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Abstract

Background: Socioeconomic experiences are recognized determinants of health, and re-

cent work has shown that social disadvantages in early life may induce sustained biologi-

cal changes at molecular level that are detectable later in life. However, the dynamics

and persistence of biological embedding of socioeconomic position (SEP) remains vastly

unexplored.

Methods: Using the data from the ALSPAC birth cohort, we performed epigenome-wide

association studies of DNA methylation changes at three life stages (birth, n¼914; child-

hood at mean age 7.5 years, n¼973; and adolescence at mean age 15.5 years, n¼ 974),

measured using the Illumina HumanMethylation450 Beadchip, in relation to pregnancy

SEP indicators (maternal and paternal education and occupation).
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Results: Across the four early life SEP metrics investigated, only maternal education was

associated with methylation levels at birth, and four CpGs mapped to SULF1, GLB1L2

and RPUSD1 genes were identified [false discovery rate (FDR)-corrected P-value<0.05].

No epigenetic signature was found associated with maternal education in child samples,

but methylation levels at 20 CpG loci were found significantly associated with maternal

education in adolescence. Although no overlap was found between the differentially

methylated CpG sites at different ages, we identified two CpG sites at birth and during

adolescence which are 219 bp apart in the SULF1 gene that encodes an heparan sulpha-

tase involved in modulation of signalling pathways. Using data from an independent

birth cohort, the ENVIRONAGE cohort, we were not able to replicate these findings.

Conclusions: Taken together, our results suggest that parental SEP, and particularly ma-

ternal education, may influence the offspring’s methylome at birth and adolescence.

Key words: Social class, DNA methylation, occupations, education

Introduction

Individual chronic disease risk profiles in adulthood are

not only driven by recent experiences (e.g. behaviours such

as smoking and diet in adult life) but also, as formalized in

the developmental origin of adult disease hypothesis, by

combinations of in utero and early life exposures that in-

fluence health in a long-term fashion through processes

known as biological embedding.1,2 Socioeconomic experi-

ences are recognized determinants of health,3,4 and recent

work has shown that social disadvantages in early life may

induce sustainable biological changes such as increased

burden of inflammation.5,6 Whereas evidence is accumu-

lating to highlight the importance of the inflammatory re-

sponse in the mediation of the SEP effect, a better

understanding of the biological embedding may elucidate

mechanisms that contribute to the early life influence of

health inequalities.7 DNA methylation may play a key role

in the embedding of SEP experiences during the life

course.8–10 Several studies have investigated methylation

changes associated with early life socioeconomic experien-

ces in adults.11–20

With few exceptions,14,15,17,19 research found early life

SEP to be associated with differential methylation in adult-

hood of gene promoters,11 repetitive elements,12 candidate

genes involved in inflammatory and neuroendocrine

responses13,16 and, more recently, with epigenetic age

acceleration.18,20

In children, evidence of an effect of early life SEP is still

sparse.21–28 Maternal education was found associated

with: placental hypomethylation of HSD11B2, which is in-

volved in converting cortisol into inactive cortisone21; cord

blood hypomethylation of imprinted genes;25 and hyper-

methylation of INSIGF and LEP genes, involved in growth

and metabolism,22,23 in children at the age of 17 months.

However, no effect on global methylation was detected ei-

ther at birth or at 3 years.28 Neighbourhood-level poverty

during pregnancy but not individual maternal education

was found to be associated with (higher) methylation of

Key Messages

• Recent evidence suggests that DNA methylation may play a key role in the embedding of SEP experiences during the

life course.

• In this study, we found that SEP has a modest influence on the methylome of the offspring at birth, with the stron-

gest effects seen for maternal education.

• We have observed more differentially methylated CpG loci related to maternal education in adolescents than in newborns.

• We sought independent validation of the CpG sites found differentially methylated in relation to maternal education

in cord blood, using neonatal biosamples from the ENVIRONAGE study. Although one CpG site was found to be

nominally significant, we did not consistently replicate the direction of this association.

• Although no overlap was found between the differentially methylated CpG sites at different ages, we identified two

CpG sites at birth and during adolescence to be associated with SEP, which are 219 bp apart in the SULF1 gene that

encodes an heparan sulphatase and is involved in modulation of signalling pathways.
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repetitive elements in cord blood,26 and another study

found positive association with maternal education only in

schoolboys.24 Also, maternal socioeconomic position

(SEP) was associated in newborns with epigenetic

acceleration.27

Apart from being limited to candidate genes, a major

limitation of previous research lays in study design. In

practice, adult biosamples were retrospectively related to

reported early life SEP,11–20 and biosamples collected at

birth, childhood or adolescence were related to cross-

sectional information on early life SEP.21–28 By construc-

tion, these approaches did not allow an appraisal of the

temporal sequence of the events and might represent re-

verse causation due to the dynamic nature of epigenetic

patterns.29 The epigenome, in fact, varies over time as a

function of environmental exposures, random processes

and ageing.30,31 Longitudinal studies based on repeated

measures from the same individuals across life from birth

onwards overcome these issues, and may allow us to assess

the temporal relationship between early life SEP and epige-

netic changes.32

In this context, we propose to use data from the Avon

Longitudinal Study of Parents and Children (ALSPAC)

birth cohort, where methylation profiles are available at

three time points in early life, to identify the early life SEP

indicator most associated with epigenetic profiles at birth

and to assess whether SEP-associated methylation changes

at birth persist during childhood and adolescence.

