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Abstract

The first aim of this article is to position analogical inference (or at least a partic-
ular form of it) in relation to induction. After a brief reminder on the induction of
plausible conclusions in a probabilistic, logical, possibilistic settings, and with J. S.
Mill’s methods of induction, we turn our attention to analogical inference, based on
analogical proportions. Analogical proportions that hold between Boolean vectors are
emphasized as a matter of pairs belonging to the same equivalence class. Then the
mechanism of analogical proportions-based classification is explained and the main
algorithms and results obtained so far are surveyed. After which, steps towards a logic
of creativity are presented. The approach starts from the observation that analogical
proportions belong to a larger set of quaternary relations called logical proportions.
The six logical proportions giving birth to an equivalence relation between pairs are
identified. This includes two important cases: i) a logic of conditional events known
as being a basis for non monotonic reasoning (which is a form of plausible deduction)
; ii) a logic of ordered pairs preserving positive changes, closely related to analogical
proportions. Within this framework, we revisit the creative nature of analogical pro-
portions and introduce a creative inference mechanism that works on the basis of a
specific situation and a collection of ordered pairs representing possible changes.
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PRADE AND RICHARD

1 Introduction

As it is well-known, Charles Sanders Peirce [44] distinguished between three main forms
of reasoning: deduction (for deriving necessary consequences), induction (for extrapolating
and generalizing from facts), and abduction (for finding out an hypothesis explaining a
particular situation).

Peirce [45] was viewing analogical reasoning as a composite form of reasoning that
combines induction and abduction (or retroduction, using Peirce’s word). Roughly speak-
ing, the idea is to see the fact of relating a given situation to another known situation as a
kind of abduction, and the fact of projecting / extrapolating what happens in the latter situa-
tion onto the given situation (in order to predict something about it) as a form of induction.
In fact, Peirce did not detail the way the two modes of reasoning are combined in analogical
reasoning; see [41] and [42] for different understandings of Peirce’s suggestion that may
also involve deduction.

Indeed analogical reasoning involves drawing a plausible inference that a property found
(or holding) in one situation is likely to also apply/hold to/in a second situation when there
are significant similarities between the two situations. Such a parallel between two situa-
tions is also the starting point of Gentner [27]’s structure-mapping theory, where analogy
is viewed as a mapping from one source domain to a target domain which conveys that a
system of relations which holds among the source entities also holds among the target en-
tities. Such a view was also proposed in [57]. A restricted rendering of this idea, stated in
logical terms, making a parallel between two entities x and y, amounts to infer Q(y) from
P (x), Q(x), and P (y) (where P and Q are predicates applicable to situations x and y).
Such an inference is clearly an “analogical jump”, which offers no guarantee on the con-
clusion. Some authors [14, 54] looked for what could be added to such premises in order
to ensure the truth of the conclusion. But this view is too demanding since it amounts to
reduce analogical inference to a form of deduction.

This view of the “analogical jump” pattern of inference is not so far from case-based
reasoning [25]. Indeed in this pattern, a “case” y under consideration where P is true is
related to a known “case” x where P is true as well1 (i.e., we have a perfect similarity be-
tween x and y) as well as another property Q also true for x. So as in case-based reasoning,
this suggests that Q may be true as well for y.

In this paper, we use a slightly different view of analogical inference that is based on
analogical proportions. Analogical proportions are statements of the form “a is to b as c
is to d”, as for instance, “a calf is to a cow as a foal is to a mare”. Although it involves
four items, we can observe that a calf and a cow are bovids, which corresponds to a first
situation, while a foal and a mare are equids, which is the second situation. In each sit-

1Note that P may be a compound property involving a number of elementary properties.
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ANALOGICAL PROPORTION-BASED INDUCTION

uation, properties or relation such as “young”, “adult”, “mother” apply to the entities put
in correspondence by the analogical proportion. More generally the pair (a, b) with all the
properties and relations attached to items a and b is paralleled with the pair (c, d) with all the
properties and relations attached to items c and d. A philosopher, Mary Hesse [30], pointed
out and discussed the link between analogy viewed as a parallel between two situations and
analogical proportions.

In the following, we shall use an inference based on analogical proportions. Although
its link with the “analogical jump” pattern (as a particular instance) has been established [8],
this inference is different from the one in case-base reasoning where the known cases in the
repertory are considered one by one in isolation [50]2. In contrast, in analogical proportion-
based inference, the case under consideration, say d, is related to a triplet a, b, c of known
cases, each case being described by a set of attribute values [36]. .

Analogical inference is known to be useful in a wide range of applications [28], from
aiding explanation [5] to aiding creativity, e.g., in mathematics [47]. In this paper, we shall
review how analogical proportion-based inference can be applied to classification tasks, and
we shall advocate a new view of analogical proportions that will lead us to propose some
elements of a new logic that manipulates ordered pairs of vectors, and that may be used in
a creativity task.

The paper is organized as follows. Section 2 discusses analogical inference as a form of
induction, together with a brief review of some non conventional form of induction. Sec-
tion 3 provides a formal survey of analogical proportions. It emphasizes a new view of
(Boolean) analogical proportions that express an equivalence relation between two ordered
pairs of vectors describing items in terms of Boolean features. Section 4 recalls analogical
inference (based on analogical proportions) and the main results obtained with this infer-
ence in classification. Section 5 first briefly restates the general setting of so-called logical
proportions, to which analogical proportions belong. We focus on those logical propor-
tions that define equivalence relations. We thus identify two families of such proportions,
one which defines equivalences between “conditional objects” and which is at the basis of
nonmonotonic reasoning, and the other which is related to analogical proportions and from
which we outline a logic of ordered pairs, applicable to creativity issues.

2 Analogical inference and transduction

Induction is classically opposed to deduction. While deduction applies generic knowledge
(represented by general rules (“all men are mortal”) to factual information (“Socrate is a

2Usually in case-based reasoning the case under consideration y is put in similarity relation with several
known cases x1, · · · , xk where each xi leads to a partial conclusion for y (provided that the similarity between
xi and y is judged sufficient), and the partial conclusions have then to be combined in some way.
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man”)3, induction works in the opposite direction, attempting to infer general laws from a
limited set of observed facts. Mathematical models of induction predominantly stem from
probability and statistics theories. Sometimes what is covered by the word ‘induction’ also
includes the deductive step which corresponds to the application of the general laws induced
to a factual situation.

But there is another form of induction named transduction [26] that directly infers a par-
ticular factual conclusion from a set of data. A well-known transduction-based mechanism
is the k-nearest neighbor method where the prediction for a new item is only based on the
observation of closed neighbors. It is also known as lazy learning. In both cases, induction
is a form of inference that provides plausible conclusions, unlike deduction, which provides
safe conclusions.

Let us consider a classification problem. Given a set of items or entities (objects, situa-
tions, profiles, ...) that are all described in terms of the values of a collection of observable
attributes applicable to all of them, and that belong to a known class, the classification
problem amounts to assign a class to a new item whose class is unknown. More formally,
let S be a set of m items, each one a⃗i is represented by a vector of n attribute values
a⃗i = (ai

1, ai
2, · · · , ai

n) i = 1, ..., m, together with its class/label cl(a⃗i) ∈ C, where C
is a finite set of labels: for instance C = {good, bad}, or C = {bovid, equid, canid}.
The set of attributes used to describe an observable piece of data is fixed: for instance
{color, age, weight, position, . . .}. Thus, a class gathers items of the same kind in a cate-
gorization process. Each class C ∈ C divides the set of items into the a⃗i’s that are examples
of C if a⃗i ∈ C , and those that are counter-examples for C (and examples of other classes).
In general, attributes can take into account values of various types, such as integers, real
numbers, words, and more. In a context of binary attributes (i.e., attributes with values
belonging to {0, 1}), attributes can be regarded as properties, for instance, representing
whether an observable individual is wealthy (1 for ‘rich,’ 0 for ‘not rich’).

Given a new item a⃗⋆ = (a⋆
1, a⋆

2, · · · , a⋆
n) /∈ S, the problem is then to predict its class.

When applying Bayesian classification with the assumption that the attributes are sta-
tistically independent of each other given the class, we calculate, for each C ∈ C:

Prob(C|a⃗⋆) = Prob(a⃗⋆|C) · Prob(C)
Prob(a⃗⋆)

= 1
Prob(a⃗⋆)

· Prob(C) ·
n∏

k=1
Prob(a⋆

k|C)

and a⃗⋆ is assigned to the class C ∈ C providing the highest value for Prob(C|a⃗⋆).
The probabilistic approach is the prevailing viewpoint for induction and transduction.

Still there exist other options. Let us briefly review them.

3Even if deduction can also infer new generic rules from given rules.
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Possibility theory [19] also has a Bayesian-like rule, which writes [20],

Π(C|a⃗⋆) ⊛ Π(a⃗⋆) = Π(a⃗⋆|C) ⊛ Π(C)

where ⊛ = min or ⊛ = product. These two options separate the theories of qualitative and
quantitative possibilities where conditioning is based on min and product respectively [19].
In case of product-based conditioning on obtains the expression

Π(C|a⃗⋆) = Π(a⃗⋆|C)
maxj:Cj∈C Π(a⋆|Cj)

under the hypothesis of no prior information, i.e., Π(C) = 1. More generally ∀j, Π(Cj) =
1, since Π(a⃗⋆) = maxj Π(a⋆|Cj) · Π(Cj). The result is very close to Edwards’ notion of
likelihood [22], who advocates a non-Bayesian view, i.e., without priors. See, for instance,
[7] for experiments with possibilistic classification.

If we use the min-based qualitative conditioning, i.e., ⊛ = min, assuming that class C
is fully possible (no prior, i.e., Π(C) = 1), and taking Π(a⃗⋆) = 1, the equality Π(C|a⃗⋆) ⊛
Π(a⃗⋆) = Π(a⃗⋆|C) ⊛ Π(C) reduces to Π(C|a⃗⋆) = Π(a⃗⋆|C) and finally with an hypothesis
of non-interactivity (logical independence) of attributes we obtain

Π(C|a⃗⋆) =
n

min
k=1

Π(a⋆
k|C)

It expresses that C is all the more a possible class for a⃗⋆ as all its attribute values are possible
in class C, or better that the less possible is one of the attribute values for the class C, the
less possible class C is for a⃗⋆. We then come closer to a logical analysis of data that we
examine now.

