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Abstract. Clustering of plankton plays a vital role in several biological activities, including feeding, predation,
and mating. Gyrotaxis is one of the mechanisms that induces clustering. A recent study (Candelier et al., 2022)
reported a fluid inertial torque acting on a spherical microswimmer, which has the same effect as a gyrotactic
torque. In this study, we model plankton cells as microswimmers that are subject to gravitational sedimentation
as well as a fluid inertial torque. We use direct numerical simulations to obtain the trajectories of swimmers in
homogeneous isotropic turbulence. We also investigate swimmers’ clustering using Voronoï analysis. Our find-
ings indicate that fluid inertial torque leads to notable clustering, with its intensity depending on the swimming
and settling speeds of swimmers. Using Voronoï analysis, we demonstrate that swimmers preferentially sample
downwelling regions where clustering is more prevalent.

1 Introduction

Plankton are known to form small-scale clusters in a turbu-
lent environment (Rothschild and Osborn, 1988). These clus-
ters can be down to the centimeter scale and significantly im-
pact the basic life processes of plankton, such as feeding,
predation, and mating. Gyrotaxis is one of the mechanisms
that causes plankton to form clusters. Many plankton species
experience a gravitational stabilizing torque that causes them
to swim against gravity (Kessler, 1986). When plankton en-
counter flow shear, the gyrotactic torque opposes the fluid
viscous torque and tends to stabilize the swimming direction
of the plankton (Qiu et al., 2022b).

Gyrotactic plankton can form different kinds of clusters
depending on the flow characteristics. For instance, plank-
ton accumulate in the center or the wall regions in downward
or upward pipe flow, respectively (Kessler, 1985). Plankton
that are vertically migrating also form clusters when they en-
counter a shear layer that interrupts the migration (Durham
et al., 2009). Plankton in turbulence form small-scale clus-
ters that can be characterized by the swimming speed and the
intensity of the gyrotactic torque. Durham et al. (2013) mod-

eled plankton as spherical gyrotactic microswimmers and
numerically studied their fractal clustering in homogeneous
isotropic turbulence. They demonstrated that the intensity of
clustering depends on the swimming speed and the intensity
of gyrotaxis. Clustering is also shown to be correlated to the
preferential sampling of downwelling regions (Durham et al.,
2013). Later, Zhan et al. (2014) numerically investigated the
effect of plankton shape on clustering. Elongated swimmers
are more sensitive to fluid shear than spherical ones, weak-
ening the clustering of strongly gyrotactic swimmers. How-
ever, elongation causes preferential alignment in local fluid
structures, strengthening the clustering of weakly gyrotactic
swimmers. To further clarify the complex relationship be-
tween clustering and the swimming speed, gyrotaxis, and
shape of the swimmers, Gustavsson et al. (2016) and Fouxon
and Leshansky (2015) established theories to describe clus-
tering using stochastic models. These theories were later ver-
ified by direct numerical simulations of swimmers in homo-
geneous isotropic turbulence (Borgnino et al., 2018).

Previous studies have suggested that gyrotaxis originates
from asymmetric body structures, such as nonuniform mass
distribution (bottom-heaviness) (Kessler, 1985, 1986; Ped-
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ley and Kessler, 1987). However, a recent study by Cande-
lier et al. (2022) modeled planktonic microorganisms as set-
tling spherical squirmers and found that a fluid inertial torque
drives the squirmer to swim against gravity. The squirmer
model was proposed by Lighthill (1952) and improved by
Blake (1971) to describe the slip velocity on the surface of
microorganisms generated by the movement of cilia. The
squirmer model can describe the typical propulsion modes,
such as the puller mode for algae and the pusher mode for
Escherichia coli, by changing model parameters. Both theory
and simulations have indicated that fluid inertial torque on a
settling squirmer is analogous to a gyrotactic torque, with
a magnitude that is proportional to the settling and swim-
ming speeds (Candelier et al., 2022). Planktonic organisms
are usually slightly negatively buoyant and, thus, subject to
a gravitational settling effect. For instance, dinoflagellates
have a typical swimming speed of 300 µms−1 and a set-
tling speed of 30 µms−1 (Smayda, 2010). Larger organisms,
such as copepod nauplii, have swimming speeds of up to
1000 µms−1 and settling speeds of 200 µms−1 (Titelman and
Kiørboe, 2003). As pointed out by Candelier et al. (2022), an
organism with high swimming and settling speeds obtains a
fluid inertial torque that is comparable to typical gyrotactic
torque. However, earlier studies usually neglected the grav-
ity sedimentation and the fluid inertial torque, highlighting
the need to consider their effects on the motion of swimming
and settling plankton.