Methods

Study population and methylation profiles

Our study population arises from the Accessible Resource

for Integrated Epigenomics Studies (ARIES) project,33 a

sub-study drawn from the ALSPAC mother-child co-

hort34,35 on a subset of 1018 mother-child pairs, which has

DNA methylation available. Ethical approval was

obtained from the ALSPAC Ethics and Law Committee

and the local research ethics committees, and mothers gave

written informed consent. Characteristics of the ALSPAC

and ARIES mother-child cohorts are summarized in the

Table 1. A searchable data dictionary provides the full in-

formation available on the ALSPAC study website [http://

www.bris.ac.uk/alspac/researchers/data-access/data-dictio

nary/].

We analysed DNA methylation data of the offspring at

the three time points (at birth, n¼ 914; at mean age 7.5

years, n¼ 973; and at mean age 15.5 years, n¼974). A de-

scription of the data and sample collection and analyses of

DNA methylation can be found in Supplementary Methods

S1, available as Supplementary data at IJE online.

Early life socioeconomic position indicators and

covariates

Early life SEP was measured by parental education and oc-

cupation during pregnancy. Maternal and paternal educa-

tions were collected from a self-reported questionnaire at

32 weeks of gestation, and were coded in three categories

according to educational achievement: (i) low: Certificate

of Secondary Education (CSE), Vocational or Ordinary-

(O-) level, educational qualifications generally obtained at

16 years of age; (ii) intermediate: Advanced- (A-) level,

subject-specific qualification most commonly attained at

18 years of age and required for admission to higher educa-

tion; (iii) high: university degree and above.

Maternal occupation was collected from mothers’ self-

reported antenatal (18-week) questionnaire, and paternal

occupation from fathers’ antenatal (32-week) question-

naire. Occupation was categorized according to the UK

Registrar General’s classification36 and dichotomized into:

(i) manual, including unskilled, semi-skilled manual and

skilled manual occupations; (ii) non-manual, including

skilled non-manual, managerial, technical and professional

occupations. Information on covariates collection can be

found in Supplementary Methods S1, available as

Supplementary data at IJE online.

Replication study

As an independent dataset from which to seek validation,

we used the ENVIRonmental influence ON AGEing

(ENVIRONAGE) birth-cohort.37 Data and sample collec-

tion information and analyses of DNA methylation can be

found in Supplementary Methods S1, available as

Supplementary data at IJE online.

Statistical analysis

Figure 1 depicts the study workflow, which is structured in

three phases.

i. Using the full resolution methylation data, we investigated

the association between DNA methylation levels at birth

and the four indicators of early life SEP: maternal and pa-

ternal education, and maternal and paternal occupation

(Figure 1 A1). DNA methylation levels were modelled as

dependent variable in a generalized linear model with

beta-distributed response using the parameterization of

Ferrari and Cribari-Neto,38 and we accounted for multiple

testing by controlling the false discovery rate (FDR)39 at a

level below 0.05. As a lower resolution alternative, we ran

principal component (PC) analyses of the methylome us-

ing the prcomp function in R. We then regressed the PCs

against each of the indicators of SEP (Figure 1 A2).
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ii. For the followings two steps, we selected one indicator

of SEP based on its statistical significance in the PC

analyses. We ran epigenome-wide association studies

(EWASs) for the selected SEP indicator and DNA

methylation status at childhood (Figure 1 B1) and ado-

lescence (Figure 1 B2). Methylation levels of the probes

significant in cord blood were integrated over the three

time points (Figure 1 B3), according to the method de-

scribed in Supplementary Methods S1, available as

Supplementary data at IJE online.

iii. Finally, we adopted a targeted approach to seek inde-

pendent validation of the CpG sites found to be differ-

entially methylated in relation to the selected SEP

indicator, using neonatal biosamples from the

ENVIRONAGE study (Figure 1C).

All the analyses were adjusted for birthweight,40 parity,41

gestational age40,42 and sex of the newborn,43 in addition to

technical variables: bead array row and bisulphite conver-

sion batch.

To assess the robustness of our findings, we ran sensitiv-

ity analyses stratified by sex and including additional adjust-

ment: (i) on the possible explanatory variables of SEP:

maternal age,44 body mass index (BMI),40,45 smoking sta-

tus46 and alcohol consumption during pregnancy47; (ii) on

blood cell composition which were estimated through an

established deconvolution approach48; (iii) on delivery

mode and self-reported maternal health during the preg-

nancy; and (iv) for analyses at 7 and 15 years on offspring

life course characteristics: own BMI, own use of tobacco

and alcohol (only for the analysis at 15 years).