Considering a particular class C ∈ C, a simple logical reading for Boolean data sets can
be done from the sets of examples EC and counter-examples E ′

C . Let φ(C) be a logical
formula that describes class C, i.e., φ(C) is true for the description of any item belonging
to φ(C). Then we have [21]∨

i:a⃗i∈E

(ai
1 ∧ ai

2 ∧ · · · ∧ ai
n) |= φ(C) |=

∧
j:a⃗′j∈E ′

(¬a′j
1 ∨ ¬a′j

2 ∨ · · · ∨ ¬a′j
n )

This means that the description of any example in terms of the n Boolean attributes
makes φ(C) true, and that any model of φ(C) falsifies at least one attribute value of any
counter-example. Provided that the data are not noisy, this provides a consistent bracketing
of φ(C). This looks like the version space approach [43] where the hypotheses space is
bracketed between a lower and an upper bound computed from the examples and counter-
examples, except that here no representation bias is introduced.
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In such a view, examples and counter-examples are exploited one by one. This is also the
case for the possibilistic approach, although differently. In other words, the informational
contributions made by each example (or counter-example) are combined, but no comparison
of examples belonging to the same class, or to different classes, is made. This contrasts,
as already mentioned in the introduction, with the analogical proportion-based inference
where items are handled three by three ; see Sections 3 and 4 for details. For their part,
k-nearest neighbors methods [24, 55], which are based on ideas similar to the ones at work
in case-based reasoning, also handle examples one by one (even if there is some cumulative
counting across the k examples considered).

The XIXth English philosopher, logician and economist, John Stuart Mill is known,
among many other things, for his “methods of induction”. He indeed proposed five meth-
ods of induction in his 1843 treatise of logic [40]. Strictly speaking, it is a matter of ab-
duction rather than induction, but it was long before Charles Sanders Peirce distinguished
between the two notions! Indeed these “induction” methods look for the simplest and most
likely hypothesis that explains some observations. But what contrasts Mill’s methods with
the previously reviewed approaches to induction is that they heavily rely on the ideas of
agreement and difference, which makes them somewhat similar in that respect to analogical
proportion-based inference, where examples are compared within pairs, as we shall see in
Section 3.

We cite here only the two main methods. The first one, called the (Direct) Method of
Agreement is stated like that [40]:

ABCD occur together with wxyz

AEFG occur together with wtuv
—————————————————–
Therefore A is the cause, or the effect, of w

Mill is not at all precise about what the letters in his induction patterns refer to. However
the causality flavor suggests to regard letters as properties or attributes that characterize
circumstances and their consequences (hence the use of two kinds of letters). The number
of attributes involved in the two first statements that differ from one to the other has no
particular meaning here. What is important here is that two states of affairs ABCDwxyz
on the one hand and AEFGwtuv on the other hand are compared.

In other words, what {A, B, C, D} and {A, E, F, G} have in common, i.e., {A}), cor-
responds to what {w, x, y, z} and {w, t, u, v} have in common, i.e., {w}.

A similar analysis applies to the Method of Difference, which reads [40]:

ABCD occur together with wxyz

BCD occur together with xyz
——————————————————————————-
Therefore A is the cause, or the effect, or a part of the cause of w
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Observe in the second pattern of inference that the set differences between {A, B, C, D}
and {B, C, D} correspond to the set differences between {w, x, y, z} and {x, y, z}.

Still Mill was making no link between his Methods of Difference and Agreement and his
view of analogy, although he considered that analogical reasoning (viewed according to the
pattern discussed in the introduction) was also a form of induction. The reader is referred
to [4] for some further discussions on links between Mill’s methods of induction and the
analogical proportions-based inference that we are going to present in the next section.

3 Analogical proportions

This section provides a refresher on Boolean-valued analogical proportions together with a
new view in terms of an equivalence relation between pairs.

3.1 Postulates

Generally speaking, analogical proportions are statements of the form “a is to b as c is to
d” linking four entities, which are supposed to satisfy the following postulates, according
to a long tradition that dates back to Aristotle. These postulates were inspired by a parallel
with numerical proportions, namely, arithmetic proportions (a − b = c − d) and geometric
proportions (a

b = c
d ) which equalize differences and ratios respectively. Thus, proportions

operates a double comparison (inside, and between, pairs) as also suggested by the expres-
sion of an analogical proportion “a is to b as c is to d”. Such a proportion, considered here
as a relation between 4 items, is denoted by a : b :: c : d.

These postulates, which are the only ones classically associated to an analogical pro-
portion, are:

P1 reflexivity: a : b :: a : b ;

P2 symmetry: a : b :: c : d ⇒ c : d :: a : b;

P3 stability under central permutation: a : b :: c : d ⇒ a : c :: b : d.

As immediate consequences, an analogical proportion also satisfies

• a : a :: b : b (sameness) ;

• a : b :: c : d ⇒ d : b :: c : a (external permutation);

• a : b :: c : d ⇒ b : a :: d : c (internal reversal);

• a : b :: c : d ⇒ d : c :: b : a (complete reversal).

7



PRADE AND RICHARD

It is also worth noticing that the 3 postulates do not allow for other permutations such
that a : b :: c : d ⇒ b : a :: c : d, or a : b :: c : d ⇒ c : b :: a : d. In particular, a : b :: b : a
is not supposed to hold. Thus one cannot say that “black is to white as white is to black”
(even if this might be advocated on the basis that the relation of opposition between ‘black’
and ‘white’ is the same as the one between ‘white’ and ‘black’; see [37] for a discussion of
a relation-based view of analogical proportions, maybe closer to natural language practice.

The entities involved in an analogical proportion can be of different natures: it may
be numbers, words, drawings, images, sentences, ... [52]. This may lead to question the
validity of the central permutation postulate, and to replace it by a weaker postulate such as,
e.g., the internal reversal property ; see [37, 2] for discussions.

It is assumed in this article that the entities considered can be represented by vectors of
Boolean feature values. Moreover, we require that the features used in the representation
are applicable to the four entities involved in the analogical proportions we deal with.4 Note
that in this paper we are primarily interested in the inference mechanism associated with the
logical modeling of analogical proportions between Boolean-valued vectors. Even if we use
some analogical proportion stated in natural language for illustration, we do not intent to
discuss analogical proportions between words in ordinary language here ; see [37] on this
point.

Thus, any entity is represented here by a vector a⃗ = (a1, ..., an) where ai is the value
of feature (or attribute) i. We define the analogical proportion relation among n-tuples by
applying it componentwise. Namely,

a⃗ : b⃗ :: c⃗ : d⃗ if and only if ∀i ∈ [1, n], ai : bi :: ci : di

We need now to recall the definition of an analogical proportion for four Boolean vari-
ables ai, bi, ci, di representing the value of some feature i for four distinct items.

3.2 Boolean proportions

The reflexivity postulate a : b :: a : b forces a Boolean analogical proportion to be true for
any values of a and b in {0, 1}, and therefore an analogical proportion a : b :: c : d is true
for the valuations (0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), and (1, 1, 1, 1). The unique minimal
Boolean model that satisfies the three postulates P1, P2, P3 is made up of the 6 valuations
shown in Table 1, where the valuations (0, 0, 1, 1), (1, 1, 0, 0) are added due to P3. As can
be seen the 6 patterns are symmetrical (i.e., satisfy P2). The 24 − 6 = 10 other valuations

4This assumption excludes analogical proportions such as “beer is to the English what wine is to the
French” where two different conceptual universes are present (beverages and people, in the example). Note
that the central permutation does not hold for such analogical proportions, which require a more sophisticated
modeling [3].
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a b c d

0 0 0 0
1 1 1 1
0 0 1 1
1 1 0 0
0 1 0 1
1 0 1 0

Table 1: Minimal Boolean model of a : b :: c : d

are excluded, namely a : b :: c : d is false for (0, 1, 1, 0), for (1, 0, 0, 1), for the 4 valuations
with only one 0, and for the 4 valuations with only one 1 [51]:

There are several remarkable quaternary logical formulas for an analogical proportion
a : b :: c : d, all of which are logically equivalent. Thus, they are all true only for the 6
valuations of Table 1 (and false for the 10 remaining valuations). The first formula uses
dissimilarity indicators only, inside pairs (a, b) and (c, d). Indeed we have [39]:

a : b :: c : d = ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)) (1)

It precisely expresses that “a differs from b as c differs from d and b differs from a as d
differs from c” (and “when a and b do not differ, c and d do not differ”).

A second formula, logically equivalent to expression (1), is [39]:

a : b :: c : d = ((a ∧ d) ≡ (b ∧ c)) ∧ ((¬a ∧ ¬d) ≡ (¬b ∧ ¬c)) (2)

It uses similarity indicators only and can be read as “what a and d have in common (posi-
tively or negatively) b and c have it also”5.

Another expression, equivalent to the two above logical formulas [51], which is closer
to the description of the contents of Table 1, is given by

a : b :: c : d = ((a ≡ b) ∧ (c ≡ d)) ∨ ((a ≡ c) ∧ (b ≡ d))

Beyond the three postulates P1, P2, P3 and their consequences, the minimal Boolean model
of an analogical proportion (described in Table 1) also satisfies two noticeable properties
[48]:

• code independence: a : b :: c : d ⇒ ¬a : ¬b :: ¬c : ¬d ;
5It also says that “when a and d differ (one is true, the other is false) then b and c also differ”! Rewriting it

as a : b :: c : d = ((a ∧ d) ≡ (b ∧ c)) ∧ ((a ∨ d) ≡ (b ∨ c)), emphasizes that the conjunctions of the extremes
and of the means are equivalent, as well as their disjunctions.
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• transitivity: (a : b :: c : d) ∧ (c : d :: e : f) ⇒ a : b :: e : f .

