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Abstract 

Apelin, a peptide with several active isoforms ranging from 36 to 12 amino acids and its 

receptor APJ, a G-protein-coupled receptor, are widely distributed. However, apelin has 

emerged as an adipokine more than fifteen years ago, integrating the field of inter-organs 

interactions. The apelin/APJ system plays important roles in several physiological functions 

both in rodent and humans such as fluid homeostasis, cardiovascular physiology, 

angiogenesis, energy metabolism. Thus the apelin/APJ system has generated great interest as 

a potential therapeutic target in different pathologies. The present review will consider the 

effects of apelin in metabolic diseases such as obesity and diabetes with a focus on diabetic 

cardiomyopathy among the complications associated with diabetes and APJ agonists or 

antagonists of interest in these diseases.   
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1. Introduction  

Apelin was firstly shown to be a peptide expressed in different cell types (Tatemoto et al. 

1998; Read et al. 2019) before to be considered as an adipokine (Boucher et al. 2005). Apelin 

is generated from preproapelin, a 77-amino acid precursor that will be further processed into 

different active forms such as apelin-36, apelin-17, apelin-13, [pyr-1]-apelin-13 resulting 

from spontaneous cyclisation of the N-terminal glutamine and more stable than apelin-13. 

Apelin-17 and [pyr-1]-apelin-13 represent the predominant forms in plasma (Azizi et al. 

2008; Zhen et al. 2013). Apelin was considered to be the only ligand of APJ (a G-protein-

coupled receptor) until the discovery of Elabela a 54-amino acid peptide (also named Toddler 

or apela), few years ago (Chng et al. 2013; Pauli et al. 2014). So far, Elabela is poorly 

expressed in adipose tissue (Shin et al. 2017) or secreted by adipocytes and thus does not 

represent a potential adipokine. For this reason, Elabela functions will not be addressed in the 

present review. Since the apelin/APJ system is present in a large number of tissues or cells 

and thus involved in several physiological functions and physiopathological situations (for 

review see Marsault et al. 2019; Shin et al. 2017), we will focus on the role of apelin in 

obesity-associated diseases such as type 2 diabetes and diabetic cardiomyopathy with an 

update of the pharmacological tools available and tested in this context. 

 

2. Regulation of apelin expression and secretion in adipose tissue  

The first regulator of apelin expression and secretion reported in adipocytes was insulin. The 

expression of apelin in adipocytes but also the plasma concentrations are increased in various 

mouse models of obesity associated to hyperinsulinemia (Boucher et al. 2005). During fasting 

and after re-feeding in mice, the pattern of apelin expression and secretion in adipocytes 

follows insulinemia. Moreover, insulin treatment results in an increased apelin gene 
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expression and secretion in both adipocyte cell lines and human isolated adipocytes (Boucher 

et al. 2005). It has also been shown that apelin expression increased during adipogenesis 

(Boucher et al. 2005; Zhu et al. 2015). Since insulin, other factors have been revealed as 

positive regulators of apelin gene expression in adipocytes or adipose tissue such as growth 

hormone (GH) (Kralisch et al 2007), inflammatory factors TNFα (Daviaud et al. 2006) and 

lipopolysaccharide (Geurts et al. 2011). Common mechanisms have been described to induce 

apelin gene expression in adipocytes cell lines such as a PI3K-dependent pathway for insulin, 

TNFα and GH or MAPK activation for insulin and TNFα but divergences also exist (for 

example involvement of PKC in response to insulin but not TNFα) (Boucher et al. 2005; 

Daviaud et al. 2006). Over-expression of peroxisome proliferator-activated receptor gamma 

coactivator-1α (PGC1α), a key regulator of cellular energy homeostasis in oxidative tissues 

has also been shown to increase apelin gene expression and secretion in human adipocytes 

(Mazzucotelli et al. 2008). On the other hand, negative modulators of apelin expression in 

adipocyte are scarce. Glucocorticoids and aldosterone treatment in 3T3-L1 cells decreased 

apelin mRNA levels through p38 MAPK activation (Wei et al. 2005; Jiang et al. 2013), (fig. 

1).  

