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a b s t r a c t 

In this paper we investigate the effects that breaking the symmetry in an annular configuration has on 

the features of standing, spinning and slanted limit cycle oscillations of thermoacoustic instabilities cou- 

pled by azimuthal modes. Experiments are carried out in the MICCA combustor, an annular system com- 

prising sixteen identical matrix injectors. The symmetry of the system is broken by partially blocking the 

injectors or by changing their geometry. The resulting pressure fields are analysed using a newly intro- 

duced pressure ansatz which serves to characterize the nature of the instability (standing or spinning) 

and the pressure antinodes. Two distinct scenarios are identified. First, when the distribution of the un- 

steady rate of heat release is slightly changed, for example by partially blocking a single injector, the 

nature of the limit cycle remains the same. A spinning/standing mode in the symmetric combustor re- 

mains spinning/standing in the combustor in which the symmetry is weakly broken. However, it is also 

found that the orientation of the pressure antinodal line does change and that it is controlled by the 

pattern of asymmetries introduced in the system. Second, when the distribution of unsteady rate of heat 

release is changed to a larger extent, for example by partially blocking several burners and by changing 

their geometries, the nature of the limit cycle can change. A dynamical system based on the pressure 

ansatz is used to gain insight into the experimental observations. Using a model flame describing func- 

tion it is shown that one can retrieve many of the features observed in the experimental data, including 

the nature of the instabilities and the pressure antinodal position as a function of the injection asym- 

metries. The dynamical system is also used to assess the strength of inhomogeneity introduced in the 

system. As in the experiments, it is found that in the model starting from a symmetric combustor and 

then partially blocking a single burner (by modifying its FDF) one is able to alter the pressure antinode. 

However if in the model one starts from a system with a strong variation of the unsteady heat release 

rate in the azimuthal direction, partially blocking one injector does not change perceptively any of the 

features of the predetermined limit cycle. 

© 2021 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Annular combustors are generally used in high power density 

ystems that are prone to thermoacoustic instabilities [1] . These in- 

tabilities are classified as longitudinal, standing, spinning, mixed 

r slanted modes [2] . In recent years research efforts have been 

ocused on the field of modal dynamics, to analyse the onset and 

ature of these instabilities. In practice these instabilities need to 
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e avoided because they induce vibrations, structural fatigue and 

n extreme cases mechanical damage and failure. An understand- 

ng of these dynamical processes is required to devise mitigation 

nd control strategies [3] but this is not an easy endeavour. The 

ain challenges arise from the presence of a turbulent combus- 

ion process [4] that is coupled by transverse acoustic waves [5] . 

sing large eddy simulation (LES) for reacting flows Wolf et al. 

6] confirmed that at a given operating condition standing and 

pinning modes could switch randomly. This process was also ob- 

erved in the experimental data recorded in laboratory scale com- 

ustors [7,8] and has been attributed to a stochastic forcing asso- 

iated with the high level of background noise in the system [9] , 
Institute. This is an open access article under the CC BY license 
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Fig. 1. (a) Photograph of the MICCA combustor equipped with matrix injectors. (b) Schematic of the experimental set up displaying the microphone locations around the 

plenum. (c) Excerpt of the pressure signals recorded for the experimental case P1A-01 with φ = 0 . 88 , ̄u = 1 . 16 m/s (Spinning mode). 
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s  
s experimentally confirmed by Faure-Beaulieu et al. [10] . One as- 

ect that deserves special attention is that of defining the nature 

f limit cycles coupled by azimuthal modes and the possible ef- 

ects of symmetry breaking. 

To learn about the onset of a limit cycle it is common to look 

nto the linear regime of the instabilities. This type of analysis can 

redict whether a specific mode is stable or unstable to acousti- 

ally driven perturbations together with the structure of the mode 

11,12] . In symmetric combustors, a mode is said to be degener- 

te [13] if at the same frequency there exist two linearly indepen- 

ent mode structures. For degenerate modes, a linear framework 

annot provide information about the amplitude or the nature of 

he limit cycle, i.e., whether a given azimuthal mode will saturate 

nto a standing mode or a spinning mode. However, if the symme- 

ry is broken, and the degeneracy is resolved, a linear framework 

an predict the nature of the oscillation, but the amplitude re- 

ains undetermined. Nonlinear analysis using the describing func- 

ion framework [14–16] is better suited to that purpose. One of 

he key factors in this method is the introduction of a saturation 

odel for the unsteady rate of heat release that allows a finite am- 

litude response of the perturbations. Such models have been pro- 

osed based on phenomenological arguments [14,15] , physics in- 

ormed models such as those based on flame kinematics [17] or 

xperimental observations [16,18,19] . 

It is shown by Schuermans et al. [15] that the saturation model 

pplied to an annular system leads to a selection between spinning 

nd standing modes. When the amplitude saturates giving rise to 

 limit cycle, they found that only spinning modes are stable. Us- 

ng a cubic saturation model for the heat release rate as a function 

f the acoustic pressure amplitude, Noiray et al. [18] describe the 

nnular combustor dynamics in terms of Van der Pol oscillators 

nd conclude, again, that in rotationally symmetric configurations, 

he system saturates into a spinning mode. It is also indicated that 

f the unsteady rate of heat release of azimuthal mode of order n 

as a nonuniform azimuthal distribution, the magnitude of the 2 n 

ourier component, determines whether this mode saturates into 

 mixed mode or, if the magnitude is above a critical value, into a 

tanding mode at limit cycle. Addressing the same issues, Ghirardo 

nd Juniper [20] extended the previous formulation and considered 

nly a symmetric distribution of heat release rate, but introduced 

ransverse velocity fluctuations and used the strength of their cou- 

ling with the heat release rate as another bifurcation parameter 

o control whether the system saturates to a standing or a spinning 

ode. The previous predictions are limited to systems featuring a 

ubic saturation of the heat release rate as a function of pressure. 

or a generic time invariant flame describing function (FDF) Ghi- 

ardo et al. [21] derive a dynamical system and provide general 

ules to test the stability of standing and spinning modes. These 

onditions are used by Laera et al. [22] to test two different oper- 

ting conditions in the MICCA burner that yield a spinning and a 

tanding mode respectively. 
2 
Some of the aforementioned literature concerns cases where 

he rotational symmetry is broken. As briefly summarized by 

oinsot [3] breaking the symmetry of a combustor constitutes an 

ppealing way to mitigate azimuthal instabilities. In practice this 

an be done by staging the injection units in a combustor [18] . 

owever, depending on the way the symmetry is broken, this may 

ither mitigate the instabilities (e.g., [23] ) or if a pair of degener- 

te modes splits, the system may become more unstable [13,24] . In 

he latter case the system will saturate into a limit cycle [18,25] . 

The present study concerns features of limit cycles under bro- 

en symmetry conditions. Experiments are carried out in the 

ICCA combustor from EM2C [26,27] equipped with matrix injec- 

ors which have been demonstrated to excite well defined spin- 

ing, standing and slanted modes [2,19,22] . These various modes 

re well established due to a unique feature of this configuration 

n which combustion takes place through a set of laminar matrix 

ames. This permits the controlled introduction of asymmetries in 

he fluctuating heat release rate through small changes to the ma- 

rix burners without dealing with the additional complexities in- 

roduced by turbulence. This combustor has been used to study 

he dynamics of the pressure field when the system is subject to a 

pinning mode [19] . One important conclusion is that under the 

ested conditions there is a phase difference between the pres- 

ure field in the combustion chamber and the pressure field in the 

lenum. Using the same configuration, Prieur et al. [28] establish 

 stability map as a function of the operating conditions and iden- 

ify a dual mode region where standing and spinning modes can 

e observed. It is found that the nature of the limit cycle in which 

he system saturates is determined by the initial operating con- 

itions. These phenomena are investigated numerically by Orchini 

t al. [29] , by considering the nonlinear interactions between the 

odes. 