The first property expresses that any feature can be encoded positively or negatively without
harming the analogical proportion.

The second property that expresses transitivity does not follow from the postulates ei-
ther, but is true for Boolean variables.6. It has an important consequence (together with
reflexivity and symmetry properties): The analogical proportion a : b :: c : d defines an
equivalence relation between the ordered pairs (a, b) and (c, d) in the Boolean setting.

The description of items may involve nominal attributes, i.e., attributes with a finite
domain A whose cardinality is larger than 2. Then a : b :: c : d holds for nominal variables
if and only if (as first suggested in [46])

(a, b, c, d)∈{(s, s, s, s), (s, t, s, t), (s, s, t, t) | s, t ∈ A} (3)

When the cardinality of A is equal to 2, we retrieve the Boolean model. As can be checked,
(3) is the unique nominal model that satisfies P1, P2, and P3. All the properties discussed
above still hold for nominal attributes.

Let us take the example mentioned in the Introduction “a calf is to a cow as a foal is
to a mare”. The animals there can be described in terms of attributes such as mammal,
carnivore, young, adult, ruminant, single-toed, or family (the last at-
tribute being nominal). The vector describing each animal is given horizontally in Table
2. We can see vertically that a perfect analogical proportion holds component by compo-
nent.

mammal carnivore young adult ruminant single-toed family
calf 1 0 1 0 1 0 bovidae
cow 1 0 0 1 1 0 bovidae
foal 1 0 1 0 0 1 equidae
mare 1 0 0 1 0 1 equidae

Table 2: A calf is to a cow as a foal is to a mare

6Some readers might object that analogical proportions may not be transitive. In a general context, their
observation is valid, and this issue becomes more apparent when dealing with multiple attributes. Specifically
a⃗ : b⃗ :: c⃗ : d⃗ may hold with respect to some attributes and c⃗ : d⃗ :: e⃗ : f⃗ may hold with respect to a different set
of attributes leading to a failure of transitivity, as in the following abstract example. Assume a⃗, b⃗, c⃗, d⃗, e⃗, f⃗ can
be described in terms of 4 Boolean attributes i1, i2, i3, i4, and a⃗ = (1, 1, 0, 0), b⃗ = (1, 1, 1, 0), c⃗ = (1, 0, 0, 0),
d⃗ = (1, 0, 1, 1), e⃗ = (1, 1, 1, 0), and f⃗ = (1, 1, 1, 1). Let us denote by (⃗a : b⃗ :: c⃗ : d⃗)S the fact that
the analogical proportion holds componentwise for all attributes i ∈ S. Then it can be easily checked that
(⃗a : b⃗ :: c⃗ : d⃗){i1,i2,i3} holds as well as (c⃗ : d⃗ :: e⃗ : f⃗){i1,i2,i4}, while (⃗a : b⃗ :: e⃗ : f⃗){i1,i2,i3,i4} does not
hold. Still, it can be observed that here transitivity is preserved if we restrict ourselves to the set S = {i1, i2}.
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Note that as soon as a⃗, b⃗, c⃗, d⃗ have at least two components, a⃗ : b⃗ :: c⃗ : d⃗ can hold with
4 distinct vectors: for instance, in dimension 2, a⃗ = (0, 0), b⃗ = (0, 1), c⃗ = (1, 0), d⃗ = (1, 1)
build a proper analogical proportion.

3.3 Analogical proportions in terms of sets

As already said, the entities or items involved in analogical proportions that we consider are
represented by vectors of Boolean values, such as a⃗ = (a1, ..., an), and analogical propor-
tions between vectors are defined componentwise:

a⃗ : b⃗ :: c⃗ : d⃗ ⇔ ∀i ∈ {1, · · · , n}, ai : bi :: ci : di

To a vector a⃗ = (a1, ..., an) where ∀i, ai ∈ {0, 1}, one can associate the set of features A =
{i ∈ {1, · · · , n} | ai = 1} possessed by a⃗. Clearly, A and a⃗ are equivalent representations.
In the same way, we associate b⃗, c⃗ and d⃗ with B, C and D. The set representation provides
a maybe more intuitive view of an analogical proportion.

Indeed, it has been noticed [56] (see also [3]) that A : B :: C : D holds if and only if it
exists non overlapping subsets U , V , X , Y , and Z, such that

• A = U ∪ X ∪ Z;

• B = U ∪ Y ∪ Z;

• C = V ∪ X ∪ Z;

• D = V ∪ Y ∪ Z.

This makes clear that A \ B = C \ D = X and B \ A = D \ C = Y , which is in agreement
with equation (1). Note also that A\C = B \D = U and C \A = D\B = V in agreement
with the stability under central permutation.7

Moreover, with this set representation, it can be easily checked that an analogical pro-
portion A : B :: C : D holds as soon as

A: made of what is common to A and C together with what is common to A and B
B: made of what is common to B and D together with what is common to A and B
C: made of what is common to A and C together with what is common to C and D
D: made of what is common to B and D together with what is common to C and D.

7This is also in agreement with equation (2) since A ∩ D = B ∩ C = Z and A ∪ D = B ∪ C =
U ∪ V ∪ X ∪ Y ∪ Z.
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where ‘made of’ refers to union operation and “what is common” to intersection operation.
Interestingly enough, the four descriptions of A, B, C, D above make a perfect analogical
proportion, term by term (applying nominal definition (3))!

Remark. The set-based view of analogical proportion allows us to better suggest a
relationship between Mill’s rules of induction and analogy. If we reconsider Mill’s pattern
of (Direct) Method of Agreement as the analogical proportion (keeping the notations of
Section 2) “A = ABCD is to B = wxyz as C = AEFG is to D = wtuv” (where ‘is
to’ is understood as ‘co-occurs with’), we can observe that indeed A \ C = C \ A = A
co-occurs with B \ D = D \ B = w. Mill’s Method of Difference could be read similarly
in an analogical proportion manner in spite of the presence of items of two different natures
in those patterns.

3.4 Analogical proportions as equivalence relations between pairs

Analogical proportions are a matter of i) comparing items inside an ordered pair, and then.
ii) pairing pairs (⃗a, b⃗) and (c⃗, d⃗). Let us examine these two steps.

Let a⃗ = (a1, ..., an), b⃗ = (b1, ..., bn), etc. be items described by means of n Boolean
attributes or features. Given two vectors a⃗, b⃗, their comparison leads to consider the subsets
of attributes where they are equal (to 1 or to 0), and the subsets of attributes where they
differ (by going from 0 to 1, or from 1 to 0), when we go from a⃗ to b⃗. This leads to define

Equ0(⃗a, b⃗) = {i | ai = bi = 0},

Equ1(⃗a, b⃗) = {i | ai = bi = 1},

Equ(⃗a, b⃗) = {i | ai = bi} = Equ0(⃗a, b⃗) ∪ Equ1(⃗a, b⃗),
and

Dif10(⃗a, b⃗) = {i | ai = 1, bi = 0},
Dif01(⃗a, b⃗) = {i | ai = 0, bi = 1},
Dif (⃗a, b⃗) = {i | ai ̸= bi} = Dif01(⃗a, b⃗) ∪ Dif10(⃗a, b⃗).

This allows us to state the following result:

a⃗ : b⃗ :: c⃗ : d⃗ if and only if


Equ(⃗a, b⃗) = Equ(c⃗, d⃗)
Dif10(⃗a, b⃗) = Dif10(c⃗, d⃗)
Dif01(⃗a, b⃗) = Dif01(c⃗, d⃗)

We see that what matters in an analogical proportion is the orientation of the differences,
whereas it does not matter with which value the equality is realized. Table 3 highlights the
structure of an analogical proportion, in three subsets of attribute(s), one where the 4 items
are equal, one where they are equal within the pairs, but not in the same way, and finally the

12
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subset of attribute(s) whose value(s) change(s), in the same direction, from a⃗ to b⃗ and from
c⃗ to d⃗.

items All equal Equality by pairs Change (Dif)
a⃗ 1 0 1 0 1 0
b⃗ 1 0 1 0 0 1
c⃗ 1 0 0 1 1 0
d⃗ 1 0 0 1 0 1

Table 3: The 3 parts of analogical proportion and the associated valuations

As shown in Table 3, the set of attributes with which the four items involved in an
analogical proportion a : b :: c : d are supposed to be represented can be partitioned in three
subsets corresponding to the way the attribute values are possibly modified from an item to
another item. As we can see, the central permutation of b⃗ and c⃗ exchanges the content of
the columns “Equality by pairs" and “Change" (but does not affect the “All equal" column).
Neither of these two subsets must be empty if we want the analogical proportion to be non-
trivial, i.e., a⃗, b⃗, c⃗, d⃗ are distinct vectors (for n = 2, a⃗ = (1, 1), b⃗ = (1, 0), c⃗ = (0, 1),
d⃗ = (0, 0) realize an analogical proportion with distinct vectors, as already said). Besides,
the subset of attribute(s) “All equal” can be empty. If the subset “Equality by pairs” or the
subset “Change” is empty, then a⃗ = c⃗ and b⃗ = d⃗ or a⃗ = b⃗ and c⃗ = d⃗ respectively.

Besides, analogical proportions are implicitly present when comparing two items rep-
resented with the same set of n attributes (n ≥ 2): From a formal viewpoint, for any two
distinct vectors a⃗ and d⃗ differing on at least two attributes, there exist two other distinct
vectors b⃗ and c⃗ such as a⃗ : b⃗ :: c⃗ : d⃗ [12]. This does not mean that these two vectors b⃗ and c⃗
represent items existing in the real world.

As already noticed when dealing with one component, analogical proportions express
an equivalence relation between two ordered pairs. Given four distinct vectors a⃗, b⃗, c⃗, d⃗, we
have the following result:

Two ordered pairs (⃗a, b⃗) and (c⃗, d⃗) are in the same equivalence class if and only if8

1. Dif (⃗a, b⃗) = Dif(c⃗, d⃗) ;

2. ∀j ∈ Dif (⃗a, b⃗) aj = cj and bj = dj .

