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A B S T R A C T

This work is devoted to the development of a new hybrid VoF-IBM
method for the simulation of freezing liquid films and freezing drops.
The VoF and IBM methods are coupled with the temperature equa-
tion to be able to solve the icing front, the dilatation induced by the
density difference between the liquid and the ice as well as the drop
deformation induced by the balance of the surface tension and gravity.
The numerical simulations are validated by a comparison between the
theoretical solutions and experimental observations. We investigate the
effect of the Stefan number and the ratio of solid density to liquid den-
sity on the height evolution of the icing front for both liquid films and
drops. We also study the whole freezing processes of drops with differ-
ent contact angles. Furthermore, the effect of gravity and the surface
tension on freezing processes of drops are investigated. The tempera-
ture distribution, solidification shape, and evolution within the drop are
systematically analyzed and the CSF-VoF spurious currents are shown
to induce no effect on the icing process due to the small value of both
the corresponding Weber and Capillary numbers. We find that the final
drop shape is in very good agreement with experiments, and in particu-
lar the value of the tip angle of the iced drop and the front-to-interface
angle are very well reproduced.

c© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Supercooled water cloud, freezing frog and freezing rain interaction with cold surfaces can cause severe

hazards for the daily life and many industrial processes, for example attaching and destructing the power
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cables, increasing the weight and changing the streamlines of the aircrafts, ships and the wind turbines,

reducing the friction of cars on roads, and even resulting in severe disasters. Therefore, many efforts have

been devoted to understand the nucleation of icing and to develop de-icing techniques.

Icing of a single drop is a fundamental problem. However, even for this basic problem, there are still

some challenges for both experimental and numerical investigations. A large amount of experimental works

have been tried to provide a complete description of the icing of a drop [1, 2, 3, 4, 5]. However, experimental

approaches have to face to some issues. Chaudhary et al. [6] used an IR camera and three thermocouples to

measure the topmost temperature on the substrate and the temperature evolution of three different points

inside the drop. The authors were able to identify four steps involved during the process: liquid cooling,

recalescence, freezing and solid cooling, but the presence of the thermocouples probes are responsible of

local nucleation resulting of different sources of recalescence. Nauenberg [7] has outlined the importance of

the substrate temperature control for the icing process. In addition, frost crystals can grow on the droplet

surface and the cold substrate and can complexify the measurments [8]. People can get outside information

and part of the local inner information of freezing drops by experimental methods. However, it is challenging

to obtain the detailed information of the inner icing front, the temperature field and induced heat fluxes,

velocity and pressure distributions inside the drop and ice. In addition, the intrusive measurements may

cause some additional nucleation sites and consequently influence the icing process, and the non-intrusive

methods are difficult to access the detailed dynamics inside the drop. Furthermore, the frost crystals caused

by the vapor in the surroundings are hard to completely avoid, posing additional challenges for optical

measurements.

Thus, it’s very relevent to develop accurate numerical methods to obtain comprehensive inner information

of freezing water drops. Some studies on the solidification of alloy have focused on the dendritic growth [9].

For the solidification of standard liquids such as water, much numerical research mainly consider the heat

conductivity problems with possible non-linear physical properties to analyze the solidification process [10,

11, 12, 13, 14]. However, the simplifications in these numerical methods and models could cause differences

between the experimental and numerical results. Chaudhary et al. [6] numerically solved the enthalpy-based

heat conductivity equation to provide insight into the heat transfer during the cooling and freezing process,

but they don’t consider the density difference between water and ice. Vu et al. [15] propose a front-tracking

method that includes the volume expansion for the simulation of liquid drop on a cold surface for a fixed

contact angle of 90o. In Zhang et al. [16], the VoF multiphase model is coupled with the solidification

model in Fluent 14.0 to simulate the freezing of water droplets. However, the deformation of the liquid

is ignored. Recently, Tembely et al [17] enable to model a more realistic frozen droplet shape, but their

model is mainly valid for hydrophilic drops. Some numerical approach have recently coupled IBM and

sharp interface methods for the simulation of drop standing on solid surface [18, 19]. These motivate us to

propose an efficient and wide applicable numerical method to perform accurate simulations of freezing films

and drops with varying wetability conditions.
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In this way, we develop a new fully direct numerical approach based on a hybrid VoF-IBM method,

which considers the coupling between the heat transfer and phase change, the volume expansion due the

density difference between the ice and the liquid, and surface tension effects at the gas-liquid interface.

Some simple and practical cases, such as liquid films and drops, are used to show the applicable range of

the numerical method. We validate the numerical simulations with the comparison to theoretical solutions

and experimental observations. The temperature, velocity and pressure distributions inside the drop are

also displayed, which can be used for further benchmarking for code comparison and validation.

The paper is organized as follows. The numerical method is described in section 2. The verification and

validation of the method by the liquid film model are presented in section 3. Several parameters that affect

the freezing rate are investigated, such as the Stefan number, the ratio of solid density to liquid density.

Section 4 reports the solidification of a liquid film in a 2D container. The freezing drop without surface

tension and gravity is presented in section 5. The hydrophilic and hydrophobic freezing drops illustrate

the wide applied range of this method. In section 6, the gravity and the surface tension are supplied to

the freezing drop. These numerical results are consistent with experiments, which means that the surface

tension is a key factors for the freezing of a drop. The conclusion is reported in section 6.

2. Equations and Numerical method

The objective of the numerical method is to be able to simulate the propagation of a freezing front in a

liquid in contact with a cold wall. In the following Tm will be the melting temperature and the solidification

front will match the isotherme T = Tm. Once iced the solid velocity Us will be imposed equal to the wall

velocity.

The proposed numerical method developed in the JADIM code consists in coupling a Volume of Fluid

(VoF) solver [20, 21, 22] used to tack the liquid/gas interface with an IBM approach [23] for the simulation

of the solid phase. In the following the subscript l, g and s will be used to denote the liquid, gas and solid

phases, respectively.

2.1. The VoF function and ice fraction

The VoF function C is used to localize the liquid-gas interface. C = 1 in the liquid phase and C = 0 in

the surrounding gas. The position of the liquid-gas interface is then given by the transport equation:

∂C

∂t
+ U · ∇C = 0. (1)

The solid phase is described using the ice fraction g such that g = 1 in the solid, and g = 0 in the fluids

for both liquid and gas. The evolution of g is governed by the equation

∂g

∂t
+ Vs · ∇g = 0, (2)
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where Vs is the velocity of the solidification front between the solid and the liquid. In the following, the

normal of the solidification front (from the ice to the liquid) is noted ns = −∇g/|∇g|. The value of C

remains C = 1 once the liquid has been changed into ice and the reason will be cleared later.

From the VoF function C and the ice fraction g, we introduce the 1-phase quantities that will be consid-

ered in the numerical resolution. The physical properties such as density, viscosity, thermal conductivity and

heat capacity will be defined by ρ = (1−C)(1−g)ρg+C(1−g)ρl+Cgρs, µ = (1−C)(1−g)µg+C(1−g)µl,

λ = (1 − C)(1 − g)λg + C(1 − g)λl + Cgλs and Cp = (1 − C)(1 − g)Cpg + C(1 − g)Cpl + CgCps and the

variables velocity, pressure and temperature will be defined by U = (1−C)(1− g)Ug +C(1− g)Ul+CgUs,

P = (1− C)(1− g)Pg + C(1− g)Pl and T = (1− C)(1− g)Tg + C(1− g)Tl + CgTs.

The hybrid VoF-IBM method presented below consists in solving the system of equations satisfied by

these 1-phase quantities.

2.2. The Temperature equation

The temperature equation used to follow the solidification front is derived from the enthalpy conservation.

The objective is to solve an equation for the 1-phase temperature defined with the VoF and ice functions. The

enthalpy in the three phases, gas, liquid and solid (ice) phases are respectively given by Hg = Cpg(Tg−Tm),

Hl = Cpl(Tl−Tm)+L and Hs = Cps(Ts−Tm), here L is the latent heat and Tm is taken as the temperature

of reference. In the following the conductivities, latent heat, heat capacities for the gas, liquid and solid

phases will be considered to be constant.

