N

N

Learning Conditional Preference Networks: an Approach
Based on the Minimum Description Length Principle

Pierre-Francois Gimenez, Jérome Mengin

» To cite this version:

Pierre-Frangois Gimenez, Jérome Mengin. Learning Conditional Preference Networks: an Approach
Based on the Minimum Description Length Principle. IJCAI 2024 - 33rd International Joint Confer-
ence on Artificial Intelligence, Aug 2024, Jeju, South Korea. pp.3395-3403, 10.24963/ijcai.2024/376 .
hal-04572196

HAL Id: hal-04572196
https://ut3-toulouseinp.hal.science/hal-04572196v1
Submitted on 28 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://ut3-toulouseinp.hal.science/hal-04572196v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Learning Conditional Preference Networks:
an Approach Based on the Minimum Description Length Principle

Pierre-Francois Gimenez' , Jérome Mengin?

!CentraleSupélec, Inria, Univ. Rennes, IRISA
2IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France
pierre-francois.gimenez @centralesupelec.fr, jerome.mengin @irit.fr

Abstract

CP-nets are a very expressive graphical model
for representing preferences over combinatorial
spaces. They are particularly well suited for set-
tings where an important task is to compute the
optimal completion of some partially specified al-
ternative; this is, for instance, the case of interac-
tive configurators, where preferences can be used
at every step of the interaction to guide the decision
maker towards a satisfactory configuration. Learn-
ing CP-nets is challenging when the input data has
the form of pairwise comparisons between alterna-
tives. Furthermore, this type of preference data is
not commonly stored: it can be elicited but this puts
an additional burden on the decision maker. In this
article, we propose a new method for learning CP-
nets from sales history, a kind of data readily avail-
able in many e-commerce applications. The ap-
proach is based on the minimum description length
(MDL) principle. We show some theoretical prop-
erties of this learning task, namely its sample com-
plexity and its NP-completeness, and we experi-
ment with this learning algorithm in a recommen-
dation setting with real sales history from a car
maker.

1 Introduction

Online shopping services, like video-on-demand streaming
services and product configurators for computers, cars, or
kitchens, rely on recommendation and customization of the
user experience to boost sales [Zhang, 2014]. Recommen-
dations are essential in large, combinatorial product spaces,
where the number of alternatives can lead to over-choice con-
fusion [Huffman and Kahn, 1998]. In such a case, a user
is overwhelmed by the possibilities and cannot choose. A
common tool in configurators is optimal completion, where
the configurator automatically completes a partially config-
ured product by maximizing the product’s utility for the user.
Recommendation, and optimal completion, in particular, are
typically based on a modeling of user preferences. However,
except when the number of attributes is very small, it is in-
tractable to represent a linear order over the space of all pos-
sible alternatives in extension. Several compact, graphical

representations of preferences have been studied in the litera-
ture. Combinatorial preferences can be modeled with numer-
ical models, such as GAl-nets [Gonzales and Perny, 2004]
and ensemble ranking function [Freund et al., 2003], or by
ordinal graphical models, such as lexicographic preferences
trees (LP-trees) [Fraser, 1993] and conditional preferences
networks (CP-nets) [Boutilier et al., 2004].

CP-nets, in particular, are well-suited for interactive con-
figuration: they can represent (albeit partially) any preference
relation, and the optimal completion query can be answered
in polynomial time with acyclic CP-nets with the Forward
Sweep algorithm [Boutilier et al., 2004].

Learning CP-nets has often been studied in settings where
the input data has the form of pairwise comparisons be-
tween alternatives [Dimopoulos et al., 2009, Lang and Men-
gin, 2009, Chevaleyre et al., 2011, Allen et al., 2017, Alanazi
et al., 2016, Labernia et al., 2017, Liu and Liu, 2019, Alanazi
et al., 2020]. However, this type of preference data is not
commonly stored. It can be elicited [Koriche and Zanut-
tini, 2010] but this puts an additional burden on the decision
maker. In this article, we investigate a new method for learn-
ing CP-nets from sales history, a kind of data readily available
in many e-commerce applications. The approach is based
on the minimum description length (MDL) principle, which
has been successfully applied in the unsupervised learning of
many classes of models, such as Bayesian networks [Suzuki,
1993, Lam and Bacchus, 1994], causal networks [Mian et al.,
2021] and formal grammars [Garofalakis et al., 2003].

More precisely, the contributions of this article are:

* the sample complexity of unsupervised CP-nets learn-
ing;

 the NP-completeness of unsupervised CP-nets learning;

* an unsupervised CP-nets learning algorithm;

* an experimental evaluation on a real-world recommen-
dation task.

2 Related work

We review some works on learning preferences from a list of
observed optimal alternatives, not pairwise comparisons.
Bayesian networks [Pearl, 1985, 2009] are graphical prob-
abilistic models that can represent any probability distribu-
tion. Because it associates a numerical value to every alter-



native (its probability), they can be used to order these al-
ternatives. Syntactically, a Bayesian network is a directed
acyclic graph where each node is associated to a conditional
probability table, making them syntactically similar to CP-
nets. Learning the probability tables when the structure is
known amounts to some simple frequencies computation, but
learning the optimal, graphical structure of a Bayesian net-
work is an NP-hard problem. Numerous methods for learn-
ing Bayesian networks have been proposed (see, e.g., a recent
survey by Kitson et al. [2023]). Learning methods typically
use local conditional independence tests to decide the pres-
ence or absence of some arrows in the graph, and/or some
global scoring function to explore the space of possible struc-
tures. In particular, the Bayesian Information Criterion (BIC)
is at the core of approaches based on the MDL principle.
Note that the computation of the optimal, most probable com-
pletion of a partial instantiation is an NP-complete task for
Bayesian networks [Kwisthout, 2011]. Our experiments in a
configuration settings, described in Section 7, show that the
recommendation time is significantly lower when using a CP-
net than with a Bayesian network.