Condition 1 ensures that the change concerns the same attributes in both pairs, condition
2 that the change applies in the same direction in both pairs. It is clear that any two pairs
(⃗a, b⃗) and (c⃗, d⃗) taken in the same equivalence class together form an analogical proportion

8A further condition should be added, namely Dif (⃗a, b⃗) ̸= ∅ and ∃i ai ̸= ci in case the vectors might not
be distinct.
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a⃗ : b⃗ :: c⃗ : d⃗. This notion of equivalence class is similar to the idea of “analogical cluster”
introduced in [34] in a context of computational linguistics.

4 Analogical proportions-based inference and classification

In the Boolean and nominal cases, analogical inference relies on the solving of analogical
equations, i.e. finding x⃗ such that a⃗ : b⃗ :: c⃗ : x⃗ holds, working component by component.9.
This kind of extrapolation is a counterpart of the “rule of three” based on geometric propor-
tions x = b·c

a (its arithmetic counterpart is x = b + c − a).
Since a triplet a, b, c ∈ {0, 1}3 may take 23 = 8 values, while a : b :: c : d is true only

for six distinct 4-tuples, there are cases where the equation a : b :: c : x in the Boolean case
has no solution. Indeed, the equations 1 : 0 :: 0 : x and 0 : 1 :: 1 : x have no solution. It
is easy to prove that the Boolean analogical equation a : b :: c : x is solvable if and only if
(a ≡ b) ∨ (a ≡ c) holds true. In that case, the unique solution is given by x = a ≡ (b ≡ c);
thus x = b if a = c and x = c if a = b.

The situation in the nominal case is quite similar: s : t :: t : x has no solution (for
s ̸= t). Only the equations s : t :: s : x and s : s :: t : x are solvable, with unique
solution x = t. In the nominal case, where s, t, u can take more than 2 values, the equation
s : t :: u : x is also not solvable as soon as s, t, u are distinct.

Analogical proportion-based inference, as described by the inference rule (4), applies
to classification and relies on a simple principle: in the Boolean or nominal cases, if four
vectors a⃗, b⃗, c⃗ and d⃗ make a valid analogical proportion component-wise for each 4-tuple of
values pertaining to the same attribute, then it is expected that their class labels also make a
valid proportion ([58], see also [9]).

a⃗ : b⃗ :: c⃗ : d⃗

cl(⃗a) : cl(⃗b) :: cl(c⃗) : cl(d⃗)
(4)

Assuming that the class labels for vectors a⃗, b⃗ and c⃗ are known (i.e., they belong to the
sample set), the classification of a new Boolean or nominal vector d⃗ is only possible i) when
the equation cl(⃗a) : cl(⃗b) :: cl(c⃗) : x is solvable (since a Boolean or a nominal equation
may have no solution if the equation is of the form s : t :: t : x or s : t :: u : x), and ii) the
analogical proportion a⃗ : b⃗ :: c⃗ : d⃗ holds true on all components. If these two conditions are
met, we take cl(d⃗) as the unique solution for x.

Clearly, the inference rule (4) offers no guarantee on the truth of the prediction for
cl(d⃗); this prediction may be only regarded as a plausible conclusion, just as in the case of

9The three other equations x⃗ : b⃗ :: c⃗ : d⃗, a⃗ : x⃗ :: c⃗ : d⃗, a⃗ : b⃗ :: x⃗ : d⃗ can be equivalently stated in the above
form (with x in d position), applying internal and complete reversal properties.
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the “analogical jump” inference (recalled in the introduction), of which (4) can be shown
to a particular instance [9]. Note that this inference rule is a transduction rule that infers a
factual conclusion about the class of a new item from a set of items and their class. It is an
extrapolation process [35].

However as already said, there is no guarantee that the conclusion of the inference rule
is not erroneous, and it may happen that different predictions coexist for cl(d⃗) as shown in
Table 4, where three pairs (⃗a, b⃗), (c⃗, d⃗), (a⃗′, b⃗′), belonging to the same equivalence class
(since each pair has the same Dif -pattern) are put in parallel leading to divide the equal-
ity part of the pairs into four subparts Equsss, Equsst, Equsts, Equstt corresponding to the
different possible arrangements of these equality parts while preserving analogical propor-
tions between the first two pairs and between the last two.10 Indeed, on the one hand, one
can check that a⃗ : b⃗ :: c⃗ : d⃗ holds, and the analogical inference yields cl(d⃗) = cl(⃗b) = t;
on the other hand, it can be seen that a⃗′ : b⃗′ :: c⃗ : d⃗ holds also, and the analogical inference
then gives cl(d⃗) = cl(c⃗) = s. This takes place in spite of the fact the pairs (⃗a, b⃗) and (a⃗′, b⃗′)
are in the same class of equivalence.

case Equsss Equsst Equsts Equstt Dif class

a⃗ s1 s2 s3 s4 s5 s

b⃗ s1 s2 s3 s4 t5 t

c⃗ s1 s2 t3 t4 s5 s

d⃗ s1 s2 t3 t4 t5 t / s

a⃗′ s1 t2 s3 t4 s5 s

b⃗′ s1 t2 s3 t4 t5 s

Table 4: Inconsistent prediction

This situation of inconsistent predictions is very general. The unique exception (where
the situation is impossible) is when the classification function is a linear function in case of
Boolean attributes [11], or is quasi-linear in case of nominal attributes [13]. Still this does
not mean that those special cases are the only cases where the analogical proportion-based
inference can be used. Indeed, even if there is some inconsistent predictions, one may just
retain the prediction made by the majority of the triplets.

Thus, the brute-force algorithm consists in looking for all triplets (⃗a, b⃗, c⃗) for which
the corresponding analogical equation on class is solvable, and which makes an analogical
proportion with the item d⃗ for which one wants to predict the class. This has a clear cu-
bic complexity, and is costly. However, the accuracy results are good enough on real data

10In Table 4, each of the 5 columns from Equsss to Dif stands for a subset of attributes and the corre-
sponding sk is here a sub-vector of Boolean or nominal attribute values.
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Figure 1: Example of a visual analogical proportion to be completed

benchmarks to be compared with other more classical approaches [38, 9]. It is worth notic-
ing that it is possible to make an offline pre-compilation of pairs, to focus on pairs which
are differing on a few attributes only, and to choose c⃗ as a close neighbor of d⃗, without harm
for the accuracy results [9].

Moreover, a natural idea for restricting the number of triplets is to look only for those
triplets involving “competent” pairs. Competent pairs are those in an equivalence class
whose pattern for the class is in the majority. For instance, in Table 4, the pairs (⃗a, b⃗) and
(a⃗′, b⃗′) are in the the same equivalence class ; their respective pattern for the class are (s, t)
and (s, s); the pairs whose pattern for the class is is in the majority in the equivalence class
will be considered as “competent” for extrapolating cl(d⃗) on the basis of such a pair and
a c⃗ forming an analogical proportion a⃗ : b⃗ :: c⃗ : d⃗ with d⃗. The use of competent pairs
has proved to be experimentally interesting in terms of accuracy and computational cost
[35, 21].

5 Towards a logic of creativity

Analogical reasoning has long had a reputation for creativity [47, 17, 29]. First, let us ex-
plain in what limited sense we can talk about creativity in the case of analogical proportion-
based inference.

For doing that, we use a simple IQ test-like example11. The problem is to find, among
a given set of candidate solutions, the figure X that gives the best fit to the analogical
proportion “A is to B as C is to X”. This kind of problem was successfully addressed very
early in artificial intelligence by Thomas Evans [23].

In the following, we show that it can be solved without the knowledge of candidate so-
lutions. Let us consider the example of Figure 1. The figures in this example of Figure 1 can
be encoded with 5 Boolean predicates, namelyhasRectangle(hR),hasBlackDot(hBD),

11More difficult tests, like Raven IQ tests where a series of instances having the format of a 3×3 matrix
whose cells contain diverse geometric figures, except the last cell which is empty and has to be completed by
selecting a solution among 8 candidates, can be also solved by analogical proportion-based reasoning without
the help of candidate solutions [10].
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hR hBD hT hC hE

a 1 1 0 0 1
b 1 1 0 1 0
c 0 1 1 0 1
x ? ? ? ? ?

Table 5: Solving the example: x = (0, 1, 1, 1, 0)

hasTriangle(hT ), hasCircle(hC), and hasEllipse(hE). They appear in that order in
Table 5, where the example is encoded.

It can be observed that the description of figure x, namely, hR = 0, hBD = 1, hT = 1,
hC = 1, hE = 0 can be obtained by solving the analogical equation in each column, which
in this example, has a solution for each feature. Thus, from three items a⃗, b⃗, c⃗, we are able to
build (create!) a novel item d⃗ different from the three others. Since in the above example we
have not encoded the position of the figures in a picture, each figure could be drawn inside,
outside or intersecting the other ones. We could also take care of the positions with respect
to, e.g., the basis of the rectangles and triangles, by using more attributes. Thus, for instance,
the Black Dot will remain at the same place in the different figures. But what is important
in the handling of such riddles is to use independent attributes in the representation; but
simple relationships, such as “the black dot is outside the ellipse”, “the black dot is inside
the rectangle” could be also coded directly; see [10] for more discussions.

This form of creativity can be summarized by the following inference pattern (remember
≡ is associative), where a⃗, b⃗, c⃗ are vectors of Boolean attribute values defined on the same
set of attributes:

a⃗, b⃗, c⃗

d⃗ = (⃗a ≡ b⃗ ≡ c⃗)
(5)

This pattern of inference has been considered a fundamental element of human creativ-
ity [32]. However, note that we consider this pattern as valid only if on each feature i the
Boolean analogical equation ai : bi :: ci : xi is solvable, which requires that

(⃗a ≡ b⃗) ∨ (⃗a ≡ c⃗)

holds true for each vector component.

