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Abstract: Faraday instability is a classic problem that occurs due to the relative displacement of
the interface that separates two immiscible fluids placed in a closed container under oscillating
acceleration parallel to gravity. The interface deformation and the induced flow patterns of this
two-phase flow are very complex and numerical simulations could allow a deeper understanding of
the dynamics of these systems. Some tests have been performed to establish a reference solution,
but further validation is needed in order to ensure the validity of these solutions. In this work,
we compare some numerical solutions for the linear and nonlinear regimes using the phase field
scheme with predictions obtained using different numerical schemes such as Front Tracking, Volume
of Fluid, and Element-based Finite Volume Method. The results show that, in both linear and
nonlinear regimes, some important differences in the prediction of the interface dynamics between the
methods are observed, and the need to provide a reference numerical solution for future benchmarks
is highlighted.

Keywords: Faraday standing waves; parametric instability; numerical schemes tests

1. Introduction

Instabilities in mechanical systems are present in many areas of engineering pro-
cesses [1]. In general, the response of different variables of a mechanical system can be
especially sensitive to changes in one or several parameters [2]. For example, in the well-
known Melde’s experiments [3] in which a horizontal string is subjected to a tension at
one end and made to vibrate at the other end, the formation of standing waves is possible
for specific values of the excitation frequency that depends on geometrical and dynamic
variables such as the length and tension of the string. In this case, the parameter controlling
the wave pattern is the excitation frequency. Determining the value of the parameter range
or the phase space of the parameter set, where the system is stable or not, is crucial in
many applications.

The dynamics of some fundamental and industrial applications of mechanical systems
involving fluids is based on the same principles. Applications include spray formation [4],
liquid atomization [5], and the creation of liquid-based templates to generate patterns to
print micro-structures [6]. In particular, many natural phenomena and industrial processes
originate due to the effects caused by the acceleration of a container or vessel containing
two fluids (both liquids or a liquid and a gas) separated by an interface. The occurrence of
an instability at the interface is taken advantage of, which may result in the appearance
of standing wave patterns or the detachment of small droplets of the denser fluid. This
instability will be of a different nature depending on how the acceleration is applied [7].
Indeed, depending on whether the applied acceleration is constant, impulsive, or harmonic,
instabilities such as Rayleigh–Taylor [8], Richtmyer–Meshkov [9], or Faraday [10] occur,
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respectively. Often, the solutions of the governing equations are very sensitive to the
parameters that trigger the instability and describing their phase space can be a very
difficult task [11]. In addition, analytic solutions for the governing equations are often
not available and numerical methods have to be employed to find approximate solutions.
Special care must be taken when considering different numerical approaches to ensure
that the solutions are independent of the discretization scheme chosen to represent the
governing equations.

In this work, we are interested in the numerical simulation of Faraday instability [10].
This instability is produced by the relative displacement of the interface separating two
non-miscible fluids placed in a closed container, subjected to an oscillating acceleration
parallel to gravity. If both fluids and the container are at rest, the interface that separates
both fluids is flat. Faraday [10] found that, for a given value of the frequency of the
oscillating acceleration, when values of the amplitude of the oscillating acceleration, a f ,
are below a critical value, ac, no appreciable motion of the interface is observed, and any
perturbation of the interface is dissipated. Otherwise, if a f is greater than ac, the interface
becomes unstable showing complex behavior. Under certain conditions, for the threshold
value ac, the interface separating both fluids shows a regular standing waves pattern.
Faraday [10] observed that, when a f value corresponds to the threshold value ac, the
frequency of the standing waves was half the frequency of the acceleration of the container
while Matthiessen [12] reported that the frequency was equal to that of the container. The
value of ac is a function of the dimensions of the container, the physical properties of fluids,
and the oscillating frequency.

Several efforts have been made in the past to determine the values of critical parame-
ters for the Faraday instability and to analyze the interface behavior for values of a f greater
than ac. The study of Faraday instability has been approached by considering two different
regimes, linear and nonlinear. In the linear regime, the terms of the equations of motion
involving products between velocity components, or with its derivatives, are neglected
as Kumar [2] does. A variation of this approach is called weakly nonlinear and consists of
expanding the nonlinear terms and neglecting the fourth- and higher-order terms [12].
Consequently, in the linear regime, the oscillation amplitudes of the interface must be
relatively small compared to the wave length, so the convective term in the equations of
motion can be neglected in the governing equations.

The Faraday instability has been analyzed by many authors. Kumar and Tuckerman [2]
determine the critical values of the oscillating acceleration magnitude as a function of the
wavenumber for a two-dimensional system consisting of a rectangular container with two
ideal fluids separated by a planar interface using a Floquet analysis. They found that, for
the threshold value, standing waves could be harmonic or sub-harmonic with frequencies
that are equal to or half the oscillating acceleration, respectively.

Subsequently, Wright et al. [7] compare, for non-viscous fluids, the solutions from
a boundary-integral method with the vortex-sheet method. For small interface deforma-
tions, the predictions of both methods are very similar. They found that plumes, droplet
formation, and ejection could appear for moderate values of the Atwood number.