To compare our results with previous targeted studies, we

performed look-up analyses of methylation profiles at the three

time points, based on a list of 281 probes derived by CpG sites

and genes previously associated with early life SEP.13,16,21–23,25

Table 1. Descriptive characteristics of all the ALSPAC mother-child cohort, the ARIES subset at birth, the ARIES study population

by maternal educational level and the ENVIRONAGE cohort at birth

ALSPAC ARIES Study population (ARIES)

by maternal education

ENVIRONAGE

n¼15 445 n ¼914 n ¼860 n ¼180

Low (O level/

vocational/CSE)

Medium

(A level)

High

(degree)

n ¼431 n ¼249 n ¼180

Child characteristics

Sex, female 7219 (48.5) 469 (51.3) 228 (52.9) 119 (47.8) 88 (48.9) 85 (47.2)

Birthweight, gramsa 3381 6 580.9 3485 6 486.8 3479 6 494.5 3474 6 470.9 3505 6 470.1 3401 6 471.9

Gestational age, weeksa 38.36 6 5.5 39.56 6 1.5 39.5 6 1.6 39.42 6 1.5 39.80 6 1.4 39.11 6 1.6

Parent characteristics

Maternal age, yearsa,b 28.35 6 4.8 29.59 6 4.49 28.37 6 4.4 30.39 6 4.1 31.67 6 3.6 29.37 6 4.2

Maternal BMI, kg/m2b 22.93 6 3.9 22.82 6 3.7 23.35 6 4.2 22.52 6 3.2 21.85 6 2.6 23.97 6 4.3

Maternal smoking during

pregnancy, yesa,b

1854 (24.7) 121 (13.2) 79 (18.3) 24 (9.6) 11 (6.1) 25 (13.9)

Maternal alcohol consumption

during pregnancy, yes

9382 (60.7) 708 (77.5) 337 (78.2) 196 (78.7) 148 (82.2) 19 (10.5)c

Parity, multiparous 7252 (55.2) 465 (50.9) 228 (52.9) 139 (55.8) 89 (49.4) 81 (45)

Maternal education

Low (O level/vocational/CSE)a 8084 (52.3) 450 (49.2) 431 (50.1) – – 91 (50.6)

Medium (A level) 2802 (18.1) 260 (28.4) – 249 (28.9) – 62 (34.4)

High (degree) 1610 (10.4) 184 (20.1) – – 180 (20.9) 27 (15)

Paternal education,

Low (O level/vocational/CSE)b 6709 (43.4) 393 (43) 264 (61.2) 86 (34.5) 24 (13.3) 62 (34.4)

Medium (A level) 3123 (20.2) 262 (28.7) 132 (30.6) 98 (39.4) 25 (13.9) 72 (40)

High (degree) 2182 (14.1) 227 (24.8) 130 (30.2) 63 (25.3) 27 (15) 30 (16.7)

Maternal occupation, manuala,b 2870 (18.6) 143 (15.6) 102 (23.7) 31 (12.4) 6 (3.3) –

Paternal occupation, manualb 4987 (32.3) 305 (33.4) 214 (49.7) 67 (26.9) 11 (6.1) –

Counts (percentages) and means 6 standard deviations are reported for categorical and continuous variables, respectively.
aSignificant P-value for difference in proportion (chi square test) and mean (t test) of ALSPAC versus ARIES population.
bSignificant P-value between maternal education categories of the study population using chi-square (for categorical dependent variables) and ANOVA test (for

continuous dependent variables).
cIn ENVIRONAGE occasional alcohol use was reported.
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Results

Compared with the ALSPAC mothers, those included in

ARIES were slightly older and more likely to have a higher

educational level and non-manual occupation and to be a

non-smoker during pregnancy. In the ARIES subset, smok-

ing during pregnancy, higher BMI and younger age of the

mothers at birth were more prevalent in lowest SEP group,

and alcohol consumption was higher in the highest SEP

group although not significantly (Table 1).

These variables may act as mediators in the relationship

between SEP and DNA methylation and were therefore ex-

cluded from the main analyses although shown to affect

cord blood DNA methylation (Supplementary Figure S2,

available as Supplementary data at IJE online). The SEP

indicators were all significantly positively correlated with

each other (r range¼ 0.41–0.68) (Supplementary Figure

S3, available as Supplementary data at IJE online). Results

of EWAS of DNA methylation in cord blood in relation to

parental SEP indicators (maternal and paternal education

and occupation) are reported in Figure 2.

Below the FDR level of 0.05, we identified (four) differ-

entially methylated sites only in relation to maternal educa-

tion (Table 2). The regression coefficients for these CpG

sites for all the other SEP indicators are reported in

Supplementary Table S4, available as Supplementary data

at IJE online.