Remark 1. Strictly speaking, we might accept the inference pattern (5) without any re-
striction, since a⃗ ≡ b⃗ ≡ c⃗ is always defined. Such a view was defended by S. Klein [31]
who was a forerunner of the Boolean modeling of analogical proportions used here. But
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this leads to debatable consequences. Indeed Klein’s view of analogy was deeply influ-
enced by his anthropological interest in cultural devices such as Navaho sand paintings or
mandalas [31]. Such paintings upon the ground have a square structure and can be con-
templated from any side (there is no top or bottom); it makes natural a property such as
a⃗ : b⃗ :: c⃗ : d⃗ ⇒ b⃗ : c⃗ :: d⃗ : a⃗, where a⃗, b⃗, c⃗, d⃗ refer to the descriptions of the four corners
of a sand painting. If we iterate the property, namely, b⃗ : c⃗ :: d⃗ : a⃗ ⇒ c⃗ : d⃗ :: a⃗ : b⃗, we
see it entails symmetry. But while this property preserves 0 : 0 :: 0 : 0 and 1 : 1 :: 1 : 1,
exchanges 0 : 1 :: 0 : 1 and 1 : 0 :: 1 : 0, it changes 0 : 0 :: 1 : 1 into 0 : 1 :: 1 : 0 and
1 : 1 :: 0 : 0 into 1 : 0 :: 0 : 1, thus introducing two patterns excluded by the condition
(⃗a ≡ b⃗) ∨ (⃗a ≡ c⃗). This latter condition preserves strict analogical proportions (otherwise
the undesirable property a⃗ : b⃗ :: c⃗ : d⃗ ⇒ b⃗ : a⃗ :: c⃗ : d⃗ would hold, and break the oriented
nature of the comparisons inside the analogical proportion).

Our aim in the following is to investigate what consequence relation could be defined
between ordered pairs. This relation, once symmetrized, must give rise to an equivalence
relation between ordered pairs, which must therefore be reflexive, symmetrical and transi-
tive. In a Boolean framework, such a relation corresponds to a logical connector between
four variables (two per pair). Analogical proportions are a particular case of logical propor-
tions. This is why we first start by a short journey among logical proportions [48] in the
next subsection, looking for those proportions that are reflexive, symmetrical and transitive
when considered as operators on pairs. The contents of the rest of this section expands the
presentation of a logic outlined in [53].

5.1 Logical proportions

The logical proportions [48] offer a framework, in propositional logic, of quaternary con-
nectors expressing relations between pairs. It is from this Boolean framework, the essence
of which we now recall, that we start our investigations.

In the Boolean framework, we have four comparison indicators to relate two variables
a to b.

• Two indicators express similarity, either positively as a ∧ b (which is true if a and b
are true), or negatively as ¬a ∧ ¬b (which is true if a and b are false).

• The other two are indicators of dissimilarity ¬a ∧ b (which is true if a is false and b
is true) and a ∧ ¬b (which is true if a is true and b is false).

Definition 1. A logical proportion T (a, b, c, d) is the conjunction of two equivalences be-
tween an indicator for (a, b) and an indicator for (c, d).

The expression ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((a ∧ b) ≡ (c ∧ d))
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provides an example of a logical proportion, where the same dissimilarity operator and the
same similarity operator are applied to both pairs. As can be seen, it expresses that “a dif-
fers from b as c differs from d” and that “a is similar to b as c is similar to d”. It seems to
refer to the comparison of the elements within each ordered pair, but we shall see that this
is not in the sense of an analogical proportion.

It has been established [48] that there are 120 syntactically and semantically distinct
logical proportions. Because of the way they are built, all these proportions share a remark-
able property: They are true for exactly 6 patterns of abcd values among 24 = 16 candidate
patterns. For instance, the above proportion is true for 0000, 1111, 1010, 0101, 0001, and
0100. The interested reader is invited to consult [48, 49] for in-depth studies of the different
types of logical proportions.

Among all 120 logical proportions T , only 6 are reflexive (i.e., T (a, b, a, b) holds true)
[48].

Proposition 1. Only 6 logical proportions are reflexive. They are
- the analogical proportion

A(a, b, c, d) = a : b :: c : d = ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d))

- the so-called paralogy
P(a, b, c, d) = ((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d))
- and the 4 following conditional logical proportions
((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ ¬b) ≡ (c ∧ ¬d)) ;
((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)) ;
((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)) ;
((¬a ∧ b) ≡ (¬c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)).

The paralogy expresses that “what a and b have in common (positively or negatively), c
and d also have, and vice versa". This proportion is (only) true for 0000, 1111, 1010, 0101,
1001, and 0110. It can be checked that P(a, b, c, d)) ⇔ A(c, b, a, d). It has been already
mentioned in subsection 3.2 that A(a, b, c, d) is equivalent to P(a, d, b, c). The reason of the
name “conditional logical proportions” will appear in next subsection.

These 6 logical proportions are also among the 12 logical proportions that are symmet-
rical (T (a, b, c, d) ⇔ T (c, d, a, b)) and among the 54 logical proportions that are transitive
(T (a, b, c, d), T (c, d, e, f) ⇒ T (a, b, e, f)) [48].

Proposition 2. A, P and the 4 conditional logical proportions of Proposition 1 are the only
logical proportions that define equivalence relations between ordered pairs.
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It should be also clear that while the 6 above logical proportions satisfy the first two
postulates P1 and P2 (reflexivity and symmetry), only the analogical proportion is stable
under central permutation (i.e., satisfies P3). The paralogy P(a, b, c, d)) is stable under
the permutation of the first two items (or the last two, due to symmetry), i.e., we have
P(a, b, c, d)) ⇔ P(b, a, c, d)). The last 4 logical proportions are not stable for any permu-
tation of two items. This shows that these logical proportions are quite different and serve
different purposes.

Indeed it turns out that this result covers two important cases:
- the logic of conditional events which is a basis of non monotonic reasoning, recalled in

the next subsection, and which will also be a source of inspiration for the rest of the paper,
- a logic of ordered pairs preserving positive changes, which may contribute to a “con-

trolled” creativity process, outlined in the rest of the section.
We first recall the logic associated with the conditional logical proportions, since the

way a logic is associated with these proportions will guide us for building a logic associated
with the analogical proportion, and another one associated with the paralogy proportion
(which will be only briefly mentioned, since out of the analogical scope of the paper).

5.2 Conditional events as a basis of non monotonic reasoning

Let us consider the 4 conditional proportions which are related to our subject, since they are
reflexive, symmetrical and transitive. Let us first explain the word “conditional". It comes
from the fact that these proportions express equivalences between conditional statements.
Indeed, it was pointed out in [18] that a rule “if a then b” can be considered as a three-
valued entity referred as a “conditional object" or a “conditional event", and denoted b|a.
This entity is tri-valued [15] as follows:

• b|a is true if a ∧ b is true. The elements which make true a ∧ b are the examples of
the rule “if a then b";

• b|a is false if a ∧ ¬b is true. The elements which make true a ∧ ¬b are the counter-
examples of the rule “if a then b";

• b|a is undefined if a is false. The rule “if a then b” is then not applicable.

Consider the conditional proportion appearing in Proposition 1 and which was our first
example of a logical proportion:

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ ¬b) ≡ (c ∧ ¬d)) (6)

The above logical proportion can then be denoted b|a :: d|c by combining the notation of
conditional objects with that of the analogical proportion. Indeed, the proportion b|a :: d|c
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expresses a semantic equivalence between the two rules “if a then b” and “if c then d” by
stating that:

• they have the same examples, i.e., (a ∧ b) ≡ (c ∧ d);

• they have the same counter-examples, i.e., (a ∧ ¬b) ≡ (c ∧ ¬d);

• if b|a is not applicable, i.e., a is false, then necessarily c is false (otherwise (6) would
be false), which means that d|c is not applicable.

The logical consequence relation between conditional objects b|a ⊨ d|c is defined as
[15]:

a ∧ b ⊨ c ∧ d and c ∧ ¬d ⊨ a ∧ ¬b (7)

which expresses that the examples of the first conditional object are examples of the second
one, and the counter-examples of the second conditional object are counter-examples of the
first one. This entailment is naturally associated with the conditional proportion b|a :: d|c,
since

b|a :: d|c ⇔ b|a ⊨ d|c and d|c ⊨ b|a.

The transitivity of the 4 conditional proportions of the Proposition 1 reflects the fact that
they express equivalences between conditional objects (and thus between rules), namely re-
spectively b|a :: d|c, a|b :: c|d, a|¬b :: c|¬d, and b|¬a :: d|¬c.

The conditional object b|a must therefore be thought of as a rule “if a then b". A rule
may have exceptions. That is, we can have at the same time the rule “if a then b” and a
rule “if (a ∧ c) then ¬b”. The two conditional objects b|a and ¬b|(a ∧ c) do not lead to a
contradiction in the presence of the facts a and c (unlike a modeling of rules by material
implication), in the setting of a tri-valued logic where the conjunction & is defined by [18]:

b|a & d|c ≜ ((a → b) ∧ (c → d))|(a ∨ c)

where → is the material implication (a → b ≜ ¬a ∨ b) and with the following semantics:
val(o1&o2) = min(val(o1), val(o2)) where the three truth values are ordered as follows:
undefined > true > false.12

It can be shown that this quasi-conjunction ‘&’ (that is its name) is associative. It
expresses that the set constituted by the two rules “if a then b” and “if c then d” is triggerable
if a or c is true, and in this case the triggered rule behaves like the material implication. This
logic constitutes the simplest semantics [6] of the system P of non-monotonic inference of
Kraus, Lehmann, and Magidor [33]. The reader can consult [18, 6] for more details.