The Faraday instability with viscous fluids is studied by Kumar [13] who presents
a linear analysis. He found that, for the same value of frequency and amplitude of the
oscillating acceleration, it is possible to have both harmonic and sub-harmonics’ standing
waves patterns. Later, Périnet et al. [14] use a finite-difference projection method coupled
with a front-tracking method to track the interface. They perform analyses in two and
three dimensions and their results for the threshold values of the oscillating acceleration
amplitude are in good agreement with the Floquet analysis of Kumar and Tuckerman [2].
In order to validate the numerical results of Périnet et al. [14] with a different numerical
method, Takagi and Matsumoto [15] use a numerical scheme based on the phase-field
method. They perform an analysis for both linear and nonlinear regimes. Their results
for the magnitude of the critical acceleration in the linear regimes are in good agreement
with those of Périnet et al. [14], but, in the nonlinear regime, the comparison of the
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interface dynamics in their test case, taken from Wright et al. [7], is only qualitative due to
differences between properties of fluids (densities), the size of the physical domain, and
the consideration of viscous effects. Takagi and Matsumoto [15] show that the trends of
the interface dynamics is similar in both methods and conclude that their model is able
to provide accurate numerical results of the Faraday instability. Other different nonlinear
cases are tested and show good agreement with experimental results of Jiang et al. [16],
in particular, concerning the occurrence of the period tripling of standing waves. Takagi
and Matsumoto perform another study [17] of the same mechanical system considering a
two-frequency forcing, but they use a different numerical scheme, the particle-level method,
to model the interface dynamics. Accurate modeling of the forces due to interfacial tension
is very important to adequately describe the interface dynamics. Different methodologies
are used to represent the effect of surface tension, depending on how it is represented.
The region that separates fluids can be represented, in grid-based methods, as a diffuse
or a sharp interface. The natural choice for representing interfacial forces, based on the
definition of the forces themselves, is to express them as tangential forces to the interface.
This method then requires defining the interface using adaptive meshes so that the interface
coincides with a surface (line in 2D flows) of the grid, or, in fixed meshes, by introducing a
set of markers that represent the interface and move with the flow. Methods using adaptive
moving meshes allow interfacial conditions on the tangential and normal stresses of the
surface to be imposed in a natural way, but have limitations in their application when the
interface deforms considerably [18]. On the other hand, there are methods that use markers
that are carried by the flow and allow for tracking the interface. These methods allow for
considering large curvatures but have the disadvantage that can lead to interfaces that
deform at spatial scales that cannot be represented in the grid [19]. Among the methods
belonging to this family is Front Tracking [20].

On the other hand, another family of methods uses diffuse interfaces for which the
term representing the interfacial forces is expressed as a volumetric distribution of forces.
In this case, this originally local force (appearing only at the interface) is distributed over a
small set of cells. For this purpose, the function representing an interface concentrated in
a region of space is approximated by a Heaviside function that extends the interface in a
direction perpendicular to itself, an ad-hoc distance (usually the width of a domain cell).
The interfacial forces are then calculated from an integration over the entire fluid domain.
Volume-of-fluid type methods use this approach [19]. Popinet [21] presents an excellent
review of methodologies to calculate these interfacial forces.

To consider Takagi and Matsumoto [15] results as reference solutions for the 2D
Faraday instability, a few points must be well established. First, comparisons in linear
regime must go beyond checking in a number of cases the computed values for the critical
acceleration. The dynamics of the interface must be analyzed to be sure that the actual
motion is accurately represented. In addition, the comparison with the nonlinear case must
also be verified quantitatively, since Takagi and Matsumoto [15] only compare qualitative
trends of the interface movement at the midpoint of the container and the formation of
plumes. In their simulation, Takagi and Matsumoto [15] use fluid density values different
than those of Wright et al. [7] due to limitations in their implementation of the phase-field
scheme to consider high Atwood numbers. In addition, the results of Wright et al. [7] were
obtained in a semi-infinite domain; consequently, the influence of fluid confinement on the
interface dynamics could be important.

In this work, different numerical schemes are considered for the simulation of the two-
dimensional Faraday instability. We use three different codes, two in-house codes based
on Front-tracking (sharp interface representation) and Volume of Fluid (diffuse interface
representation) methods, respectively, to shift the interface, and the commercial software
ANSYS-CFX (Element-based Finite Volume Method). We consider cases in the linear and
nonlinear regimes in the same manner as Takagi and Matsumoto [15]. Comparison of the
threshold accelerations and interface dynamics for the linear harmonic and sub-harmonic
cases and a nonlinear case resulting in the formation of a plume have been considered.
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This paper is organized as follows: first, we describe the physical domain, the mathe-
matical framework, and the particular features of the numerical schemes for each code. In
Section 3, we present the details of the verification tests for the in-house codes. Section 4
contains the numerical results for the Faraday instability while Section 5 discusses the
implications of comparing the results of all codes with the phase-field code-based scheme.
Finally, some consequences of the comparisons made and their implications for further
developments for better modeling of the Faraday instability are presented.

2. Mathematical and Numerical Models

We consider two immiscible fluids in a two-dimensional container, separated by a
sharp interface. Initially, both fluids are at rest, and, due to buoyancy effects, the lighter
(heavier) fluid is naturally placed on top (bottom) of the container as shown in Figure 1.

Figure 1. Schematic distribution of fluids in the two-dimensional container.

Both fluids are Newtonian, incompressible, and immiscible, and their physical prop-
erties are constant. The fluid at the top side of the container has density and dynamic
viscosity ρt and µt, respectively, while the fluid in the bottom side has density and dynamic
viscosity ρb and µb, respectively. The vertical axis z is aligned with the gravity acceleration
g. The container is submitted to an oscillating vertical external force resulting in a total
variable acceleration a in the vertical direction as shown in Equation (1),

a = −g + a f cos(ωt), (1)

where a f and ω are the amplitude and angular frequency of the variable component of the
acceleration, respectively.

To describe the dynamics of these fluids, we consider the Navier–Stokes equations for
both fluids in laminar flow regime:

∇ · u = 0 (2)

ρ

[
∂u
∂t

+∇ · (uu)
]
= −∇p +∇ ·

(
µ
[
∇u + (∇u)T

])
+ ρg + ρfs (3)

where ρ and µ are the local fluid density and dynamic viscosity, respectively, p is the
pressure, u is the velocity field, g is the gravitational acceleration, and fs takes into account
the surface tension effects between the two fluids.