This article begins with a brief presentation of the experimen- 

al set up. The pressure signals and modes are then expressed in 

erms of the ansatz proposed by Ghirardo and Bothien [30] . Sta- 

ility maps corresponding to the different test cases are then de- 

cribed to delimit conditions leading to stable limit cycles. This is 

ollowed by a discussion of the effects of symmetry breaking on 

he location of the pressure antinodal line in the stable limit cy- 

les. A dynamical system is then derived that may suitably repre- 

ent this configuration by adapting a model proposed by Ghirardo 

nd Gant [31] . This is used to mimic the results of the experimen-

al cases in order to draw some conclusions about the observed 

ehaviour. 

. Experimental setup 

The MICCA combustor, shown in Fig. 1 a, consists of an annular 

lenum equipped with 16 matrix injectors and an annular combus- 

ion chamber open to the atmosphere. The matrix injectors con- 

ist of a thick plate with 89 holes of diameter of d = 2 mm, fea-
h 
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Fig. 2. The top row shows the two injector geometries used in the experimental 

campaign. The bottom row shows the three discrete local rotations (A, B, C) that 

are assigned to the partially blocked injector located at θ = 0 . 
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Fig. 3. Different configurations tested. The semicircles are used to denote partially 

blocked injectors. Blue and red are used for the injector’s mesh with 89 holes and 

d h = 2 mm. Yellow is used to denote the injector’s mesh with 37 holes and d h = 3 

mm. The reference angle θ = 0 is the same as in Fig. 1 b. Although not shown in 

Fig. 2 the yellow half semicircles denote partially blocked injectors with d h = 3 mm. 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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uring a porosity of σ1 = 0 . 33 . A detailed description of the ge-

metry is found in Laera et al. [22] . The configuration is oper- 

ted in fully premixed conditions using propane/air mixtures at 

quivalence ratios in the interval φ = [0 . 86 , 1 . 25] with bulk veloc-

ties measured in each hole of the perforated plate in the inter- 

al ū = [1 . 2 , 2 . 5] m/s. High speed images of the full annulus (see

ig. 1 b for camera position) are acquired using the same set up as 

rieur et al. [28] . Pressure measurements p ′ 
1 −8 

are taken at 8 dif- 

erent locations θk = 

π
4 (k − 1 

4 ) , with k = 1 , 2 , . . . , 8 in the plenum

f the combustor as shown in Fig. 1 b. The signals are sampled 

t a frequency of 32.768 kHz for 4 s. Typical pressure signals as 

ecorded by the microphones are shown in Fig. 1 c. In its base- 

ine configuration the 16 matrix injectors are identical. Efforts were 

ade to ensure that the flow rate was well distributed through 

hese units with no impact on the occurrence of the various types 

f oscillations. 

The present study is focused on the effects of symmetry break- 

ng on the limit cycles of combustion instabilities due to changes 

n the spatial distribution of the fluctuating heat release rate. The 

ymmetry of the combustor is broken by two means: 

1. Changing the injector geometry. 

2. Partial blockage of one or more injection units. 

The injector geometry is changed by using a different mesh 

ith 37 holes of diameter d h = 3 mm and a porosity σ2 = 0 . 31 , as

hown in the top row of Fig. 2 . The porosities of both meshes are

pproximately the same ( σ1 ≈ σ2 ). However, the larger hole diam- 

ter produces longer conical flames. Semicircular partial blockages 

re introduced by custom made matrix injectors which could be 

iscretely rotated about the local burner axis. We consider three 

ifferent local rotations with respect to the burner axis labelled A, 

 and C, as shown in the bottom row of Fig. 2 . 

Each configuration may be used at different operating condi- 

ions yielding one of the four types of azimuthal instabilities: spin- 

ing, standing, mixed or slanted modes. Figure 3 and Table 1 sum- 

arize all the operating conditions and configurations considered 

n this study. The configurations labelled P1A, P1B and P1C corre- 

pond to azimuthal rotations of a single partially blocked injector 

t 3 different local rotations. The configurations P2 and P3 have 

 or 3 partially blocked injectors respectively in different arrange- 

ents. Finally, the configurations D1, DP1 and DP2 use an injector 

or injectors) with different mesh characteristics. 

. Characterization of pressure signals 

Following Ghirardo and Bothien [30] , we use the quaternion 

ramework to represent the pressure signals corresponding to the 

zimuthal instability. The main advantages of this formulation are 
3 
iscussed later on in Section 7.2 . For the moment, the pressure sig- 

al is assumed to take the form: 

p ′ (t, θ ) = A cos [ n (θ − θ0 )] cos (χ ) cos (ωt + ϕ) 

+ A sin [ n (θ − θ0 )] sin (χ ) sin (ωt + ϕ) , (1) 

here A is the amplitude, χ is the nature angle, θ0 is the orienta- 

ion angle, ϕ is the phase angle, n is the azimuthal wave number 

nd ω is the thermoacoustic frequency. The orientation angle spans 

he interval [ −π, π ] and determines the position of the pressure 

ntinodal line. The nature angle spans the interval [ −π/ 4 , π/ 4] 

nd describes whether the mode is spinning ( χ = ±π/ 4 ), stand- 

ng ( χ = 0 ) or mixed. In this study modes with 0 . 1 π/ 4 < | χ | <
 . 9 π/ 4 , are regarded as mixed modes. 

This formulation is valid when the system displays a spinning, 

tanding or a mixed mode. The MICCA combustor can also satu- 

ate into a slanted mode, which is a coupled mode having a stand- 

ng component and an axisymmetric component [32] (see Fig. 4 

or a description of the modes). In this case, the pressure fluctu- 

tions can be recast as ˜ p ′ (t, θ ) = p ′ (t, θ ) + p ′ 
L 
(t ) , with p ′ (t , θ ) as

iven in Eq. (1) and p ′ L (t) as the axisymmetric component. Since 

he microphones are equispaced around the annulus, their average 

orresponds to the value of the axisymmetric component. Accord- 

ngly, to analyse the slanted modes, this average is removed and 

he rest of the signal is treated as a standing mode. 

The pressure signals in the plenum can therefore be character- 

zed in terms of the amplitude and the three angles. The power 

pectral density of all the analysed signals (not shown for brevity) 

as a peak at a frequency that corresponds to the first azimuthal 

ave number. This peak is significantly stronger than the rest of 

he harmonics, therefore, from this point onwards we will consider 

nly the case when n = 1 . For the configurations P1A-01 and P1B- 
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Fig. 4. Pressure distribution around the annular combustor at 3 different times for 

the three types of azimuthal instabilities observed with an azimuthal wave number 

n = 1 . The red line is the pressure nodal line and T is the period of oscillation. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article) 
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3 (see Fig. 3 ) the probability density functions (PDF) of the ori- 

ntation angle, nature angle and normalized amplitude at two dif- 

erent operating conditions together with high speed snapshots are 

hown in Fig. 5 . The left column corresponds to a spinning mode 

nd the right column corresponds to a standing mode. One key 

bservation of the data in all the cases explored is that the an- 

les’ PDFs feature a very small spread. This indicates that the na- 

ure of the instability is deterministic, i.e., the background noise 

oes not play an important role in the observed limit cycles, as for 

nstance in some cases reported in Worth and Dawson [8] for tur- 

ulent flames. For most of the cases presented in this paper the 

DFs do not change significantly if shorter pressure signal lengths 

re used. 