EWAS using alternative early life SEP indicators yielded

lower effect size estimates and weaker associations

(Figure 2B–D, for maternal occupation and paternal educa-

tion and occupations, Supplementary Figure S5A and B,

available as Supplementary data at IJE online for household

highest education and occupation, and Supplementary

Figure S5C, available as Supplementary data at IJE online

for alternative coding of the occupations) than the analysis

of maternal education. Additional adjustment of the full res-

olution analyses of the four indicators of SEP for possible

explanatory variables, including maternal age, maternal

BMI before the pregnancy, maternal smoking and

alcohol consumption during pregnancy, did not yield addi-

tional associations except for three probes in relation to pa-

ternal occupation (Supplementary Figure S6, available as

Supplementary data at IJE online).

Among the four probes significantly associated with ma-

ternal education, only two sites (cg02283643, b¼0.075,

P-value¼ 4.67e-8, q-value¼0.011; cg11489090, b¼-0.160,

P-value¼ 6.20e-7, q-value¼ 0.036) remained statistically

Figure 1. Study workflow. The figure depicts the study workflow which is structured in three phases. First, the association between DNA methylation

levels at birth and the four indicators of early life SEP was investigated performing EWAS (1 A1) and then regressing DNA methylation PCs against

each indicators of SEP (1 A2). Second, based on significance from the PC analyses, a SEP indicator was selected. EWASs were performed for this se-

lected indicator and DNA methylation status at childhood (1 B1) and at adolescence (1 B2), and methylation levels of the probes significant in cord

blood were integrated over the three time points in a longitudinal model (1 B3). Finally, we adopted a targeted approach to seek independent valida-

tion of the CpG sites differentially methylated in relation to the selected SEP indicator both at birth and later in life, using neonatal biosamples from

the ENVIRONAGE study (1 C1). EWAS, epigenome-wide association study; PCA, principal component analysis; SEP, socioeconomic position.
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significant upon adjustment for maternal age and BMI,

smoking status and alcohol consumption during pregnancy

(cg02283643, b¼0.082, P-value¼ 4.91e-08, q-val-

ue¼ 0.016; cg11489090, b¼-0.179, P-value¼ 7.29e-7, q-

value¼ 0.049) (Supplementary Figure S7, available as

Supplementary data at IJE online). None of the four probes

have been previously reported to be associated with mater-

nal age,44 BMI,49 smoking50 or alcohol consumption51 dur-

ing pregnancy by larger studies, including the Pregnancy

and Childhood epigenetics consortium. Albeit mitigated,

consistent results were observed in both males and females

for three CpG sites (cg02283643, cg165894161 and

cg11489090). Only cg07371530 had a much stronger asso-

ciation in females (b¼ 0.40, P-value¼ 1.33e-8) compared

with males (b¼ 0.06, P-value¼ 0.43) and for this CpG site

interaction between sex and maternal education (P-value for

interaction ¼ 0.01) was identified (Supplementary Table S8,

available as Supplementary data at IJE online).

Figure 3A shows that a considerable number (n¼ 27) of

the 100 strongest associations found with maternal

Figure 2. Volcano plots for EWAS of parental early life SEP indicators and cord DNA methylation. The figure shows the volcano plots for EWAS of

cord DNA methylation and parental early life SEP indicators (2A, maternal education; 2B, paternal education; 2C, maternal occupation; 2D, paternal

occupation). b values (coefficients) are reported on the x-axis as a function of the �log10 P-values on the y-axis. The horizontal line represents the

FDR level of 0.05. CpG sites whose methylation levels were found statistically differentially methylated in the analysis of maternal education are

highlighted in black, and located also in the plots of maternal occupation and paternal education and occupation. Models were adjusted for birth-

weight, parity, gestational age and sex of the newborn in addition to technical variables: bead array row and bisulphite conversion batch.
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education (x-axis) consistently ranked high (within the first

percentile) in the analysis of paternal education. Paternal

education showed a similar behaviour (Figure 3B), whereas

maternal or paternal occupation did seem to yield inconsis-

tent ranking. Correlation between the strongest association

from the analyses of maternal and paternal education in

cord blood are reported in Figure 3C.

To capture the SEP influence on the overall methyl-

ome, we ran principal component (PC) analyses of the

methylome as a lower resolution alternative to our full-

resolution analyses. Regressing the PCs against the four

early life SEPs under investigation, education of the

mother was found significantly associated to the scores of

the first PC, which explained 12.44% of the variability of

cord blood DNA methylation, whereas none of the other

components yielded significant associations (Figure 4

shows the first five components that explain 22% of the

variance).

We did not identify any differentially methylated sites

in relation to the education of the mother in 7-year-olds,

but found 20 significant associations in adolescents

(Table 2). No CpG site of this set of 20 CpG sites was sig-

nificantly differentially methylated in either cord blood or

childhood biosamples (Table 3). As for cord blood analy-

sis, results were consistent in both males and females, al-

though significance was weaker especially for males

(Supplementary Table S9, available as Supplementary data

at IJE online). Adjustment on child life course characteris-

tics (BMI, smoking and alcohol consumption) did not af-

fect direction and strength of associations although in

general it slightly increased the P-value (Supplementary

Table S10, available as Supplementary data at IJE online).