We compare the results obtained with the Phase-Field, Front-Tracking, Volume-Of-
Fluid, and Element-based-Volume-of-Fluid schemes after numerically solving Equations (2)
and (3). In all the considered schemes, the domain is decomposed into a number of
elementary cells. The two fluids are separated by an interface that is determined by either:
(a) a function φ that changes its values between two extreme values (for example −1 and 1
or between 0 and 1), the value representing the location of the interface being a specific
value (e.g., φ = 0 or φ = 0.5), or (b) the location of a discrete set of points or markers that
allow for reconstructing the interface when they are connected. In either case, a subset of
cells are traversed by the interface and there the physical properties, density, and viscosity
are determined so that their value is proportional to the fluid volumetric fraction of each
fluid in the cell.
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The boundary conditions for the system of Equations (2) and (3) are: (a) the upper
and the lower boundaries are non-slip boundaries and (b) the left and right boundaries are
periodic boundaries. Depending on the selected numerical scheme, a different approach
is followed to account for interfacial effects. For the sake of completeness, a simplified
version of each scheme is presented.

2.1. Front Tracking Scheme

Oliva [22] developed an in-house code, hereafter referred to as FTS, based on the
Front Tracking method. His implementation follows the single-field formulation proposed
by Tryggvasson et al. [20,23], where a single set of conservation equations is used with
the addition of a marker function that identifies the fluids. The discretization of the
Navier Stokes equations is performed using the finite volume method in a staggered mesh.
The linear momentum conservation equations are solved by the Semi-Implicit Method
for Pressure-Linked Equations Revised, SIMPLER, (Patankar [24]). The marker points
are advected from the velocity field and then used to reconstruct the marker function
and estimate the surface tension force, in the same way as Perinet et al. [14]. When
the simulation is performed in a two-dimensional domain, the interface separating the
fluids is two-dimensional, and the structure of the front can be handled as a succession
of ordered markers connected one after the other. The transfer of information between
the front and the staggered grid is done by the smooth weight function proposed by
Brackbill and Ruppel [25]. The reconstructing of the marker function is done by first
computing its gradient and then integrating it. To maintain accuracy and efficiency, Oliva’s
implementation [22] allows for restructuring of the front, involving, inserting, or removing
markers in the interface when they get too far away or too close to each other while moving.

2.2. Phase-Field Based Scheme

Phase-field methods model the sharp interface as a diffuse interface. A field variable
representing the local presence of each fluid changes in a controlled manner in a finite
region of the space. The equation describing this field variable is the Cahn and Hilliard
equation [26]. This equation is obtained by considering the time evolution of the fluid
volume fraction of each phase, FVF, of the free energy density function of van der Waals.
This equation includes the energy gradient (proportional to the local variation of FVF) and
the second bulk energy density (proportional to a function of FVF that considers the local
presence rate of each phase, with minimum values at each phase and a maximum at the
interface). The effect of surface tension is obtained from the variational derivation of the
energy field (Jacmin [27]) and is included in the linear momentum conservation equations
as an external force. The conservation equations are then solved simultaneously with the
Cahn–Hilliard equation to determine the values of the flow variables and the location of
the interface separating the fluids.

The numerical scheme consists of using a staggered grid to represent the variables. The
advection term of the Cahn–Hilliard equation is discretized by standard second-order finite
difference and aliasing is not eliminated. Concerning the discretization of the chemical
potential term, it is split in three terms: the fourth order term which is fully implicit
discretized while the other two terms (linear and the third order for free energy) are semi-
implicit discretized. On the other hand, the Navier–Stokes equations are discretized using
a finite difference projection method [28]. For more details, see Takagi and Matsumoto [15].
This scheme is hereafter called PFS.

2.3. Volume of Fluid Scheme

In order to have a different approach than Front Tracking and Phase fields methods to
numerically solve the interface motion, we developed another in-house code combining
the Finite Volume method to discretize the Navier–Stokes equations and the Volume of
Fluid (VOF) method to model dynamics of the two-phase flow [29].
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In the implementation of Machado’s [29] VOF scheme, hereafter called VOFS, the
governing equations are solved numerically in a staggered grid, using a system of equations
for the entire flow field. The different fluids are identified by a marker function that
takes different values for each fluid. In the cells where the interface is located, a value
proportional to the relative amount of each fluid must be calculated. As the fluids move, the
interface separating them changes location. The new locations are calculated by solving a
transport equation for the interface that is identified by the gradient of the marker function.
Therefore, an accurate calculation of the relative values of the volume of each fluid in each
cell where the interface is located and the normal vector to the interface is needed to solve
its transport equation with the precision to ensure proper modeling of the flow dynamics.
In our combined Finite Volume discretization-Volume of Fluid implementation, we used
the Piecewise Linear Interface Calculation, PLIC, to estimate and reconstruct the interface
and estimate the volume fraction of each fluid in the cells and the Efficient Least-square
Volume-of-fluid Interface Reconstruction Algorithm, ELVIRA [30], to determine the local
normal vector in each cell. To model the effects of surface tension, we use the Continuum
Surface Force algorithm, or the CSF model, developed by Brackbill et al. [31], in particular
the Marker and Cell (MAC) version in which the zero-thickness interface is replaced by
a discrete-thickness interface with a finite thickness, which allows for a smooth variation
of the marker function. This smoothed function is an interpretation of the interface as a
transition zone, where it changes from a sharp jump in physical properties to a smoother
or degraded transition, which helps to obtain more accurate results, favoring the stability
of the different numerical methods. The time-advance of the algorithm follows these steps:
starting from a velocity field, the interface is advected, then the position of the interface
is computed by using PLIC reconstruction and the ELVIRA algorithm [30], the surface
tension forces are computed by the CSF method, a new field of velocity and pressure is
computed for both fluids, and so on.