[Bigot et al., 2014] and [Khoshkangini et al., 2018] pro-
pose methods to transform a learnt Bayesian network into a
CP-net: local probability tables are converted to local prefer-
ence orders, with most probable value being preferred. How-
ever, the probabilistic dependencies in a Bayesian network
are not directed, whereas preferential dependencies in a CP-
net are directed: Bigot et al. [2014] propose to identify the
correct direction of the dependencies in a CP-net in an ac-
tive learning settings, using pairwise comparison queries, and
[Khoshkangini et al., 2018] assume that the structure is par-
tially known at the start.

Fargier et al. [2018] propose a greedy algorithm to learn
preferences represented by lexicographic preference trees
from sales history. The aim is to find a model that attributes
low ranks to alternatives that appear often in the history. The
preference tree is computed in a top-down fashion, based on
statistics calculated from the sales history on the attributes
and their values. They prove that the algorithm computes the
optimal structure when restricted to linear structures (lexico-
graphic preference lists). In Fargier et al. [2022], the authors
prove that the sample complexity for this preference learning
method is logarithmic in the number of attributes. However,
experiments described by [Fargier et al., 2020] indicate that
lexicographic preference models may be too restrictive to rep-
resent well preferences from a group of agents (even if they
are known to be a good model to represent preferences of one
agent). Besides, their approach is based on the rank of an al-
ternative and, therefore, cannot be applied to learn languages
that represent partial orders, such as CP-nets.

3 Background

Combinatorial Domain We consider a combinatorial do-
main over a finite set X" of discrete attributes that characterise
the possible alternatives. Each attribute X € X" has a finite
set of possible values X. X denotes the Cartesian product
of the domains of the attributes in X, its elements are called
alternatives. We often use the symbols o, o', 01, 02, ... to

denote alternatives. In the following, n is the number of at-
tributes in X', and d is a bound on the size of the domains of
the attributes: for every X € X, 2 < | X| < d.

For a subset U of X', we will denote by U the Cartesian
product of the domains of the attributes in U, every u € U is
an instantiation of U, or partial instantiation (of X). If v is an
instantiation of some V' < X, v[U] denotes the restriction of
v to the attributes in V' N U.

Preference relations In this paper, we consider that a pref-
erence relations is a linear order over X, i.e., a total, tran-
sitive, irreflexive binary relation over X, often denoted with
curly symbol >. For alternatives 0,0’ € X, o > ¢’ indicates
that o is strictly preferred to o’. Given a partial instantiation u,
consider the set of alternatives that extend u: this set is finite
and the projection of linear order > over this set is a linear
order too, so it has a unique “most preferred” element. We
denote this element by opt(u, >).

CP-nets Given the exponential size of X, it is not tractable
to represent preference relations in extension. So, we use
preferences models that rely on the assumption that the pref-
erence relations of interest exhibit some structure. We fo-
cus on one family of graphical models: Conditional Prefer-
ence Networks (CP-nets). CP-nets have been introduced in
[Boutilier et al., 2004] as a tool to make explicit a particular
kind of structure, called preferential (in)dependence.

Figure 1a depicts a CP-net ¢g. More generally, a CP-net is
a triple ¢ = (X, Pa, CPT), where:

 Pa associates to every attribute X € X, a subset Pa(X)
of X\{X}. Thus Pa defines a directed graph over X,
where there is an edge (X,Y") ifand only if X € Pa(Y).
Pa(Y') is the set of parents of Y. In this article, we only
consider acyclic CP-nets.

e C'PT is a set of conditional preference tables. One table
CPT(X) for every attribute X: C'PT(X) contains, for
every instantiation u of Pa(X), arule u :>, where > is
a linear order over X.

Let us call swap any pair of alternatives that have identical
values for every attribute except one. A CP-net ¢ orders ev-
ery swap {o0,0'} as follows: let X be the only attribute such
that o[ X] # o'[X], let u = o[Pa(X)] = o'[Pa(X)], let
u :> be the corresponding rule in C PT'(X), then (0,0’) is a
worsening swap (w.r.t. ¢) if and only if o[ X] > o[ X]. The
transitive closure of all the worsening swaps sanctioned by ¢
is, by definition, transitive, and we denote it by >g4. It is not
necessarily irreflexive, and not complete in general. Acyclic
CP-nets are guaranteed to be consistent, i.e., there always ex-
ists a total order that extends the order defined by a CP-net.