Also, the CpGs identified in cord blood were not found

to be significantly differentially methylated in either child-

hood or adolescent biosamples (Supplementary Table S11,

available as Supplementary data at IJE online). Using a

longitudinal model confirmed non-persistence of the neo-

natal epigenetic marks at later life time points

(Supplementary Table S12, available as Supplementary

data at IJE online).

Table 2. CpG sites associated with maternal education (FDR-adjusted P-values<0.05) in ARIES from EWAS at birth and at 15 years

Probe Closest gene Genomic location Relation to CpG island b Standard error P-value q-value

Birth

cg02283643 SULF1 TSS200 – 0.075 0.014 4.67e-08 0.011

cg16589461 GLB1L2 Body South shore �0.299 0.059 4.08e-07 0.032

cg07371530 RPUSD1 TSS1500 North shore 0.247 0.049 5.10e-07 0.034

cg11489090 – – – �0.160 0.032 6.20e-07 0.036

15 years

cg21013866 EFS TSS200 Island 0.121 0.023 2.39e-07 0.034

cg27187881 NAGA 1st Exon North shore 0.070 0.014 3.67e-07 0.034

cg01122167 CAMK2A Body – 0.189 0.037 4.20e-07 0.034

cg13483196 – – – �0.149 0.030 6.96e-07 0.039

cg16582803 – – South shore �0.114 0.023 9.19e-07 0.040

cg05806180 SULF1 5’UTR – 0.106 0.022 1.29e-06 0.042

ch.10.295680R – – – �0.088 0.018 1.41e-06 0.042

cg13093989 EFCAB2 Body – 0.168 0.035 1.51e-06 0.043

cg12050497 FAM84A 5’UTR Island �0.061 0.013 1.80e-06 0.043

cg22091037 STARD13 TSS200 – �0.083 0.018 1.98e-06 0.044

cg11066033 THAP4 1st Exon – �0.083 0.018 2.07e-06 0.044

cg06237983 HOXA6 1st Exon Island 0.064 0.014 2.38e-06 0.044

cg25316853 SLC1A3 TSS200 – �0.084 0.018 2.47e-06 0.044

cg20483690 LBR TSS1500 South shore �0.085 0.018 2.69e-06 0.045

cg06974483 SPRY1 TSS200 North shore �0.057 0.012 2.72e-06 0.045

cg05585947 – – North shelf �0.142 0.030 3.38e-06 0.046

cg05076221 HOXA5 Body Island 0.072 0.016 3.44e-06 0.046

cg11367267 – – North shelf 0.187 0.040 3.45e-06 0.046

cg22891600 – – – �0.097 0.021 3.57e-06 0.046

cg25397818 MAD1L1 Body North shore �0.203 0.044 3.77e-06 0.046

No probe was significant in blood collected from 7-year-old children, hence no probe is presented for children. Models were adjusted for birthweight, parity,

gestational age and sex of the newborn in addition to technical variables: bead array row and bisulphite conversion batch.

TSS, transcription start site; UTR, untranslated region; closest gene, UCSC annotated gene; genomic location, UCSC gene region feature category; relation to

CpG island, UCSC relation to CpG islands; b, regression coefficient; standard error, standard error for regression coefficient.
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Nevertheless, from our EWAS in cord and in adolescent

blood, we identified differentially methylated CpG sites on

the same gene: one site located in SULF1 gene

(cg02283643, located in the TSS200 region, P-value ¼
4.67e-08) for cord blood samples, and another site for ado-

lescents (cg05806180, located in the 5’UTR region, P-val-

ue¼ 1.29e-06). Correlation of these sites was significant

both in the analyses of cord (r¼ 0.21, P-value¼ 4.65e-10)

and adolescent blood (r¼ 0.17, P-value¼ 4.80e-08)

(Supplementary Figure S13, available as Supplementary

data at IJE online). These two CpG sites are only 219 bp

distant and show a similar magnitude and direction of

methylation (cg02283643, b¼0.07; cg05806180,

b¼ 0.10). The probe (cg02283643), located on SULF and

found significant in cord blood, is the only one to remain

significant even after adjustment for delivery mode and

maternal health during the pregnancy and white blood

cells composition (Supplementary Table S14, available as

Supplementary data at IJE online).

We interrogated the methylation levels at the four CpG

loci found differentially methylated in cord blood in rela-

tion to maternal education in the ENVIRONAGE cohort,

and were not able to replicate the findings. Compared with

results from ARIES, the same direction of association was

detected for only one CpG cg02283643 (ENVIRONAGE,

b¼ 0.017; ARIES, b¼0.075) (Tables 2 and 4); however,

the P-value was >0.05 (P-value¼ 0.76).