In this study, we aim to analyze the clustering of plank-
tonic swimmers under the influence of fluid inertial torque.
We model plankton as point-like spherical microswimmers
undergoing gravity sedimentation. We use direct numerical
simulations of swimmers in homogeneous isotropic turbu-
lence to analyze their clustering characteristic. In Sect. 2.1,
we describe the model and the numerical approaches. In
Sect. 3, we investigate the clustering using Voronoï analy-
sis and show the relation between clustering and preferential
sampling of downwelling regions. In Sect. 4, we draw the
conclusions of the present study.

2 Methods

2.1 Model of spherical swimmers

In the present study, we consider a spherical swimmer under-
going gravitational sedimentation, as shown in Fig. 1. The
motion of plankton in fluid flows is usually described by a
microswimmer model (Durham et al., 2009, 2013; Gustavs-
son et al., 2016; Lovecchio et al., 2019; Zhan et al., 2014),
which assumes plankton to be a point-like microswimmer
carried by a fluid flow. This assumption is justified when
the Reynolds number, Re= a|v−u|/γ , is much smaller than
unity. Here, the Reynolds number is defined based on the
radius of a swimmer (a), the differences between the ve-
locities of a swimmer (v) and the local undisturbed flow
(u), and the kinematic viscosity of the fluid (γ ). For typi-

Figure 1. A sketch of a settling swimmer.

cal plankton species, this assumption is justified because of
their tiny size and limited motility, as summarized in our re-
cent publication (Qiu et al., 2022a). For instance, the typical
size and swimming speed of zooplankton are a = 0.1 mm
and |v−u| = 1.0 mm, respectively. Accordingly, we obtain
Re= 0.1 using the viscosity of water γ = 10−6 mm2 s−1.

The dynamics of the swimmer is governed by the follow-
ing expressions:

mp
dv

dt
= 6πaγρf(u− v)+mp

(
1−

ρf

ρp

)
g+Fsn, (1)

mpIp
dωp

dt
=6πaρfγC

(
1
2
ω−ωp

)
+

9mpρf

8ρp
[(v−u)× vs] .

(2)

Here, mp and ρp are the mass and the density of the swim-
mer, respectively. Equation (1) governs the translational mo-
tion of the swimmer, where the first term on the right-hand
side denotes the Stokes drag. Here, ρf is the density of fluid.
The second term represents the gravity and buoyancy on the
swimmers due to gravity acceleration (g). The third term rep-
resents a swimming force (Fs) in the direction of the head
of the swimmer, denoted as n. Meanwhile, Eq. (2) governs
the rotation of the swimmer, where Ip = 2a2/5 denotes the
moment of inertia per unit mass and ωp represents the angu-
lar velocity of the swimmer. The first term on the right-hand
side of Eq. (2) represents the Jeffery torque (Jeffery, 1922),
where C = 4a2/3, and ω is the vorticity of the fluid flow. The
second term represents the fluid inertial torque experienced
by a squirmer (Candelier et al., 2022), where vs represents
the swimming speed of the squirmer in a quiescent fluid.
The model of fluid inertial torque is derived in the limit of
Re→ 0, but it has been shown to be justified when Re< 0.3
(Candelier et al., 2022), within the typical range of plankton
physical properties (Qiu et al., 2022a).