12The negation is defined by ¬(b|a) = (¬b|a); ¬(b|a) is undefined if and only if b|a is.
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Although nonmonotonic reasoning only yields plausible conclusions, it is not clear that
it might be considered as a special form of induction. Indeed nonmonotonic reasoning is
here a two steps-process. First from a set of conditional events representing a set of default
rules, we deduce a new conditional event whose condition part corresponds exactly to our
knowledge of the current situation under consideration, and then - second step - we apply
the new default rule thus inferred to the current situation.

We now consider the two other logical proportions that define an equivalence relation
between ordered pairs, namely the analogical proportion and the paralogy, and we try to
identify what consequence relations can be associated with them.

5.3 A new consequence relation between ordered pairs

In the following subsections, we try to identify some elements of a comparative logic of
ordered pairs. The items to be compared are described by vectors of attribute values (here
Boolean). When ai = 1 (resp. ai = 0) we understand it as item a⃗ has (resp. has not) feature
/ property i.

As usual, logical connectives extend to vectors componentwise:
1. ¬a⃗ = (¬a1, ..., ¬an);
2. a⃗ ∧ b⃗ = (a1 ∧ b1, ..., an ∧ bn);
3. a⃗ ∨ b⃗ = (a1 ∨ b1, ..., an ∨ bn).
Taking inspiration from the case of conditional logical proportions (namely definition

Definition 7), we are led to define the following, new logical consequence relation between
pairs (still denoted ⊨) from the definition of an analogical proportion:

(⃗a, b⃗) ⊨ (c⃗, d⃗) ⇔ ¬a⃗ ∧ b⃗ ⊨ ¬c⃗ ∧ d⃗ and c⃗ ∧ ¬d⃗ ⊨ a⃗ ∧ ¬⃗b (8)

When we deal with pairs, the valuation (ai, bi) = (0, 1) can be understood as when we
go from a⃗ to b⃗, we acquire feature i. Thus the meaning of entailment (8) is the following:
features that are acquired when going from a⃗ to b⃗ remain acquired when going from c⃗ to d⃗.
Moreover if when going from c⃗ to d⃗ a feature is lost, it was already the case when going
from a⃗ to b⃗.13

Proposition 3. We have the following equivalence:

(⃗a, b⃗) ⊨ (c⃗, d⃗) and (c⃗, d⃗) ⊨ (⃗a, b⃗) iff A(⃗a, b⃗, c⃗, d⃗)

13The choice of definition (8), rather than (⃗a, b⃗) ⊨ (c⃗, d⃗) ⇔ a⃗ ∧ ¬⃗b ⊨ c⃗ ∧ ¬d⃗ and ¬c⃗ ∧ d⃗ ⊨ ¬a⃗ ∧ b⃗, is
governed by the need here to privilege the acquisition of features rather than their loss. Indeed the alternative
definition given in this footnote says that features that are lost when going from a⃗ to b⃗ remain lost when going
from c⃗ to d⃗, and that if when going from c⃗ to d⃗ a feature is acquired, it was already the case when going from a⃗
to b⃗.
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Proof: Let us see the precise meaning of this definition for pairs. Because we are
working componentwise, it is enough to consider the consequence of this definition on one
component. Two cases have to be considered:

• Case a = b (representing 8 valuations among the 16 candidates for a, b, c, d). Because
¬a ∧ b and a ∧ ¬b are 0, the only constraint is that c ∧ ¬d = 0 which is valid
only if (c, d) ̸= (1, 0), eliminating (0010) and (1110) as valid valuations, leaving 6
valuations still valid.

• Case a ̸= b (representing the 8 remaining valuations): if (a, b) = (1, 0), there is no
constraint on (c, d). If (a, b) = (0, 1), only (c, d) = (0, 1) is valid eliminating 3
valuations among the 8: (0100), (0110), (0111)

Having both (⃗a, b⃗) ⊨ (c⃗, d⃗) and (c⃗, d⃗) ⊨ (⃗a, b⃗) leads to the truth table of A(a, b, c, d) with
exactly 6 valid valuations. 2

Because when (⃗a, b⃗) ⊨ (c⃗, d⃗), the 5 valuations (0010), (1110), (0100), (0110), (0111)
are forbidden for each (ai bi ci di), this means that

• (ai, bi) = (0, 1) ⇒ (ci, di) = (0, 1); (a property acquired from a⃗ to b⃗ has to be
acquired from c⃗ to d⃗)

• ai = bi ⇒ (ci, di) ̸= (1, 0) (when there is no acquisition or loss from a⃗ to b⃗, there
cannot be a loss from c⃗ to d⃗)

Similarly, we have (c⃗, d⃗) ⊨ (⃗a, b⃗) ⇔
{

(ai, bi) = (1, 0) ⇒ (ci, di) = (1, 0)
ai = bi ⇒ (ci, di) ̸= (0, 1)

which forbids the 5 valuations (1000), (1001), (1011), (0001), (1101).

Thus we have, as expected, (⃗a, b⃗) ⊨ (c⃗, d⃗) and (c⃗, d⃗) ⊨ (⃗a, b⃗) ⇔ A(⃗a, b⃗, c⃗, d⃗).

Table 6 exhibits the situations where the entailments (defined by (8) (a, b) ⊨ (c, d) and
(c, d) ⊨ (a, b) are true. The relation ⊨ is a clear weakening of the analogical proportion
when viewed as a relation between pairs. To support the intuition of the entailment, let us
consider the case where a, b, c, d are just Boolean values. As previously explained:

• (0, 1) has 1 consequence (0, 1),

• (0, 0) has 3 consequences (0, 0), (0, 1), (1, 1),

• (1, 1) has 3 consequences (0, 0), (0, 1), (1, 1),
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a b c d (a, b) ⊨ (c, d) (c, d) ⊨ (a, b) a : b :: c : d

0 0 0 0 1 1 1
0 0 0 1 1 0 0
0 0 1 0 0 1 0
0 0 1 1 1 1 1
0 1 0 0 0 1 0
0 1 0 1 1 1 1
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 1 1
1 0 1 1 1 0 0
1 1 0 0 1 1 1
1 1 0 1 1 0 0
1 1 1 0 0 1 0
1 1 1 1 1 1 1
nb of values ‘true’ 11 11 6

Table 6: Entailments defined by (8) vs. analogical proportion

• (1, 0) has 4 consequences (0, 0), (0, 1), (1, 0), (1, 1).

A compact way to put it would be to order the set of Boolean pairs such as (1, 0) <
{(0, 0), (1, 1)} < (0, 1) and to consider that any pair entails all pairs at the same level
and higher.

Thus, if we consider a pair (⃗a, b⃗) of vectors of dimension 4 where a⃗ = (0, 0, 1, 1) and
b⃗ = (0, 1, 0, 1), we see that this pair has 3×1×4×3−1 = 35 distinct logical consequences
in the sense of ⊨ defined by (8).

5.4 Logical combinations of ordered pairs

One may think of defining conjunctive or disjunctive combinations of ordered pairs, but
these combinations should agree with the consequence relation (8) and make sense with re-
spect to the interpretation of pairs. Natural componentwise definitions, including negation,
seem to be:

(⃗a, b⃗) ∧ (c⃗, d⃗) = (⃗a ∧ c⃗, b⃗ ∧ d⃗);

(⃗a, b⃗) ∨ (c⃗, d⃗) = (⃗a ∨ c⃗, b⃗ ∨ d⃗).
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¬(⃗a, b⃗) = (¬a⃗, ¬⃗b)

Note that ¬(⃗a, b⃗) ̸= (⃗b, a⃗) in general. However, an involutive operation such as

⟲ (⃗a, b⃗) = (⃗b, a⃗)

looks more interesting, as we shall see, since it reverses the order of comparison in the pair.
Besides, as a consequence of the above definitions, we have

(⃗a, b⃗) ∧ (⃗a, b⃗) = (⃗a, b⃗) = (⃗a, b⃗) ∨ (⃗a, b⃗)

But unfortunately one can check that

(⃗a, b⃗) ∧ (c⃗, d⃗) ̸⊨ (⃗a, b⃗) ̸⊨ (⃗a, b⃗) ∨ (c⃗, d⃗).

This failure is simply due to the fact that a feature acquired from a⃗ ∧ c⃗ to b⃗ ∧ d⃗ may not
be a feature acquired from a⃗ to b⃗. Indeed starting with (ai, bi, ci, di) = (1, 1, 0, 1), we get
(ai ∧ ci, bi ∧ di) = (0, 1) and (0, 1) ̸⊨ (1, 1).14

However, this should not come as a surprise. Indeed, here ⊨ preserves pairs of the form
(0, 1), while the conjunction of pairs preserves (0, 1) if it appears in both places of the
conjunction, but also when one of the pairs is equal to (1, 1) for some feature. This leads us
to introduce a new operation ∧∨ mixing conjunction and disjunction:

(⃗a, b⃗) ∧∨ (c⃗, d⃗) = (⃗a ∧ c⃗, b⃗ ∨ d⃗)

Obviously, this operator ∧∨ is commutative and associative by construction. As much as the
logical consequence relation between pairs defined by (8) makes sense, the intuition might
seem more fragile for the conjunction / disjunction of pairs. However note that (ai ∧ ci, bi ∨
di) = (1, 0) only if (ai, bi) = (ci, di) = (1, 0). By contrast, if (ai, bi) or (ci, di) = (0, 1),
(ai ∧ ci, bi ∨ di) = (0, 1).

In a dual manner, one can define

(⃗a, b⃗) ∨∧ (c⃗, d⃗) = (⃗a ∨ c⃗, b⃗ ∧ d⃗).