At the opposite, another CpG site (cg07371530) was

found nominally significant (p-value< 0.05) but the direc-

tion of association did not consistently replicate

(ENVIRONAGE, b¼-0.047; ARIES, b¼ 0.247) (Tables 2

and 4) Also, none of the 20 CpG sites found significant in

ARIES adolescents was replicated in ENVIRONAGE

(Supplementary Table S15, available as Supplementary

data at IJE online).

In the look-up analyses we did not identify any signifi-

cant probe; however, BDNF gene appeared to be the top

hit in the analyses at all the three time points

Figure 3. Delta rank of the top 100 CpG loci for the four SEP indicators. The upper part of the plot represents the difference in the rank of the first 100

CpG loci from the EWAS of (3A) maternal and (3B) paternal education and the rank of the same CpG loci in the EWAS of the other SEP indicators in

cord blood identified by colours and shapes of the dots (maternal education, cross; paternal education, plus; maternal occupation, circle; paternal oc-

cupation, triangle). The lower part of the plot (3C) shows the correlation plot of the first 100 strongest associations from the EWAS of maternal and pa-

ternal education in cord blood. Ranks are derived from models adjusted for birthweight, parity, gestational age and sex of the newborn in addition to

technical variables: bead array row and bisulphfite conversion batch. EF, education of the father; OM, occupation of the mother; OF, occupation of

the father; EM, education of the mother.
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(Supplementary Figure S16, available as Supplementary

data at IJE online).

Discussion

One of the main findings of our study was that the impact

of maternal education may be embedded in the offspring’s

methylome.

Education attainment, occupation and income are valid

indicators to define SEP and social inequality.52 As

expected, the measures of SEP we used in our study were

all significantly correlated to each other; however, mater-

nal education was less correlated with maternal occupation

as compared with paternal education with occupation.

This can be partly attributable to the fact that our classifi-

cation of occupation into manual and non-manual, accord-

ing the UK Registrar General’s classification, was

developed for male worker and may poorly apply to

females.

Each indicator measures different, often related aspects

of socioeconomic stratification and may be more or less

relevant to different health outcomes at different stages in

the life course.53

Occupational levels reflect access to material resources,

prestige and exposure to occupational toxicants or physical

workload.52 Specifically for infants, maternal employment

reflects prestige, access to material resources and has been

associated with better pregnancy outcomes.54 However

specific maternal occupations, such as those involving ex-

posure to endocrine disruptors55 or heavy physical work,56

may directly affect pregnancy outcomes, although effect

sizes are generally small.57 Intuitively, maternal occupation

has a larger effect on birth outcomes than paternal occupa-

tion, especially when considering occupation with specific

toxic risks,58 whereas the contrary seems to happen later

in life59 because prestige and access to resources become

more influential. Despite this, in our study we were not

able to detect any epigenetic signal in relation to maternal

or paternal occupation. A possible explanation could be

that we used a broad classification of occupation into man-

ual and non-manual classes, which may have led to mis-

classification of occupational exposures. Similarly,

previous studies in the ALSPAC cohort failed to detect ad-

verse pregnancy outcomes in relation to maternal60 or pa-

ternal occupation.61

The level of education has been postulated as the di-

mension of the SEP that most strongly and consistently

Figure 4. Heatmap of associations between SEP indicators and principal components of cord blood DNA methylation. The heatmap depicts the esti-

mates of associations, represented by shades, and corresponding P-values, displayed as numbers, between the four SEP indicators and the first five

principal components of cord blood DNA methylation. Models were adjusted for birthweight, parity, gestational age and sex of the newborn in addi-

tion to technical variables: bead array row and bisulphite conversion batch. EF, education of the father; EM, education of the mother; OF, occupation

of the father; OM, occupation of the mother.
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predicts health, especially for women and their chil-

dren.53,62,63 In support of these observations, we found an

epigenetic link between education and the methylome. A

lower level of education might affect birth outcomes di-

rectly by limiting the capacity to integrate within society

and increasing the risk of poverty, or indirectly through

maternal health behaviours.64 The knowledge and skills

achieved through education may affect a person’s cognitive

functioning, making one more amenable to health infor-

mation messages or more able to access appropriate health

services, which might be advantageous for the offspring.

For example, before the pregnancy, adverse birth effects

can be mediated by unhealthy lifestyle such as maternal

smoking, alcohol consumption, malnutrition and stress. In

this regard, a recent EWAS meta-analysis found overlaps

between the epigenetic signals associated with education

attainment and those previously described to be associated

with own or prenatal smoking, suggesting that the associa-

tions with education attainment could be due to correla-

tion with smoking.65 After the birth, maternal behaviour

Table 3. Results from the ARIES analyses of maternal education and DNA methylation at 15 years, at 7 years and at birth, for the