2.4. ANSYS CFX Scheme

ANSYS-CFX is a commercial software package with several years on the market.
Its solver is based on the finite volume method (Element-based Finite Volume Method,
EbFVM). Elemental volumes are obtained from the mesh nodes. Each elemental volume is
divided into small subvolumes and field variables are interpolated within each subvolume
using interpolating functions. Once the equations are integrated, the contribution of all
subvolumes is summed to have the elemental volume contribution to the overall solution.
It uses the volume of fluid formulation to model flows with several fluids simultaneously.
It has been proven in many applications and today is one of the references in commercial
software for fluid flows analysis in a variety of applications.

In this work, we use the second order backward Euler scheme for temporal discretiza-
tion and the High Resolution scheme for spatial discretization. This scheme is the second
order of spatial accuracy in general and first order near discontinuities. To model the
interface dynamics, we use the homogeneous model. This model computes common fields
of all variables except the volume fraction of each phase. The effects of surface tension
interactions are considered using the CSF model of Brackbill et al. [31]. More information
can be found in the documentation of the software [32]. This scheme is hereafter referred
to as EbFVMS.

2.5. Validation and Verification of In-House Codes

The in house codes developed with the Front Tracking and Volume of Fluid schemes
were carefully verified to ensure their ability to accurately model the deformable interfaces
as well as the motion of the interfaces. This analysis is presented in Appendix A.

3. Results

The comparison between the different methodologies was performed for the linear
and nonlinear regimes. The physical domain is rectangular, as shown in Figure 1, with



Processes 2021, 9, 948 7 of 20

dimensions Lx × Lz. The boundary conditions considered were: (a) the lower (z = 0) and
upper (z = Lz) boundaries are non-slip walls, and (b) the left (x = 0) and right (x = Lx)
vertical walls are periodic boundaries (see Figure 1). The numerical domain is discretized
by a uniform mesh with Nx × Nz cells, the size of each cell is ∆x × ∆z with ∆x = Lx/Nx,
and ∆z = Lz/Nz.

Initially, to properly compare with the results presented by Takagi and Matsumoto [15],
in all cases, it was considered that, at t = 0, both fluids were at rest and separated by a
slightly deformed interface. The initial configuration of the interface is:

z =
Lz

2
+ bcos(kx) (4)

where b= Lz/∆z and k = 2π/Lx.

3.1. Linear Regime

To study the linear regime, we consider the same four cases as Takagi and Mat-
sumoto [15]. The physical properties of the fluids, gravity acceleration, vertical length, and
angular frequency are given in Table 1.

Table 1. Physical parameters defining linear test cases.

ρb ρt µb µt σ g Lz ω

(kg/m3) (kg/m3) (Pa·s) (Pa·s) (N/m) (m/s2) (m) (s−1)

519.933 415.667 3.908 × 10−5 3.124 × 10−5 2.181 × 10−6 9.8066 2.31 × 10−4 200π

A careful and detailed sensitivity analysis of mesh size and time steps was per-
formed for all schemes for both linear and nonlinear regime; details are presented in
Appendix A. The horizontal length was defined as Lx = 2π/k, and the mesh discretiza-
tion was Nx × Nz = 128× 128 for all codes. Time-step was set to ∆t = 2.5 × 10−6 s for
all methods.

Table 2 shows the values of the critical acceleration ac for each considered case.

Table 2. Comparison of critical amplitude values ac/g in the linear regime.

k (mm−1) Linear Theory PFS FTS VOFS EbFV MS

28 4.37 4.65 4.36 4.43 4.35
48 12.50 12.50 12.17 11.75 13.55
73 28.50 28.40 27.65 25.25 29.20
94 51.00 50.00 48.06 48.00 49.90

The values of the critical acceleration are very close. The relative differences between
these values and those predicted by the linear theory are shown in Table 3.

Table 3. Relative difference between computed critical amplitude values ac/g and linear theory
predictions.

k (mm−1) PFS FTS VOFS EbFV MS

28 6.41 −0.2 1.37 −0.46
48 0.00 −2.64 −6.00 8.40
73 −0.35 −2.98 −11.40 2.46
94 −1.96 −5.76 −5.88 −2.16

In all the cases analyzed, some of the schemes show differences with the reference
solution of more than 5%. The first one corresponds to the PFS scheme for k = 28 mm−1.
Takagi and Matsumoto [15] argue that this difference would be a consequence of the
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relatively large value of Lx/Nx. However, values of ac for all the other schemes are
below 1.5% using the same discretization. The cases correspond to k = 48 mm−1, and
k = 73 mm−1 show differences of more than 8%.

Figure 2 shows the time evolution of the interface at x = Lx/2 for three different values
of k. Although all schemes are able to describe the motion of the interface, only the PFS
scheme shows discrepancies in the first period. In particular, the difference between the
numerical predictions of the phase field scheme and the other schemes for k = 94 mm−1 in
the first period is remarkable. However, all schemes are capable of accurately describing
the dynamics of the interface.
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(b) k = 73 mm−1 (harmonic case)

0 1 2 3 4 5 6

t/T
v

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

S
u
rf

a
c
e
 e

le
v
a
ti
o
n
/L

x

(c) k = 94 mm−1 (subharmonic case)

Figure 2. Comparison of the interface position at x = Lx/2 in linear regime cases. (◦) Linear
analysis [15], (∗) PFS [15], (–) EbFVMS (this work), (–) FTS (this work), (–) VOFS (this work).
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3.2. Nonlinear Regime

Once all the schemes have been validated, we proceed to analyze a case in the nonlin-
ear regime. In the nonlinear regime, the size of the oscillation amplitude of the interface
may be larger compared to the linear regime and the possibility of having plume forma-
tion and drop ejection if the external forces operate for several periods. We choose the
same test case of Takagi and Matsumoto [15], a modification of a test case considered by
Wright et al. [7]. The physical and geometrical parameters are described in Table 4.

Table 4. Physical parameters defining the nonlinear test case.