Different studies have also reported the effect of dietary intakes on apelin gene 

expression in adipose tissue. Globally, in high-fat fed mice or rats apelin mRNAs are 

increased in adipocytes or adipose tissue (Dray et al. 2010; Garcia-Diaz et al. 2007) even if 

opposite results have also been reported (Hwangbo et al. 2017). Nevertheless, it is not known 

whether the fatty acids present in the diet, depending on their nature, have a direct effect on 

apelin production. To our knowledge, no studies have reported the effect of polyunsaturated 

fatty acid from the omega-6 family on apelin gene expression or secretion in adipose tissue. 

However, eicosapentaenoic acid (EPA), from the omega-3 family and lipoic acid (LA), a 

short-chain fatty acid with antioxidant properties, increased apelin gene expression in adipose 
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tissue of cafeteria diet-fed rats (Perez-Echarri et al. 2009) as well as in 3T3-L1 adipocytes 

(Lorente-Cebrian et al. 2010; Fernandez-Galilea et al. 2011). EPA treatment increased both 

apelin gene expression by a PI3K/Akt-dependent signaling and apelin secretion through post-

transcriptional mechanisms in 3T3-L1 adipocytes (Lorente-Cebrian et al. 2010) whereas LA 

was shown to increase mainly apelin secretion through inhibition of AMPK (Fernandez-

Galilea et al. 2011).  

In humans, a caloric-restricted diet in obese patients decreased apelin gene expression 

in adipose tissue (Castan-Laurell et al. 2008; Krist et al. 2013). Apelin regulation by dietary 

intakes has been the subject of a systematic review (Yuzbashian et al. 2018). Recently, it has 

also been shown that in non-diabetic subjects, apelin gene expression in both visceral and 

subcutaneous adipose tissue was associated with foods exhibiting a high glycemic index but 

not total carbohydrates intake (Yuzbashian et al. 2019). Even if this study has some 

limitations, it underlines the impact of the quality and quantity of dietary carbohydrates on the 

regulation of apelin.  

The effect of dietary intake on apelin expression has also been studied in others tissues. 

Apelin mRNAs are present in different nuclei of the hypothalamus including the 

paraventricular, arcuate and supraoptic nuclei involved in the control of behavioral, endocrine 

processes and energy homeostasis (Reaux et al. 2002). Hypothalamic apelin levels were found 

to be higher in HFD fed mice (Reaux-Le Goazigo et al. 2011). Increased apelin gene 

expression has also been reported in the heart left ventricle of HFD rats (Czarzasta et al. 

2016). In skeletal muscle (soleus) of HFD fed mice, apelin gene expression was not modified 

compared to chow fed mice (Dray et al. 2010, Bertrand et al. 2013) but mice fed a HFD 

supplemented with EPA had higher muscular apelin gene expression compared to HFD mice 

(Bertrand et al. 2013). In addition both apelin expression and secretion were increased in 

C2C12 muscle cell line treated with various concentrations of EPA (Bertrand et al. 2013), 
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demonstrating that apelin could be also considered a myokine. However, apelin expression as 

well as apelin plasma concentrations decreased in muscle of aged mice and in differentiated 

myotubes of old compared to young donors (Vinel et al. 2018). Interestingly, exercise is able 

to increase apelin gene expression both in skeletal muscle and adipose tissue of type 2 

diabetic rats (Kazemi and Zahediasl 2018) but decreased apelin expression was also reported 

after endurance training in soleus muscle of diabetic rats (Son et al. 2017). This discrepancy 

could be due to differences in the animal model used (streptozotocin-nicotinamide induced 

diabetes and Zucker rats respectively) and in the exercise protocol. In humans, exercise was 

shown to increase apelin mRNAs in skeletal muscle of obese subjects (Besse-Patin et al. 

2013).  

 

3. Apelin, obesity and type II Diabetes 

In obese mice, as mentioned before, both apelin expression in adipose tissue and blood 

concentrations are increased, questioning the significance of such an increase during obesity 

and whether it could be associated to an apelin-resistant state. Transgenic mice 

overexpressing apelin exhibited a resistance against diet-induced obesity (Yamamoto et al. 