20 probes identified as associated with maternal education by EWAS at 15 years

DNA methylation

15 years 7 years Birth

Probe Gene Rank b P-value Rank b P-value Rank b P-value

cg21013866 EFS 1 0.121 2.39e-07 142 039 �0.015 0.471 84 269 �0.021 0.200

cg27187881 NAGA 2 0.070 3.67e-07 161 256 0.008 0.540 126 301 �0.015 0.343

cg01122167 CAMK2A 3 0.189 4.20e-07 181 763 �0.017 0.616 68 182 �0.056 0.150

cg13483196 – 4 �0.149 6.96e-07 142 225 0.022 0.472 239 441 �0.009 0.802

cg16582803 – 5 �0.114 9.19e-07 82 871 �0.025 0.261 57 578 �0.039 0.119

cg05806180 SULF1 6 0.106 1.29e-06 34 426 0.035 0.099 49 454 0.041 0.097

ch.10.295680R – 7 �0.088 1.41e-06 133 477 0.013 0.440 68 485 0.026 0.151

cg13093989 EFCAB2 8 0.168 1.51e-06 162 044 �0.021 0.543 77 789 �0.048 0.179

cg12050497 FAM84A 9 �0.061 1.80e-06 227 015 �0.003 0.781 240 217 �0.003 0.805

cg22091037 STARD13 10 �0.083 1.98e-06 204 341 �0.006 0.697 104 306 0.020 0.265

cg11066033 THAP4 11 �0.083 2.07e-06 73 680 �0.018 0.229 22 593 0.045 0.035

cg06237983 HOXA6 12 0.064 2.38e-06 705 0.044 0.001 17 659 0.037 0.026

cg25316853 SLC1A3 13 �0.084 2.47e-06 208 276 �0.006 0.712 53 709 0.032 0.109

cg20483690 LBR 14 �0.085 2.69e-06 78 050 0.021 0.244 58 245 0.033 0.121

cg06974483 SPRY1 15 �0.057 2.72e-06 24 573 0.024 0.068 88 379 0.018 0.213

cg05585947 – 16 �0.142 3.38e-06 253 540 0.005 0.879 233 307 �0.010 0.775

cg05076221 HOXA5 17 0.072 3.44e-06 4686 0.042 0.010 2514 0.054 0.002

cg11367267 – 18 0.187 3.45e-06 105 426 0.036 0.340 236 211 �0.012 0.788

cg22891600 – 19 �0.097 3.57e-06 181 340 0.008 0.614 95 169 0.022 0.235

cg25397818 MAD1L1 20 �0.203 3.77e-06 210 800 0.015 0.721 182 977 0.026 0.564

Models were adjusted for birthweight, parity, gestational age and sex of the newborn in addition to technical variables: bead array row and bisulphite conver-

sion batch.

Gene, UCSC annotated gene; rank, rank of methylation at birth, 7 and 15 years of age; b, regression coefficient.

Table 4. Results from replication analysis in ENVIRONAGE cohort of the four probes found associated with maternal education

at birth in the ARIES study population

Probe Closest gene Genomic location Relation to CpG island b Standard error P-value

cg02283643 SULF1 TSS200 – 0.017 0.055 0.756

cg16589461 GLB1L2 Body South shore 0.033 0.040 0.399

cg07371530 RPUSD1 TSS1500 North shore �0.047 0.024 0.048

cg11489090 – – – 0.002 0.037 0.965

Models were adjusted for birthweight, parity, gestational age and sex of the newborn in addition to technical variables: bead array row and bisulphite conver-

sion batch.

TSS, transcription start site; closest gene, UCSC annotated gene; genomic location, UCSC gene region feature category; relation to CpG island, UCSC relation

to CpG islands; b, regression coefficient; standard error, standard error for regression coefficient.
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in child care may mediate negative effects on health out-

comes in infants and children. For example, mothers with

lower level of education are less likely to be aware of the

benefits of maternal milk for very preterm infants,66 or to

provide child immunization.67

We found that maternal education was the most impor-

tant SEP variable significantly affecting the offspring’s meth-

ylome, considering both CpG loci (Figure 2) and principal

components analyses of cord blood DNA methylation

(Figure 4). These results suggest that the association of ma-

ternal SEP with offspring methylation at birth are likely to be

driven via in utero mechanisms. The epigenome is thought to

be particularly vulnerable to environmental factors during

embryogenesis, and there is increasing evidence for a devel-

opmental plasticity in response to toxicological, hormonal,

nutritional, social and broad ecological environmental expo-

sures.68 A wealth of epidemiological data supports the asso-

ciations between maternal BMI or malnutrition and smoking

with intrauterine growth retardation and birthweight.69–71

Studies on the ARIES cohort, here also under study, have

found that maternal obesity and underweight as well as

smoking affect the neonatal epigenome.49,50,72

We found more robust effects in females than males.