Example 1. Figure la depicts a CP-net ¢y over a combina-
torial domain with three boolean attributes A, B and C, with
respective domains {a,a}, {b,b} and {c,c}: Pa(A) = {} and
CPT(A) = {a > a}, Pa(B) = {A,C} and CPT(B) =
{avé:b>b,ac:b> b}, wherea v ¢:b> bindicates that
for the three instantiations ac, ac, ¢, value b is preferred to
b. Figure 1D depicts >4,: edges o — o' represent the wors-
ening swaps sanctioned by ¢g. Some of them are redundant
since implied, by transitivity of >, for instance the fact that
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(b) Swaps of ¢o.

(a) A CP-net ¢o.

Figure 1: A CP-net (left) and a representation of its order (right).

abc >4, abc is implied by the worsening swaps (abe, abc),
(abe, abe), (abe, abe).

Boutilier et al. [2004] proved that, when a CP-net ¢ is
acyclic, given a partial instantiation u, opt(u, >4) exists and
is unique, and it can be computed in time linear in the number
of attributes with the so-called Forward Sweep procedure.

Although CP-nets cannot in general represent a total pref-
erence relation, they capture enough information to answer
the opt query: more precisely, any total preference relation
> induces a CP-net ¢ such that opt(u,>) = opt(u, >4, )
when ¢ is acyclic [Gimenez and Mengin, 2023].

Minimal Description Length In Machine Learning, the
Minimal Description Length (MDL) principle is akin to Oc-
cam’s razor principle, which states that the simplest hypoth-
esis should be privileged. MDL enforces this idea through
compression: given some data D and a class of possible mod-
els that may explain D, one should choose the model ¢ that
enables the lossless compression of D with minimum size
[Griinwald, 2000]. Formally, if L(D|¢) denotes the length of
the representation of D knowing ¢, one can define the min-
imum description length for D given a class of models C as

mingec (L(¢) + L(D]9)).

4 Applying the MDL principle to CP-nets
learning

We now recall the learning problem that is the focus of this
paper, and the MDL-based approach that is proposed.
Following Fargier et al. [2018], the input of the learning
process is a sales history, i.e. a multiset D < X. Its el-
ements are alternatives corresponding to products that may
have been, for instance, configured by users of some con-
figurator and bought. Each user has a preference relation >
among products, and is free to configure the products accord-
ing to her preference. However, for some reasons like the
influence of advertisements, special offers or unavailability,
she may end up with a product which is not her most pre-
ferred one. Yet, the higher an outcome is ranked in the user’s
preference, the greater the probability that she ends up with it.
Given this input, we want to compute a CP-net that represents
a preference relations that explains this dataset D, and can be
used to guide future users throughout the interaction with the
configurator, towards an alternative that best suits their needs.

Gimenez and Mengin [2023] propose, given an acyclic CP-
net ¢, a lossless compression of such a dataset D as follows:
for alternative o, code(o, ¢) is the smallest partial instantia-
tion u such that opt(u, >4) = o. They prove u to be uniquely
defined, and it can be computed in polynomial time. For in-
stance, for the CP-net ¢y of example 1, code(abe, ¢y) = b:
Figure 1b shows that abc is the optimal alternative when
B = b. Codes of preferred alternatives are generally shorter
than codes of less preferred alternatives.

Using this function code to compress D given ¢, we have:

L(D | (b) = Z [LN(| COde(O’¢)|) + 10g2 (\coden(o,¢)|)

oeD
o

Xecode(o,¢)

log,(|X|—1)] (D

where, for each outcome o € D, the terms encode, in order:
the length of the minimal code of o, the set of variables that
are assigned in this code, and the value for each attribute,
and where Ly is the length of the Rissanen universal integer
encoding [Rissanen, 1983]. This encoding therefore favors
models that associate common alternatives with short codes,
so such alternatives are among the most preferred.

Moreover, the size of the representation of a given CP-net
¢ = (X,Pa,CPT)is:

L(¢) = In(n) + Y. Lu([Pa(N)]) + logs (|pe xy)
NeX

+|Pa(N)[log, [N| (2)

where, slightly abusing notation, | V| denotes the domain size
of the attribute labelling N. These terms encode, in order: the
total number of nodes, and for each node, the number of its
parents, its set of parents and the optimal value for each value
of its parents.

Therefore, the learning problem that we study in the re-
mainder of the paper is the following one: given a set of at-
tributes A, and a sales history D, find the CP-net ¢ that min-
imizes L(¢) + L(D|¢) as defined above. In the next section,
we prove two complexity results about this problem. Sec-
tion 6 proposes a simple local search algorithm to explore the
set of CP-nets guided by this MDL-inspired cost function,
and section 7 describe some experiments to compare this new
approach to previous approaches to learning preferences in
this settings.

5 Theoretical results

In this section, we propose a formalization of the MDL score
that is more suited for theoretical analysis, and we present two
new results on the CP-nets unsupervised learning: an upper
bound on its sample complexity and the NP-completeness.

5.1 Normalized mean code length

Cost equations Eq. (2) and (1) are complex because, accord-
ing to the MDL principle, the compressed data must con-
tain all the information required for a lossless decompression,
making these equations unsuited for theoretical analysis. We
propose to study instead a surrogate loss function that defines
the cost of an alternative as its code length.