Based on these expressions the 1-phase enthalpy H = (1− g)(1− C)Hg + (1− g)CHl + gCHs satisfies

the conservation equation

∂ρH

∂t
+∇ · (ρHU) = ∇ · (λ∇T ) . (3)

From Eq. 3, it follows the equation satisfied by the 1-phase temperature T :

ρCp, app
∂T

∂t
+∇ · (ρCpTU) = ∇ · (λ∇T ) , (4)

where an equivalent heat capacity Cp, app has been formed [11, 24]:

ρCp, app = ρCp + (ρsCps − ρlCpl)(T − Tm)
dg

dT
− ρsL

dg

dT
. (5)

The great interest of this formulation is to make implicit the calculation of the source term at the ice front

coming from the latent heat considering
∂g

∂t
=
dg

dT

∂T

∂t

A smooth transition between ice and liquid needs to be introduced for the stabilization of the numerical

resolution of the temperature equation [11, 24]. Such approach introduces an equivalent melting region

and the solidification front diffusion during the solidification is controlled by the g function. We introduce

Tmin < Tm and Tmax > Tm the range of temperature where solidification occurs. Instead of solving Eq. 2

for g, g is defined as a function of the temperature T to make possible the regularization of the transition
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from the ice (g = 1 for T ≤ Tmin) to the fluid (g = 0 for T ≥ Tmax). The following functions gi shown in

Fig. 1 will be considered and compared in this study:

g1(T ) =
Tmax − T

Tmax − Tmin
if Tmin < T < Tmax, (6)

g2(T ) =

(
Tmax − T

Tmax − Tmin

)5

if Tmin < T < Tmax, (7)

g3(T ) =
1

2

(
1 + tanh

p(T − Tm)

Tmax − Tmin

)
, (8)

where p is used to define the size of the melting region. The interest of these relations is to give an exact

expression for dg/dT to consider in Eq. 5. These functions gi will be tested and compared in section 3.3

and the effect of ∆T = Tmax − Tm = Tm − Tmin will be discussed.
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Fig. 1. Different g functions versus temperature difference T − Tm.

2.3. The coupled VoF and IBM system of equation

The hybrid VoF-IBM system of equation is considered for two Newtonian and incompressible fluids and

a solid phase (the ice) with constant physical properties (viscosity, density, surface tension) and no phase

change at the liquid-gas interface.

2.3.1. Mass conservation

Resulting from the change of density from liquid to solid (here ρs < ρl), the ice displaces the liquid at

the solidification front. The corresponding velocity for the liquid resulting from the mass conservation at

the icing front is then

Ul · ns = Vs · ns
(

1− ρs
ρl

)
. (9)

The mass conservation expressed using the 1-phase velocity U is

∇ ·U = −CUl · ∇g. (10)

Considering relations 2 and 9, the mass conservation is then

∇ ·U = C

(
1− ρs

ρl

)
∂g

∂t
. (11)
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2.3.2. Momentum conservation

The momentum conservation is derived to integrate both the VoF formulation for the capillary contri-

bution and an IBM penalization inside the solid. The resulting momentum equation is

ρ

(
∂U

∂t
+ U · ∇U

)
= −∇P +∇ · Σ + ρG + Fσ + FIBM , (12)

with Σ is the viscous stress tensor and G is the gravity.

Fσ is the capillary contribution at the liquid gas interface calculated using the Continuum Surface Force

method previously described in [25, 20, 26]:

Fσ = σ∇ ·
(
∇C
||∇C||

)
∇C, (13)

where σ is the surface tension. The method used to consider static and moving contact line is described

in [20, 22, 27]. In the situation of icing, Vahab et al. [28] impose an angle between the three phases by

considering the three surface energies. The resulting simulations of freezing droplets clearly show a change

of the drop shape at the freezing triple point. In our approach, the angle between the liquid-ice-air on the

freezing front is not imposed but results from the local solidification isotherm T = Tm so that it is controlled

by the balance of the heat fluxes from the three phases. As observed in the reported simulation of freezing

drops, this induces no shape variation (i.e. the curvature and the normal are not changed) when the liquid

is transformed into ice. Such condition is supported by experiments where no noticeable change of the drop

shape curvature is observed at the ice front location [1, 3]. For that purpose the value of the VoF function

C is kept equal to C = 1 when the liquid is transformed into ice.

FIBM is the IBM forcing term given by

FIBM = χ
Us −U

∆t
, (14)

where Us is the local velocity imposed for the solid phase and χ is called solid volume fraction or IBM

function, which equals one in cells filled with the solid phase, zero in cells filled with the fluid phase, and

0 < χ < 1 in the region of the boundary. In practice, the transition region is imposed to be of one-to-three

grid cells [23, 29]. This approach has been selected compared to methods using a regularizing function in

conjunction with a Lagrangian marking of the boundary [30, 31] because it is simple to implement and to

couple with the regularization of the temperature equation, and it has been shown to be in good agreement

with respect to other available higher-order immersed-boundary or boundary fitted approaches [23].

2.3.3. Coupling between the methods

As indicated above, the solidification front corresponds to the isotherm T = Tm so that the IBM function

χ is directly related to the ice fraction g. Both the resolution of the temperature equation and the IBM

forcing require a regularization for the transition from the solid where χ = g = 1 to the liquid where

χ = g = 0. In our approach we simply couple these functions as

χ = g(T )C, (15)
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so that the same regularization is used for the two resolutions.

2.4. Discretization and overall algorithm

The system of equations presented above is discretized on a staggered grid using a finite volume method,

all spatial derivatives being approximated using second-order centered schemes. The VoF function C, the

ice fraction g, the IBM function χ and the pressure P are volume-centered while the velocity components are

face-centered. Time advancement for both the momentum and temperature equations is achieved through

a third-order Runge-Kutta (RK3) method for advective and source terms and a Crank-Nicolson method for

the diffusive terms. Incompressibility is satisfied at the end of each time step though a projection method.

The overall algorithm was developed to be second-order accurate in both time and space. The accuracy of

the hybrid VoF-IBM method developed here for icing problems will be discussed in the next section.

The calculation is initialized with the initial gas-liquid interface and no solidification front is present.

The frozen process is generated by the temperature diffusion from a cold wall with an imposed temperature

less than Tm. Basically each time step is composed of four steps. Hence starting with Un, Pn−1/2, Cn and

gn they are:

Step 1. Update value for Cn+1

The advection equation (1) for the VoF function is solved by using the FCT transport scheme described

in detail in [25].

Step 2 Update value for Tn+1 and U∗

In this RK3 time-stepping procedure, an intermediate velocity field U∗ and the final temperature field

Tn+1 are computed from changes to the known field Un and Tn, respectively. The advective terms A

and AT are computed explicitly while the diffusive terms L and LT are treated using the semi-implicit

Crank-Nicolson algorithm [32, 33]. Within each of the three intermediate steps (k = 1, 2, 3) of the time

step [n∆t, (n+ 1)∆t] the solution is advanced as follows where T k=0 = Tn, Tn+1 = T k=3, Uk=0 = Un and

U∗ = Uk=3. We note gk = g(T k) the value of the ice fraction. The Runge-Kutta coefficients ξk, βk, γk and

ζk are those used in the RK3/CN algorithm detailed in [32].

Step 2a. Update value for the physical properties

The intermediate value Cn+1/2 of the volume fraction is used with the ice fraction gk−1 to obtain the

physical properties ρk, µk, Ckp,app and λk used in each RK3 step.

Step 2b. Update value for T k

The equation for the temperature is solved with

ρkCkp, app
T k − T k−1

∆t
= γkAT (T k−1) + ζkAT (T k−2) + (ξk + βk)LT (T k−1) + βkLT (T k − T k−1) (16)

This equation being discretized using the finite volume method, the term ρkCkp, app is calculated at the

cell center while ρkCkp involved in the advective terms AT and λk involved in the diffusive terms LT are

calculated at the cell face’s center with the value of gk−1 calculated using the temperature T k−1 interpolated

at the cell faces’ center.
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Step 2c. Intermediate value Ũk

Calculation of an intermediate velocity field Ũk from the discretization of the momentum equation 12

without considering the IBM and capillary terms:

Ũk −Uk−1

∆t
= SMk−1, (17)

with

SMk−1 = γkA(Uk−1) + ζkA(Uk−2) + (ξk + βk)

[
G− 1

ρn+1/2
∇Pn−1/2

]
+ (ξk + βk)L(Uk−1). (18)

Step 2d. Update value for the velocity field Uk

Modification of the velocity field to include the coupling between the solid and the fluids. The IBM

interaction is computed using the update IBM function χk = gkCn+1 in order to obtain the IBM forcing

term

FkIBM = χk
Us − Ũk

∆t
, (19)

used to calculate the update value Uk as

Uk −Uk−1

∆t
= SMk−1 + βkL(Uk −Uk−1) + FkIBM . (20)

Note that no internal loop is used here following Bigot et al. [23].

Step 3. Capillary contribution for U∗∗

A second intermediate velocity field U∗∗ is introduced to correct U∗ in order to include the capillary

contribution given by (13)

U∗∗ −U∗

∆t
=

1

ρn+1/2
Fn+1/2
σ . (21)

The discretization of F
n+1/2
σ using the finite volume method is described in detail in [27].