ρb ρt µb µt σ Lx Lz a f ω

(kg/m3) (kg/m3) (Pa·s) (Pa·s) (N/m) (m) (m) (m/s2) (s−1)

1000 818.18 0.2 0.2 0.072 1 1 0.09 0.26728

The interface is slightly deformed at t = 0 according to Equation (4) with b = −0.01 m.
The mean gravity acceleration is 0, and the grid discretization is Nx × Nz = 256× 256
for all schemes. The time steps for each scheme, 1.18 × 10−2 s, 3.36 × 10−2 s and
1.0 × 10−2 s for the EbFVMS, FTS and VOFS, respectively, were chosen to ensure that
the numerical results were independent of the time discretization. This analysis is shown
in Appendix A.2.2. There are two important differences between the values of the physical
and geometrical parameters between situations considered by Takagi and Matsumoto [15]
and Wright et al. [7]. First, the original case of Wright et al. [7] considers an Atwood num-
ber, At = (ρb− ρt)/(ρb + ρt) = 0.65, while the case proposed by Takagi and Matsumoto [15]
corresponds to At = 0.1. Takagi and Matsumoto [15] argue that their PFS scheme cannot
cope with Atwood numbers greater than 0.4. The other difference is the size of the physical
domain. Wright et al. [7] consider an infinite physical domain in the vertical direction. For
these reasons, comparisons between our results and those of Takagi and Matsumoto [15]
with numerical results of Wright et al. [7] can only be qualitative. Figure 3 shows the
motion of the interface point located at the midpoint of the container, i.e., at Lx/2. Although
the trends of all numerical simulations are similar, there are some important differences
between them. First, there is a very close agreement between the results of the FTS, VOFS
and EbFVMS schemes with those of Wright et al. [7] in the first two cycles (the curves
corresponding to the three schemes are superimposed on each other). For t/Tv > 2, the
predictions of these three schemes show the same trends with relative maximum and
minimum values at the same time as those of Wright et al. [7].
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Figure 3. Comparison of different approaches in the nonlinear regime: surface elevation at the
midpoint. (o) Wright et al. [7], (*) PFS [15], (–) EbFVMS (this work), (–) FTS (this work), (–) VOFS

(this work).
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On the other hand, the results of the phase-field scheme follow the trend of those of
Wright et al. [7] but not as closely as the other schemes. In the first oscillation cycle, the
predicted motion of the interface midpoint of PFS is in an opposite (downward) direction
to the behavior of the other three schemes (upward). Subsequently, the relative maximum
and minimum values are delayed compared to Wright et al. [7]. In all three schemes tested
in this work, we found the droplet ejection limit very close to t/Tv = 4.

4. Discussion

Comparison between the numerical results of the three numerical schemes Volume of
Fluid(VOFS), Front-Tracking (FTS), and Element-based Finite Volume Method (EbFVMS),
and those of the phase field scheme [15], show several important differences. First, in the
linear regime, although the acceleration threshold values, ac, determined by all schemes
are relatively close for all the cases analyzed. However, none of the schemes analyzed were
capable of modeling the four cases considered, with relative differences of less than 5%
with respect to the reference solutions. For the case k = 28 mm−1, the PFS scheme shows
important relative differences compared to those presented by the other schemes. In the
case k = 48 mm−1, the EbFVMS scheme presents the most important deviations while, in
the other two cases analyzed, the VOFS scheme has the worst performance. The FTS, PFS
and EbFVMS schemes are below 3% in at least three of the four cases analyzed.

In all cases, simulations were started for fluids at rest. Only the PFS scheme takes time
to synchronize with the reference solutions provide by the linear analysis [2]. In particular,
the behavior in the subharmonic case k = 94 mm−1 as it is shown in Figure 2 is remarkable.

Concerning the analysis of the nonlinear regime, for the first two periods, the numer-
ical results of FTS, VOFS and EbFVMS are almost identical to those of Wright et al. [7].
Then, for t/Tv > 2.3, the Wright et al. [7] solution separates from the other three schemes
(which continue to agree). This behavior is a consequence of the confinement of fluids by
the container walls which are located at dimensionless surface elevation h/Lx = ±0.5. This
effect is not appreciable in Wright et al. [7] because their physical domain is infinite in the
vertical direction. However, the differences between the prediction of the PFS scheme and
the other schemes are appreciable. The surface elevations predicted by the PFS scheme are
lower in the first period than those of the vortex-sheet method of Wright et al. [7] and the
three schemes developed in this work. Next, for PFS, the interface position at the middle
of the tank grows while it goes down with our three schemes (for 1 < t/Tv < 2.3). After
t/Tv > 2.3 PFS, minimum and maximum values are significantly different from all the
other considered schemes and the solutions of Wright et al. [7].

To check the possible causes of this behavior, we performed a last simulation consider-
ing that the oscillating acceleration phase was opposite to that considered by Wright et al. [7].
The evolution of the interface midpoint position is presented in Figure 4.

Except for the simulations of Wright et al. [7], the trends of all numerical simulations
are the same. Moreover, in the first period, for very small amplitudes, the agreement
between all simulations is remarkable as it is shown in Figure 5. From a qualitative point of
view, the effect of this phase change in acceleration is to invert the direction of the inertial
force on the interface which now acts in the same direction as the interfacial force, i.e., the
interface moves towards the bottom of the container, in the opposite direction compared
to the original case. This difference in the behavior of the interface can be appreciated in
Figure 5.
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Figure 4. Comparison of different approaches in the nonlinear regime: surface elevation at the
midpoint-inverted acceleration phase. (o) Wright et al. [7], (*) PFS [15], (–) EbFVMS (this work), (–)
FTS (this work), (–) VOFS (this work).
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Figure 5. Initial dynamics of interface midpoint surface elevation after acceleration phase.
(o) Wright et al. [7], (*) PFS [15], (–) EbFVMS (this work), (–) FTS (this work), (–) VOFS (this work).