While Eq. (2) and (1) are not linear in the code length,
we argue that it is, in practice, a reasonable approxima-
tion. L(¢) is a regularization parameter to avoid learn-
ing too complex models. In fact, the terms that most con-
tribute to the MDL cost are 3 ycoqe(o,) 1082 (| X[ — 1) and

1085 (| code(o,s))- When all variables have the same cardinal-

ity, the first term is proportional to code(o, ¢). Besides, most

alternatives have a short code (because this is what the model
nlcode(0,9)]

is optimized for), s0 1085 (| oae(0.4)) ~ 1082 ¢ Teodetol ~
| code(o, ¢)|(logs n — log, | code(o, ¢)|), which is slightly
sublinear in code(o,

By denoting p the probability distribution of the alterna-
tives, we therefore propose to use the normalized mean code
length (NMCL for short) as the loss of >:

NMCL,(9) = B[] code(-, )] @)

This metric is between 0 and 1. Algorithm 4 proposed in
[Gimenez and Mengin, 2023] shows that, for acyclic CP-nets:

| code(o, )| = [{N | o[N] # Pref(N,o[Pa(N)])}|

where Pref (N, o[Pa(N)]) is the preferred value in the rule
associated to o[ Pa(N)] in the CPT of N. Remark that we
can further simplify the expression of NMCL,, by introduc-
ing per(N,v), the probability that a randomly drawn al-
ternative is instantiated to v for the parents of N and does
not include the most preferred value of N: pg,..(N,v) =
p(v A = Pref(N,v)). Then:

)= 2 DTl
S ONDID)

N vePa(N) keVar(N)

72 D7 Perr(N,0) )

N vePa(N)

NMCL,($ # Pref(N,o[Pa(N)])]

[k # Pref(N,v)]p(vk)

5.2 Upper bound on the sample complexity

Our analysis of the sample complexity is done within the PAC
learning theory proposed by Valiant [Valiant, 1984], where
we are interested in the number N (4, €) such that, if N (4, €)
examples are available at training, then there is a high proba-
bility (bigger than 1 — §) that the distance between the CP-net
that minimizes the empirical normalized mean code length
and the target unknown CP-net is small (lower than €). In
our case, this distance is the difference of their normalized
mean code length. In this section, we show that the sample
complexity is polynomial for fixed bounds on the size of the
domains of the attributes and the number of parents.

Proposition 1. For the family of CP-nets with n nodes and
whose nodes have at most k parents, N (0,¢) = O (d:—; (In ++

k(lnd + In(n + 1))))

Proof. Denote CP-net” the set of CP-nets whose nodes have

at most k parents. Denote (;3 a CP-net in CP-net” that repre-
sents the preference relation >. p is a probability distribution

that is non-increasing w.r.t. >, i.e. o > o' = p(0) = p(o').
Let us denote ¢* the CP-net in CP-net® that minimizes the
empirical normalized mean code length with respect to some
sample S. Then:

loss(¢*, ) = NMCL,(¢*) — NMCL, (o)
1 o
= = (Byllcode(,6*)[] - B[ code<~,¢>u)
1
<. | Epl| code(-, ¢¥)[] — [I code(-, ™) ]|
+ Bygllcode(, )] = Bygl|code(, 9)]
+ |Bpell code(, §)[] ~ Byl code(-, d)]]])
2
<= max (B[ code(-,6)[] = Epo code( o)
because E, [| code(-, ¢*)|] — Eps[| code(-, ¢)|] < 0 by def-
inition of ¢*. Now, for any ¢ € CP-net” :
1
| Bpll code(+, 9)[] = By [| code(-, 9]
< — Z Z |per7‘ N ’U pS,err(N7U)| < 2M x dk

N vePa(N)

where d is a bound on the domain size of the attributes, and
M is an upper bound on |pe, (N, v) —ps,err (N, v)| for every
N € nodes(¢), every v € Par(N).

Thus, if +|E,[|code(-, ¢)[] — Epg[|code(-, 9)[]| > e
there must be some V < X and v € V such that
|Perr (N, ) = Ds.err (N, v)| = €/(2d¥), which implies that:

Pr(loss(¢*, (5) > €)

< Pr( [ 1perr(N,0) = ps.err(N,0)| = €/ (2d"))
vex
veV.
< Y Pr(Iperr(N, ) = ps.err(N, )| = €/(2d%))
vex
veV.

For every V € X and every v € V, ps(v) is an estimate,
from sample S, of the ground probability p(v) of drawing
an alternative o such that o[V] = v. Hoeffding’s inequality
states that for every o > 0:

PT(|perr(Na U) - pS,err(N,U” = Oé) < 2672|S|a2

For every i € {1,..., k}, there are

(Z) ways of choosing a
subset V' of X of cardinality 4, then |V| <

< d*. Therefore:

E
Pr(loss(¢*,d) =€) < <Z (n) di> 90— 2I85]€%/(4d%")
1
i=1
< Qdk(l + n)ke—|3\e2/(4d2k)

Therefore, in order to have Pr(loss(¢*,¢) < €) =1 — 6,
it is sufficient to have 1—2d*(1+n)* exp(—|S|e?/(4d?*)) >
252’“ (In 5 +k(Ind+In(n+

O

1—4, which is equivalent to S| >

1)) — In2).



This low sample complexity shows that CP-nets, like other
ordinal models, require a low number of examples to be learnt
accurately. This is a very positive result, since CP-nets are
still very expressive in the preferences they can express.

5.3 CP-net unsupervised learning is NP-complete

While CP-nets require few examples to be learned accurately,
they rely on a graph, a data structure for which many prob-
lems are NP-complete. In fact, the following proposition
shows that learning a CP-net that minimizes the empirical
normalized mean code length is indeed NP-complete.