Step 4. Projection step for Un+1

The final velocity field Un+1 is finally computed to satisfy equation (11) by solving

Un+1 −U∗∗

∆t
= − 1

ρn+1/2
∇Φn+1/2, (22)

where the pressure correction Φn+1/2 is the solution of the pseudo-Poisson equation with the phase change

contribution at the ice front

∇·
(

1

ρn+1/2
∇Φn+1/2

)
=
∇ ·U∗∗

∆t
− 1

∆t
Cn+1

(
1− ρs

ρL

)
gn+1 − gn

∆t
. (23)

The final pressure is deduced from the auxiliary potential Φn+1/2 through the relation

Pn+1/2 = Pn−1/2 + Φn+1/2. (24)

Step 5. return to Step 1.
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3. Verification and Validation

JADIM code has been extensively used and validated for numerical studies of bubbles, drops and particles

dynamics [34, 33, 35, 36, 37, 38, 39]. In particular the VoF method has been used for the simulation of

sessile drop [20, 40, 22] and the IBM method for solid particle motion [23]. Here, we couple the VoF and

IBM methods for the simulation of the icing of static liquid films and drops. The validation presented here

considers the 1D Stefan problem and mainly focuses on the coupling of the heat transfer, the phase change,

the solidification front motion and the motion of the liquid pushed by the solidification front resulting from

density change.

3.1. Statement of the theoretical 1D Stefan problem

The term “Stefan problem” is generally used for heat transfer problems with phase-changes such as

from liquid to solid [41, 42, 43, 44]. In the hyperbolic Stefan problems, the characteristic features of Stefan

problems are present but unlike the classical ones, and discontinuous solutions are allowed because of the

hyperbolic nature of the heat equation. The problem is the boundary value of a partial differential equation

(PDE), characterized by two regions, one for each of the two phases, in which the solutions of the underlying

PDE are continuous and differentiable. But there is also an interface region, characterized by a discontinuity,

where another condition (Stefan’s condition) is applied in order to obtain closure. Peculiarity of the problem

is the fact that the position of the interface evolving in time is a variable itself, so the boundary conditions

are applied with respect to a time dependent position, unknown a priori.

In order to obtain a theoretical solution, some simplifications need to be made, which are reasonable for

pure materials in case of moderate thermal gradients and temperatures: (i) The heat transfer is driven by the

conduction and convection, assuming negligible radiative transfer; (ii) Sharp and local plane interface; (iii)

Thermophysical properties are constants with temperature in each phase, while they are different between

two phases; (iv) Phase change temperature is fixed and known.

Considering a mono-dimensional and semi-infinite domain filled with phase-change material in the posi-

tive y-axis direction, at an initial temperature Tli greater than the melting one Tm, (Tli > Tm), which means

there is no solidification in the beginning t = 0 s. The material is cooled by the wall at the position y = 0

and at a constant temperature Tw which is lower than Tm. When the temperature of the material decreases

to the melting temperature, it freezes and releases the latent heat. Calling hs(t) the height of the interface

between the liquid and the solid, and solving the system of equations for the temperature in this problem

coupled with the solid dilatation due to the phase change, the velocity of the liquid vl is resulting from Eq.

(9) is

vl =
dhs
dt

(
1− ρs

ρl

)
, (25)

where t is the time, ρs and ρl are the density of the solid and that of the liquid. The temperature equations
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of the solid phase Ts(t, y) and the liquid phase Tl(t, y) are as follows,

∂Ts
∂t

= αs
∂2Ts
∂y2

0 < y < hs(t), (26)

∂Tl
∂t

+ vl
∂Tl
∂y

= αl
∂2Tl
∂y2

y > hs(t), (27)

where αs and αl are the thermal diffusivity of the solid and that of the liquid, and α = λ/(ρCp), λ is

the conductivity and Cp is the specific heat capacity. The boundary conditions, initial conditions and the

conditions of continuity are

Ts(y = 0, t) = Tw

Tl(y →∞, t) = Tli

Ts(y > 0, t = 0) = Tl(y > 0, t = 0) = Tli

Ts(y = hs(t), t) = Tl(y = hs(t), t) = Tm

λs
∂Ts

∂y − λl
∂Tl

∂y = ρsL
dhs

dt

hs(t = 0) = 0,

(28)

giving the evolution of the front position as

hs(t) = 2δ(αst)
1/2, (29)

where δ is a constant depending on the initial conditions. From the above equations, we can obtain the

value of δ from

e−δ
2

erf(δ)
− φα1/2 e−[α1/2δ(1−r)]2

erfc[α1/2δ(1− r)]
=

δπ1/2

Ste
, (30)

with α = αs/αl, φ = [λl(Ti − Tm)]/[λs(Tm − Tw)], r = 1 − ρs/ρl and the Stefan number Ste = Cps(Tm −

Tw)/L. The temperature of solid and liquid phases are:

Ts(y, t) = Tw + (Tm − Tw)
erf [ y

2(αst)1/2
]

erf(δ)
0 < y < hs(t), (31)

Tl(y, t) = Ti + (Tm − Ti)
erfc[α1/2δ( y

2δ(αst)1/2
− r)]

erfc[α1/2δ(1− r)]
y > hs(t). (32)

The theoretical solution of this problem given by Eq. (29-32) will be called “theory” in the following when

used for comparison with simulations.

3.2. Configuration of the freezing liquid film

We design a 1D numerical simulation shown in the Fig. 2(a-c) to study the solidification of the liquid

film. We compare the numerical results with the theoretical solution to validate the accuracy of the hybrid

method. In the simulation, the initial temperature of the liquid is also larger than the melting point. The

liquid is also cooled by the bottom wall which is at a constant temperature. The difference between the

theoretical problem and real numerical problem is that the volume of the liquid of the theoretical problem

is infinite, but that of the simulation is limited. However, when the height of the solid is much smaller than
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that of the liquid, the liquid can be approximately to be infinite. At this time scale, we can compare the

result of the simulation with the theory. The settings of four walls in the 1D simulation are as follows, (a)

for the north wall, it is the outlet and adiabatic; (b) for the west and east walls, they are under symmetry

condition and adiabatic; (c) for the south wall, it is at the wall condition with the constant temperature.

The parameters shown in the Fig. 2(a-c) have the following meanings, hli is the the initial height of the

liquid, hl(t) is the height of the liquid front as a function of the time, hs(t) is the height of the solid front

as a function of the time, hse is the final height of the solid front when all of the liquid freeze to the solid,

vs =dhs(t)/dt is the velocity of the solidification front, vl =dhl(t)/dt is the velocity of the liquid front, Tw

is the constant temperature of the south wall, Tgi is the initial temperature of the gas, Tli is the initial

temperature of the liquid, Tgi = Tli, Ts(y) is the temperature of the solid as a function of position, and the

temperature of the solid Tl(y) is a function of position.

(a) (b) (c)

Liquid

Gas

Solid

Gas

Gas

Liquid Solid

h li

x

y

h l

hs

hse

vs

vl

Tw

Tgi

Tli

N

hd

Fig. 2. Configuration of the freezing liquid film. (a) The initial phase before freeze, (b) the intermediate stage
when part of the liquid freezes to the solid, (c) the final moment when all of the liquid freezes to the solid.

The initial height of the liquid hli = 10−3m; the temperature of the wall is Tw = −20◦C; the initial

temperatures of the liquid and that of the gas are Tli = Tgi = 20◦C. In this paper, without a special

explanation, the liquid, solid and gas represent water, ice and air, respectively. The physical properties are

assumed to be constant without the temperature dependence shown in Table. 1. The solidification latent

heat of water is 334 kJ/kg. The dimensionless grid spacing is the ratio between the grid spacing ∆ to the

initial height of the liquid hli. The dimensionless time step is the ratio between the time step ∆t to the

heat diffusion time in the liquid tdiff = h2
li/αl = 7.58 s.

Table 1. Physical properties of air, water and ice in our simulations

ρ [kg/m3] µ [Pa·s] α [m2/s] Cp [J/(kg◦C)]
Air 1.29 1.70×10−5 2.00×10−5 1.00×103

Water 1.00×103 1.70×10−3 1.32×10−7 4.21×103

Ice 9.17×102 1.70×10−3 1.18×10−6 2.03×103
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3.3. Different temperature transition functions g(T )

Four different g functions used to smooth the temperature transition from the solid to the liquid (see

Fig. 1) are now tested and compared. The grid size and the time step are fixed to ∆/hli = 1.25× 10−2 and

∆t/tdiff = 1.65× 10−5, respectively.

We use points at regular interval time to measure the errors between the numerical height h∆
k and the

exact height hTHk . The normalized mean differences E∆
ave defined as

E∆
ave =

1

k

∑
k

(∣∣h∆
k − hTHk

∣∣ /hTHk )
, (33)

are compared in the Table. 2 for the range hs < 0.1hli. The error is also reported for different values of

∆T = Tmax − Tm = Tm − Tmin.