. Stability map 

With the characterization of the pressure signals, each of the 

est cases listed in Table 1 can be categorized in terms of their 

imit cycles as spinning, standing, mixed or slanted modes. The top 

lot in Fig. 6 shows the stability map as a function of the operat-

ng conditions i.e., equivalence ratio and bulk velocity. The data in 

he figure has been overlaid on top of the data reported by Prieur 

t al. [28] , which is taken in the same combustor and similar op- 

rating conditions but with 16 identical matrix burners (89 holes, 

 h = 2 mm). The new stability map matches to a large extent the 

esults of Prieur et al. [28] . The slight differences can be attributed 

o the partial blockage of the injectors in the present study. At a 

onstant mass flow rate, partially blocking one or several injec- 

ors accelerates the flow and changes the flame describing function 

FDF). Accordingly, we observe the shift mainly in the direction of 

¯ . The bottom plot in Fig. 6 shows the thermoacoustic frequency. 

his frequency changes depending on the operating conditions and 

he type of limit cycle in which the system saturates [29] . This is

videnced by noting that standing modes tend to oscillate at a fre- 

uency around 500 Hz, while for spinning modes the oscillation 

requency shifts to 480 Hz and for slanted modes around 430 Hz. 
4 
his is clear by looking at the dual mode region, where stable spin- 

ing and standing modes differ in their thermoacoustic frequencies 

y 10–20 Hz. 

The similarity between maps of a rotationally symmetric com- 

ustor and the asymmetric ones indicates that breaking the sym- 

etry by partially blocking one or several of the injectors or by 

hanging the mesh, does not change the stability of a prede- 

ermined mode in this annular system. The main reason can be 

ttributed to the fact that the partial blockage of one, two or 

hree injectors may correspond only to a weak symmetry break- 

ng mechanism. A stronger symmetry breaking mechanism might 

e needed or a combination of several weak mechanisms to fully 

hange the stability of a predetermined limit cycle. In the exper- 

mental data there might be just one case which enters this cat- 

gory which corresponds to a standing mode in the spinning re- 

ion pertaining to configuration DP2-01 at ū = 1 . 67 m/s, φ = 1 . 02 .

n this configuration two injectors were blocked and their injection 

eshes were changed. 

While in the weak symmetry breaking scenario the stability of 

 specific limit cycle may not change, some of the features such 

s the orientation angle, i.e., the location of the pressure antinode, 

an be substantially altered. 

. Amplitude and nature angle 

The peaks of the PDFs of the nature angle χ and the amplitude 

 are shown in Fig. 7 . Five of the modes are of mixed nature, since

 < | χ | < π/ 4 , but still predominantly spinning. These correspond 

o the first case of configuration P1A-01, configuration DP1-01, and 

he first three cases of configuration DP2-01 listed in Table 1 . No- 

ice that configuration DP2-01 is the same configuration that gives 

ise to a standing mode in the spinning region ( Fig. 6 top). Fur-

hermore, note that the amplitude of the slanted modes is lower 

han the standing modes. This is because the average of the signal, 

hich is around 120 Pa, has been removed. Thus, the amplitude 

hown corresponds only to the standing component. Taking the av- 

rage into account the slanted and the standing clusters overlap. 

he last observation is that the spinning modes have on average a 

arger amplitude than the standing or slanted modes (accounting 

or the average). However, recall that A does not refer to pressure 

mplitude around the annulus. Instead, at a given azimuthal angle 

the pressure amplitude of the acoustic field [31,33] is given by: 

 p (θ ) = 

A √ 

2 

[ 
1 + cos (2 χ) cos (2 n (θ0 − θ )) 

] 
1 / 2 (2) 

or a spinning mode, | χ | = π/ 4 , we obtain A p (θ ) = A/ 
√ 

2 . For a

tanding mode, χ = 0 , we have A p (θ ) = A | cos (n (θ0 − θ )) | . Hence,

or the experimental data it is clear that, on average, the maximum 

ressure amplitude ( A p ) is larger for standing modes than for spin- 

ing modes as observed in Laera et al. [22] . 

. Orientation angle 

It is now interesting to examine the orientation angle θ0 (az- 

muthal position of the pressure antinodal line of the standing 

omponent) of the pressure field as measured in the plenum dur- 

ng a limit cycle. Before proceeding we first revisit some of the 

ublished literature concerning the symmetric combustor. Bour- 

ouin et al. [19] present the histogram of the pressure nodal lines 

n the plenum and combustion chamber for a spinning mode. 

hese histograms show that there is a preferred orientation for the 

tanding component of the signal. Laera et al. [22] show that two 

uns at the same operating condition saturate into a standing limit 

ycle with two possible pressure antinodal line orientations. One of 

hese orientations appears again in the work of Prieur et al. [28] . 
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Fig. 5. Probability density functions and high-speed snapshots of a spinning mode (left column) and a standing mode (right column). (a) and (b) show PDFs of the orientation 

angle, nature angle and normalized amplitude; the vertical gray lines denote the span of the burners around the annulus. The black line denotes the location of a partially 

blocked injector. (c) and (d) show the corresponding high-speed snapshots; the period is T ≈ 2 ms, the partially blocked injector is indicated with a blue arrow and the 

pressure node with a dashed line. The spinning mode in the left column corresponds to configuration P1B-03 at ū = 1 . 57 m/s, φ = 1 . 04 . The nature angle peaks near 

2 χ = π/ 2 indicating a counter-clockwise spinning mode. The standing mode in the right column corresponds to configuration P1A-01 at ū = 2 . 49 m/s, φ = 0 . 92 . The nature 

angle peaks near 2 χ = 0 and the orientation angle shows that the pressure antinodal line lies between two injectors near θ0 = −π/ 16 . (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article) 

Fig. 6. Stable limit cycles as a function of equivalence ratio and bulk velocity. The 

markers denote the current experimental cases, see Table 1 for a reference. The 

shaded areas correspond to data extracted from Prieur et al. [28] . Under asymmet- 

ric conditions of the burners the top and bottom plots show the nature and the 

(thermoacoustic) frequency at which the modes saturate. 

Fig. 7. Amplitude vs nature angle for the different configurations. The color code is 

the same as for Fig. 6 . The amplitude of the slanted mode corresponds only to the 

standing component of the instability. 
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5 
ince for the spinning case there is a preferred orientation for the 

ntinodal line and for the standing case the antinodal line orien- 

ations repeat in different runs, we can conclude that even in the 

ymmetric case there are already some symmetry breaking effects 

t play. However, the strength of these asymmetries is not nearly 

s pronounced as partially blocking an injector, given that this ef- 

ect seems to override any existing symmetry breaking effects as 

ill be discussed next. 

Figure 8 shows the PDF of the orientation angle plotted on top 

f the different configurations. If for the same configuration more 

han one operating condition yields the same limit cycle, the PDFs 

hown are the average. It is natural to begin by discussing the ori- 

ntation angles of standing modes ( Fig. 8 a). In most of the cases, 

hen a single injector is partially blocked, the pressure antinode in 

he plenum follows the angular position of the asymmetry, locking 

nto an azimuthal location between the blocked injector and an 

djacent burner. In a few instances (P1A-04 and P1A-05) the nodal 

ine shifts by the span of one or two injectors. Changing the ori- 

ntation of the partially blocked injector does not appear to have 
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Table 1 

Operating conditions tested in each configuration and the limit cycle corresponding 

to saturation. The type of limit cycle is followed by an asterisk ( ∗) to denote similar 

operating conditions near ū = 2 . 16 m/s, φ = 1 . 13 . 