Proposition 2. Let D be a dataset. The problem of finding
the minimal acyclic CP-net that minimizes the empirical nor-
malized mean code length over D is NP-complete.

Proof sketch. The full proof is in the appendix.

We reduce the minimum feedback arc set (FAS) prob-
lem [Karp, 2010], to this problem. Let G = (V, E) be an
instance of FAS, whose n nodes are denoted V1, V5, ..., V.
The problem is to find a minimal set of edges E’ such that
G = (V, E\E') is acyclic. To that end, we construct a dataset
such that the CP-net that minimizes the empirical normalized
mean code length allows us to solve FAS easily. The combi-
natorial space of the datasetis X =V u {V; ; | i — j € E}.
Each attribute is binary and its domain is {T, L}. We initial-
ize the dataset D with 3| E| + 1 alternatives that all have value
1 for every attribute. Then, for each edge V; — Vj; in E,
we add three alternatives to D: o1 with 01[V;] = 01[V; ;] =
01[V;] = T,and 0, [ X] = L for every other attribute, 0, with
02[Vi] = 02[V;] = T, and 02[X] = L for every other at-
tribute, and o3, with 03[V; ;] = 03[V;] = T, and 03[ X] = L
for every other attribute X. So, for every alternative o € D,
o[V;] = o[Vi] v o[V; ;]. In the following, we will refer to
{(Vi,Vi;,V;) | Vi = V; € E} as “triplets”.

The optimal and minimal CP-net ¢ minimizes the empiri-
cal score NMCL,,,(>) = L 3 2vePa(N) PDerr (N, V).

Because ¢ minimizes the empirical normalized mean code
length, we show that the subgraph for each triplet can only be
of two sorts: structure A or B, as depicted below:

Vi=lAaV;=1:1
Vi=TvViy=T:T

Vij

By construction, V; ; cannot appear in multiple triplets.
Therefore, structure B cannot introduce any cycle in the CP-
net, while it can be the case for structure A. Besides, struc-
ture A has a lower cost than structure B. Therefore the opti-
mal acyclic CP-net has a maximum number of occurrences of
structure A, and will use structure B in all other cases.

Given an optimal CP-net, we can provide a solution to the
initial FAS problem as follows: for every triplet (V;, V; ;, V;),
if V; is not the parent of Vj, then V; — V; is added to the
feedback arc set. O

6 CP-net learning algorithm

The learning algorithm we propose has two parts: the struc-
ture learning and the conditional preference tables fitting.

6.1 Structure learning with hill climbing

Since CP-nets learning is NP-complete, we propose an ap-
proximate learning algorithm, using a hill-climbing approach
based on a series of greedy improvements of the score by
local modifications of the model. The approach is described
with Algorithm 1. This algorithm takes as parameter an initial
CP-net ¢'. It can be, for example, a separable CP-net, i.e., a
CP-net whose underlying directed acyclic graph has no edge.
At each iteration of the “while” loop, a family of neighbors
of the current best model ¢’ is generated at line 4. Specifi-
cally, we use the classical transformations used for learning
Bayesian networks: 1) edge addition, 2) edge deletion, and 3)
edge inversion. Non-acyclic neighbors are discarded at line
5. For every neighbor, conditional preference tables are com-
puted at line 6 to best fit the data (cf. section 6.2). The MDL
scores of these new models are computed at line 7, and one
that minimizes this score is saved in ¢’. In our implementa-
tion, we also added a tabu list.

Algorithm 1: Hill climbing search for CP-net learn-
ing
Data: a dataset D, an initial CP-net ¢’
Result: a CP-net ¢
1 score < L(¢') + L(D|¢'); previous_score «— +0
2 while score < previous_score do
3| oo
4 neighbors — transformations(¢)
5 remove non-acyclic graphs from neighbors
6
7
8
9

fit CPTs of neighbors from D

d)/ <« arg min(b”eneighbors L(¢H) + L(D|¢”)
previous_score «— score

score «— L(¢') + L(D|¢")

return ¢

—
<

6.2 Conditional preference tables fitting

At line 6 of Algorithm 1, for every acyclic neighbor ¢” of ¢,
the conditional preference tables associated to nodes N such
that Pay(N) # Pag(N) must be updated. Since our lo-
cal search aims at minimizing the MDL cost of D, we look
for conditional preference tables that minimize L(D | ¢").
Since code(o, ¢”) tends to be longer for alternatives that are
less preferred in >4, CPT(N) should favor most common
alternatives in D so their codes are short. In our implemen-
tation, for a fixed v € Pa(N), we order values in X in in-
creasing order of their number of occurrences associated to
u x >x, & if pp(zu) = pp(a’u) (ties are broken arbi-
trarily). This heuristic matches the one used by Fargier et al.
[2018] to learn the conditional preference tables of LP-trees.

7 Experiments

We assess CP-net learning with a practical application to rec-
ommendation systems by applying an experimental protocol



similar to that of Fargier et al. [2016], described in section
7.1. The datasets used in our experiments are three gen-
uine car sales histories provided by the car manufacturer Re-
nault: “small” (48 attributes, 27,088 vectors), “medium” (44
attributes, 14,786 vectors) and “big” (87 attributes, 17,715
vectors). Each dataset is a list of cars of a particular model,
sold by Renault during a past 12 months period. There is no
information about the buyers.