Table 2. The normalized mean differences E∆
ave for different g functions

∆T [◦C] g1 g2 g3(p=5) g3(p=2)
0.5 6.03× 10−3 5.06× 10−2 1.31× 10−2 2.97× 10−2

1 5.35× 10−3 2.76× 10−2 1.15× 10−2 1.31× 10−2

2 5.31× 10−3 4.02× 10−2 9.82× 10−3 8.29× 10−3

From Table. 2, for each g function, we choose one case with the minimum normalized average error shown

in Fig. 3. As shown in Fig. 3(a), the g2 function is not able to give an accurate description of the icing front

while the three other functions provide a satisfactory description but with some time oscillations that are

compared considering the error made with the theoretical solution. In Fig. 3(b), the height of the theoretical

solidification front shows hs ∝ t1/2, but the scaling laws of other numerical functions differ from 1/2 in the

beginning time. As time goes, all height evolutions gradually match well with 1/2 scaling dependence on

time t. The departure for the 1/2 scaling at the beginning of the process is attributed to the oscillation of

the enthalpy method formulation discussed below. Under the consideration of the lower average error and

the weaker oscillation in the beginning, we regard the g3(p = 2) and ∆T = 2◦C as a suitable choice for the

following simulations.
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Fig. 3. Evolutions of solidification front for cases with different g functions compared to the exact solution
given by relation 29. (a) a linear plot, (b) a log-log plot.
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3.4. Grid and time convergence

Numerical solidification front evolutions are compared with those of theoretical solutions in Fig. 4 and

Fig. 5. These two figures show the results when the height of the solidification front is smaller than

0.2hli. Considering the effect of the dimensionless grid refinement, we compare the simulations performed

at the same dimensionless time step ∆t/tdiff = 1.3 × 10−6 but with different dimensionless regular grids

∆/hli = 4.0 × 10−2, 2.0 × 10−2, 1.0 × 10−2, 6.7 × 10−3 to the theoretical solution shown in Fig. 4(a). We

find that the grid refinement results in the convergence of the solution to the theoretical solution. The

normalized maximum difference E∆
max is defined as

E∆
max = max

k

(∣∣h∆
k − hTHk

∣∣ /hTHk )
. (34)

10
-3

10
-2

10
-1

 / h
li

10
-2

10
-1

10
0

10
1

E

1.5

 E
max

 E
ave

0 0.05 0.1 0.15 0.2 0.25

t [s]

0

0.5

1

1.5

2

2.5
10

-4

4.0 10
-2

2.0 10
-2

1.0 10
-2

6.7 10
-3

Theory

h
s [

m
]

(a) (b)

0 0.05 0.1 0.15 0.2 0.25

t [s]

0

0.005

0.01

0.015

0.02

0.025

v
s [

m
/s

]

0.05 0.1 0.15 0.2

t [s]

0

0.5

1

1.5

2

v s [
m

/s
]

10
-3

(c)
4.0 10

-2

2.0 10
-2

1.0 10
-2

6.7 10
-3

Fig. 4. Grid convergence for the evolution of the height of solidification front hs. (a) Comparison among the
numerical simulations with the same time step ∆t/tdiff = 1.3 × 10−6 and different grid refinements ∆/hli and

the theoretical solution, (b) evolution of the errors E∆
max and E∆

ave as functions of the grid refinement, (c) the
velocity of the solidification front vs =dhs(t)/dt with the same time step ∆t/tdiff = 1.3× 10−6 and different grid
refinements ∆/hli.

The errors E∆
max and E∆

ave as functions of the grid refinement ∆/hli are plotted in Fig. 4(b). This

figure shows a grid convergence of order (∆/hli)
1.5 between ∆/hli and (∆/hli)

2 for both E∆
max and E∆

ave.

Decreasing the grid size can effectively decrease the difference between the theoretical result and numerical

result. In addition, Fig. 4(c) shows the solidification front velocity vs, which is calculated from dhs/dt.

Numerical oscillations observed in the velocity reported in Fig. 4(c) and Fig. 15 results from oscillations

observed in the temperature evolution fields. Such oscillations have yet been identified for methods based on

the enthalpy formulation and oscillations were shown to be enhanced when using coarse grids [44, 45, 46].

It is clear that reducing the grid size decreases the amplitude of these oscillations. Thus, we choose the

smallest grid refinement ∆/hli = 6.7 × 10−3 for the following simulations. Some approaches have been

proposed to reduce these oscillations for plane front [47] and their extension to general front shape (not

straightforward) should provide an interesting improvement for the resolution.

Then we consider the effect of the dimensionless time step. In the Fig. 5(a), we compare the simulations

performed with the same grid refinement ∆/hli = 1.0× 10−2 but at different ∆t/tdiff = 1.0× 10−5, 6.6×

10−6, 1.3 × 10−6, 6.6 × 10−7, 1.3 × 10−7 with the theoretical solution. All numerical results are very close
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Fig. 5. Time convergence for the growth of the solidification front height hs. (a) Comparison among the
numerical simulations at the same grid refinements ∆/hli = 1× 10−2 but with different time steps ∆t/tdiff and

the theoretical solution, (b) the dependence of the errors E∆t
max and E∆t

ave on the time step.

to the exact solution but there is not a clear dependence between h and the time step. So we use the

the normalized maximum difference E∆t
max and the normalized mean difference E∆t

ave from the solution of

reference obtained for the smallest time step considered ∆t/tdiff = 1.3× 10−7:

E∆t
max = max

k

(∣∣∣h∆t
k − h

∆t/tdiff=1.3×10−7

k

∣∣∣ /h∆t/tdiff=1.3×10−7

k

)
, (35)

E∆t
ave =

1

k

∑
k

(∣∣∣h∆t
k − h

∆t/tdiff=1.3×10−7

k

∣∣∣ /h∆t/tdiff=1.3×10−7

k

)
. (36)

The errors E∆t
max and E∆t

ave as functions of the time step ∆t/tdiff are reported in Fig. 5(b). This figure

shows a time step dependence of first order (∆t/tdiff )1 for both E∆t
max and E∆t

ave. In the range of our

investigation, the errors caused by the time step dependence is much smaller than that caused by the grid

resolution. The change of the error caused by different time steps is much smaller, so the error is mainly

determined by the grid refinement. Combining the consideration of the calculation efficiency and accuracy,

we choose the time step ∆t/tdiff = 1.3× 10−6 for the following simulations.

For the simulations, the volume of the liquid is limited, so there will be a moment when all of the liquid

freezes to the solid. It causes the difference compared with the theory based on an infinite volume of liquid.

In most realistic situations, the volume of the liquid is limited, thus our simulations give a more complete

picture on the icing process of a finite volume liquid. And the mass conversation law can be used to check

the accuracy of the simulations.

We calculate the grid and time convergences of the final height of the solidification front hse. The

parameters are the same as those of the Fig. 4 and the Fig. 5. The corresponding errors E∆
se and E∆t

se are

defined as

E∆
se =

∣∣h∆
se − hTHse

∣∣ /hTHse , (37)

E∆t
se =

∣∣h∆t
se − hTHse

∣∣ /hTHse . (38)

All of the studied E∆
se and E∆t

se reported in Fig. 6 (b,d) are smaller than 3.0× 10−3, suggesting that the



/ Journal of Computational Physics (2021) 15

4.6 4.8 5 5.2 5.4 5.6

t [s]

1.07

1.075

1.08

1.085

1.09

1.095

h
s [

m
]

10
-3

Theory

1.3 10
-7

6.6 10
-7

1.3 10
-6

6.6 10
-6

1.0 10
-5

4.6 4.8 5 5.2 5.4 5.6

t [s]

1.07

1.075

1.08

1.085

1.09

1.095

h
s [

m
]

10
-3

Theory

6.7 10
-3

1.0 10
-2

2.0 10
-2

4.0 10
-2

10
-7

10
-6

10
-5

t / t
diff

10
-4

10
-3

10
-2

E
se

t

10
-3

10
-2

10
-1

 / h
l

10
-4

10
-3

10
-2

E
se

（d）

（b）（a）

（c）

Fig. 6. Grid and time convergences of the final height of the solidification front hse. (a) The final evolution of
the height of the ice with different grid refinements ∆/hli, (b) the dependence of the error of the final height
of the ice E∆

se on the grid refinement ∆/hli with the same time step ∆t/tdiff = 1.3×10−6, (c) the final evolution

of the height on different time steps ∆t/tdiff , (d) the dependence of the error of the final height E∆t
se on the

time step ∆t/tdiff at the same grid refinements ∆/hli = 1 × 10−2.

icing simulations of liquid films conform the mass conservation law. In the Fig. 6 (a,b), the grid size has an

important influence of the final height of solid and E∆
se decreases with the ∆/hli until 1.0 × 10−2. In the

Fig. 6 (c,d), E∆t
se doesn’t change with the ∆t/tdiff .