Using the characteristic scales for velocity and time of the
flow, uf and τf, respectively, we make Eqs. (1) and (2) dimen-
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sionless:

St
dv′

dt ′
= u′− v′+8sn+8geg, (3)

St
Ip

C

dω′p

dt ′
=

1
2
ω′−ω′p+

3τfu
2
f

16γ

[(
u′− v′

)
×8sn

]
, (4)

where the quantities with primes are dimensionless. In the
above equations, the Stokes number St = (2a2ρp)/(9γ ρfτf)
reflects the inertia of the swimmer relative to the fluid of the
same mass. 8s = vs/uf and 8g = 2(ρp/ρf− 1)a2 g/(9γ uf)
are the dimensionless swimming and settling speeds, respec-
tively. Typically, the St values of planktonic microswimmers
are usually negligibly small, as summarized in Qiu et al.
(2022a). For instance, using a = 0.1mm, ρp/ρf = 1.05, and
a typical range for the turbulence Kolmogorov timescale
τf = 31.6 to 1.0 s calculated from a typical dissipation rate
(Kiørboe and Enric, 1995), one obtains St = 1.0× 10−4 to
2.3×10−3. In such a limit, the left-hand sides of the Eqs. (3)
and (4) can be neglected, and the dynamics simplifies to

dx′

dt ′
= v′, (5)

dn

dt ′
= ω′p×n, (6)

v′ = u′+8sn+8geg, (7)

ω′p =
1
2
ω′+

1
29I

(
eg×n

)
. (8)

Here, 9I = 8γ /(3τfu
2
f8s8g). The last term of Eq. (8) indi-

cates that fluid inertial torque drives a squirmer swimmer to
swim against gravity. Here, we use a dimensionless timescale
9I to quantify the effect of fluid inertial torque. 9I can be
understood as the dimensionless time in which a swimmer
in still fluid restores upward orientation from an inclined ori-
entation under a reorientation torque. This is identical to the
gyrotactic effect induced by bottom-heaviness, which is typi-
cally expressed as (29)−1(eg×n) (Kessler, 1986). However,
we note that they are two different mechanisms. The gyro-
tactic torque on a bottom-heavy cell depends on the distance
of the offset between the center of gravity and the hydrody-
namic forces on a cell, which is usually determined by mor-
phology. On the contrary, the fluid inertial torque is due to
the fluid motion disturbed by the swimming and settling be-
havior of the cell and, thus, determined by motility.

In turbulence, we can take the respective turbulence Kol-
mogorov velocity and timescales uη and τη as the character-
istic scales of the flow. Using the relation γ = u2

ητη, 9I can
be simplified as follows:

9I =
8

38s8g
. (9)

The typical value of 8s and 8g of plankton can be esti-
mated with their swimming and settling speeds as well as the

Kolmogorov velocity scale of ocean turbulence. As summa-
rized in Qiu et al. (2022a), the swimming speeds of differ-
ent species vary from 200 to 1500 µms−1, while the settling
speeds vary from 10 to 200 µms−1. The Kolmogorov veloc-
ity scale of ocean turbulence can be estimated from the typ-
ical dissipation rate ε = 10−9 to 10−6 m2 s−3 (Kiørboe and
Enric, 1995), yielding uη = (γ ε)1/4

= 178 to 1000 µms−1

with γ = 10−6 m2 s−1. Based on these estimations, we con-
sider a typical parameter space of 0<8s < 10 and 0<8g <

1. Large 8s and 8g are reached by swimmers with strong
motility in weak turbulence where uη is small. In such a case,
the assumptions of our model are still justified. First, Re can
still be small for plankton that swim fast, as long as their
size is sufficiently small. Second, St is independent of plank-
ton motility, which has been shown to be negligibly small for
typical turbulence conditions in the ocean (Qiu et al., 2022a).