2011). In contrast, apelin deficient mice (apelin -/-) had increased adiposity, higher plasma 

leptin levels and were insulin resistant. This phenotype was exacerbated in apelin -/- mice fed 

a high-fat/ high-sucrose diet (Yue et al. 2010). It has also been reported that apelin -/- mice 

fed a HFD display abnormal lymphatic and blood vessel enlargement that could participate to 

the development of obesity (adipocyte hypertrophy) through hyperpermeability to dietary 

fatty acid (Sawane et al. 2013). Altogether, these data are in favor of a positive role of apelin 

in metabolic diseases. High levels of apelin into the circulation might be helpful to delay or 

reduce insulin resistance in mice.  
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What do we know about the systemic effects of apelin on energy metabolism? We will focus 

mainly on in vivo studies. Acute apelin-13 treatment (intravenous administration) in 

normoponderal and obese/insulin resistant mice improves glucose tolerance and insulin 

sensitivity (Dray et al. 2008). Apelin was shown to stimulate glucose transport in skeletal 

muscle of non-obese mice in an AMPK-dependent manner (Dray et al. 2008). However, the 

study of Hwangbo et al; (2018) reported complementary information to explain apelin’s 

glucose-lowering effect. They showed that apelin receptor was mainly expressed in 

endothelial cells (EC) of skeletal muscles or adipose tissue and that its specific deletion 

(AplnrECKO mice) resulted in glucose intolerance. Moreover, in skeletal muscle of AplnrECKO 

mice, apelin failed to activate AMPK compared to muscle with EC (Hwangbo et al. 2017) 

supporting the importance of EC signaling. Furthermore, expression of FABP4, a protein 

involved in fatty acid binding and transport as well as excess fatty acid accumulation was 

increased in skeletal muscles of AplnrECKO mice. Impaired glucose uptake in muscle of 

AplnrECKO mice could be rescued by FABP4 inhibition (Hwangbo et al. 2017). Thus, targeting 

endothelial signaling and fatty acid transport in skeletal muscle in response to apelin could 

also be considered as an innovative strategy to improve insulin sensitivity.  

Long-term apelin treatment in obese and insulin resistant mice has also revealed beneficial 

effects on both glucose and lipid metabolism. Indeed, Higuchi et al showed that apelin 

treatment during fourteen days (daily intraperitoneal injection) in non-obese mice decreased 

the mass of several fat depots and their triglycerides content (Higuchi et al. 2007). In addition, 

apelin-treated mice exhibited increased rectal temperature and oxygen consumption without 

alteration of food intake, indicating that energy expenditure was enhanced (Higuchi et al. 

2007). Chronic apelin treatment during 4 weeks (daily intraperitoneal injection) in obese and 

insulin resistant mice revealed that apelin-treated mice had higher lipids utilization, mainly 

due to increased lipid oxidation in skeletal muscles and increased mitochondrial biogenesis 
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without significant effect on body weight (Attané et al. 2012). Apelin treatment results in fine 

in an amelioration of insulin sensitivity in HFD mice (Attané et al. 2012). In addition, in the 

same animal model, decreased hepatic steatosis was observed in apelin-treated mice (Bertrand 

et al. 2018). In HFD fed diabetic Goto-Kakizaki rats, apelin treatment during 4 weeks exerts 

also beneficial effect on glycemia, insulin resistance and apelin was shown to be as protective 

as metformin (Li et al. 2018).  

In addition to systemic apelin effects on energy metabolism, intracerebroventricular (icv) 

apelin injection was also shown to modulate glucose metabolism. Indeed, acute injection of a 

low dose of apelin in non-obese fed mice decreased glycemia whereas a high dose has an 

opposite effect in fasted mice (Duparc T et al. 2011). As mentioned in the previous chapter, 

hypothalamic apelin levels are increased in obese mice (Reaux-Le Goazigo et al. 2011) which 

could contribute to insulin resistance. Indeed, icv injection of a low dose of apelin in HFD fed 

mice has no more beneficial effect on glycemia and a high dose induced glucose intolerance 

(Drougard et al. 2014). However, exogenous apelin treatment in HFD mice seems to be able 

to counteract the central effect of apelin.  

Metabolic effects of different apelin-36 variants have also been studied in obese mice by the 

use of an adeno-associated virus (AAV). Six weeks after AAV injection, mice expressing 

apelin-36 gained less weight and had lower glycemia than apelin-13 injected mice. A variant 

apelin-36(L28A) retains full metabolic activity but these effects were described to be 

independent of the canonical APJ signaling (Galon-Tilleman et al. 2017). A recent study 

provides evidence that apelin-36(L28A) could in fact bind to the apelin receptor and that it 

was a G protein biased apelin receptor agonist (Nyimanu et al. 2019).    