Id. Configuration Limit Cycle ū (m/s) φ

� P1A-01 Mixed 1.16 0.88 

Standing 2.49 0.92 

Standing ∗ 2.16 1.13 

P1A-02 Slanted 1.40 1.18 

P1A-03 Standing ∗ 2.15 1.13 

Slanted 1.43 1.17 

P1A-04 Spinning 2.09 1.13 

Standing 2.24 1.17 

Standing ∗ 2.18 1.19 

Slanted 1.47 1.22 

P1A-05 Standing 2.44 1.06 

Standing 2.30 1.11 

Standing 2.46 1.05 

Slanted 1.49 1.22 

� P1B-01 Standing 2.39 1.14 

Slanted 1.46 1.22 

P1B-02 Spinning 1.63 1.01 

P1B-03 Spinning 1.57 1.04 

Standing 2.37 1.09 

Slanted 1.40 1.22 

♦ P1C-01 Standing 2.07 1.12 

Standing ∗ 2.17 1.15 

Slanted 1.43 1.19 

� P2-01 Standing ∗ 2.18 1.14 

P2-02 Spinning ∗ 2.10 1.11 

Standing 2.32 1.08 

Standing 2.31 1.08 

Standing 2.30 1.05 

Slanted 1.47 1.17 

� P3-01 Spinning ∗ 2.10 1.12 

Standing 2.24 1.16 

Slanted 1.60 1.14 

� D1-01 Spinning ∗ 2.15 1.08 

Standing 1.98 1.15 

Slanted 1.60 1.16 

Slanted 1.44 1.19 

D1-02 Spinning ∗ 2.19 1.13 

Spinning 1.68 0.95 

Standing 2.00 1.10 

Slanted 1.44 1.17 

� DP1-01 Mixed 1.39 1.07 

DP2-01 Mixed 1.34 0.95 

Mixed 1.15 0.93 

Mixed 1.74 0.96 

Standing 1.67 1.02 
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 strong influence on the locking position as shown by comparing 

1A-01, P1B-01, and P1C-01. More asymmetries were introduced in 

wo or more azimuthal locations via one or more partially blocked 

njectors. The azimuthal locations of the partially blocked injectors 

ere chosen with both odd (P2-01, P2-02, P3-01) and even num- 

er of injectors between them (P3-01). Odd numbers were chosen 

o see if the nodal line could be forced into the centre of a burner

s opposed to between burners. As shown in the figure the antin- 

dal line has a well defined locking position that follows the in- 

roduced asymmetries. It tends to be located directly adjacent to a 

artially blocked injector (P3-01, DP2-01) as found in the cases of a 

ingle partially blocked injector, or in-between (P2-02) which may 

e defined by the separation between blocked injectors. The antin- 

dal line position seems to be repeatable, as seen for instance in 

onfiguration P1A-04, which has two cases with similar operating 

onditions and the same antinodal line. 

The slanted modes ( Fig. 8 b) show a preferred orientation that 

ends towards the centre of the modified burner or its neighbour. It 

lso presents a greater variance, which may be due to its nonlinear 

ongitudinal-standing coupled nature. 
6 
The spinning modes have a nature angle | χ | close to π/ 4 , but

ot exactly (see Fig. 5 a). Hence, these modes can also be deemed 

s mixed modes with a predominantly spinning component and a 

eak but definable standing component. Although the latter com- 

onent is weak, the antinodal line exhibits a preferred orientation 

ngle, as shown in Fig. 8 c. Unlike the standing and slanted modes 

he preferred orientation angle for the spinning modes is, in most 

ases, located adjacent to injectors which are approximately 90 ◦

part from the partially blocked injector(s). This analysis reveals a 

referred orientation for the pressure antinode, which appears to 

e a function of the distribution of the asymmetry in the heat re- 

ease rate around the annulus. 

. Dynamical system analysis 

A dynamical system is now derived in terms of the amplitude 

nd the three angles used to describe the pressure field to provide 

 simple model that can be used to understand the features ob- 

erved in the experimental data and perhaps provide insight into 

he mechanisms at play in mode selection. 

One begins by considering the wave equation in an annular 

ombustor with a linear damping term and unsteady heat release 

ates corresponding to the flames formed by the N b = 16 matrix 

njectors located at angles θm 

= (m − 1) π/ 8 with m = 1 , 2 , . . . , N b :

∂ 2 p ′ 
∂t 2 

+ α
∂ p ′ 
∂t 

− c̄ 2 

R 

2 

∂ 2 p ′ 
∂θ2 

= (γ − 1) 

N b ∑ 

m =1 

∂ q ′ 
∂t 

2 πδ(θ − θm 

) , (3) 

here α is the damping coefficient, c̄ is the mean speed of sound 

n the chamber, R is the mean radius of the annular combustor, γ
s the ratio of specific heats and q ′ is the fluctuations in the heat 

elease rate per unit volume. This form of the wave equation and 

he pressure ansatz given in Eq. (1) are only valid for the study of 

he dynamics of spinning and standing modes. For slanted modes 

e require to include extra terms [32] and for that reason their 

iscussion is left for future studies. 

Treating this equation as weakly nonlinear, with the nonlinear- 

ty arising from the heat release term [14] , and using the method 

f averaging [34] , we derive in Appendix A the following dynamical 

ystem for the slow flow variables A , χ , θ0 , ϕ (similar derivations 

an be found in [25,31,33] ): 
 

 

 

 

 

 

 

 

˙ A 

˙ θ0 

˙ χ

˙ ϕ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−α
A 

2 

0 

0 

ω 

2 
n 

2 ω 

− ω 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

N b ∑ 

m =1 

F (m ) 
r 

2 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

A + A cos (2 χ) cos (2 n (θ0 − θm 

)) 

− 1 

n 
sec (2 χ) sin (2 n (θ0 − θm 

)) 

− sin (2 χ) cos (2 n (θ0 − θm 

)) 

tan (2 χ) sin (2 n (θ0 − θm 

)) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

N b ∑ 

m =1 

F (m ) 
j 

2 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

− 1 

n 
tan (2 χ) cos (2 n (θ0 − θm 

)) 

sin (2 n (θ0 − θm 

)) 

1 + sec (2 χ) cos (2 n (θ0 − θm 

)) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (4) 

ere ω n = n ̄c /R is one of the eigenfrequencies of the purely az- 

muthal modes of the annular combustor and ω is the thermoa- 

oustic frequency of the system. F (m ) 
r and F (m ) 

j 
are the real and 

maginary components of the function: 

 

(m ) ≡ F (m ) 
r + jF (m ) 

j 
= (γ − 1) 

q̄ 

p̄ 
FDF (θm 

) , (5) 

here FDF (θm 

) is the flame describing function relative to the 

ressure fluctuations at location θm 

: 

DF (θm 

) = 

ˆ q (θm 

) / ̄q 

ˆ p (θm 

) / ̄p 
. (6) 
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Fig. 8. PDF of the pressure antinode (orientation angle θ0 ) around the annulus. Darker regions are more likely to occur. The configuration is not shown if no operating 

condition produced the corresponding mode. If for the same configuration more than one operating condition yields the same limit cycle the PDFs shown are the average. 

7 
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Fig. 9. Gain (left) and phase (right) of the experimental FDF u that saturates into a standing mode at a frequency of 500 Hz of the injector with 89 holes, d h = 2 mm, 

and σ1 = 0 . 33 . The operating conditions are φ = 1 . 11 and ū = 2 . 01 m/s. FDF A × Z is obtained by fitting the experimental data to Eq. (8) . The corresponding parameters are 

β = 3419 , κ = 0 . 2156 1/Pa, ε = 1437 and μ = 0 . 01712 1 / Pa 2 . FDF B × Z is obtained by increasing the value of ε to ε = 2155 . The impedance Z is obtained using a low order 

model of the MICCA combustor. 

Fig. 10. Phase portraits for the symmetric and asymmetric combustor in the Poincaré sphere. (a) Poincaré sphere of radius A . The red plane corresponds to the meridian 

plane (A, 2 χ, 0) ∪ (A, 2 χ, ±π) or (S 1 , S 3 ) . The blue plane corresponds to the equatorial plane (A, 0 , θ0 ) or (S 1 , S 2 ) . The round markers show the location of mixed modes in 

green, standing modes in red and spinning modes in blue. (b) shows the two planes of the Poincaré sphere for a rotationally symmetric combustor and (c) for the combustor 

with broken symmetry similar to configuration P1A-01. The top row (red color map) shows the meridian plane. The bottom row (blue color map) shows the equatorial plane. 