2.1.1 Direct numerical simulations of swimmers in
turbulence

The motion of swimmers in homogeneous isotropic turbu-
lence is simulated by Eulerian–Lagrangian direct simula-
tions. The flow field is resolved in the Eulerian frame, while
the motions of individual swimmers are solved along the La-
grangian trajectories using local flow information at swim-
mers’ positions. The incompressible turbulent flow is directly
simulated by solving the Navier–Stokes equations:

∂u

∂t
+u · ∇u=−

∇pf

ρf
+ γ∇2u+f , (10)

∇ ·u= 0, (11)

where pf is the pressure of fluid. An external force f is
applied to sustain turbulence and balance the rate of vis-
cous dissipation at the Kolmogorov-scale η. The force is ap-
plied to the large-scale motion using the scheme proposed
by Machiels (1997). Periodic boundary conditions are ap-
plied on all boundaries of the cubic domain with a size of
(2π )3. We use a pseudo-spectral method to solve the Navier–
Stokes equations, and we adopt the “3/2 rule” for reducing
the aliasing error on the nonlinear term. The separation be-
tween turbulent motion of large and small scales is quantified
by the Taylor Reynolds number Reλ = urmsLλ/γ , where urms
is the root-mean-square velocity and Lλ = urms

√
15γ ε−1. In

the present study, we consider a turbulence of Reλ = 60. To
resolve the turbulent flow down to the Kolmogorov scale, we
use 963 grid points, which allows the maximum wave num-
ber resolved to be 1.78 times greater than the Kolmogorov
wave number to ensure the accuracy of resolution even at
Kolmogorov scales (Pope, 2000). The initial flow field is set
as a random flow with an exponential energy spectrum, and
an explicit second-order Adams–Bashforth scheme is used
for time integration of Eqs. (10) and (11) with a time step
smaller than 0.01τη (Rogallo, 1981).
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Swimmers are initialized with random positions and ori-
entations after turbulence is fully developed. When solving
the trajectories of swimmer, fluid velocity and its gradients
at Eulerian grid points are interpolated by a second-order La-
grangian method at the positions of swimmers. Equations (5)
and (6) are integrated using the same second-order Adams–
Bashforth scheme as the fluid phase. For each parameter con-
figuration, 105 swimmers are simulated, and the statistics are
obtained by making an ensemble average over more than 80
uncorrelated time samples after the dynamics has reached a
steady state.

3 Results

The instantaneous location and orientation of swimmers are
depicted in Fig. 2. When swimmers are not settling (Fig. 2a),
they are distributed randomly with a random orientation.
Spherical swimmers are known to exhibit a random orien-
tation due to the random fluid vorticity of turbulence. As
a result, their motions in turbulence remain random and no
cluster is formed. However, when swimmers are settling un-
der the influence of the gravity (Fig. 2b), they tend to swim
upwards and form clusters due to the contribution of fluid in-
ertial torque. As discussed earlier, the fluid inertial torque
on a settling swimmer induces an effect equivalent to the
gyrotaxis mechanism. Gyrotactic swimmers are known to
form spatial clusters and preferentially sample regions with
downwelling or upwelling fluid velocity. Previous studies
have documented that these phenomena depend on the swim-
ming speed, reorientation time, and the shape of swimmers
(Durham et al., 2013; Zhan et al., 2014; Gustavsson et al.,
2016; Borgnino et al., 2018). However, in these studies, the
reorientation time is determined by bottom-heaviness, which
is independent of either swimming or settling speeds. Here, a
reorientation effect is induced by fluid inertial torque with a
timescale 9I , which depends on the swimming and settling
speeds of swimmers. 9I cannot be treated as an indepen-
dent parameter as earlier studies did (Durham et al., 2013;
Zhan et al., 2014; Gustavsson et al., 2016; Borgnino et al.,
2018). Hence, the picture of clustering may differ from pre-
vious studies, and it is worth further investigation.