3.5. The effect of different parameters on the icing processes

In order to well control and understand the icing processes, we need to investigate the effect of different

variables on the icing process. Firstly, we focus on the density difference due to solidification. For most

materials, the densities are different between the liquid phase and solid phase. However, many numerical

studies ignored the density difference between the water and ice as the density contrast is small [6, 48, 49, 50,

51]. However, we find that even the small density difference results in notable effects. Based on the time and

grid tests presented above, the simulations are conducted with ∆/hli = 6.7×10−3 and ∆t/tdiff = 1.3×10−6.

In Fig. 7(a), the evolution of the solid height hs are shown as the solid lines and the liquid height hl are

shown as the dashed lines at varying different density ratios ρs/ρl = 0.6, 0.8, 0.917, 1. Keep the density of

the liquid is a constant and change the density of the solid. At the freezing time tf when hl = hs, all of

the liquid freezes to the solid. We find that even if the initial liquid heights are the same, the freezing times

tf have a large difference due to the density difference. As the density ratio decreases, the freezing time

increases. There may be two reasons for that dependence, firstly the smaller density ratio means the liquid

occurs a larger expansion and the final height of the solid hse is larger; secondly, from the Fig. 7(a) we
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observe that the velocity of the solid front vs at the same height decreases with the decreasing density ratio.

For the same height of the solid, the smaller density ratio means that the mass of liquid freezing to the solid

is less. At this time, even the temperature gradient in the solid is the same, more mass of the liquid left to

be cold for the material with the smaller density ratio. Consequently, the freezing time becomes larger for

smaller density ratio case. We know that the initial numerical result fits well with the theoretical solution.

And the theoretical velocity of the front is δ(αs/t)
1/2, so we compute the constant δ as a function of the

density ratio in Fig. 7(b). As shown in Fig. 7(b), when the density ratio decreases, the constant δ becomes

smaller and the velocity of the front is smaller. The theoretical solution also validates this conclusion. In

Fig. 7(c), we use the mass conservation law to calculate the theoretical result of the final height of the solid

as a function of the density ratio, hse = hli/(ρs/ρl). The red line shows the theoretical result and the blue

solid circles are numerical results. The errors of the final height of solid Ese of Fig. 7(c) are smaller than

5× 10−4. The perfect agreement between the numerical results and the theoretical solution indicates that

our simulations satisfy the mass conservation law.
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Fig. 7. The dependence of liquid height hl and solid height hs on the density ratio ρs/ρl. (a) The evolution
of the solid height hs shown as the solid lines and the liquid height hl shown as the dashed lines at varying
ρs/ρl=0.6, 0.8, 0.917, 1; (b) the constant in the theoretical velocity of the solidification front as a function of
the density ratio; (c) after all liquid freezes to solid, the final solid height hse varies with the density ratio.
The red line shows the theoretical result and the blue solid circles are the numerical results.

Then we investigate the effect of the initial conditions. In Fig. 8(a), we only change the initial temperature

and other parameters are kept the same as before mentioned. The Stefan number Ste is used to describe the

ratio of sensible heat to latent heat. We use the blue dot-dash line as a reference with the initial temperatures

of the liquid and the gas are Tgi = Tli = Ti = 20◦C, the temperature of the wall is Tw = −20◦C and the

Stefan number is Ste = 0.12. When we decrease the initial temperature of the liquid and the gas to 5◦C,

we find the freezing process becomes quicker as shown in the red dashed line at the same Ste = 0.12. In

addition, if we keep the initial temperature of the liquid and that of gas are the same and increase the

temperature of the wall to −5◦C and the corresponding Ste becomes 0.04, as expected, the freezing process

becomes much slower. So it means by decreasing the Ste, the freezing process can be slowed down. The

solid lines are theoretical lines, which have the same initial conditions as the numerical lines with the same

color. The lower temperature of the wall results in a larger temperature gradient in the solid, consequently

the freezing process is speeded up. For a lower temperature of the liquid, the sensible heat of the liquid and
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Fig. 8. The effect of the initial condition. (a) The evolution of the solid height at different initial temperatures.
The solid lines show the theoretical results and other lines with the same color show the corresponding
numerical results. (b) The evolution of the solid height at different thermal diffusivities of the gas.

gas is much smaller, thus the solidification process is much faster. We find that even for different initial

conditions, the numerical solution still fits well with the theoretical solution in the beginning, and the final

height of the solid conforms the mass conservation law.

In the Fig. 8(b), we study the effect of the thermal diffusivity of the gas αg = λg/(ρgCpg) on icing front

evolution. The thermal diffusivity of the liquid is αl = 1.32 × 10−7 m2/s. We keep the ρg and Cpg to be

constants and only vary the heat conductivity of the gas λg to be αg = 2×10−3, 2×10−4, 2×10−5, 2×10−6

m2/s. Because the south wall is the only cold source, and the gas and the cold source are separated by the

liquid and the solid, so the gas is only cooled by the liquid. All the αg studied here are much larger than

the αl, so the temperature of the gas quickly becomes a constant as the same as that of the liquid front

(seen in the Fig. 13 (d)). And since ρgCpg is small, the reduction of gas temperature doesn’t release a lot of

energy. Thus the solidification front evolutions are nearly the same for the considered αg, as shown in the

Fig. 8(b).

In the Fig. 9, we study the effect of the initial height of the liquid hli/hd on icing front evolution. hd is the

height of the numerical domain. In the Fig. 9 (a), solid lines show the numerical results with different initial

liquid heights and dashed lines show the theoretical solutions. The same color represents the same initial

height. No matter what the initial height of the liquid is, the initial solidification front matches well with the

theoretical solution. We define the hm = 0.5hse and the tm the corresponding time when the solidification

front reaches to hm. Using the hs/hm and t/tm to normalize the height evolution, all of the data collapse

to the theoretical line. Thus, the hli/hd doesn’t change the initial non-dimensional solidification evolution

of the liquid film, which only conforms the theoretical law.

4. Freezing liquid film in a 2D container

We present now a 2D test case in order to validate the dilatation process in 2D. For that purpose, we

simulate the freezing of a liquid film in a cold container. The boundary conditions are defined as follows

for the velocity (resp. temperature): (a) for the north wall, an outlet (resp. adiabatic) condition; (b) for
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Fig. 9. The effect of the initial height of liquid. (a) The evolution of the solidification front with different
initial liquid height hli/hd, (b) the initial stage of the solidification front evolution.

the east wall, a symmetry (resp. symmetry) condition; (c) for the south and west walls, no slip (resp.

imposed cold temperature) condition. The imposed temperatures of the walls are Tw = −20◦C, and the

initial temperatures of the liquid and that of the gas are Tli = Tgi = 20◦C. In Fig. 10, the density ratios of

the solid phase to liquid phase are 1 and 0.917 respectively. The solidification fronts are marked by white

lines, and the liquid-gas interfaces are marked by black lines.

In order to quantitatively record the freezing process, we calculate the height evolution hwest and hsouth

from the cold wall of two special points, which are marked in Fig. 10(b). The evolutions of hwest and hsouth

are plotted in Fig. 11. For cases with the density ratio 1, there is no dilatation for the freezing liquid and the

two height evolutions of hwest and hsouth are the same. However, if the density ratio is 0.917, the two height

evolutions differs because of the dilatation. Because of non deformable west, south and east boundaries,

the dilatation is only possible in the vertical direction. Thus, the liquid is pushed upwards, and the final

solidification front becomes curved. As a consequence of a final smaller ice thickness, the case without

dilatation has a higher freezing rate and a shorter frozen time.

We also calculate the final area of ice, which is shown in Table. 3. An and At are the numerical value

and the theoretical value respectively. E = |An − At|/At is the error between the numerical value and the

theoretical value. We find both cases with different density ratios fit well with mass conservation.

Table 3. The final area of the frozen liquid film.

ρs/ρl An [mm2] At [mm2] E = |An −At|/At
1 1.0000 1.0000 1× 10−13 %

0.917 1.0903 1.0905 0.02 %
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5. Drop without surface tension and gravity icing on a horizontal cold surface

As we have validated the accuracy of the VoF-IBM method for simulation of 1D and 2D freezing liquid

film, we now apply it to simulate freezing axisymmetric drop. In experiments, it’s difficult to precisely

identify the freezing front inside the drop. Through our simulations, the evolution of the solidification

front height, the shape of the solidification front, the freezing rate, the temperature, velocity and pressure

distributions inside the drop can be fully accessed. Through the comparison between the liquid film and

drops with different geometries, we can clearly understand the effect of the geometry of drop and shape of

the solidification front on freezing process.