The gray dashed lines show the burner angles. The white markers denote repellers or saddles. The black lines (arrows) show trajectories that remain in the selected planes, 

i.e., the component perpendicular to the plane is 0. The purple arrow in (c) bottom denotes the burner angle of the partially blocked injector in configuration P1A-01. The 

maximum value for the radius in all figures is A = 30 . The color map shows the projected norm of the stream vectors (LHS in Eq. (9) ). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article) 
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o  

d  
he overbar is used to denote time average and the hat to denote 

he first Fourier component at the frequency of oscillation ω. Ac- 

ordingly, the describing function is a function of the slow flow 

ariables, i.e., FDF (θm 

) = FDF (A, θ0 − θm 

, χ, ϕ) . 

By definition the eigenfrequencies ω n depend on the geometry 

nd on the speed of sound. On the other hand the damping rate 

, the oscillation frequency ω and the FDF depend on the geom- 

try and operating conditions. The experimental determination of 

he FDF and that of the damping rate raises issues that may be 

et aside if the model is not meant to be a predictive tool. This
8 
ill be the case in the following development. The modelling ef- 

ort is only intended to provide further insight on the limit cy- 

le behaviour and on mode selection in a combustor under similar 

ymmetry breaking conditions. 

.1. Flame describing function model 

To derive a model for the FDF, one may begin by analysing one 

f the experimental FDFs shown in Laera et al. [22] . These FDFs are

efined in terms of the velocity perturbations FDF u = ( ̂  q / ̄q ) / ( ̂  u / ̄u ) .
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o deduce the FDF with respect to the pressure fluctuations one 

as to multiply by an impedance Z = ( ̂  p / ̄p ) / ( ̂  u / ̄u ) which describes

he injector response to pressure perturbations and is obtained 

rom a low order model. One may then write 

DF = 

FDF u 

Z 
. (7) 

The experimental FDF u which saturates into a standing mode 

t a frequency of 500 Hz, is shown with round black markers 

n Fig. 9 . The corresponding operating conditions are φ = 1 . 11 

nd ū = 2 . 01 m/s which from Fig. 6 it is seen to lie in the dual

ode region. It can be observed that as | ̂  u | / ̄u increases, the gain

ecreases, while the phase remains approximately constant un- 

il | ̂  u | / ̄u ≥ 0 . 4 when it starts diminishing. Taking this observations

nto account, the following model is used for the describing func- 

ion: 

DF (θm 

) = 

2 βm 

1 + 

√ 

1 + κ2 
m 

A p (θm 

) 2 
− εm 

exp 

( 

−μm 

A p ( θm 

) 2 √ 

π ln ( 2) 

) 

. (8) 

n Appendix B the role of the parameters βm 

, κm 

, εm 

, μm 

is ex- 

lained and it is also shown that this function corresponds to 

 model where the unsteady rate of heat release saturates as 

he pressure amplitude increases. After multiplying Eq. (8) by the 

mpedance Z, one can fit the model to the experimental data. The 

esult is shown in Fig. 9 with a blue line and labelled FDF A . The

odel accurately captures the gain with increasing amplitude, but 

ompletely disregards the development of the phase; the phase 

hown is only due to the impedance Z. One can include a function 

hat accounts for the deviation in the phase. However, to keep the 

odel simple and to facilitate the forthcoming analysis Eq. (8) is 

ept real. 

The corresponding plot of FDF A as a function of A p is also 

hown in Appendix B, Fig. B.14 b in blue. In this figure one can ob-

erve that the FDF in terms of pressure fluctuations is monotonic. 

sing the tools developed by Ghirardo et al. [21] one finds that, 

n a symmetric combustor, real FDFs, such as Eq. (8) , that decrease 

onotonically with amplitude only saturate into spinning modes, 

hereas real FDFs that are non-monotonic can saturate into both 

tanding and spinning modes. Therefore, to ensure that standing 

odes are observed in the forthcoming analysis the parameter ε
s increased until a non-monotonic behaviour is obtained. The re- 

ult is shown in Figs. 9 and B.14 b in red and labelled FDF B . 

Since the model FDF is real, there are two implications on the 

ynamical system. First, F (m ) 
j 

= 0 in Eq. (4) . Second, the thermoa- 

oustic frequency and the natural frequency 1 coincide and one 

ay set ω = ω n . 

.2. Simplified dynamical system 

With the previous model assumptions for the FDF and consider- 

ng the first azimuthal mode corresponding to n = 1 , the dynamical 

ystem reduces to: 
 

 

 

 

 

 

 

 

˙ A 

˙ θ0 

˙ χ

˙ ϕ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−α
A 

2 

0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

N b ∑ 

m =1 

F (m ) 
r 

2 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

A + A cos (2 χ) cos (2(θ0 − θm 

)) 

− sec (2 χ) sin (2(θ0 − θm 

)) 

− sin (2 χ) cos (2(θ0 − θm 

)) 

tan (2 χ) sin (2(θ0 − θm 

)) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

(9) 
1 The thermoacoustic frequency and the natural frequency of a system are usually 

lose to each other. The acoustic or natural frequency of the MICCA combustor has 

een numerically computed to be around 450 Hz [35] , while the thermoacoustic 

requencies lie between 420 and 510 Hz according to Fig. 6 . 

e

a

9 
Before proceeding to the discussion of the results it is impor- 

ant to stress the main advantage of the quaternion formulation of 

he pressure fluctuations. As can be seen from Eqs. (4) and (9) , the

ariables used to describe the nature of the azimuthal instabilities 

re state space variables [30] . In other words, from this representa- 

ion one can directly obtain with no further derivations, the time 

volution of (1) the amplitude, (2) pressure antinodal line angu- 

ar position, (3) spinning, standing or mixed nature of the mode 

nd (4) the phase of the azimuthal oscillation. This is opposed to 

sing derived quantities such as the C-indicator or the spin ratio 

hich require some treatment of the pressure signal as done, for 

nstance, in Worth and Dawson [8] . 

.3. Phase portraits of the symmetric combustor 

To illustrate the evolution of the dynamical system, the phase 

ortraits are shown in two planes of the Poincaré sphere defined 

y (A, 2 χ, θ0 ) as shown in Fig. 10 a. The first plane, shown in red, is

he meridian plane (A, 2 χ, 0) ∪ (A, 2 χ, ±π) or alternatively ( S 1 , S 3 )

n the Cartesian coordinate system. The attractors in this plane can 

e: 

a) Spinning modes if | 2 χ | = π/ 2 . In the figure the two of them

are shown with blue round markers. 

b) Mixed modes if they lie in the region 0 < | 2 χ | < π/ 2 . One of

them (in a different plane) is shown with a green round marker. 

c) Standing modes if 2 χ = 0 . Two of them are shown with red 

round markers. 

The second plane, shown in blue, is the equatorial plane 

A, 0 , θ0 ) or alternatively (S 1 , S 2 ) in the Cartesian coordinate sys-

em. All the attractors in this plane correspond to standing modes 

 2 χ = 0 ). 

Given a damping coefficient α, the system can display qualita- 

ively different phase portraits. In Fig. 10 b we present the phase 

ortraits at α p̄ / ((γ − 1) ̄q ) = 2 . 1 × 10 4 . This value is chosen: 

1. Relative to the magnitude of the FDF. That is to say that we 

can always re-scale the FDF and α, and the phase portraits will 

remain the same, as long as their relative magnitude is kept the 

same. 

2. To reproduce as much as possible some of the conditions ob- 

served in the experimental campaign. 

For a symmetric combustor, the top and bottom rows of Fig. 10 b 

how the meridian and the equatorial planes respectively. The dy- 

amical system has stable standing modes and stable spinning 

odes. On the meridian plane (top) there are stable attractors at 

he origin and at (25 . 57 , 2 × (±π/ 4) , 0) corresponding to spinning

odes. On the equatorial plane (bottom) there are stable attractors 

t the origin and at (19 . 81 , 0 , (2 k − 17) π/ 16) with k = 1 , 2 , . . . , N b 

orresponding to standing modes. These positions coincide with 

ngles in between burners. As in the experimental cases (see 

ig. 7 ) the spinning modes have larger amplitude than the standing 

odes. 2 Furthermore, at small amplitudes the system is linearly 

table. Observe that all the trajectories in this region point towards 

he origin in both planes. However, at moderate amplitudes the 

ystem can saturate into standing or spinning modes. 3 The initial 

onditions of the system will determine the type of limit cycle at 

hich the system saturates. This is reminiscent of the dual mode 

egion in Fig. 6 and thus the hysteresis region analysed by Prieur 

t al. [28] . 
2 While the amplitude A has A sp = 25 . 57 > A st = 19 . 81 , the pressure distribution 

round the annulus A p has A sp 
p = 25 . 57 / 

√ 

2 < max (A st 
p ) = 19 . 81 . 