3.1 Clustering

The clustering of swimmers is quantified by a three-
dimensional Voronoï tessellation (Nilsen et al., 2013; Mon-
chaux et al., 2010). The whole domain is divided into many
Voronoï polyhedrons based on the positions of swimmers,
with each polyhedron containing one swimmer. Any point
in a polyhedron is closest to the corresponding swimmer
among all swimmers. The volume of a Voronoï polyhedron is
smaller when the corresponding swimmer is surrounded by
more other swimmers, and vice versa. Therefore, the distri-
bution of Voronoï polyhedron volumes quantifies the clusters
of swimmers.

We use the MATLAB toolbox “voronoi.m” and “con-
vhull.m” functions to compute the vertices of Voronoï poly-
hedrons and calculate their volumes. Figure 3a shows the
probability distribution function (PDF) of Voronoï volumes
for swimmers with different settling speeds. The PDF of
Voronoï volumes of non-settling swimmers remains the same
as the one generated from random positions, indicating the
absence of clustering. When the settling speed increases, the
PDFs become skewed and a peak at small V/〈V 〉 appears.
This indicates the occurrence of clustering, because swim-
mers in clusters remain close to each other and their Voronoï
volumes are thus small. Settling swimmers form clusters due
to the effect of fluid inertial torque. As shown in Eq. (8), the
fluid inertial torque drives settling swimmer to orient upward
with a finite reorientation timescale 9I . This is the same as
the effect of bottom-heaviness (Kessler, 1986) which also
drives swimmers to orient upward with a timescale 9 de-
pendent on the offset of the center of gravity with the cen-
ter of hydrodynamic forces. For inertial torque, however, the
timescale9I is inversely proportional to both the settling and
swimming speeds of the swimmer.

To show how clustering depends on the settling and swim-
ming speeds, we depict the variance of Voronoï volumes for
different 8g and 8s in Fig. 3b. The corresponding magni-
tude of log109I is also shown by white contour lines. We
calculate the Voronoï volume of each swimmer and obtain
the variance of the volume distribution normalized by the
mean volume of each swimmer, σ 2

V̂
= E(V/〈V 〉− 1)2. The

variance of Voronoï volumes quantifies the intensity of clus-
tering because a stronger clustering results in a less uniform
distribution of Voronoï volumes with larger variance. Fig-
ure 3b shows that clustering becomes stronger with increas-
ing 8s and 8g, reaching a peak at 8g ≈ 0.5 and 8s ≈ 10.
Further increasing 8g leads to a drop in the clustering in-
tensity. This trend can be explained using the dimensionless
reorientation timescale9I , which is inversely proportional to
8s and 8g (Eq. 9). When 9I is zero, gyrotaxis is infinitely
strong, causing swimmers to swim straight up against grav-
ity, yielding n=−eg. As the fluid is incompressible, accord-
ing to Eq. (7), the velocity field of swimmers has zero di-
vergence, ∇ · v =∇ ·u= 0, indicating that no clustering is
formed. When 9I is infinitely large, the fluid inertial torque
is negligible and the swimming direction is entirely deter-
mined by turbulent shear and becomes random, resulting in
no clustering. Therefore, maximal clustering is expected to
occur at a finite 9I . Durham et al. (2013) observed that the
intensity of the clustering of gyrotactic swimmers reaches
its maximal when 9 is of the order of unity (Durham et al.,
2013). As 9I is analogous to 9, the maximal clustering in
the present case is also observed at a certain 8s and 8g that
yields 9I ∼ 1.
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Figure 2. Instantaneous spatial distribution of swimmers in homogeneous isotropic turbulence. Black dots and tiny arrows represent the
position and swimming direction of each swimmer, respectively. Background contour represents the vertical fluid velocity uy . Panel (a)
shows non-settling swimmers (8g = 0, 8s = 10), whereas panel (b) shows settling swimmers (8g = 1, 8s = 10).