We report below on the recommendation accuracy and time
obtained in various experimental settings. These experiments
seek to answer the following questions:

¢ Is recommendation accuracy improved with clustering?
And with which model selection heurisitcs?

¢ How does our method compare with the k-LP-tree ap-
proach proposed by Fargier et al. [2018]? And with
Bayesian networks?

* What recommendation methods are compatible with on-
line applications?

* Is converting a Bayesian network to a CP-net an effec-
tive learning tool?

Source code, models and datasets are available online!.

7.1 Experimental protocol

Each dataset is split into a training set (80%) and a test set
(20%). To assess the learnt models, we simulate an online
configuration just as [Fargier et al., 2018]: for each vector o
in the test set, we draw uniformly an order over the attributes.
One attribute V" at a time, the model provides a recommended
value r for V' given the current partial instantiation u. The
value 7 is then compared to o[V] and w is updated with o[V].
The recommendation is deemed accurate if r = o[V]. We
draw 100 orders per vector to reduce the variance.

7.2 Clustering

Because an individual does not usually often buy a new car,
we cannot learn the preferences of a single individual with
these datasets, but we can learn about general preferences of
a set of buyers. However, buyers can have wildly differing
preferences, which can hardly be captured with a single pref-
erence model. Fargier et al. [2018] show that an effective
strategy is to split each dataset in a fixed number of clus-
ters: each cluster contains similar cars, and it can be expected
the buyers of such cars have similar preferences, so that it is
reasonable to learn a unique CP-net for each cluster.Besides,
Acyclic CP-nets have a limited expressivity: there exist or-
ders that can only be represented by cyclic CP-nets, and clus-
tering can alleviate this reduced expressiveness. Thus, in the
experiments, we started by clustering the dataset with the k-
means algorithm using the Hamming distance and then ap-
plied the learning algorithms on each cluster. We use k = 3,
as suggested by Fargier et al. [2018] for these datasets.

At test time, to compute the recommended value opt(u),
Fargier et al. [2018] use the model corresponding to the clus-
ter whose centroid is closest (according to the Hamming dis-
tance) to u. Since this approach was very effective in their

"https://github.com/PFGimenez/cp-nets-learning-ijcai24

experimental settings, we use it in our experiments too. We
also compare it to a new heuristic, called “Shortest code”,
for selecting the model for preferential optimization: instead
of checking the Hamming distance between u and the clus-
ters centroids, the new heuristic selects the model ¢ that min-
imises | code(opt(u, ¢))|. In case of a tie, the heuristic selects
the model associated to the largest cluster.

Table 1 shows the accuracy of recommendations by CP-
nets with clustering with three model selection heuristics. In
this experiment, the clusters and the models are fixed, so only
the model selection heuristics impact the results. Choosing
a random model yields poor results, motivating the need for
a more sophisticated method. The “Shortest code” heuris-
tic yields generally the best accuracy, although the difference
with “Closest centroid” is low. Since “Shortest code” has bet-
ter recommendation accuracy and has interesting properties,
we only use this heuristic in the experiments described below.

Dataset | Random  Closest centroid  Shortest code
Small 63.37% 87.36% 88.43%
Medium | 69.63% 86.93% 88.91%
Big 75.37% 91.67% 92.78 %

Table 1: Accuracy of recommendation with CP-nets with clustering,
for three different model selection heuristics

7.3 Recommendation accuracy and time

To assess the recommendation accuracy and time, we com-
pare the following models:

¢ the “Oracle” (proposed in [Fargier et al., 2016]), which
gives an upper bound on the recommendation accuracy;

* Bayesian networks, used with the exact inference algo-
rithm “variable elimination”;

* our implementation of k-LP-tree learning (with k = 3
and 7 = 20), as well as a version with 3 clusters;

¢ CP-nets learnt with our MDL approach (Algo. 1), as
well as a version with 3 clusters.

Recommendation accuracy is presented in Fig. 2a, 2b and
2c. As expected, the “oracle” (in black) always has the high-
est accuracy since it is an upper bound. The Bayesian net-
work (in cyan) always has the second highest accuracy and
is close to this upper bound on the “small” and “medium”
datasets. However, on the “big” dataset, recommendations
with this model did not finish within our 72-hour timeout.
The two models using clusters (in red and green) always out-
perform their base models. Among these models, the clus-
tered CP-nets have the highest accuracy. Finally, CP-nets
outperform LP-trees. This can be most notably explained by
the strong assumption, with LP-trees, that the target order is
lexicographic. This hypothesis is not necessary for CP-net
learning. Note that for higher numbers of assigned attributes,
even non-clustered CP-nets generally have higher accuracy
than clustered LP-trees.

Recommendation time are presented in Fig. 3a, 3b and
3c. Bayesian networks are the slowest model by up to two
orders of magnitude. Indeed, the MAP query used for recom-
mendation is NP-hard, while it is polytime for LP-trees and
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Figure 3: Recommendation time (in ms) over the three datasets

CP-nets. In fact, this complexity can explain why it did not
finish on the “big” dataset. We suppose this is mostly due to
the Python library we used, which only proposes the “variable
elimination” algorithm, even though more effective inference
algorithms exist [Pourret et al., 2008]. The recommendation
times for CP-nets and LP-trees are similar, even though CP-
nets are generally faster. The use of clusters makes the rec-
ommendation longer. However, even for the biggest dataset,
the recommendation time is always within 3 ms, making it
usable on terminals with limited computational power, like
smartphones or embedded systems. Besides, we expect im-
plementations in a compiled language (like C or Rust) to be
one or two orders of magnitude faster.