3 Under these conditions the system is capable of triggering. 
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Fig. 11. Region in the vicinity of the mixed modes. 

7

c

t

s

o

t

w

i

e

h

c

t

c

b

t

p

e

s

m

F

s  

w

t

d

t

b

e

e  

i  

h

t

p

t

(

l

s  

t

m

|

Fig. 12. Comparison of pressure antinode (orientation angle θ0 ) from experiments 

and from the model. The inner part of the annulus shows the experimental re- 

sults from Fig. 8 a. The outer part of the annulus shows in green the pressure antin- 

odes predicted by the model. Note: For configuration P2-02 the experimental results 

show that there is a pressure antinode line shown in very light gray (barely visible) 

just below the burner located at θ = 0 . (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article) 
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.4. Phase portraits of the combustor under weak broken symmetry 

onditions 

In the experimental cases P1A, P1B and P1C, one of the injec- 

ors was partially blocked. To represent this in the model we as- 

ume that blocking half of the injector corresponds to a reduction 

f the parameter εm 

in the FDF. As explained in Appendix B this 

ranslates into a small change in the rate of saturation. The FDF 

ith a reduction of approximately 33% of the original value of εm 

s plotted in blue in Fig. 9 and labelled FDF A . The main differ- 

nce is that at low amplitudes the magnitude of the FDF is slightly 

igher. To analyse the consequences on the phase portraits, we 

onsider configuration P1A-01. This configuration features the par- 

ially blocked injector at an angle θ1 = 0 and therefore its effects 

an be analysed in the same planes used for the symmetric com- 

ustor. 

For the same damping coefficient as in the symmetric case, 

he new phase portraits are shown in Fig. 10 c. For reference, the 

artially blocked injector is indicated with a purple arrow in the 

quatorial plane. The new phase portraits show mixed modes and 

table standing modes. In the meridian plane 4 (top) the spinning 

odes split into two and the new modes are slightly shifted, see 

ig. 11 . The new modes are mixed modes with a predominantly 

pinning component. They are located at (25 . 60 , 2 × ±0 . 782 , 0) ,

ith a preferred pressure antinodal line orientation in the direc- 

ion θ0 = 0 , i.e., the direction of the partially blocked injector. This 

iffers from the experimental data where the antinode angle of 

he spinning modes is roughly 90 degrees apart from the partially 

locked injector (see Fig. 8 c). 

In addition, notice that as | χ | → π/ 4 the second and fourth 

lements of Eq. (9) become infinitely large. As mentioned at the 

nd of Appendix A , there cannot exist fixed points with | χ | = π/ 4

f the symmetry is broken, except at A = 0 . Therefore, due to the

uge gradients in the vicinity of this region, the saddle node at 

he origin extends its field of influence to all amplitudes, thus ex- 

laining the dynamics of the trajectories seen in Fig. 11 . 

The equatorial plane presents the most notable change. The at- 

ractor at the origin splits, and two standing modes emerge at 

2.00,0,0). Moreover, the attractors on either side of the injectors 

ocated at θ = ±π/ 2 disappear. Furthermore, the rest of the stable 

tanding modes have an amplitude of A = 19 . 93 and are located in

he following positions: 

• ≈ π/ 16 radians away from the perturbed burner, i.e., in be- 

tween the perturbed injector and the adjacent injectors. This 

is similar to what is observed in cases P1A-01, P1B-01 and P1C- 

01 and with the appropriate rotation of the frame of reference 

cases P1A-03, P1A-05, P1B-03, D1-01, D1-02 from Fig. 8 a. 
4 The meridian plane is symmetric along the vertical line. Therefore all the com- 

ents referring to the right side ( θ = 0 ) are also applicable to the left side ( θ = 

 π | ). 

h

p

p

10 
• ≈ 3 π/ 16 radians away from the perturbed injector, i.e., in be- 

tween two injectors at a position one injector away from the 

perturbed unit. With the appropriate rotation of the frame of 

reference, this is similar to case P1A-04. 

In the previous analysis we perturbed a single FDF to simu- 

ate one partially blocked injector. One may extend the analysis 

nd perturb several FDFs to emulate configurations P2-01, P2-02 

nd P3-01. Disregarding the stable standing modes at very low 

mplitudes, the pressure antinodes predicted by the model com- 

ared to the experiments are shown in Fig. 12 . As explained above, 

or the configuration P1A-01 the model predicts four stable pres- 

ure antinodal line orientations out of which one matches the 

xperimental results. For configuration P2-01 the model predicts 

our stable pressure antinodal line positions and in the experiment 

ne observes two antinode line positions. The most probable one 

shown in black) is not captured by the model, but the least proba- 

le (shown in light gray) is. For configuration P2-02 the model pre- 

icts four antinodal line orientations and in the experiments one 

bserves two. Both of them are correctly predicted by the model. 

inally for configuration P3-01 the model predicts two antinodal 

ines out of which one is observed in experiments. 

.5. Phase portraits of the combustor under strong broken symmetry 

onditions 

The previous analysis reveals that the orientation angle θ0 of 

he stable standing modes is very sensitive to small changes in the 

istribution of unsteady heat release rate, if the original distribu- 

ion is azimuthally homogeneous. As will be shown next, if one 

tarts from a distribution that is not azimuthally homogeneous the 

ensitivity of the orientation angle is greatly reduced. However, be- 

ore one can assess the sensitivity it is natural to define a measure 

f the azimuthal inhomogeneity of the system. 

The strength of the variation in the distribution of the unsteady 

eat release rate may be estimated by means of the C 2 n indicator 5 
5 The C 2 n indicator is chosen because all the changes are introduced in the linear 

arameters of the FDF ( ε and β) if the variations were introduced in the nonlinear 

arameters, such as κ or μ, the N 2 n indicator [21] would be more appropriate. 
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Fig. 13. Reference for (a) see Fig. 10 . (b) and (c) show trajectories of the fixed points as the FDF is varied. × denotes the initial location of the fixed points and � denotes 

the final position. The thick lines are used to trace the trajectories of the fixed points as one of the parameters is varied. In red we show the stable fixed points (attractors) 

and in black the unstable fixed points (saddles and repellers). Starting from a configuration with strong azimuthal variation of the FDF, in (b) the fixed points barely move 

when ε1 is reduced, In (c) the fixed points change drastically when B is lowered and the strong azimuthal variation is removed. Starting from 7 fixed points, decreasing the 

value of B leads to 23 fixed points due to the occurrence of multiple bifurcations. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article) 

Table 2 

Summary of the strength of the azimuthal variations in the heat release rate as 

given by the C 2 n /C 0 index. 

Configuration Condition C 2 n /C 0 

εm = 2155 Symmetric 0 

ε1 = 1437 Weak broken symmetry 0.034 

εm = 2155(1 + sin (2 θm )) Strong broken symmetry 0.472 
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ntroduced by Noiray et al. [18] . Since the changes also affect the 

ean flame response, it is more instructive to look at the ratio 

 2 n /C 0 . For a discrete number of burners with a real FDF this can

e calculated as: 

 2 n = 

N b ∑ 

m =1 

FDF (θm 

) sin ( 2 n (θm 

− θ0 ) ) , C 0 = 

N b ∑ 

m =1 

FDF (θm 

) (10) 

he FDF is evaluated at A p = 0 , the azimuthal wave number is

et to n = 1 , and θ0 is chosen to maximize the value of C 2 n . For

he symmetric combustor this index vanishes C 2 n /C 0 = 0 . For the 

ombustor where the FDF of the burner located at θ1 was mod- 

fied by changing the parameter ε1 from 2155 to 1437, one finds 

 2 n /C 0 = 0 . 034 , i.e., weak broken symmetry conditions. Next con- 

ider a case with strong broken symmetry conditions, which is ob- 

ained by introducing an azimuthal variation in the FDF which in- 

reases the magnitude of its 2 n Fourier component [18,25] . This 

an be achieved by modifying the parameter εm 

such that εm 

= 

155(1 + B sin (2 θm 

)) . Setting B = 1 one finds that C 2 n /C 0 = 0 . 472 .

he results for the different configurations are summarized in 

able 2 . 