Figure 3. (a) Probability distribution function (PDF) of the vol-
umes of Voronoï cells, normalized by the mean volume 〈V 〉. 8s =
10. (b) Variance of Voronoï volumes σ 2

V̂
= E(V/〈V 〉−1)2 normal-

ized by the value of randomly distributed particles. The white con-
tour lines represent the value of log109I in the parameter space.

Figure 4. Mean vertical fluid velocity at swimmers’ positions, 〈uy〉,
normalized by uη as a function of 8g and 8s. The black contour
lines represent the value of log109I in the parameter space.

3.2 Preferential sampling of downwelling regions

The clustering of spherical gyrotactic swimmers in turbu-
lence has been shown to be associated with the preferential
sampling of downwelling regions (Durham et al., 2013). Fig-
ure 4 shows the mean vertical fluid velocity at the position of
swimmers. Swimmers always sample downwelling regions,
and the maximal sampling occurs at large 8s but moder-
ate8g, which yields9I ≈ 1. This observation clearly agrees
with Durham et al. (2013), in which the maximal preferential
sampling is also reached when 9 ≈ 1.

Comparing Figs. 4 and 3b, we observed a very simi-
lar trend between the sampling of downwelling regions and
the intensity of clustering. The magnitude of both quan-
tities increases with 8s, and maximal values are reached
at a large 8s and a moderate 8g. This supports the the-
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ory that clustering occurs in downwelling regions (Durham
et al., 2013; Fouxon and Leshansky, 2015; Gustavsson et al.,
2016). Durham et al. (2013) showed that the divergence of
the swimmer velocity field is ∇ · v ∝−∇2uy . As the ∇2uy
is negatively correlated to uy in incompressible, homoge-
neous isotropic turbulence, the sinks of the swimmer velocity
field tend to be located in downwelling regions with uy < 0.
Here, we provide more direct evidence of clustering in down-
welling regions.

Voronoï analysis allows us to track the Voronoï volume
of each swimmer. Based on the values of volumes, we
can distinguish whether each swimmer is inside a cluster
(with a small Voronoï volume) or located away from other
swimmers (with a large Voronoï volume). Figure 5 shows
the joint probability distribution function (joint PDF) of uy
and log(V/〈V 〉) for swimmers with different settling speeds.
When 8g = 0 (Fig. 5a), fluid inertial torque vanishes and
swimmers do not preferentially sample downwelling regions,
resulting in a symmetric joint PDF with respect to uy = 0.
Moreover, because non-settling swimmers do not form clus-
ters and their Voronoï volumes tend to be uniform, the joint
PDF along log(V/〈V 〉) is concentrated at the peak. However,
when 8g > 0, the joint PDF becomes asymmetric with re-
spect to uy (Fig. 5b). The peak shifts towards uy < 0 because
swimmers preferentially sample downwelling regions. More-
over, log(V/〈V 〉) tends to be smaller when uy < 0, indicat-
ing that swimmers in downwelling regions are more likely to
form clusters. When the settling speed increases to 8g = 0.5
(Fig. 5c), the joint PDF becomes flattened along log(V/〈V 〉),
because the intensity of clustering reaches its maximal (see
Fig. 3b), making it more probable for swimmers to have both
smaller and larger Voronoï volumes. Furthermore, the joint
PDF becomes less asymmetric with respect to uy , indicat-
ing that strong clustering no longer occurs only in down-
welling regions. When 8g further increases to 8g = 1, the
distribution becomes slightly concentrated again because the
intensity of clustering is weakened compared with the case
of8g = 0.5. In general, the joint PDFs reveal that swimmers
are more likely to form cluster in downwelling regions, but
when clustering is intense, the bias is weak.