The parameters in the numerical domain are as follows: the north wall is at the wall condition and

adiabatic; the west wall is at the wall condition and at the constant temperature; the south wall is the

symmetry axis and the east wall is the outlet and adiabatic. In order to clearly show the process, we add

the reflection of the symmetry axis and rotate the figure 90 degrees in the counterclockwise direction. In

the Fig. 12, we show the freezing process of a drop on a solid wall. The blue area is the gas. The black

lines cover the interface of ice, and the rest part is the liquid. The shape of the drop is a spherical cap.

Some important parameters are shown in the Fig. 12, such as θ the contact angle of the drop, γ the angle in

the solid area between the solid-liquid interface and the solid-gas interface, α the tip angle of the final solid

drop, hli the initial height of the top of the drop, and hs(t) the height of the solidification front in the axis.

As explained in section 2.3.2, there is no special angle imposed at the triple line, thus thermal properties

(i.e. the heat flux) control the angle γ made between the freezing front and the drop surface. For a nearly

adiabatic condition of gas, the angle γ is 90◦ [3].

t = 0 s 1 s 9 s

θ

12 s

hs

α
γ

h li

y

Fig. 12. The configuration of a freezing drop on a cold solid wall at different moments t. The definitions of
parameters θ, hli, hs, γ, α are also shown in the figure. The blue area is gas; the black lines cover the interface
of solid and the rest part is liquid.

5.1. Comparison of the freezing process between a flat liquid film and a drop.

Besides the physical properties of the liquid, the geometry of the liquid also affects the freezing process.

In the following, we compare the freezing process between a flat liquid film and a drop.

In the Fig. 13 and Fig. 14, we quantitatively analyze the temperature, velocity and pressure distributions

and interfaces within the liquid film and drop respectively. In the Fig. 13 (a), we plot the height evolution

of two interfaces. The red line shows the theoretical height of the solid interface; the blue line shows the

numerical height of the solid interface; the black line shows the numerical height of the liquid interface; and
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Fig. 13. The inner parameter distributions of the liquid film along the symmetry axis at different moments.
(a) The evolution of the height of the gas-liquid and liquid-solid interfaces, blue stars show three studied
moments, (b) the distribution of the χ function at different moments, (c) the distribution of the C function at
different moments, (d) the distribution of the temperature at different moments, (e) the distribution of the
velocity in the y direction at different moments, (f) the distribution of the pressure at different moments.
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Fig. 14. The inner parameter distributions of the drop along the symmetry axis at different moments. (a) The
evolution of the height of the gas-liquid and liquid-solid interfaces, blue stars show three studied moments,
(b) the distribution of the χ function at different moments, (c) the distribution of the C function at different
moments, (d) the distribution of the temperature at different moments, (e) the distribution of the velocity in
the y direction at different moments, (f) the distribution of the pressure at different moments.
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three blue stars mark following studied moments. In the Fig. 13 (b), the χ function distribution at three

moments are shown. In the solid phase χ = 1; in the liquid and gas phase χ = 0; in the transition stage, χ

function is used to smooth the sharp changes between different phases; and χ = 0.5 helps to visualize the

position of the solid interface. In the Fig. 13 (c), the C function distributions at three moments are shown.

In the solid and liquid phase C = 1; in the gas phase C = 0; the transition range is linear; and C = 0.5 is

used as a criterion used to obtain the position of the gas interface. The temperature distributions are shown

in the Fig. 13 (d). It has a large temperature gradient in the solid and liquid phase, but in the gas phase,

the temperature gradient is very small and the temperature decreases over time. The velocity distributions

are shown in the Fig. 13 (e). The velocity in the solid phase is zero; the velocity has a smooth increase

in the transition stage, and the velocities of the liquid phase and gas phase are the same thanks to mass

conservation. The maximum velocity decreases with time. The pressure distribution is shown in the Fig. 13

(f). It has a sharp peak in the IBM transition region between the solid and liquid phases.

We compare the Fig. 13 and Fig. 14 to get the difference between the liquid film and drop. In the Fig. 14

(a), even if the initial liquid height is the same as that of liquid film, the freezing time of the drop is smaller.

In the Fig. 14 (d), the temperature profile shows that the temperature decreases in the gas phase because

the gas can be directly cooled by the cold substrate. In the Fig. 14 (e), the velocity in the solid phase is

zero; it increases in the solid-liquid transition phase; the velocity of the liquid phase is nearly uniform; and

it decreases in the gas phase because of mass conservation is spherical geometry. Interestingly we observe

that the maximum velocity has a rapid increase in the end of the frozen process. In the Fig. 14 (f), we find

a similar pressure distribution with a peak in the IBM transition region between the solid and liquid phase.

A pressure at the ice front appears because the liquid is pushed by the ice front. The velocity ranges from

zero in ice to the velocity in liquid due to the dilatation, which induces a pressure gradient in the resolution.
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Fig. 15. Comparison among three velocities along the symmetry axis. Black lines represent the result of the

Eqn. 25 vl = dhs
dt

(
1 − ρs

ρl

)
, red circles show the result of vl = dhl

dt
, and blue stars show the maximum velocity

along the symmetry axis. (a) and (b) show results of the liquid film and drop respectively.

We report in Fig. 15 the evolution of the velocity of the liquid vl along the symmetry axis. Black lines

show the result of the Eqn. 25 vl = dhs

dt

(
1− ρs

ρl

)
where hs is determined at the position with the χ = 0.5;
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red circles show the velocity of the liquid front vl = dhl

dt where hl is determined at the position with C = 0.5;

and blue stars show the maximum velocity vmax along the symmetric axis. The Eqn. 25 considers the

expansion of the solidification and part of liquid freezes to the solid. As shown three velocities follow very

close evolutions. This result clearly demonstrates the connection between the drop deformation at the tip

and the liquid displacement induced by the ice formation. In particular, as shown in the Fig. 15(b), the

liquid velocity in the drop becomes faster in the end, which results from the acceleration of the frozen

process, the liquid volume to be iced decreasing faster than the heat flux from the cold source.

We now consider the effect of the density ratio on the solidification of both the liquid film and the drop.

In Fig. 16, we compare the evolution of the solidification front for different density ratio. The solid lines

plot the results of liquid films and the dashed lines plot the results of drops. The same color means the

same density ratio. Increasing the density ratio, increases the dilatation and thus the final height of the

solid. As outlined for the larger density ratio, the difference of the final height of the solid is slightly larger

for the liquid film. The explanation is that for the liquid film the expansion is only in the vertical direction

while for the 2D drop expansion can also occur along the side directions. Though the final height of the

solid is comparable, the freezing rate for the drops is quicker and the corresponding freezing time for the

drops is clearly smaller.
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Fig. 16. Comparison of the effect of the density ratio ρs/ρl on the solidification process between the liquid film
and drop. The evolutions of the solid height of the liquid film and the drop, respectively shown as the solid
lines and dashed lines. The same color represents the same density ratio.

5.2. Effect of the contact angle on drop icing

When a drop spreads on the substrates with different wettabilities, even the volume of the drop is the

same, but the contact angle plays important roles on the shape of the drop on the surface. In the following,

we study the effect of the contact angle on the freezing process of a drop.

We choose five drops with different contact angles, i.e. θ = 30◦, 60◦, 90◦, 120◦, 150◦. The volume of the

drop is kept to be the same 2.09× 10−9m3 and the shape of the drop is a spherical cap. In Fig. 18(a), from
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the left to right, the contact angles are θ = 30◦, 90◦, 150◦. We show the temperature distributions at the

same moment t = 0.5s. The blue lines show the interface of solid and the black lines show the gas-liquid

interface. It shows that the shapes of the solidification fronts for different contact angles are totally different.

In the first and the second cases, the freezing fronts have concave shapes and the third one has a convex

shape. Fig. 18(b) shows that the freezing time increases with the contact angle for drops with the same

initial volume, which is also observed in the experiment [8]. One main reason is that the final height of the

solid increases with the increasing contact angle. Another reason is that the freezing rate is also different

for different contact angles. Fig. 18(c) shows that at the same height of the solidification front, the freezing

rate is smaller for the larger contact angle case. The evolution of the freezing time tf with the contact

angle θ is reported in Fig. 18(d). tf is compared with the diffusion time td = h2
li/αl, the blue circle lines

show the diffusion time and the red triangle lines show the freezing time. Fig. 18(d) shows that the freezing

time is smaller than the diffusion time. As the solidification evolves, the front is becoming more and more

concave, as a consequence the liquid can be cooled not only by the vertical direction but also by the side

direction, which helps to speed up the freezing process. We also investigate the tip angle α of the final

frozen drops with different contact angles, which are shown in Table 4. All tip angles are smaller than 180◦

because the solidification of liquid push the left liquid to move upwards to create a new shape of the drop

[3]. However the values in Table 4 are significantly larger than the values ranging from 139 to 147◦ reported

by the experiments of [3] when varying the contact angle. This point will be discussed in more details in

the next section.