For t/Tv > 1, the PFS prediction of the surface elevations diverges from the predic-
tions of other schemes, but the trends are similar, the relative minimum and maximum
values occur almost at the same time up to t/Tv∼ 3.5. However, from a quantitative point
of view, numerical predictions of the PFS-scheme present important differences with the
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other three schemes considered. Moreover, Figure 4 shows some important differences
in surface elevation of the interface midpoint predicted by the FTS and VOFS schemes
are appreciable when t/Tv > 3. Figure 6 shows the shape of the interface for various time
instants (the same reported in [15]), and it is evident that, after t/Tv > 3, although the
shape of the interface follows the same trend, there are some important differences between
the FTS scheme and the VOFS and EbFVMS schemes. Figure 6 includes results from [15]
even though the direction of acceleration is reversed for illustrative purposes only.

0 0.2 0.4 0.6 0.8 1

x/L

-0.5

0

0.5

S
u

rf
a

c
e

 e
le

v
a

ti
o

n
/L

(a) t/Tv=2.7

0 0.2 0.4 0.6 0.8 1

x/L

-0.5

0

0.5

S
u

rf
a

c
e

 e
le

v
a

ti
o

n
/L

(b) t/Tv=2.9

0 0.2 0.4 0.6 0.8 1

x/L

-0.5

0

0.5

S
u

rf
a

c
e

 e
le

v
a

ti
o

n
/L

(c) t/Tv=3.1

0 0.2 0.4 0.6 0.8 1

x/L

-0.5

0

0.5

S
u

rf
a

c
e

 e
le

v
a

ti
o

n
/L

(d) t/Tv=3.3

Figure 6. Comparison of the interface shape evolution—Nonlinear case with inverted acceleration.
(−) PFS [15], (◦) FTS (this work), (∗) EbFVMS (this work), (�) VOFS (this work).
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In the search for possible explanations to the difficulties encountered in numerical
modeling of Faraday instability, we compare the different time scales involved with the
forces present could give some ideas for future work. A dimensional analysis considering
the different forces involved (gravitational, viscous, and interfacial tension) leads to the
following time scales: tg = (λ/g)1/2, tµ = (λ2ρ/µ) and tσ = (λ3ρ/σ)1/2, where λ is a
reference length (wavelength or physical domain length), ρ and µ are the average densities
and viscosities, respectively, σ is the surface tension, and g is the maximum value of the
modified gravity acceleration. Table 5 shows the values of these scales in all cases analyzed.

Table 5. Comparison of time scales in linear and nonlinear cases.

Case tg (s) tµ (s) tσ (s)

Linear k = 28 mm−1 0.0040 0.6679 0.0491
Linear k = 48 mm−1 0.0023 0.1700 0.0176
Linear k = 73 mm−1 0.0015 0.0987 0.0117
Linear k = 94 mm−1 0.0010 0.0594 0.0080

Non Linear 3.33 4545 355

The time scale associated with gravity is at least one order of magnitude smaller with
respect to the other two time scales in the linear regime simulations and is even three
orders of magnitude in the nonlinear regime. Consequently, the difficulty in numerically
simulating this problem may lie in solving all these time scales with the necessary accuracy.
Consequently, an analysis should be performed using numerical schemes with higher
temporal accuracy or based on other formulations such as the use of adaptive meshing at
fluid interface.

5. Conclusions

In this work, a comparison is made between different numerical schemes to solve the
Navier–Stokes equations for modeling the Faraday instability. Results calculated using
the phase field scheme were reviewed from several test cases, in the linear and nonlinear
regimes, for the Faraday instability. All cases were modeled using three different codes
based on numerical schemes developed from Front Tracking and Volume of Fluid methods
and a commercial ANSYS-CFX software developed from a variant of Volume of Fluid
methods. The comparison was based on predictions about the evolution of the interface
shape or the dynamics of a particular interface point.

Although the numerical predictions in a linear regime are relatively close, some
differences between them can be appreciated. In particular, in all cases, for some nu-
merical schemes, the value of the critical acceleration magnitude is not so close to the
reference inviscid solution. Moreover, in a linear regime, the PFS scheme requires extra
time compared to other schemes to synchronize with the corresponding standing wave in
sub-harmonic cases.

In the nonlinear regime, the differences between the numerical solutions for the test
case were largest between the PFS scheme and all other schemes considered. Moreover,
the excellent agreement between the solutions obtained by the FTS and VOFS schemes
and the remarkable quantitative agreement with the reference inviscid solution in the
low amplitude time range allow us to conclude that the use of phase-field methods for
modeling Faraday instability should be revisited. This is evident in the variant of the
nonlinear case (with a reversed phase of the oscillating acceleration), which shows that the
trends of all numerical schemes are the same from a qualitative point of view, but some
minor but distinguishable differences are observed in the shape of the interfaces by the
three different schemes tested.

Consequently, despite the important coincidences between the results obtained be-
tween some schemes, some results for both the linear and nonlinear regimes need to be
clarified in order to establish a reference solution of Faraday instability. A further study is
needed that considers the influence of fluid viscosities, different boundary conditions on
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the top and bottom walls to make a more reasonable comparison with inviscid solutions, a
sensitivity analysis of mesh density and physical domain size, and the use of more accurate
temporal schemes. This topic will be considered in future work.
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The following abbreviations are used in this manuscript:

At Atwood number, (ρb − ρt)/(ρb + ρt)
a Total acceleration
ac Critical amplitude of oscillating acceleration
a f Amplitude of oscillating acceleration
d0 Bubble diameter
EbFVMS Element based Finite Volume Method scheme
Eo Eötvös number, ρlU2

gd0/σ

fs Interfacial tension force
FTS Front-tracking scheme
FVF Fluid Volumetric fraction
g Gravitational acceleration
p Pressure
Re Reynolds number, ρlUgd0/µl
t Time
t0 Reference time scale in the validation case
Tv Period (2π/ω)
u Velocity field
Ug Reference velocity scale in the validation case
VOFS Volume of Fluid scheme
x, z Horizontal and vertical cartesian coordinates
Greek symbols
ρ Fluid density
µ Fluid viscosity
ω Angular oscillating frequency
PFS Phase field scheme
σ Surface tension
Subscripts
b Bottom
t Top
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Appendix A. Verification of In-House Codes and Sensitivity Grid Analysis