Indeed there is a De Morgan duality with respect to the operation ⟲ between ∨∧ and ∧∨,
namely

⟲(⟲ (⃗a, b⃗) ∨∧ ⟲(c⃗, d⃗)) = (⃗a, b⃗) ∧∨(c⃗, d⃗).
14There are two other cases of violation when (ai, bi) = (1, 0), (ci, di) = (0, 0) or (ci, di) = (0, 1), we

get (ai ∧ ci, bi ∧ di) = (0, 0), and (0, 0) ̸⊨ (1, 0). Besides, (⃗a, b⃗) ̸⊨ (⃗a, b⃗) ∨ (c⃗, d⃗) due to three possible
situations: i) (ai, bi) = (0, 0), (ci, di) = (1, 0) and (0, 0) ̸⊨ (1, 0); ii) & iii) (ai, bi) = (0, 1), (ci, di) =
(1, 1) or (ci, di) = (1, 0), and (0, 1) ̸⊨ (1, 1).
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Note that (ai ∨ ci, bi ∧ di) = (0, 1) only if (ai, bi) = (ci, di) = (0, 1). But, if (ai, bi) or
(ci, di) = (1, 0), (ai ∧ ci, bi ∨ di) = (1, 0). Then it can be checked that ∨∧ behaves like a
conjunction, and ∧∨ like a disjunction, in the sense that:

Proposition 4.
(⃗a, b⃗) ∨∧ (c⃗, d⃗) ⊨ (⃗a, b⃗) ⊨ (⃗a, b⃗) ∧∨ (c⃗, d⃗)

where ⊨ is defined by (8).

Proof. We should first show that (a ∨ c, b ∧ d) ⊨ (a, b). Indeed it holds since we have
1. ¬(a ∨ c) ∧ b ∧ d ⊨ ¬a ∧ b; 2. a ∧ ¬b ⊨ (a ∨ c) ∧ ¬(b ∧ d).

It remains to show that (a, b) ⊨ (a ∧ c, b ∨ d). Indeed it can be checked that we have 1.
¬a ∧ b ⊨ ¬(a ∧ c) ∧ (b ∨ d); 2. a ∧ c ∧ ¬(b ∨ d) ⊨ a ∧ ¬b. 2

Remark. Lines for further research
The conditional events involved in the conditional logical proportions have a tri-valued

semantics. From an analogical proportion point of view, a natural way to associate a tri-
valuation to an ordered pair of Boolean vectors, is to compute their difference to get a vector
belonging to {−1, 0, 1}n: valA(⃗a, b⃗) = a⃗ − b⃗ = (a1 − b1, ..., an − bn) ∈ {−1, 0, 1}n.

Then one can check that A(⃗a, b⃗, c⃗, d⃗) is true if and only if valA(⃗a, b⃗) = valA(c⃗, d⃗).
Moreover, if A(⃗a, b⃗, c⃗, d⃗) is true, we have

(⃗a ∧ c⃗) − (⃗b ∧ d⃗) = a⃗ − b⃗ = c⃗ − d⃗ = (⃗a ∨ c⃗) − (⃗b ∨ d⃗).

This means that A(⃗a, b⃗, c⃗, d⃗) entails A( ⃗a ∧ c⃗,
⃗

b ∧ d⃗, a⃗∨ c⃗, b⃗∨ d⃗), but the converse is wrong.15

While the analogical proportion insists on the identity of the differences existing in
each pair, the paralogy expresses rather a parallel between the pairs at the level of shared
properties, positively or negatively. This is reflected in the following result, dual to that for
analogy:

P (⃗a, b⃗, c⃗, d⃗) iff


Dif (⃗a, b⃗) = Dif(c⃗, d⃗)
Equ1(⃗a, b⃗) = Equ1(c⃗, d⃗)
Equ0(⃗a, b⃗) = Equ0(c⃗, d⃗)

We could also define an entailment starting from paralogy, such that
(⃗a, b⃗) ⊨P (c⃗, d⃗) ⇔ a⃗ ∧ b⃗ ⊨ c⃗ ∧ d⃗ and ¬c⃗ ∧ ¬d⃗ ⊨ ¬a⃗ ∧ ¬⃗b,
or alternatively (⃗a, b⃗) ⊨′

P (c⃗, d⃗) ⇔ ¬a⃗ ∧ ¬⃗b ⊨ ¬c⃗ ∧ ¬d⃗ and c⃗ ∧ d⃗ ⊨ a⃗ ∧ b⃗,
depending if we privilege the persistence of properties shared positively inside the pairs, or
shared negatively, when going from the pair (⃗a, b⃗) to the (c⃗, d⃗).

15Indeed A( ⃗a ∧ c⃗,
⃗

b ∧ d⃗, a⃗ ∨ c⃗, b⃗ ∨ d⃗) is also true for (a b c d) = (0 1 1 0) or (1 0 0 1).
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Moreover, the tri-valuation naturally associated with a pair, from the point of view of
paralogy, would be valP (⃗a, b⃗) = (a1 + b1, ..., an + bn) ∈ {0, 1, 2}n. Indeed it can be
checked that P (⃗a, b⃗, c⃗, d⃗) holds true if and only if valP (⃗a, b⃗) = valP (c⃗, d⃗).

We leave these entailments associated with the paralogy, and the tri-valued logics asso-
ciated with the analogical proportion and the paralogical proportion for a further study.

5.5 Creative inference

Given a set S of existing items, each represented by a set of Boolean attribute values, cre-
ativity may amount to produce an item not in S, but described by the same set of attributes.
Viewed like that, creativity is an easy game: we have just to choose at random the attribute
values and to check if the result is not already in S. However with such a process we have
no control on the the attribute values that might be desirable. In the following, we present
a creative inference process that attempts to improve a particular item or entity, taking ad-
vantage of a set of ordered pairs of existing items, using an analogical proportion-based
mechanism. However, we certainly do not claim that every form of creative analogical
inference, taken in the broadest sense, could be captured by the mechanism we propose.

More precisely, let us suppose we have a sample set S of items from which a set P of
k ordered pairs (⃗aj , b⃗j) with j ∈ {1, . . . , k} has been extracted where the a⃗j’s and b⃗j’s are
in S. Each vector in S is a Boolean representation of an object/profile/situation belonging
to a real world universe, and then, each pair of vectors (⃗aj , b⃗j), all of the same dimension
n, represents legitimate, feasible / allowed changes from a⃗j to b⃗j .

Then given a current fixed item represented by a vector c⃗ ∈ S one may wonder what
new item(s) d⃗ could be obtained by applying some change existing in the base of pairs. This
item could be the representation of a plausible item in the real world.

A first option is to consider the set of solutions (when the solution exists)

d⃗ ∈ {x⃗ | ∃(⃗aj , b⃗j) ∈ P, j ∈ {1, . . . , k} such that A(⃗aj , b⃗j , c⃗, x⃗) holds} (9)

This is the approach followed in [1]. When there is no solution or when the values found for
d⃗ are not considered satisfactory enough, we have to consider other options. One idea would
be to consider the entailment (8) between pairs associated to the analogical proportion, and
then to look for the d⃗’s such that:

d⃗ ∈ {x⃗ | ∃(⃗aj , b⃗j) ∈ P, j ∈ {1, . . . , k} such that (⃗aj , b⃗j) ⊨ (c⃗, x⃗)}

But this option has two drawbacks. First, the d⃗’s obtained depend on a unique pair (⃗aj , b⃗j).
Second, ⊨ is quite permissive and the number of pairs (c⃗, x⃗) obtained is likely to be rather
large as seen in subsection 5.3 and there is a risk of losing control.
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What seems to be a better idea is to enlarge the initial base of pairs by computing new
pairs belonging to the closure of operation ∧∨ introduced in the previous subsection 5.4.
This operation has the merit of “cumulating” the acquisition of features16. Extending the
initial set P of pairs gives us more chance to find a plausible d⃗, perhaps with more desirable
features. More precisely we apply (9) where P is replaced by P ′ = {(ak, bk)| (ak, bk) =
(ai, bi) ∧∨(aj , bj) such that ((ai, bi), (aj , bj)) ∈ P2}. We may apply this enlargement of P
recursively to P ∪ P ′ and so on. This process ensures that i) the d⃗ obtained are new, and ii)
they are obtained from an existing c⃗ on the basis of already existing changes, since observed
on pairs of existing items. Is d⃗ thus obtained, valuable ? This a completely different issue.

Note that this way of reasoning parallels non monotonic reasoning with conditional ob-
jects, where from a base of default rules “if aj then bj” represented by a set of conditional
objects bj |aj , one deduces a new conditional object d|c, using entailment (7) and conjunc-
tion &, where c corresponds to everything we know in the current context, for which we
then conclude d [18].

6 Example and first experiments

Before giving some statistics about the behaviour of our mechanism, we start with a simple
example.

6.1 An example freely inspired from a simplified Kaggle dataset

To avoid the creation of a completely artificial dataset, we start by using a Kaggle dataset.
Kaggle is a platform renowned for hosting data science competitions, collaborative projects,
and educational resources, accessible at https://www.kaggle.com/.

The targeted dataset [16] encompasses the details of 1000 users, characterized by 32
attributes. The final column denotes whether they purchased a bike, forming the basis for a
binary classification task. Following the exclusion of rows with missing data, 952 complete
rows remain.

In order to facilitate the understanding of our process, we narrow our focus to the first
6 attributes of this dataset, creating a simplified universe where objects are represented as
Boolean vectors of dimension 6. In the initial dataset, these 6 first features are Marital Sta-
tus, Gender, Income, Children, Education, Occupation, but, more generally, each attribute
has to be viewed as an individual feature describing an object.

By limiting our analysis to the first 6 attributes, we inevitably encounter duplicates.
Depending on the random shuffle of the initial dataset comprising 952 items, we end up

16However note that (0, 0)∧∨ (1, 1) = (1, 1)∧∨ (0, 0) = (0, 1), which may create some unfeasible change;
in such a case the generated pair(s) should not be considered in the further process.
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with less than 26 = 64 distinct elements from which we must select pairs.
Consequently, we consider only two pairs for the need of our example, denoted (a⃗1, b⃗1),

(a⃗2, b⃗2) that respect the following constraints:

• The Hamming distance hamming(a⃗i, b⃗i) is equal to 2 because a pair should represent
a realistic perturbation of a⃗ into b⃗.

• We do not loose any option when moving from a⃗i to b⃗i, i.e., we forbid to have an
attribute j such that aj = 1 and bj = 0. All other combinations are allowed.