Since apelin peptides are subjected to rapid enzyme degradation in the circulation and thus 

have a short half-life (less than 5 min), different analogs with long-lasting effects were 
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developed (for review see Fischer 2020; Read et al. 2019; Huang et al. 2018). Some of them 

were studied in a context of obesity or metabolic dysfunctions. O’Harte et al. have shown that 

HFD fed mice treated with acylated apelin-13 amide analogues during 28 days had reduced 

food intake and decreased body weight (O’Harte et al. 2017). Moreover, these apelin 

analogues reduced blood glucose, triglycerides concentrations as well as LDL-cholesterol and 

improved HbA1c concentrations in comparison to saline-treated HFD mice (O’Harte et al. 

2018). Long-term administration of apelin analogues were also studied in db/db mice and 

their anti-diabetic properties were as effective as incretins mimetics (O’Harte et al. 2020). A 

recombinant protein by fusing the IgG Fc protein to apelin-13 (Fc apelin-13) with an 

estimated half-life of 33 hours, was also reported to improve liver steatosis, glucose tolerance 

without affecting food intake and body weight in HFD-induced obese mice (Wang et al. 

2018). However, non-peptidic APJ agonists or small molecules are rarely tested in vivo on 

metabolism but rather on cardiac functions (see next chapter). Concerning APJ antagonists 

and metabolism, apelin F13A (replacement of the C-terminus phenylalanine by alanine in 

apelin13) was shown to inhibit the beneficial effects of apelin-13 in insulin resistant mice on 

glucose tolerance and muscle β-oxidation (Attané et al. 2012). More recently, the use of a 

fluorescence-based high-throughput screening allowed to identify protamine as a full 

antagonist with regard to G protein and β-arrestin-dependent intracellular signaling, able to 

decrease glucose tolerance in chow-fed mice (Le Gonidec et al. 2017).  

Considering now the translation to human physiopathology, different studies have shown that 

apelin was increased in the circulation of obese and hyperinsulinemic patients. Cavallo et al 

(2012) found that type 2 diabetes but not type 1 diabetes was associated with increased serum 

apelin levels whereas Habchi et al (2014) showed that apelin concentrations were 

significantly higher in type 1 diabetic patients than in control subjects and even higher than in 

type 2 diabetic patients. Interestingly, a combined treatment of metformin and a dipeptidyl 
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peptidase-4 (DPP-4) inhibitor was superior to metformin monotherapy to increase plasma 

apelin levels in type 2 diabetic patients (Fan et al. 2015). However, in newly diagnosed and 

untreated type 2 diabetic patients apelin levels were reduced compared to healthy controls 

(Erden et al 2008). High levels of apelin were shown to be associated with decreased risk of 

development of type 2 diabetes in the general population (DESIR: a 9-year prospective study 

on the French population) (Castan-Laurell et al. 2020). Interestingly, a recent study dedicated 

to machine learning in order to early detect undiagnosed diabetic patients in Iran, revealed 

that fasting blood sugar, HbA1c, visfatin but also apelin were a subset of significant features 

and make the best discrimination between diabetic versus non-diabetic obese women (Lotfi et 

al. 2020). Apelin can thus be considered as a promising predicting biomarker for metabolic 

diseases. 

Since the apelin/APJ system represents a promising therapeutic target towards insulin 

resistance/type 2 diabetes, the proof of concept of the influence of apelin administration on 

insulin sensitivity has been done in sixteen healthy non-diabetic human volunteers. During an 

hyperinsulinemic euglycemic clamp, apelin perfusion improved significantly insulin 

sensitivity without having side effects (Gourdy et al. 2018). To investigate the effects of 

apelin or apelin analogs in a large cohort of type 2 diabetic patients will be then the next 

challenge.  

 

4. Apelin and diabetic cardiomyopathy  

Among the complications associated with diabetes, this chapter will be dedicated to the role 

of the apelin/APJ system in myocardial dysfunctions, for other complications such as 

nephropathy or retinopathy see reviews (Hu et al 2016; Shin et al. 2017; Read et al. 2019). 

Hyperglycemia, hyperinsulinemia and metabolic diseases including cardiac insulin resistance 
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are starting points of diabetic cardiomyopathy. Then increased cardiac fibrosis and stiffness 

will appear and afterwards the first clinical indications of heart failure such as left ventricular 

(LV) hypertrophy, cardiac remodeling and diastolic dysfunction (for review see Jia et al. 