7.4 Learning CP-nets from Bayesian network

Khoshkangini et al. [2018] propose to learn CP-nets by learn-
ing a Bayesian network and converting it into a CP-net. We
now compare this approach with our method. Besides, we
propose a hybrid approach, where a Bayesian network is
used to initialize a CP-net that is then optimized with our
MDL-score guided hill climbing learning method. We use
the Python implementation pgmpy to learn the Bayesian net-
work. The BN learning algorithm is hill climbing, with the
BIC score and a K2 prior. Table 2 contains the recommen-
dation accuracy of CP-nets learned using these three strate-
gies. Remark the small difference in accuracy, indicating that
the method of Khoshkangini et al. [2018] is indeed effective,
even though there is no apparent connection between NMCL
(cf. Eq. (4)) and log-likelihood-based scores. Converting a
Bayesian network into a CP-net and then optimizing it with

our hill climbing method seems the most effective method.

Dataset HC BN BN+HC
Small 84.71% 84.77%  85.41%
Medium | 87.16% 87.13% 87.27%
Big 91.14% 90.10%  90.80%

Table 2: Accuracy of a CP-net learnt with hill climbing guided by
the MDL score (HC), derived from a Bayesian network (BN) or
derived from a Bayesian network and optimized with hill climbing
guided by the MDL score (BN+HC)

8 Conclusion and perspectives

This paper gives the first theoretical analysis of unsuper-
vised learning of CP-nets. It introduces the NMCL metric
and shows that the sample complexity is polynomial and that
learning the optimal CP-nets is NP-complete. Finally, we
demonstrated the usefulness of this approach by comparing
it with various state-of-the-art methods on a real-world rec-
ommendation task. More generally, the NMCL can be used
to learn any model with an efficient preferential optimization
algorithm, so this approach is not limited to CP-nets.

In future works, we plan to study the connection between
Bayesian networks and CP-nets to support theoretically the
method of transforming Bayesian networks into CP-nets. We
conjecture that the difference of recommendation accuracy
between Bayesian networks and CP-nets is due to the limited
expressivity of acyclic CP-nets, and so we plan to study the
learning of (subclasses of) cyclic CP-nets.
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Appendix: Proof of Prop. 2

Proof. The problem is NP because computing the code length
can be done with a polytime algorithm [Gimenez and Men-
gin, 2023]. To show that the problem is NP-hard, we reduce
it from the minimum feedback arc set (FAS) problem known
to be NP-complete [Karp, 2010]. Let G = (V, E) be an in-
stance of FAS, whose n nodes are denoted Vi, V5, ..., V,.
The problem is to find the minimal set of edges E’ such that

G = (V, E\E’) is acyclic. To that end, we construct a dataset
such that the CP-net that minimizes the empirical normalized
mean code length allows us to solve FAS easily.

The combinatorial space of the dataset is defined over |V |+
|E| attributes: V U {V;,; | i — j € E}. Each attribute
is binary and its domain is {T, L}. We initialize the dataset
with 3| E/| + 1 vectors whose attribute value is L. This vector
set ensures that each attribute’s most common value is L.

Then, for each edge V; — Vj in E, we add three vectors
to the dataset: 1) oy, with V; = T,V;; = T,V; = T and
the restis 1, 2) 0o, with V; = T,V = T and the rest is L,
and 3) o3 with V; ; = T,V; = T and the rest is L. So, for
all vectors, V; = V; v V; ;. In the following, we will refer to
{(Vi,Vi;,V;) | Vi = Vj € E} as “triplets”.

The optimal and minimal CP-net ¢ minimizes the empir-
ical score NMCL,,(>) = 13 2vePa(N) PDerr (N, 0).
This score is the sum of the score of each node. Let X
be any node of ¢. Let Y be a node that never appears
in the same triplet as X. Let us show by contradiction
that there is no edge from Y to X by assuming there is
one. So, the CPT of X in ¢ is in the from uy :> where
u € Pay(X)\{Y}. Consider the CP-net ¢’ identical to ¢ but

without this edge. The CPT of X in ¢’ is defined as follow:
w: T (u) > 27 (u) where u € Pag(X)\{Y} and 2% (u) an
x~ (u) are defined as: x™ (u) = arg max,e(r, 1} pp(2u) and
o~ (u) = argminge(7 1y pp(zu). If both values of pp(wu)
are equal, 2 (u) = T. The cost of the two CP-nets are identi-
cal except for the terms pp ¢ (X, -), so the difference of their
cost is 10ss(¢, @) = Xicpa,(x)\(v} ZyefL, 1) PD(UY A
—Pref ,(X,u)) — pp(uyr~(u)). Let us show that each term
of this sum is positive, i.e., pp(uy A —Pref ,(X,u)) >
pp(uyx~(u)) for all v € Payx(X)\{Y}. Using the law
of total probability, it is sufficient to prove that pp(uy A
—Pref ,(X,u)) = pp(uyxr~(u)) for all u € X\{X,Y} and
all y € {1, T}. Since the case where —Pref,(X,u) =
o~ (u) is trivial, we consider the case where — Pref , (X, u) =
xt (u). Letu € X\{X,Y}. In the following, the subscript in-
dicates the value of an attribute, i.e., xtT7 = T and y; = L.