Table 4. The tip angle α of frozen drops

Contact angle θ [◦] 30 60 90 120 150
Tip angle α [◦] 173 169 170 164 162

 = 30°  = 90°  = 150  °

Fig. 17. The front-to-interface angle γ for different freezing drops at t = 0.5 s. The black lines represent the
interfaces between the gas and liquid. The blue lines show the interfaces of the solid phase.

In addition, the front-to-interface angle γ is investigated as shown in Fig. 17 at the same freezing time

t = 0.5 s. Three contact angle are reported 30o, 90o and 150o. The black lines represent the interfaces

between the gas and liquid. The blue lines show the interfaces of the solid phase. As shown, even if the

shapes of the solidification fronts are different, they are nearly perpendicular to the droplet interfaces, which

means a front-to-interface angle γ ≈ 90◦. Such result is also reported in the experiments [3], as a consequence

of the poor conductivity of the gas. The freezing front at Tm is an isotherm line, which is perpendicular to
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the droplet interface because there is a small heat flux cross the solid-gas boundary.
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between the dependence of the diffusion time and the numerical freezing time tf on the contact angles.
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The biggest reason of different freezing times in the Fig. 18 is caused by the difference of the liquid

height. Thus we now compare the freezing time of the liquid film and drops with the same initial liquid

height and different contact angles shown in the Fig. 19 (a). In the Fig. 19 (b), we find that the freezing

time of drops are much smaller than that of the liquid film. If we compare the partial enlargement of final

solidification process in the Fig. 19 (c,d), an interesting phenomenon is found. The condition of liquid film

can be regarded as the drop with θ = 0◦. When the contact angle is smaller than 90◦, the freezing time tf

decreases with the increasing contact angle, but once the contact angle is larger than 90◦, the tf increases

with the contact angle. Thus for drops with the same initial liquid height, the drop with the contact angle

90◦ freezes the fastest and the liquid film freezes the slowest. For drops with contact angle smaller than

90◦, the icing front area is smaller than the bottom area, so the solidification front is always concave. For

the front at the central axis, it is not only cooled by the vertical direction but also cooled by the horizontal

direction. As the contact angle increases, the horizontal temperature gradient becomes larger for the same

height, so the freezing times decreases. But once the contact angle is larger than 90◦, the front at the central

axis must be warmed by the horizontal direction in the beginning, so it will slow down the solidification rate.

As the contact angle increases, this slow freezing process lasts longer, so the total freezing time increases

with the contact angle. For the liquid film, the front is only cooled by the vertical direction, and there is

no help of the horizontal direction, so it needs the longest time to be frozen.

6. Drop with surface tension and gravity icing on a horizontal cold surface

In the former section, we have investigated the effects of different parameters on the freezing process,

such as the density ratio, the initial temperature of liquid and wall, the heat conductivity of gas, the contact

angle of the drop, the initial volume of the drop and the geometry of the drop. In the reality, two other

important parameters are also expected to affect the freezing process, such as the gravity and the surface

tension, because the combination of these two forces controls the shape of the liquid part of the drop. In the

following, we firstly study the effect of surface tension on the freezing drop, then we discuss the magnitude

of the spurious currents that develop at the gas/liquid interface and finally we compare the simulation to

experiment.

6.1. The effect of the surface tension and the gravity

In the former sections, the change of the drop shape is mainly determined by the expansion of volume

caused by the liquid solidification. But if we consider the real condition, as the liquid is pushed by the ice

expansion, the shape of the liquid part is controlled by forces balance at the interface where the surface

tension tends to minimize the area of the liquid interface while gravity tends to spread the liquid. In the

simulations, we consider the water/air system so the surface tension between the air and water is 0.072

N/m and the gravity is 9.81 m/s2. The initial shape of the drop is a spherical cap with radius R = 1 mm

and contact angle θ = 90◦ so that the initial drop height is hli = R = 1 × 10−3m. The corresponding
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Bond number Bo = ρgd2
eq/σ = 0.34 (where deq is the equivalent diameter). Bo has been selected less than

unity resulting in an initial spherical drop in order to make easier the discussion on the effect of the surface

tension on the icing process. In addition, considering the maximum value of the liquid velocity vl ≈ 10−3m/s

expected inside the drop (see Fig. 15), the Weber number We = ρv2
l deq/σ ≈ 10−5 and the capillary number

Ca = µvl/σ ≈ 10−5 are both much smaller than unity indicating that the velocity field is not expected to

induce interface deformation.

We compare two simulations in Fig. 20 (a,b). The solid lines show the profile of the drop and the dashed

lines show the solidification front at different times. In the Fig. 20 (a), gravity and surface tension are

not considered so the change of the drop shape is only caused by the expansion due to the solidification.

The drop shape doesn’t change a lot and the resulting tip angle remains close to the initial shape. In the

simulations reported in Fig. 20 (b), surface tension and gravity are considered. As clearly observed, the

effect of surface tension becomes more and more pronounced during the solidification as the liquid volume

is reduced resulting in a larger change of the drop shape and a sharper tip angle. We also compare the

evolution of the solidification front for these two simulations in Fig. 20 (c). We find that the evolution of

the front propagation is very close up to end of the icing corresponding to the tip formation. The freezing

time of a drop with surface tension is larger because we get a larger final height of the iced drop. This

clearly indicates that surface tension effects are controlling the drop shape evolution and tip formation. The

explanation is as follows. The characteristic capillary time τcap =
√
ρR3/σ ≈ 4 × 10−3s is much smaller

than the icing time tf ≈ 3s. Thus, when the ice front propagates the capillary effect has time to adjust the

shape of the remaining volume of liquid to a spherical cap. This changes the drop shape compared to the

initial spherical cap as shown in Fig. 20 (b).
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Fig. 20. The effect of surface tension and gravity on the solidification process. (a) The freezing process of
drops without surface tension and gravity, (b) the freezing process of drops with surface tension and gravity,
(c) the evolution of the solidification front: in red simulation without surface tension and gravity, in blue

We consider the mass conservation for the two cases. The initial shape of the drop being a spherical cup

with radius R = 1 mm and θ = 90◦, the initial volume of water is 2.0944 µL and the final volume of the

frozen drop Vt is 2.2840 µL. For the case without surface tension and gravity, the final volume of the frozen

drop is Vt = 2.2826 µL and that of case without surface tension and gravity is Vt = 2.2575 µL. The volume

error EV is defined as |Vf − Vt| /Vt is found to be smaller than 1.5% for the two cases.

In order to compare the freezing process between a flat liquid film and drops, we set the initial height
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Fig. 21. The comparison of inner parameters between the freezing liquid film, the freezing drop without surface
tension and gravity, and the freezing drop with surface tension and gravity. All figures are divided into two
parts. The left parts show the temperature distributions and the right parts show the pressure distributions
and the velocity fields. The ranges of temperature and pressure are shown in the right side of the figure.
White lines show ice interfaces and black lines show liquid interfaces. (a) The first column shows the liquid
film; (b) the second column shows the freezing drop without surface tension and gravity; (c) the third column
shows the freezing drop with surface tension and gravity. For the first, second and third rows, each of them
at the same time, but the fourth row corresponds to different final freezing moments tf .

of the liquid film as hli = 1 × 10−3m as shown in Fig. 21. The time step and the grid refinement are the

same for the different simulations, ∆t/tdiff = 1.3 × 10−6 and ∆/hli = 6.7 × 10−3. The contact angles of

the drops are θ = 90◦. The numerical domain of the axisymmetric drop cases is a square with the length of

2× 10−3 m.

In Fig. 21, each figure is divided into two parts. The temperature distributions are shown in the left part

and the pressure and the velocity distributions are shown in the right part. The ranges of temperature and

pressure are shown in the right side of the figure. The red area in the right parts shows the high pressure area

where the pressure is larger than P > 0.5 Pa. The black lines show the gas-liquid interface, and the white

lines show the solid interface. The arrows in the right part show the direction and magnitude of the velocity.

The shapes of the solidification fronts for the liquid film and the drop are different due to the geometry.

The solidification front of the liquid film is always flat but those of drops are curved. The temperature field

is also significantly affected by the drop geometry resulting in a different rate of solidification as outlined

by the comparison shown in the first, second and third rows where the time is the same for each row. The

forth row reports the situations at the final freezing moment tf . As shown when the initial height of liquid

is the same, the freezing process is faster in the drop than in the liquid film because less and less liquid

volume has to be iced with the same cold source.