To assess the sensitivity of the pressure antinodal line to 

mall changes in the distribution of unsteady heat release rate, 

ne may begin with the combustor under strong broken sym- 

etry conditions. For this configuration the equatorial plane is 

hown in Fig. 13 a. There are two stable standing modes located at 

18 . 48 , 0 , −π/ 4) and (18 . 48 , 0 , 3 π/ 4) . From this configuration one

ay proceed by slightly decreasing the parameter ε1 from 2155 

o 1437 and trace the trajectories of the fixed points as shown in 

ig. 13 b. The effects are clearly negligible. In contrast, consider now 

his configuration but with a decrease of the parameter B to zero. 

he trajectories, traced in Fig. 13 c, indicate that the changes to the 

xed points are very prominent and, as expected, one recovers the 
11 
lane shown in Fig. 10 c (bottom). This analysis confirms that in 

onfigurations with a homogeneous distribution of unsteady heat 

elease rate small changes to the distribution can translate to big 

hanges in the phase portraits due to the relocation of the fixed 

oints. 

Extending these conclusions to the experimental cases, one can 

rgue that the MICCA combustor does not have a strong azimuthal 

ariation of the unsteady heat release rate, because the position of 

he pressure antinodes change when the injection pattern changes. 

urthermore, as shown in the last example, where a strong az- 

muthal variation is introduced in the FDF which increases the 

agnitude of its 2 n Fourier component, strong asymmetries are 

equired to completely change the phase portrait of the system. 

his reinforces the possibility that an assortment of weak symme- 

ry breakers are required to change the stability of a limit cycle as 

een in the standing case of the configuration DP2-01. 

. Conclusions 

This study comprises an experimental investigation of the ef- 

ects of symmetry breaking on the stability of limit cycles. The de- 

ired effect is achieved by partially blocking one or several injec- 

ors or by changing their geometry in the MICCA combustor. Re- 

ults show that breaking the symmetry by changing the distribu- 

ion of the unsteady heat release rate does not change the stability 

f a predetermined limit cycle when the symmetry breaking mech- 

nism is weak. Under this scenario the main feature that responds 

o these changes is the pressure antinodal line (orientation angle) 

hich locks in at specific positions that depend on the pattern of 

he blocked injector(s). 

By using a dynamical system and a modelled flame describ- 

ng function to represent the combustion response under similar 

onditions, one can predict some features of the limit cycles that 

atch the experimental cases. For the cases where a standing limit 

ycle develops, the model is capable of predicting several pres- 

ure antinodal line positions, some of which coincide with those 

ound experimentally. Using the model we further conclude that 

or a standing azimuthal mode of order n , the strength of the 2 n

ourier component of the azimuthal variation of the unsteady rate 

f heat release, determines the sensitivity of the pressure antinodal 

ine position. When the azimuthal variation is weak, the pressure 

ntinodal line orientation is very sensitive. When the variation is 
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trong the pressure antinodal line position barely changes. These 

esults confirm that the unsteady heat release distribution in the 

ICCA combustor is rather homogeneous given that the pressure 

ntinodal line position changes according to the position of the 

locked injectors. 
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ppendix A. Derivation of the dynamical system 

Previous derivations of the dynamical system [25,31,33] have 

een carried out using quaternion algebra, which adds a layer of 

omplexity for those who are not familiar with this formalism. In 

his appendix we avoid these complexities and sketch the deriva- 

ion of the dynamical system for the case with a discrete number 

f burners using multiple scales theory. We begin by considering 

he wave equation: 

∂ 2 p ′ 
∂t 2 

+ α
∂ p ′ 
∂t 

− c̄ 2 

R 

2 

∂ 2 p ′ 
∂θ2 

= (γ − 1) 

N b ∑ 

m =1 

∂ q ′ 
∂t 

2 πδ(θ − θm 

) , (A.1) 

he nonlinearity in the equation arises from the unsteady heat re- 

ease term. As such, this equation can be treated as a weakly non- 

inear oscillator. This problem is dominated by two time scales, a 

ast time scale t f = 1 /ω which is proportional to the period of os-

illation and a slow time scale t s = 2 / (α − η) associated with the

rowth rate and reflected in the rate of change of the state vari- 

bles. Here η is the linear coefficient of the r.h.s. of Eq. (A.1) pro- 

ortional to ∂ p ′ /∂ t . Using the following shorthand notation: 

 θ0 
≡ cos (n (θ − θ0 )) , s θ0 

≡ sin (n (θ − θ0 )) , 

c χ ≡ cos (χ ) , s χ ≡ sin (χ ) , 

c ϕ ≡ cos (ωt + ϕ) , s ϕ ≡ sin (ωt + ϕ) , 

ne may now introduce the pressure ansatz and write its first 

erivative with respect to time: 

p ′ (t, θ ) = A 

(
c θ0 

c χ c ϕ + s θ0 
s χ s ϕ 

)
, (A.2) 

∂ p ′ 
∂t 

= Aω 

(
s θ0 

s χ c ϕ − c θ0 
c χ s ϕ 

)
. (A.3) 
ig. B.14. (a) Heat release rate as a function of pressure amplitude for the saturation mo

ration models. The values for the parameters are: β = 3419 , κ = 0 . 2156 1/Pa, εA = 1437 , 

o FDF A,B given by Eq. (8) . 

12 
hese two expressions may be regarded as defining the slow flow 

ariables A , θ0 , χ , ϕ. Eq. (A.3) requires the following equation to 

old: 

 = 

˙ A 

(
c θ0 

c χ c ϕ + s θ0 
s χ s ϕ 

)
+ An 

˙ θ0 

(
s θ0 

c χ c ϕ − c θ0 
s χ s ϕ 

)
+ A ˙ χ

(
s θ0 

c χ s ϕ − c θ0 
s χ c ϕ 

)
+ A ˙ ϕ 

(
s θ0 

s χ c ϕ − c θ0 
c χ s ϕ 

)
. (A.4) 

rom Eq. (A.3) it follows that: 

∂ 2 p ′ 
∂t 2 

= ω 

(
˙ A 

(
s θ0 

s χ c ϕ − c θ0 
c χ s ϕ 

)
− An 

˙ θ0 

(
c θ0 

s χ c ϕ + s θ0 
c χ s ϕ 

)
+ A ˙ χ

(
s θ0 

c χ c ϕ + c θ0 
s χ s ϕ 

)
− A ( ˙ ϕ + ω ) 

(
c θ0 

c χ c ϕ + s θ0 
s χ s ϕ 

))
. (A.5) 

efore averaging the equations, we first treat the unsteady heat re- 

ease term by considering only the first harmonic: 

 

′ (θ, t) = 

1 

2 

(
ˆ q e jωt + c . c . 

)
. (A.6) 

sing the definition of the flame describing function Eq. (6) , we 

ubstitute ˆ q in Eq. (A.6) to obtain: 

∂ q ′ 
∂t 

= 

1 

2 

(
q̄ FDF 

ˆ p 

p̄ 
e jωt jω + c . c . 