4 Conclusions

A settling spherical squirmer experiences a fluid inertial
torque that causes it to swim against gravity, acting as an ef-
fective gyrotactic torque (Candelier et al., 2022). While pre-
vious studies have focused on gyrotactic torque originating
from bottom-heaviness, the role of fluid inertial torque has
been neglected (Durham et al., 2013; Zhan et al., 2014; Gus-
tavsson et al., 2016; Borgnino et al., 2018). In the present
study, we modeled an inertia-less microswimmer under the
influence of fluid inertial torque. The magnitude of the torque
is quantified using a dimensionless reorientation timescale

Figure 5. Joint probability distribution function (PDF) of the verti-
cal fluid velocity uy and the Voronoï volumes log(V/〈V 〉).8s = 10
for all panels. White dashed lines correspond to uy = 0. (a)8g = 0.
(b) 8g = 0.2. (c) 8g = 0.5. (d) 8g = 1.0.

9I which is proportional to the inverse of the dimensionless
swimming speed (8s) and settling speed (8g).

Using direct numerical simulation, we investigated the
clustering of swimmers under fluid inertial torque. We quan-
tified the clustering using Voronoï analysis. When swimmers
are not settling, the fluid inertial torque vanishes and the
swimmers are randomly distributed, resulting from a random
swimming direction, with no clustering observed. Settling
swimmers experience a fluid inertial torque and behave sim-
ilarly to gyrotactic swimmers. We observed that swimmers
form more intense clustering when8s and8g become larger,
with maximal clustering intensity occurring at the largest 8s
and a modest 8g, corresponding to 9I ∼ 1.

We also examined how the clustering of spherical swim-
mers is related to their preferential sampling of downwelling
regions. We found that when swimmers are not settling, their
dynamics remains isotropic and no preferential sampling is
observed in the gravity direction. However, the fluid iner-
tial torque and the settling speed break this symmetry and
drive settling swimmers to sample downwelling regions. The
sampling is more pronounced with larger 8s and 8g, reach-
ing the maximum when 9I ≈ 1. The trend of preferential
sampling shows a similar pattern to that of clustering in-
tensity, indicating a correlation between the two phenomena.
We used the joint PDF of Voronoï volumes and local verti-
cal fluid velocity to demonstrate that swimmers tend to form
clusters in downwelling regions.

The fluid inertial torque on settling swimmers can cause
the formation of small-scale clusters, highlighting the impor-
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tance of fluid inertial effects on the dynamics of plankton.
However, most earlier studies did not consider gravitational
sedimentation, leading to the neglect of fluid inertial torque.
This results in an underestimate of the intensity of gyrotaxis,
as the total gyrotactic torque is contributed by both fluid in-
ertial torque and bottom-heaviness. In addition, the fluid in-
ertial torque is proportional to the swimming and settling
speeds, making the reorientation time a dependent param-
eter. Therefore, planktonic swimmers have the potential to
tune their reorientation behavior and, thus, control clustering
intensity by adjusting their swimming speed, which further
impacts their mating, predation, and feeding.

Finally, it is necessary to clarify the assumptions of our
model. First, we considered only spherical swimmers. Non-
spherical plankton, such as elongated ones, probably experi-
ence a fluid inertial torque stemming from both their non-
spherical shape (Dabade et al., 2015; Sheikh et al., 2020;
Gustavsson et al., 2019; Qiu et al., 2022a) and propulsion
mechanism (Candelier et al., 2022). While the analytical so-
lution for the fluid inertial torque on a nonspherical swimmer
remains unclear, fully resolved numerical simulation could
be used to reveal the dynamics of nonspherical settling swim-
mers. The resulting findings could be potentially applied to
the model of point-like swimmer. The second assumption is
that we neglected the inertia of the microorganisms by as-
suming St→ 0. Under this assumption, the dynamics (3) and
(4) are simplified into a kinematic model (Eqs. 5–8). This is
usually adequate for small microorganisms. For instance, St
for some typical marine plankton species ranges from 10−7

to 10−3 (Qiu et al., 2022a). However, the St of large organ-
isms in a relatively quiescent flow can be potentially too large
to ignore the inertia of microorganisms. In such case, the full
dynamics (3) and (4) must be considered, and the effect of
the inertia of microorganisms needs further investigation in
future studies.
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