We clearly observe in the right part of each figure the location of the maximum pressure at the (IBM)
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solidification front and the velocity in the liquid phase caused by the expansion of the solidification when

liquid freezes to ice, as described by Eqn. 25. In Fig. 21(b) (drop without surface tension and gravity),

the direction of the velocity is not only vertical, but it is affected by the geometry of the drop. Because

the magnitude of the velocity in the Fig. 21(c) (drop with surface tension and gravity) is much larger

than those in the other two cases, the length of velocity arrows in the Fig. 21(c) reduces to be 2.5 × 10−3

times to be shown. Thus velocities of larger magnitude vsp ≈ 10−3m/s develop close to the interface when

the surface tension is considered. These velocities are the well-known spurious currents inherent to CSF

methods [52, 26]. Considering the value of the Capillary number in our problem Ca = µvl/σ ≈ 10−5, there

are expected to develop and control the velocity field close to the interface. In the next section we discuss

the influence of the spurious currents development on the icing simulation.

6.2. Spurious current characterization for the hybrid VoF-IBM method
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Fig. 22. By reducing the ratio σ/µl, the magnitude of the spurious currents can be reduced. (a) The freezing
drops shape with surface tension and gravity but different viscosities of liquid at the moment t = 0.5 s. Each
figure is divided into two parts. The left parts show the temperature distributions and right parts show
the pressure distributions. The arrows show the direction and magnitude of the velocity. The scale bars of
the velocity are the same for the first and second images. The velocity in the third image with the smaller
viscosity is too small, so we enlarge the length of the arrow to 20 times for visualization. Maximum velocity
are shown in (b) where the Capillary number based on the maximum velocity Camax = µlvmax/σ is reported
as a function of the Ohnesorge number Oh = µl/

√
ρldeqσ. The black line is Ca = 0.004 for the CSF-VoF method

[53]. In (c) the final shape of the frozen drop with different viscosities compared to the freezing drop without
surface tension and gravity.

The magnitude of the spurious currents observed in Fig. 21 (c) is known to increase with the ratio of

the surface tension to viscosity σ/µl [53]. In order to study the effect of the development of the spurious

current on the icing, we vary the ratio σ/µl by changing the viscosity of the liquid while keeping fixed the

parameter controlling the drop icing such as the Bond number Bo = ρgd2
eq/σ

2 = 0.34, the contact angle

θ = 90o, the Stefan number Ste = 0.12 number and the density ratio ρs/ρl = 0.917.
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Fig. 23. Comparison between the drop without surface tension (dashed line) and gravity with the drop with
surface tension and gravity (line). The inner parameter distributions are plotted along the symmetry axis at
time t = 1s (grey and orange) and t = 3s (black and red). (a) The evolution of the height of the gas-liquid and
liquid-solid interfaces, red star show the two selected moments for the comparison, (b) the distribution of the
χ function, (c) the distribution of the C function, (d) the distribution of the temperature.

In Fig. 22 (a), three freezing drops with different liquid viscosities at the moment t = 0.5 s are shown.

Each figure is divided into two parts. The left parts show the temperature distributions and right parts

show the pressure and velocity distributions. The red area in the right parts shows the high pressure area

where the pressure is larger than P > 0.5 Pa. Both the temperature field and the pressure do not seem

to be affected by the spurious currents magnitude. The arrows show the direction and magnitude of the

corresponding velocity. The scale bars of the velocity are the same for the first and second images. The

velocity in the third image is too small, so we enlarge the length of the arrow to 20 times for visualization.

As expected, the magnitude of the spurious currents reduces with the increase of the viscosity µl. In

Fig. 22 (b), the maximum velocity is shown using the Capillary number based on the maximum velocity

Camax = µlvmax/σ reported as a function of the Ohnesorge number Oh = µl/
√
ρldeqσ. The magnitude of

the spurious current observed for the IBM-VoF-CSF methods are found to be of same order of magnitude

of the spurious velocities measured in the original VoF method in JADIM [53, 54] where the spurious

velocities evolve as 0.004 σ/µl. The final shape of the frozen drops is reported in Fig. 22 (c) for the different

viscosities considered. As shown the final shape of the drop is not impacted by the development of the

spurious currents, a result consistent with the small values of both the Weber and Capillary numbers.

Therefore, we choose the drop with larger viscosity to investigate the inner parameter distributions. In

Fig. 23, the viscosity of liquid is µl = 8.5 × 10−2 Pa·s. The selected times are t = 1s and t = 3s, the later

being close to the end of the solidification. Comparing to the freezing drops without surface tension and
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gravity, the main difference is related to the evolution of the gas-liquid interface. In Fig. 23(a) the final

height of the drop becomes larger due to the surface tension effect as described above and the corresponding

freezing time is larger. Other distributions appears to have similar shapes and are not affected along the

drop axis line by the geometry change due to surface tension.

6.3. Comparison with experiments

In order to further confirm the accuracy of the numerical method, we compare the numerical result with

the experimental result. Firstly, we compare the final profile of the frozen drop in the Fig. 24. Maŕın et al.[3]

experimentally measured the final profile of frozen drops with different contact angles. We use the drop

with the contact angle 90◦ from Maŕın et al.[3] for the comparison reported in the Fig. 24. The magenta

line shows the numerical result obtained considering surface tension and gravity. We find that the numerical

result fits well with the experimental results. In addition, we compare the tip angles in the Table. 5. We

find the tip angle for drops with the consideration of surface tension and gravity forces fits well with the

experimental result, while the tip angles for the simulation of the drops without considering those forces

were found larger (see previous section). Thus we show that the effect of gravity and surface tension are

very essential so that one can not ignore them in the solidification process.

Fig. 24. The final numerical profile of frozen drop shown as the magenta line fits with the experimental result.

Table 5. The tip angle α of frozen drops

Case Without surface ten-
sion and gravity

With surface tension
and gravity

Experiment

Tip angle α [◦] 170 139 141

In addition, we also study the front-to-interface angle γ, which is shown in Fig. 25(a). We recall, that

the angle between the three phases is not imposed but results from the local solidification isotherm T = Tm

so that it is controlled by the balance of the heat fluxes from the three phases. In particular, in the situation

of no flux exchange with the external air, an angle of 90o is observed. We detail the method used for the

angle calculation in the cells where the three phases are present. In the Fig. 25(a), magenta points show

the solid-liquid interface corresponding to the solidification isotherm T = Tm, and blue points show the

drop-gas interface corresponding to the VoF function value C = 0.5. The zoom figure of the green square

is shown on the right. γ is defined as the angle in the solid area between the solid-liquid interface and the

solid-gas interface. We use the slopes of the red line and the black line to calculate the value of γ, which
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Fig. 25. The angle γ in the solid area between the solid-liquid interface and the solid-gas interface. (a) Magenta
points show the solid-liquid interface. Blue points show the drop-gas interface. The zoom figure of the green
square is shown in the right. γ is defined as the angle in the solid area between the solid-liquid interface and
the solid-gas interface. (b) γ evolution as time t.

is plotted in Fig. 25(b). γ is nearly a constant equals 90◦. Note that the front-to-interface angle γ is not

impacted by considering the surface tension; a value close to γ ≈ 90◦ is in agreement with the experimental

result [3], which results from the poor relative conductivity of the gas as discussed above.

7. Conclusion

In this work, we present and validate the development of a hybrid VoF-IBM method for the simulation

of the icing of liquid drop and liquid film. The VoF and IBM methods of JADIM are coupled with the

temperature equation to be able to solve the icing front, the dilatation induced by the density difference

between the liquid and the ice, as well as the deformation induced by the balance of surface tension and

gravity at the gas-liquid interface. Firstly we compare the liquid film solidification with the Stefan theoretical

solution to check the applicability and accuracy of JADIM. The tests are performed for different density

ratios and different initial conditions. Then we apply JADIM to investigate the freezing dynamics of drops.

Through comparing the results of the liquid film and drops, we investigate the effects of several important

parameters, such as the ratio between the solid density to the liquid density, the initial conditions, the

contact angle of the drop. We show that the freezing time tf of the drop is increased with the decrease of

the Stefan number Ste, the decrease of the density ratio and the increase of the drop contact angle providing

convex solidification front. Furthermore, we study the effect of the gravity and the surface tension on the

drop freezing processes. In particular we discuss the CSF-VoF spurious currents and we show that they

induce no effect on the icing process due to the small value of the induced Weber and Capillary numbers.

We find that the final ice shape is in a very good agreement with experiments, and in particular the value of

the tip angle of the iced drop and the front-to-interface angle are satisfactorily reproduced. Our method has

been validated on simple configurations, and more unstable cases as dendritic growths will be considered in

the future.
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