First case wu contains no T. In that case, z7(u) = L (by
construction of D), so pp(ux™ (u)yt) =0(y = T and z =
T never appear in the same vector because X and Y never
appear in the same triplet) and pp(uz™ (u)y1) = 0 (no vec-
tor with exactly one T). In both subcases, pp(uz™ (u)y) >
pp(uz™(u)y) = 0.

Second case wu contains at least one variable Z = T such
as Y and Z never appear in the same triplet. In that case,
pp(uxt (u)yt) = pp(uz™ (uw)yr) = 0 because Y and Z do
not appear in the same triplet. Therefore, pp (uz™ (u)yyL) =
pp(uzt(u)) = pp(uz™(u)) = pp(uzr™(u)yL). In both
subcases, pp (uz™ (u)y) = pp(uz™ (u)y).

Third case w contains one variable Z = T such as Y
and Z do appear in the same triplet. Let us show that
pp(uzy) = pp(uzT): indeed, the number of occurrences
of uzx is exactly 3 (the three vectors of the triplets of X and
Z) and of uz is at least 3 (the three vectors of the triplets



of Z and Y, as well as the other triplets of Z). So, in that
case, pp(ux 1 y71) = pp(uzTyT) = 0 (because X and Y are
never | in the same vector). For the case where y = 1, we
need to tackle two subcases. First, assume Z is in exactly
two triplets. Then pp (uz, ) = pp(uzT), so xt(u) = T (the
default value in that case). In that case, uz™ (u)y, occurs 3
times and ux ™ (u)y, occurs O times, so pp(uxt(u)yL) =
pp(ux™(u)y,). In the second subcase, Z is in at least three
triplets. Then, pp(uz ) > pp(uzT), so 1 (u) = L. In that
case, ux ™ (u)y, occurs at least 3 times and uz ™ (u)y, occurs
exactly 3 times, so pp (uz™ (u)y1) = pp(uz™ (u)yL).

Fourth case the case where u contains more variables with
T is similar to the third case, so it is not detailed here.

In all cases, pp(uzt(u)y) = ppluz™(u)y) for y €
{T, L}, s0loss(¢,¢') = 0, so the cost of ¢’ is lower than the
cost of ¢ and ¢’ is acyclic and smaller than ¢. By assumption,
¢ minimizes this cost, is minimal, leading to a contradiction.
Therefore, we conclude that there is no edge from Y to X in
¢. So, for each node NV, its set of parents in ¢ is a subset of
the triplets N is a part of.

Minimizing the score associated with N is equivalent to
minimizing the sum of scores for each triplet of IV, so let us
look at how to minimize the sum of the scores of a triplet
(Vi, Vi.4, V;) containing N. There are 3 possible graphs be-
tween V;, V; ; and Vj, including two cycles, forbidden in an
acyclic CP-net. Since V; and V; ; have a symmetrical role in
these vectors (remember that V; = V; v V; ;), many cases
can be ignored without loss of generality. Then, it is easy to
calculate for each structure the conditional preference tables
that minimize the mean code length.

The structure that minimizes the sum of the scores of
Vi, Vi; and Vj is structure A presented in Fig. 4a, whose
mean code length for the three associated vectors is %
(Vars(code(o1)) = {Vi,Vi;}, Vars(code(o2)) = {Vi},
Vars(code(o3)) = {V; ;}). There are two similar structures
with a cost of % structures B (c.f. Fig. 4b) and C (c.f.
Fig. 4c). For structure B, this cost can be decomposed as:
Vars(code(o1)) = {V; ;, Vi}, Vars(code(o2)) = {Vi, V;},
Vars(code(o3)) = {V; ;} (structure C is similar). CPTs can
easily be merged when V; or V; appear in several triplets.

Remark that V; ; cannot appear in multiple triplets. For
this reason, structure B cannot introduce any cycle in the CP-
net, while it can be the case for structure A or C. Besides,
if structure C is present in a CP-net, it can be transformed
into structure A to diminish the cost without introducing a
cycle. For this reason, the optimal CP-net can be composed
of only structures A or B, otherwise we could strictly lower its
cost without affecting its acyclicity. Structure A can generate
cycles, therefore the optimal acyclic CP-net has a maximum
number of occurrences of structure A, and will use structure
B in all other cases.

Given an optimal CP-net, we can provide a solution to the
initial FAS problem as follows: for every triplet (V;, V; ;, V;),
if V; is not the parent of V;, then V; — V; is added to the feed-
back arc set. The size of this set is the number of structure B,
which is minimized by the optimal CP-net. For this reason,
the constructed set is a minimal feedback arc set. This re-
duction is polynomial because the algorithms to construct the

dataset and the minimal feedback arc set are in O(|V| + | E|).

Therefore, the problem of finding the CP-net that mini-
mizes the normalized mean code length is NP-hard. Since
it is also NP, the problem is NP-complete. O



(a) Structure A (b) Structure B (c) Structure C

Figure 4: Three structures of interest for triplets (V;, V5 ;, V;)
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