2018). Apelin exerts several effects on the cardiovascular system, being of interest in a 

context of diabetic cardiomyopathy. Indeed, apelin has been described as a very potent 

inotropic agent in vitro and in vivo in normal and failing hearts (Szokodi et al. 2002; Berry et 

al. 2004; Maguire et al. 2009). Promising compounds such as a G protein biased small 

molecule apelin receptor agonist (CMF-019) was also shown to be a positive inotrope in vivo, 

increasing cardiac contractility in rats (Read et al. 2016) and apelin-17 analogs (Gerbier et al. 

2016). Several studies have also shown that apelin has a short-lasting vasodilation in a nitric 

oxide (NO)-dependent manner and lowers blood pressure (for more details, see review Folino 

et al. 2015; Zhong J.C. et al. 2017). Clinical trials demonstrated that exogenous apelin 

injection induced NO-dependent arterial vasodilation in healthy volunteers (Japp et al. 2008) 

and increased cardiac output even in patients with heart failure (Japp et al. 2010; Barnes et al. 

2013). Moreover, apelin improves insulin-stimulated vasorelaxation both in an endothelium-

dependent and -independent manner and reduced angiotensin II-induced vasoconstriction in 

subjects with central obesity (Schinzari et al. 2017). Apelin could thus be beneficial to 

improve hemodynamic alteration related to insulin-resistance.  

Many factors can contribute to cardiac fibrosis through cell proliferation, differentiation or 

extracellular matrix production. Apelin was first shown to decrease angiotensin II-induced 

fibrosis by inhibiting PAI-1 in mice (Siddiquee et al. 2011) but also through transforming 

growth factor β (TGF-β) pathway. One contributor to TGF-β activation is sphingosine kinase 

1 (Sphk1) that induces cardiac fibroblasts proliferation. Apelin was shown to inhibit TGF-β-

mediated fibrotic response in primary culture of mouse cardiac fibroblasts via SphK1-

dependent mechanism (Pchejetski et al. 2012). In addition, in a mouse model of pressure 
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overload inducing cardiac fibrosis, chronic apelin treatment reduced myocardial fibrotic 

remodeling (Pchejetski et al. 2012). Recently, it has been reported that apelin through other 

mechanisms could also decrease fibrosis such as inhibition of TGF-β1/smad2/ α-SMA 

pathway (Lv et al. 2020) or PI3K/Akt activity in order to attenuate oxidative stress in rats 

with myocardial infarction-induced heart failure (Zhong et al. 2020). Obese mice treated with 

the long-acting Fc-apelin (as described in chapter 1) exhibit higher cardiac output and 

decreased cardiac fibrosis compared to untreated mice in addition to benefits on glucose 

tolerance (Wang et al. 2018).  

Different mechanisms could be involved in the progression of cardiac hypertrophy such as 

hypertension. One of the earliest in vivo study showed that chronic apelin treatment for 2 

weeks in mice increased cardiac output without evidence of hypertrophy (Ashley et al. 2005). 

However, Scimia et al. (2012) demonstrated that APJ KO and apelin KO mice had different 

responses in a mouse model of sustained pressure overload by transaortic constriction (TAC). 

APJKO mice had reduced myocardial hypertrophy and heart failure whereas apelin KO mice 

presented clear signs of heart failure (Scimia et al. 2012). It was demonstrated that APJ could 

transduce a signal independently of apelin and was thus a bifunctional receptor sensitive to 

stretch via recruitment of β-arrestin (Scimia et al. 2012). Furthermore, in an elegant study, 

Parikh et al (2018) showed that after exposure to TAC, mice with a specific APJ deletion in 

the endothelium (APJendo-/- mice) displayed decreased LV systolic function and increased wall 

thickness whereas mice with a deletion specific in the heart (APJmyo -/- mice) were protected. 

To note, APJendo-/- and APJmyo -/- mice display normal heart size and function at baseline. This 

study reveals that APJ stretch transduction is mediated specifically by myocardial APJ and 

leads to hypertrophic response whereas apelin binding to APJ blunted stretch-induced 

hypertrophy induction (Parikh et al. 2018). In line with these results, apelin-13 encapsulation 

in liposomes nanocarriers resulting in sustained apelin release in the same mouse model 
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(TAC) was shown to alleviate LV hypertrophy and to attenuate pressure overload-induced 

cardiac dysfunction (Serpooshan et al. 2015). Altogether these studies underline the 

importance to avoid β-arrestin-dependent pathway to ameliorate cardiac hypertrophy. 