)
. (A.7) 

ere ˆ p is defined via p ′ = Re { ̂  p e jωt } and equals: 

ˆ p = A 

(
c θ0 

c χ + js θ0 
s χ

)(
cos (ϕ) + j sin (ϕ) 

)
. (A.8) 

roceed by substituting the above definitions into (A.1) . To re- 

ove the dependency on the azimuthal angle θ we multiply 

qs. (A.1) and (A.4) by cos (nθ ) and average over the circumference. 

e repeat the same process with sin (nθ ) , providing a total of four 

quations for the four slow flow variables. Since the derivatives of 

he slow flow variables appear linearly in the equations, the set of 

quations can be recast in vector form as: 

 1 ( x , t) ̇ x = b 1 ( x , t) . (A.9) 

here x = [ A, θ0 , χ, ϕ] T , M 1 is a matrix and b 1 is a vector both

f which depend on time and x . We proceed by splitting the ma- 

rix M 1 into a matrix that contains the temporal terms ( c ϕ and s ϕ ),

ay B 2 ( x , t) , and a matrix that contains the rest of the terms, say

 2 ( x ) , such that M 1 ( x , t) = B 2 ( x , t) M 2 ( x ) . The matrix B 2 is invert-

ble in the entire domain of the slow flow variables, therefore we 

an multiply Eq. (A.9) by B −1 
2 

from the left to obtain: 

 2 ( x ) ̇ x = ( B 2 ( x , t) ) 
−1 

b 1 ( x , t) . (A.10) 

e perform temporal averaging over one cycle on all the terms in 

he right: 

 2 ( x ) = 

ω 

2 π

∫ 2 π
ω 

0 
( B 2 ( x , t) ) 

−1 
b 1 ( x , t ) d t . (A.11) 
dels given by Eqs. (B.3) and (B.5) . (b) Flame describing function of each of the sat- 

εB = 2155 and μ = 0 . 01712 1 / Pa 2 . The dashed lines are the analytic approximation 
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atrix M 2 is not always invertible. Its determinant is 

A 

3 nω 

2 cos (2 χ)) / 16 , which implies that the matrix cannot be

nverted when A = 0 or | χ | = π/ 4 . Therefore, we split the matrix

nto the product of an invertible matrix, say B 3 , and a noninvert- 

ble matrix, say M 3 , which contains all the terms that make the 

eterminant zero or undefined, such that M 2 = B 3 M 3 . Multiplying 

rom the left by B −1 
3 

produces the following system of equations: 

 3 ( x ) ̇ x = ( B 3 ( x ) ) 
−1 

b 2 ( x ) . (A.12) 

f we consider a meridian plane θ0 = constant or the equatorial 

lane as in Fig. 10 , the difficulties raised by the non-invertibility of 

atrix M 3 do not arise. Then, solving for ˙ x produces the dynamical 

ystem shown in Eq. (4) . For the case when A = 0 , Eq. (A.12) re-

uces to ˙ A = 0 . For the limiting case | χ | = π/ 4 , M 3 is not invert-

ble, then, after dividing Eq. (A.12) by A we obtain: 

⎡ 

⎢ ⎣ 

˙ A 
A 

n 

˙ θ0 + sin ( 2 χ) ˙ ϕ 

˙ χ
cos ( 2 χ) ˙ ϕ 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

−α
2 (

ω 2 n 

2 ω − ω 
2 

)
sin ( 2 χ) 

0 (
ω 2 n 

2 ω − ω 
2 

)
cos ( 2 χ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

+ 

∑ N b 
m =1 

F ( 
m ) 

r 

2 

⎡ 

⎢ ⎣ 

1 + cos ( 2 χ) cos ( 2 n ( θ0 − θm 

) ) 
− cos ( 2 χ) sin ( 2 n ( θ0 − θm 

) ) 
− sin ( 2 χ) cos ( 2 n ( θ0 − θm 

) ) 
sin ( 2 χ) sin ( 2 n ( θ0 − θm 

) ) 

⎤ 

⎥ ⎦ 

+ 

∑ N b 
m =1 

F ( 
m ) 

j 

2 

⎡ 

⎢ ⎣ 

0 

sin ( 2 χ) 
sin ( 2 n ( θ0 − θm 

) ) 
cos ( 2 χ) + cos ( 2 n ( θ0 − θm 

) ) 

⎤ 

⎥ ⎦ 

, 

(A.13) 

ith F r and F j defined in Eq. (5) . This equation is the analogue of

q. (19) in Ghirardo and Gant [31] for a discrete number of burn- 

rs. Substituting χ = ±π/ 4 gives: 

 

 

 

 

 

 

 

 

 

 

˙ A 

A 

n ̇ θ0 ± ˙ ϕ 

˙ χ

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−α

2 

±
(

ω 

2 
n 

2 ω 

− ω 

2 

)
0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

N b ∑ 

m =1 

F (m ) 
r 

2 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 

0 

∓ cos (2 n (θ0 − θm 

)) 

± sin (2 n (θ0 − θm 

)) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

N b ∑ 

m =1 

F (m ) 
j 

2 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

±1 

sin (2 n (θ0 − θm 

)) 

cos (2 n (θ0 − θm 

)) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (A.14) 

he equation in the bottom row only holds in the case of a sym- 

etric combustor. When the symmetry is broken there can only 

xist mixed modes in accordance to the findings in Noiray et al. 

18] , Faure-Beaulieu and Noiray [25] and the results shown in this 

tudy. 

ppendix B. Flame describing function 

In this appendix two models for the saturation of the heat re- 

ease rate as a function of pressure are examined. It is here con- 

enient to write pressure fluctuations from Eq. (1) using the def- 

nition of the amplitude of the pressure fluctuations around the 

nnulus Eq. (2) : 

p ′ (t, θ ) = A p (θ ) cos (ωt + ϕ 

+ (θ )) . (B.1) 
13 
here ϕ 

+ is a phase angle (which differs from ϕ). One may 

hen proceed by recasting Eq. (6) using the definition for the first 

ourier components: 

DF (A p , ω) = 

p̄ 

q̄ 

1 

A p e jϕ 
+ 
ω 

π

∫ 2 π/ω 

0 

q ′ (t )e − jωt d t . (B.2) 

he nonlinear saturation of the heat release rate as a function of 

ressure may be expressed in the form 

 

′ (t) = 

q̄ 

p̄ 

β

κ
arctan 

(
κ p ′ (t) 

)
. (B.3) 

here β is a constant of proportionality and κ is a nonlinear sat- 

ration term. For this model the corresponding FDF is readily cal- 

ulated to be: 

DF = 

2 β

1 + 

√ 

1 + κ2 A 

2 
p 

. (B.4) 

his FDF is monotonically decreasing and has the following limit- 

ng behaviour: FDF → 0 as A p → ∞ and FDF → β as A p → 0 . The

eat release rate as a function of the pressure amplitude and the 

orresponding FDF are shown in green in Fig. B.14 . Next we alter 

he slope of the saturation function at low and moderate ampli- 

udes by introducing a Gaussian term: 

 

′ 
A,B (t) = 

q̄ 

p̄ 

(
β

κ
arctan 

(
κ p ′ (t) 

)
− εp ′ (t) exp 

(
−μp ′ (t) 2 

))
. (B.5) 

ere ε and μ are constants that control the behaviour of the Gaus- 

ian, modifying the rate of saturation. The FDF for this function 

s computed by numerical integration. Depending on the magni- 

ude of the parameter ε, the FDF can change from being monotonic 

o being non-monotonic. In Fig. B.14 the monotonic behaviour is 

hown in blue, corresponding to q ′ 
A 
(t) and FDF A . An increase in ε

enders the FDF non-monotonic as shown in the red curves corre- 

ponding to q ′ 
B 
(t) and FDF B . Observe that the change in slope of 

aturation of q ′ (t) substantially alters the FDF at small and mod- 

rate amplitudes. To avoid numerical integration in the dynamical 

ystem we use the analytic approximation given by Eq. (8) (ob- 

ained by least squares fitting of the Gaussian integral), which is 

hown in dashed lines and is in good agreement with the one 

ound numerically. 
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