At this stage of this experiment, the two pairs are selected in a random manner w.r.t. the
previous constraints, from the candidate pairs, since we currently lack specific informa-
tion about the entire universe. However, in practical scenarios, prior knowledge about the
universe could result in more suitable selections. Here is an example of the two pairs con-
stituting P:
- (a⃗1, b⃗1) = ([0, 0, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1])
- (a⃗2, b⃗2) = ([0, 0, 0, 0, 1, 0]), [1, 0, 0, 0, 1, 1])
When we extend P with operator (∧∨ but without doing the full closure), we add to P the
following pair:
- (a⃗3, b⃗3) = ([0, 0, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1])
just because (a⃗3, b⃗3) = (a⃗1, b⃗1) ∧∨ (a⃗2, b⃗2)
Because, a⃗1 = a⃗2, obviously a⃗1 = a⃗3 but this is not necessary. Starting from c⃗ =
[0, 0, 0, 1, 0, 0], we observe in Table 7 that the 3 corresponding analogical equations are
solvable. The solution of the third equation is then a new object, which is distinct from the
5 existing vectors a⃗1, b⃗1, b⃗2, x⃗1, x⃗2.

This approach only makes practical sense when considering Boolean representations of
relatively large dimensions. That is why we give in the following subsection some figures
about what can be expected in higher dimensions.

6.2 Higher dimensions

Indeed, in the context of Boolean vectors with high dimension (let us say larger than
10), the available data S are generally scarce compared to the whole universe: this is a well-
known consequence of the curse of dimensionality. For instance, for vectors of dimension
30, the space of possible profiles is of size 230 ∼ 109.

Considering P as the set of pairs built from two distinct elements from S , we can first
inquire about the existence, within P , of pairs (c⃗, d⃗) that are logical consequences of another
pair (⃗a, b⃗) (in the sense of (8)) in P .

To answer this question, we conducted experiments in dimension 10 and 30 (with rea-
sonable execution times) while varying the size of the sample S. From a practical perspec-
tive, when given a pair (⃗a, b⃗) in P , we determine the quantity of pairs (c⃗, d⃗) in P that are
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Opt1 Opt2 Opt3 Opt4 Opt5 Opt6
a⃗1 0 0 0 0 1 0
b⃗1 0 1 0 0 1 1
c⃗ 0 0 0 1 0 0

x1 0 1 0 1 0 1
Opt1 Opt2 Opt3 Opt4 Opt5 Opt6

a⃗2 0 0 0 0 1 0
b⃗2 1 0 0 0 1 1
c⃗ 0 0 0 1 0 0

x2 1 0 0 1 0 1
Opt1 Opt2 Opt3 Opt4 Opt5 Opt6

a⃗3 0 0 0 0 1 0
b⃗3 1 1 0 0 1 1
c⃗ 0 0 0 1 0 0

x3 1 1 0 1 0 1

Table 7: Example in dimension 6

logical consequences of (⃗a, b⃗). Additionally, we distinguish in this count the pairs that form
an analogical proportion (⃗a, b⃗) :: (c⃗ : d⃗). We calculate the average of these two numbers
across the total number of pairs (⃗a, b⃗) within P . Finally, we present the average values from
these calculations in Table 8 based on 10 tests (or 10 samples S). Obviously, as soon as

Dim Size S # pairs # tests # analogies std. dev # log. cons. std. dev
10 50 1225 10 0 0 20 4
10 100 4950 10 0 0 113 18
30 100 4950 10 0 0 0 0
30 200 19900 10 0 0 0 0

Table 8: Number of pairs that are logical consequences inside S

the random sample set S has a small size w.r.t. the whole universe size, it is very unlikely
to get inside S, four vectors a⃗, b⃗, c⃗, d⃗ such that a⃗ : b⃗ :: c⃗ : d⃗. Additionally, we notice that
as the dimension increases, we also fail to discover any logical consequence within P that
can be seen as a relaxation of analogical proportion. This lack of logical consequences
can be attributed to the fact that a global solution is only acceptable if there is a solution
for each individual component. When the number of components increases, the number of
constraints also increases, thereby decreasing the probability of obtaining a global solution.
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And the size of the sample S, from which P is derived, cannot compensate these increasing
constraints.

If we have a sample S of size 1000, it is natural to be interested in a “reasonable” ex-
tension of the sample. This is where the analogy with analogical extension comes into play,
which involves completing the set of initial examples, as seen, for instance, in [11]. But if
the analogical extension does not provide enough new elements, we could then implement,
initially, the logical consequence of pairs, seen as a way to weaken the analogical constraint
as follows:

• Every pair (⃗a, b⃗) from the sample represents a potential variation of the profiles.

• Any pair (c⃗, d⃗) such that (⃗a, b⃗) ⊨ (c⃗, d⃗) can potentially be regarded as the description
of a candidate variation of the profiles.

In the absence of an efficient algorithm, the task of generating logical consequences can
prove to be very complex. So, instead of trying to generate via brute force the set of logical
consequences, another option is to try to solve the equation (⃗a, b⃗) ⊨ (c⃗, d⃗) where a⃗, b⃗, c⃗ are
in S: in that context, instead of looking for a pair (c⃗, d⃗) we just look for at least one element
d⃗, if it exists, that is not in S and satisfying (⃗a, b⃗) ⊨ (c⃗, d⃗). Once again:

• Every pair (⃗a, b⃗) from the sample represents a potential variation of the profiles.

• Given another profile c⃗ from S , a profile d⃗ /∈ S such that (⃗a, b⃗) ⊨ (c⃗, d⃗) can be
considered plausible and added to the initial sample.

First of all, given a pair (⃗a, b⃗) ∈ P , we compute the average number over c⃗ ∈ S of d⃗ /∈ S
satisfying (⃗a, b⃗) ⊨ (c⃗, d⃗). This number tells us the likelihood of creating a new profile d⃗
when solving the equation (⃗a, b⃗) ⊨ (c⃗, d⃗) starting from 3 elements a⃗, b⃗, c⃗ ∈ S. Then for
a given sample S, we can compute the average number of profile d⃗ that can be generated
from pairs in P = S × S with the help of a third element c⃗ ∈ S. Finally, we average this
computation on 10 tests and show the result in Table 9 showing the number of d⃗ /∈ S with
the average standard deviation as last column. We conducted experiments in dimensions
10, 30, and 50 with various sample sizes. Table 9 shows that, in general, the equation
(⃗a, b⃗) ⊨ (c⃗, d⃗) where d⃗ is the unknown, and a⃗, b⃗, c⃗ ∈ S does not have a solution. As it is
the case for Table 8, this might be understood because a global solution d⃗ is acceptable only
if there is a solution componentwise. Augmenting the number of components (from 10 to
30 to 50) increases the number of constraints and reduce the likelihood to having a global
solution.

The previous experiments suggest that the use of ∧∨ operator as a pair creator might be
more productive. We will count in Table 10 how many completely new pairs are created
when applying the ∧∨ operator to all pairs derived from the sample S. We display the
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Dim. Size S # pairs # tests # d⃗ /∈ S std. dev.
10 50 1225 10 0.3 0.2
10 100 4950 10 0.23 0.21
30 100 4950 10 0.03 0.03
30 200 19900 10 0.03 0.04
50 100 4950 10 0.01 0.02
50 200 19900 10 0.007 0.006

Table 9: Number of vectors d⃗ solutions of the equation

average value on 10 tests with the standard deviation. At this stage, we do not eliminate
pairs where at least one component appears as (0, 0) ∧∨ (1, 1) or (1, 1) ∧∨ (0, 0). See
footnote number 8.

Dim. Size S # pairs # tests # new pairs std dev.
10 50 1225 10 333 34
10 100 4950 10 552 28
30 100 4950 10 9423 65
30 200 19900 10 Not Avail. Not Avail.

Table 10: Number of deduced pairs built with vectors not in S

Since the resulting pairs are only retained if both constituting vectors are not in S, we
have constructed at least #newpairs new vectors (a new vector may appear in multiple
new pairs).

It is widely admitted that analogical reasoning only leads to plausible consequences. Its
application to creativity does not escape this rule. It will certainly be useful in practice to
verify, in one way or another, the feasibility of the new pairs obtained.

7 Conclusion

This paper has discussed analogical reasoning based on analogical proportions. We have
first singled out this inference as a special form of induction, more precisely of transduction,
where comparisons between examples take place. After providing a refresher on analogical
proportions defined between entities represented by means of Boolean or nominal features,
we have emphasized that, in this case, analogical proportions define equivalence relations
between ordered pairs of entities.
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We have then surveyed how analogical proportions-based inference can be used for clas-
sification tasks, before contrasting this use with the generation of a novel entity from three
known entities under some conditions. Taking advantage of the belonging of analogical
proportions to the setting of logical proportions, we have found out that there exist only
two small subsets of logical proportions that define equivalence relations between ordered
pairs: the analogical proportion together with a related proportion called paralogy on the
one hand, and four conditional logical proportions between conditional events on the other
hand.

Taking lessons from the logic of conditional events and its key role in nonmonotonic
inference, we have defined an entailment relation between ordered pairs (in agreement with
analogical proportions) and appropriate conjunction and disjunction of ordered pairs. Then,
we have described a creative inference process using these entailment and operations. First
experiments with them have been also reported. However, it should be clear that, in our for-
mal setting, we only capture a particular form of “creative” inference, which is not intended
to cover every type of creative analogical inference.

It is clear that the new logic of ordered pairs outlined in the second half of this paper is
still in its infancy and many aspects remain to be developed, as well as its possible use in
a creative machinery for controlling the derivation of new items from a given entity on the
basis of a set of ordered pairs reporting feasible changes between entities. Moreover, we
have focused on analogical proportions between entities described by means of Boolean or
nominal values, the case of numerical values already investigated in classification, remains
to be considered in creativity. Finally, the pairs involved in analogical proportions can be
seen as describing changes resulting from actions, which suggests studying relationships
with the logic of action.
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