Appendix A.1. Verification of In-House Codes

Both in-house codes, FTS and VOFS, were validated using the benchmark case 1 for a
two-phase flow proposed by Hysing et al. [33]. This case models the ascent due to gravity
effects of an initially 2D circular gas bubble of diameter d0 surrounded by a liquid placed
in a closed container whose size is 2d0 × 4d0. The coordinate reference frame is placed in
the lower left corner of the physical domain, and the bubble is initially at position (d0,d0).
Figure A1 shows the physical domain and the initial fluid configuration.

Figure A1. Physical domain and initial configuration for a verification test case.

To define the physical properties of fluids, the diameter d0, velocity Ug =
√

gd0, and
time t0 = d0/Ug are the references scale for length, velocity, and time, respectively, and
g is the acceleration of gravity. The subscripts l and g correspond to the liquid and gas
phases, respectively; the Reynolds and Eötvös numbers are defined as Re = ρlUgd0/µl
and Eo = ρlU2

gd0/σ, respectively. The physical parameters and dimensionless numbers (in
terms of the defined references scales) defining the test case are given in Table A1.

Table A1. Physical parameters and dimensionless numbers defining the test case.

Re Eo ρl/ρg µl/µg σ g ρl ρg µl µg
(−) (−) (−) (−) (N/m) (m/s2) (kg/m3) (kg/m3) (Pa·s) (Pa·s)

35 10 10 10 24.5 0.98 1000 100 10 1

The boundary conditions are: (a) no-slip condition on upper and lower boundaries
and (b) free-slip condition on the vertical walls. The numerical domain is discretized by a
uniform mesh of 80 × 160 cells. The bubble center-of-mass velocity in the interval between
t = 0 s and t = 3 s and the bubble shape at t = 3 s were compared. Figure A2 shows the
comparison between the numerical predictions of FTS and VOFS and the benchmark case.
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Figure A2. Verification test: Rise velocity and bubble shape for test case 1 of Hysing et al. [33]
(o) TP2D [33], (*) VOFS (this work), (–) FTS (this work).

The numerical solutions obtained by the FTS and VOFS codes are numerically the
same for both the ascent rate and the bubble shape, with respect to each other and when
compared with the three models tested in Hysing et al. [33]. Only the TP2D (a code based
on finite-element discretizations for incompressible flow of immiscible fluids with the level
set method [33]) model results are shown. This agreement between all numerical results
allows us to ensure that the interface effects on the flow dynamics are well taken into
account for both codes. Moreover, since ANSYS-CFX is a software that has been used for
several decades in countless numerical simulations for multiphase flows, no verification
was performed to check its capabilities. This assumption was confirmed by analyzing the
Faraday instability in the linear regime.

Appendix A.2. Sensibility Grid Analysis

To assure that the spatial and temporal discretization allow for obtaining results with
the required accuracy, a detailed analysis of the size grid elemental volumes and the time-
steps was performed, for both linear and nonlinear cases. We choose as reference grids
and time-steps those used by Takagi and Matsumoto [15]. Depending on the flow regime
(linear or nonlinear), different sizes of elemental grid volumes and time-steps were tested.

Appendix A.2.1. Spacial and Time Steps Discretization: Linear Regime

The phase-field scheme uses a 128 × 128 uniform grid in both directions to study
the linear regime. To analyze the sensibility to the spacial grid discretization in the linear
regime, each numerical scheme was tested using grids ranging in sizes from 32 × 32 to
128 × 128. The test case was chosen as the one corresponding to standing waves for
k = 28 mm−1, where the phase field scheme obtained the worst results. To analyze grid
convergence, the values of ac/g obtained for each grid were compared. Tables A2–A4 show
ac/g and the relative difference with the finest considered grid, 128 × 128, for each scheme.

Table A2. Spacial grid size sensibility analysis of ac/g for EbFVMS in the linear regime.

Grid Size 128 × 128 96 × 96 64 × 64 48 × 48 32 × 32

ac/g 4.35 4.35 4.35 4.43 4.57
∆(%) 0 0.00 0.00 1.84 5.06

Table A3. Spacial grid size sensibility analysis of ac/g for FTS in the linear regime.

Grid Size 128 × 128 96 × 96 64 × 64 48 × 48 32 × 32

ac/g 4.36 4.37 4.38 4.40 4.49
∆(%) 0 0.23 0.46 0.92 2.98
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Table A4. Spacial grid size sensibility analysis of ac/g for VOFS in the linear regime.

Grid Size 128 × 128 96 × 96 64 × 64 48 × 48 32 × 32

ac/g 4.43 4.43 4.43 4.51 4.56
∆(%) 0 0.00 0.00 1.81 2.93

Numerical tests show that grids denser than 64 × 64 were able to produce results
independent of the size of the grid elements sizes for all tested schemes. In order to have
the same grid as Takagi and Matsumoto [15], we chose a 128 × 128 grid to compute all the
linear cases considered.

To check the effect of the time step size on the numerical results, we take the same
value as [15] as reference, i.e., ∆t0 = 2.5 × 10−6 s in a 128 × 128 grid. Tables A5–A7 show
the values of ac/g for each numerical scheme as a function of time-steps.

Table A5. Time steps’ sensibility analysis of ac/g for EbFVMS in the linear regime.

∆t(s) 2.5 × 10−6 8.0 × 10−5 1.6 × 10−4 2.4 × 10−4 3.2 × 10−4

ac/g 4.35 4.35 4.35 4.36 4.37
∆(%) 0 0.00 0.00 0.23 0.46

Table A6. Time steps’ sensibility analysis of ac/g for FTS in the linear regime.

