affects only the NLE function at the surface that is one of the 500 18 

elements in the discretized continuum model computational domain. 19 

Fig. 13: Comparison of NLE effect at the surface based on linear and non-linear profiles for 20 

3.4� ,5�6 for k = 0.05 m/s. 21 

6.5 On the length scale separation issue and the modeling of thin systems 22 

As mentioned earlier, the size of the pore network is too small for imposing a good length 23 

scale separation. As in Ref. [13], a still better agreement between the pore network model 24 

results and the continuum model ones could be obtained by considering the macroscopic 25 

transport parameters such as the effective liquid and vapor diffusivities as functions of both 26 

the local saturation and the global saturation. As demonstrated in Ref. [13], such an approach 27 

is an interesting way for taking into account the impact of the poor length scale separation and 28 

modeling the drying process in thin systems using continuum models. However, this double 29 

saturation approach lacks a theoretical basis and was developed essentially from a heuristic / 30 

empirical standpoint. In the present paper, the motivation was not to study the drying of thin 31 

systems but the modeling of drying in classical porous media where the length scale 32 
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separation is met. Because of the poor length separation, the pore network model results were 1 

considered as simply providing guidance on the macroscopic parameter behaviors. The latter 2 

were then freely modified, compared to the ones directly deduced from the pore network 3 

simulations, so as to obtain eventually a reasonable agreement between the pore network 4 

drying results and the continuum model ones. In doing so, it is our belief that the relevance of 5 

the two-equation NLE continuum model could be established in spite of the poor length 6 

separation in the pore network simulations. Nevertheless, it would be certainly more 7 

convincing to perform pore network simulations over much larger network sizes that fulfil the 8 

criterion of length scale separation. However, this is not possible with the present version of 9 

our pore network model code.   10 

7. Conclusions 11 

In this work, a two-equation non-local-equilibrium (NLE) continuum model of drying was 12 

evaluated by comparison with benchmark pore network simulations. The derivation of the 13 

two-equation NLE continuum model was performed within the framework of the volume 14 

averaging method. While in our previously developed continuum model of drying mass 15 

transport was in the gas phase only (immobile liquid) [15], this continuum model accounts for 16 

both the liquid and vapor transport over a full drying. The dependency of the macroscopic 17 

liquid diffusivity, effective vapor diffusivity, specific interfacial area, and fraction of dry 18 

surface pores on local saturation was determined using the data obtained from pore network 19 

drying simulations. The problem of mass transport at the surface was approached by 20 

employing a closure relationship for the mass transfer at the surface based on the degree of 21 

occupancy of the surface pores. This allows predicting the NLE effect at the surface with a 22 

reasonable degree of accuracy. Also, it is more conceptually consistent with the drying pore 23 

network simulations as compared to the conventionally used continuum modeling approaches, 24 

e.g., Schlünder’s model that does not consider the influence of dry surface pores on the 25 

surface evaporation dynamics [14,43–46].  26 

The two-equation NLE continuum model formulation is more physically consistent as 27 

compared to the previously developed one-equation continuum model [13] since it avoids 28 

using a NLE surface function relating the vapor partial pressure and the surface saturation as 29 

input parameter for the continuum model. On the contrary, this function is an output of the 30 

model. Indeed, the results indicate that the newly developed two-equation NLE continuum 31 

model reproduces independently the pore network simulation results (i.e. the drying kinetics, 32 

the phase distribution profiles and the NLE effect) with a reasonable degree of accuracy. 33 
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The sensitivity study of the macroscopic parameters provided useful insights into the process 1 

dynamics. It was observed that the mass exchange coefficient has a significant impact on the 2 

local equilibrium dynamics. For higher values of the mass exchange coefficient, the 3 

continuum model approaches the local-equilibrium (LE) situation where the drying front is 4 

sharper and more discontinuous. For lower values of mass exchange coefficient, the NLE 5 

effect becomes more significant and the drying front becomes smoother.  6 

As for other transport processes in porous media, it would be interesting to develop, via an 7 

upscaling procedure, the closure problem allowing to compute the mass exchange coefficient 8 

from digital images of microstructures. The proposed model was validated against pore 9 

network simulations. A first successful comparison with experimental data is presented 10 

in [47]. Nevertheless, it would be interesting to test further this model against experimental 11 

data. Also, a recurrent problem in the modeling of drying process is the possible impact of 12 

liquid films [48–50] and other secondary capillary structures such as liquid rings and 13 

bridges [51,52] that can be present in the pore space after displacements of the bulk menisci. 14 

These secondary capillary structures were not considered in the proposed continuum model, 15 

nor in the pore network simulations. This would represent an interesting extension of the 16 

present model.  17 
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Structural property Unit Value Physical constant Unit Value 

Network size (nodes) - 25×25×51 Temperature  K 293.15 

Boundary layer discretization  - 25×25×10 Pressure  Pa 105 

Mean throat radius mm 0.25 Liquid kinematic viscosity  m2/s 0.028 

Standard deviation of throat radius mm 0.025 Saturation vapor pressure  Pa 2339 

Throat length mm 1 Surface tension N/m 0.07274 

Network porosity - 0.594 Diffusion coefficient m2/s 2.56×10-5 