Interestingly, MM07 a biased agonist for APJ was shown to stimulate vasodilation and to 

have inotropic effect in rats as well as increasing in human forearm blood flow (Brame et al. 

2015). MM07 preferentially stimulates the G-protein signaling without activating β-arrestin 

dependent pathways (Brame et al. 2015). Its effects on mechanical stretch will be of interest. 

In mice fed a high-fat diet for 24 weeks, apelin treatment also during 2 weeks reduced heart 

weight, diastolic and systolic diameters and thus cardiac hypertrophy but also attenuated 

contractile dysfunction (Ceylan-Isik et al. 2013). One actor playing an important role during 

cardiac hypertrophy development is Sirtuin3 (sirt3), exclusively located in mitochondria and 

possessing deacetylase activity. Sirt3 plays different roles, such as activating enzymes that 

reduce ROS production (affecting cardiac hypertrophy) or being part of metabolic processes 

(for review, see Ansari et al. 2017). Several studies have shown that apelin ameliorates 

diabetic cardiomyopathy by increasing cardiac sirt3 expression and decreasing ROS 

formation (Li et al. 2013; Zeng et al. 2014). Moreover, in a mouse model of obesity and 

cardiac hypertrophy, apelin treatment for 4 weeks, increased sirt3 mRNA expression in 

cardiomyocytes and β-oxidation in a sirt 3-dependent manner (Alfarano et al. 2015). More 

recently, Zeng et al. showed that endothelial sirt3 was playing an important role in glucose 

uptake and transport to cardiomyocytes (Zeng et al. 2020) and that apelin-induced glucose 

uptake was decreased in endothelial cells from sirt3 deficient mice demonstrating a paracrine 

action of the endothelial sirt3-apelin axis in the regulation of cardiomyocyte glucose 

transporter (Zeng et al. 2020).  Sirt3 is also essential for apelin-induced myocardial 

angiogenesis and autophagy in diabetes (Hou et al. 2015 a,b). It has also been shown that 

apelin overexpression in heart of db/db mice alleviates diabetic cardiomyopathy by increasing 
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vascular density via Sirt3 and increased Ang-1/Tie-2 and VEGF/VEGFR2 expression (Zeng 

et al. 2014). So through activation of sirt3 and by different mechanisms, apelin displays 

cardioprotective effects.  

Concerning the regulation of blood apelin during such phenomena, it has been reported that in 

untreated hypertensive patients with LV hypertrophy, serum apelin were lower than those 

without LV hypertrophy (Ye et al. 2015). In patients with hypertension and type 2 diabetes, 

reduced blood apelin levels were found compared to healthy volunteers (Koval et al. 2018). In 

addition, patients with concentric LV hypertrophy had the lowest apelin levels (Koval et al. 

2018). Apelin has been suggested as an important regulator of hypertension progression and a 

predictor to assess the prevalence of LV hypertrophy.  

 

5. Concluding remarks:  

Both metabolic and cardiovascular diseases are major health problems separately and together, 

since the incidence of heart failure is higher in diabetic patients compared non-diabetic 

patients (Jia et al. 2018). Among other well-known adipokines, apelin (acute and chronic 

treatment) has been shown to exert beneficial effects in the pathophysiology of the 

cardiovascular system and in type 2 diabetes in different animal models and in humans (figure 

2). In addition, plasma apelin is a promising biomarker for the detection of impaired glucose 

homeostasis and increased risk of heart failure. Of course, more studies are needed, especially 

in humans, to confirm that targeting the Apelin/APJ system is more than favorable by 

considering effects on other functions or complications associated with diabetes. However, it 

is a major strength for apelin and apelin receptor agonists to act both on metabolic and 

cardiovascular diseases. In-depth knowledge of apelin signaling pathways has already 

allowed the emergence of compounds able to discriminate effects in favor to therapeutic 
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benefits but again, in vivo studies, integrating both metabolic and cardiovascular impacts will 

be crucial in the coming years. Also, a convenient way to administrate these compounds (oral 

versus intravenous injection) has to be considered in addition to long-lasting effects for future 

clinical trials.  
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Legend of figures:  

Figure 1: Exogenous factors and situations regulating apelin gene expression positively (green 

arrows) and negatively (red arrows) in adipose tissue.  

Figure 2: Metabolic and cardiac effects of apelin or APJ agonists (↑ : increased and ↓ : 

decreased effect).  
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