Similarly, a study of the literature found SES risk in child-

hood to be more robustly associated with methylation in

young adult females than in males,73 although in placenta

samples the opposite trend has been described.21

We have identified CpG sites differentially methylated in

cord blood associated with maternal education, but we did

not observe persistence of these methylation differences at

later time points, suggesting that these associations fade dur-

ing the first years of life. These specific epigenetic signals at

birth might have downstream effects in early life rather than

be persistent across the life course, yet this does not exclude

the involvement of epigenetic mechanisms. Studies on the

variation of methylation markers in the population and their

stability over time are limited, especially in early life.31,74–78

Previous studies demonstrated that intra-individual variabil-

ity of the methylome during the first 2 years of life is mainly

located within genes with important biological functions, in-

cluding immunity and inflammation.31 These results have

been confirmed in a study within the first 5 years after

birth.79 In a different study based on the ARIES cohort,

there was also little evidence of an association between

methylation during childhood or in adolescence and either

birthweight or gestational age; the authors speculated corre-

spondingly that there appears to be a phase of rapid ‘catch-

up’ in methylation differences.80 Similarly, non-persistence

of associations over time is acknowledged as one possible

reason of the lack of association of early life SEP with the

methylation acceleration in adulthood found in ALSPAC

mothers.17 Besides, in the life course perspective it is

possible that the time span considered in this study is too

short to identify biological changes that become evident

only in adulthood and older ages, according to duration and

intensity of exposure to favourable or unfavourable SEP

exposures throughout life.81

We have observed 20 significant differentially methyl-

ated CpG loci related to maternal education in adolescents,

but only four CpGs in newborns. The maternal SEP might

be associated with stronger effects on DNA methylation

over time compared with only during the pregnancy,

though additional research using early life SEP trajectories

are warranted to explore these observations. In fact, we

cannot exclude that these effects are associated with ado-

lescent SEP, which in turn is related to childhood SEP. In

this regard, adjustment for adolescent BMI, alcohol and to-

bacco consumption, which are associated with own SEP,

lowered the significance of the epigenetic associations al-

though did not affect direction and effect sizes.

Of particular interest were two loci in the SULF1 gene,

which were significantly associated with maternal education

in either cord blood or during adolescence, and which were

only 219 bp distant from each other. SULF1 encodes an ex-

tracellular heparan sulphate endosulphatase that catalyzes the

6-O-desulphation of heparan sulphate proteoglycans co-

receptors for heparin-binding growth factors and cytokine

signalling pathways, and therefore has an important role in

many biological processes, such as embryogenesis, cell signal-

ling, angiogenesis and tumourigenesis.82–84 In experimental

studies, the SULF1 gene has been found hypermethylated in

cancers, and in humans it was differentially methylated in es-

sential hypertension cases in young adults.85 We could also

not replicate the CpG located on SULF1 and the other three

CpG loci in the ENVIRONAGE birth cohort. In this regard,

it might be spurious to generalize the maternal education of

the two cohorts because: there are more than 20 years be-

tween their sampling; public health information might evolve

over time; and the cohorts are in two different countries.

Although both cohorts are representative for their respective

areas, the participants are on average somewhat more highly

educated than is general in the geographical area they repre-

sent. For example, the ALSPAC population has a shortfall in

less affluent families compared with the Avon area, and those

in ARIES were more highly educated compared with those

not in ARIES.33,34 In this regard, the ARIES sub-sample has

been reported to be reasonably representative of the main

study population33; however, we cannot exclude a bias in the

selection which in turn could be related to different parame-

ters.86 In this study, which fits in a discovery framework, we

are focusing on potential methylation targets, and the reliabil-

ity of the targets we identified should be further assessed by

other population studies. Further, since the epigenome is un-

der both genetic and environmental influences, the epigenetics
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response to an exposure can be variable between individuals,

populations, over time and so forth. Mechanistic pathways

through which parental SEP (behavioural, occupational expo-

sures, psychosocial stress) can affect the offspring CpG meth-

ylation may differ between the two cohorts. Nevertheless,

heterogeneous methylation patterns can have similar pheno-

typic consequences over the life course.87

Findings from this study should be interpreted with cau-

tion due to certain limitations. DNA methylation has been

measured in peripheral blood cells and not in specific tis-

sues; although tissue specificity is a well-established attrib-

ute of DNA methylation, there is no clear consensus on

which tissue might be most relevant to study when consid-

ering the impact of SEP.30 SEP embedding involves several

processes,15,88 and hence DNA methylation of brain or im-

mune cells could potentially provide more insight.

Moreover, in a mixed cell population such as (cord) blood,

cells may demonstrate similar phenotypes but with distinct

methylation patterns,89 and SEP-linked differences in B to

T cell ratios might account for some of our observations.90

We did additionally adjust the significant CpG sites for the

estimated blood cell composition,48 and the magnitude of

the associations remained. To our knowledge, this is the

first study exploring the relationship between early life SEP

and epigenome-wide DNA methylation at birth and subse-

quently during childhood.

Conclusion

Understanding the differences in methylation patterns

across ages and the consistency across independent stud-

ies could be the key to interpret the biological pathways

through which the socioeconomic environment relates to

molecular changes in the body. Taken together, our study

provides some evidence that parental SEP has a modest

influence on the methylome of the offspring early in life,

with the strongest effects seen for maternal education on

the offspring’s methylome at birth and adolescence.
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