∆t(s) 2.5 × 10−6 8.0 × 10−5 1.6 × 10−4 2.4 × 10−4 3.2 × 10−4

ac/g 4.36 4.36 4.37 4.37 4.38
∆(%) 0 0.00 0.23 0.23 0.46

Table A7. Time steps’ sensibility analysis of ac/g for VOFS in the linear regime.

∆t(s) 2.5 × 10−6 5.0 × 10−6 7.5 × 10−6 1.0 × 10−5

ac/g 4.43 4.41 4.38 4.35
∆(%) 0 −0.45 −1.13 −1.81

From the obtained values of ac/g, it is evident that, for all analyzed time step val-
ues, the FTS and EbFVMS schemes converge while VOFS requires time step values less
than 1.0 × 10−5 s. The three schemes converge for the value of ∆t = 2.5 × 10−6 s used
by [15]. In this work, for the cases in the linear regime, we keep the same value as [15],
∆t = 2.5 × 10−6 s.

Appendix A.2.2. Spacial and Time-Step Discretization: Nonlinear Regime

The phase-field scheme uses a 256 × 256 grid to study the nonlinear regime. To
analyze the sensibility with the spacial grid discretization in the nonlinear regime, each
numerical scheme was tested using grids whose sizes were between 32 × 32 and 256 × 256.
The Takagi and Matsumoto [15] case whose physical and geometrical parameters are
described in Table 4, and the values of surface elevation shown in Figure 3 were chosen
as the test case. The parameters to analyze convergence of grid size and time step were
the maximum value of the surface elevation/Lx and its corresponding t/Tv value (around
t/Tv = 3 in Figure 3). Tables A8–A10 show the values of maximum surface elevation/Lx
and its t/Tv corresponding value, respectively, for each numerical scheme as a function of
grid size.
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Table A8. Spacial grid sensibility analysis for the nonlinear regime: maximum value of surface
elevation/Lx, its time location t/Tv, and their relative difference compared to 256 × 256 grid
for EbFVMS.

Grid Size 256 × 256 192 × 192 128 × 128 96 × 96 64 × 64

Surface elevation/Lx 0.412 0.411 0.410 0.406 0.403
∆(%) 0 −0.24 −0.49 −1.46 −2.18

t/Tv 2.996 2.994 2.994 2.994 2.987
∆(%) 0 −0.07 −0.07 −0.07 −0.30

Table A9. Spacial grid sensibility analysis for the nonlinear regime: maximum value of surface
elevation/Lx, its time location t/Tv, and their relative difference compared to 256 × 256 grid for FTS.

Grid Size 256 × 256 192 × 192 128 × 128 96 × 96 64 × 64

Surface elevation/Lx 0.413 0.412 0.414 0.414 0.413
∆(%) 0 −0.24 0.24 0.24 0.00

t/Tv 2.994 2.994 2.994 2.994 2.994
∆(%) 0 0.00 0.00 0.00 0.0

Table A10. Spacial grid sensibility analysis for the nonlinear regime: maximum value of surface
elevation/Lx, its time location t/Tv, and their relative difference compared to 256 × 256 grid for
VOFS.

Grid Size 256 × 256 192 × 192 128 × 128 96 × 96 64 × 64

Surface elevation/Lx 0.416 0.416 0.415 0.415 0.415
∆(%) 0 0.00 −0.24 −0.24 −0.24

t/Tv 2.999 2.994 2.994 2.994 2.994
∆(%) 0 −0.17 −0.17 −0.17 −0.17

Numerical tests show that, for grids denser than 128 × 128, all schemes converge.
However, to preserve the same spatial resolution as Takagi and Matsumoto [15], we choose
a 256 × 256 grid to perform our simulations. To test the effects of the size of time-steps,
we test different time steps for each scheme. We perform the test in a 256 × 256 grid.
Tables A11–A13 show the maximum value of the surface elevation/Lx and its correspond-
ing t/Tv value, for each scheme.

Table A11. Time step sensibility analysis for the nonlinear regime: maximum value of surface
elevation/Lx, its time location t/Tv, and their relative difference compared to ∆t(s) = 1.18 × 10−3 s
for EbFVMS.

∆t(s) 1.18 × 10−3 1.18 × 10−2 1.18 × 10−1

Surface elevation/Lx 0.412 0.412 0.413
∆(%) 0 0.00 0.24

t/Tv 2.996 2.996 2.992
∆(%) 0 0.00 −0.13
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Table A12. Time step sensibility analysis for the nonlinear regime: maximum value of surface
elevation/Lx, its time location t/Tv, and their relative difference compared to ∆t(s) = 3.36 × 10−2 s
for FTS.

∆t(s) 3.36 × 10−2 6.72 × 10−2 1.34 × 10−1

Surface elevation/Lx 0.413 0.412 0.412
∆(%) 0 −0.24 −0.24

t/Tv 2.994 2.991 2.989
∆(%) 0 −0.10 −0.17

Table A13. Time step sensibility analysis for the nonlinear regime: maximum value of surface
elevation/Lx, its time location t/Tv, and their relative difference compared to ∆t(s) = 1.0 × 10−2 s
for VOFS.

∆t(s) 1.0 × 10−2 2.0 × 10−2 4.0 × 10−2

Surface elevation/Lx 0.415 0.415 0.419
∆(%) 0 0.00 0.96

t/Tv 2.994 2.994 2.993
∆(%) 0 0.00 -0.03

From the obtained values of the maximum values of surface elevation/Lx and its
corresponding value of t/Tv for each ∆t, it is observed that convergence was achieved
for each scheme by choosing time step values equal to 1.18 × 10−2 s, 3.36 × 10−2 s and
1.0 × 10−2 s for the EbFVMS, FTS and VOFS, respectively.
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